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Seeing moiré: Convolutional network learning applied to twistronics
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Moiré patterns made of two-dimensional (2D) materials represent highly tunable electronic Hamiltonians,
allowing a wide range of quantum phases to emerge in a single material. Current modeling techniques for moiré
electrons require significant technical work specific to each material, impeding large-scale searches for useful
moiré materials. In order to address this difficulty, we have developed a material-agnostic machine learning
approach and test it here on prototypical one-dimensional (1D) moiré tight-binding models. We utilize the
stacking dependence of the local density of states (SD-LDOS) to convert information about electronic band
structure into physically relevant images. We then train a neural network that successfully predicts moiré
electronic structure from the easily computed SD-LDOS of aligned bilayers. This network can satisfactorily
predict moiré electronic structures, even for materials that are not included in its training data.
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I. INTRODUCTION

Since the discovery of strongly correlated electronic phases
in twisted bilayer graphene (TBG) [1,2], moiré materials
made of multiple layers [3–8] or two-dimensional (2D) crys-
tals other than graphene [9–12] have been under intense study.
A primary goal in these efforts is to understand how the rich
phase diagram of TBG can be realized in other materials,
and if phases distinct from those which appear in graphene
superlattices are possible. However, the theoretical modeling
or experimental realization of all possible 2D bilayer materials
is not an easy task. Even if only the materials in which only
a few atoms per unit cell are considered, there are thousands
of structures with exfoliating layered geometries [13]. First-
principles calculations of moiré superlattices are extremely
computational demanding [14], and existing effective models
are only designed for simple one-band or two-band bilayer
systems [15–19]. Therefore, high-throughput screening is a
necessary approach to help the community focus on materials
that most likely possess the deserved properties. Computing
electronic properties from first principles on only a small
number of promising bilayer materials is much more practical
than blindly performing such expensive calculations on every
possible bilayer material.

Putting first-principle calculations aside, even tight binding
calculations of twisted bilayer systems are not straightfor-
ward. Accurate models for the individual layers and for their
interlayer coupling must first be obtained, and at small an-
gles large matrices (>50 000 electrons) occur for systems
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with many d-orbital electrons, making diagonalization diffi-
cult. Although fast numerical schemes based on plane-wave
approximations of large moiré superlattices have been devel-
oped for the computation of electronic properties of twisted
bilayers [17,19–21], these still rely on accurate tight-binding
models which can be challenging to generate for arbitrary
materials. However, what if the changes of electronic struc-
tures from an untwisted to a twisted heterostructure followed
certain universal rules, dependent only on the twist angle
θ? Assuming such a transformation exists, it can be char-
acterized by a material-agnostic “twist operator,” and one
could overcome both the above challenges. Tight-binding
parametrization would no longer be necessary, as one can
directly pass untwisted electronic structure to the operator.
Large computational complexity is avoided in two ways. First,
one only needs to perform calculations on aligned unit-cells
at various configurations, which can be performed easily
and quickly with first-principle methods. Second, once the
training necessary for learning the operator is complete, the
resulting model will by many orders of magnitude faster than
a direct tight-binding or density functional theory (DFT) ap-
proach to the moiré electronic structure problem. We present
such a method here, and show that we can accurately approx-
imate a universal twist operator with a convolutional neural
network, with the overall concept outlined in Fig. 1. For this
first attempt at learning the twist operator, we focus on a
making predictions at a single “twist angle” (lattice mismatch
in 1D) of θ = 0.1. This network is able to make predictions
for bilayer materials absent from its training set, but not for
materials too different from any represented in the training.
We posit that this method can become a powerful tool for
high-throughput screening of proposed structures or even di-
rectly applied to experimental data.

Learning a generalized operator with neural networks
remains a hard problem even in recent years. The main chal-
lenges of learning an operator depend on the nature of the
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FIG. 1. A noncommuting diagram of electronic structure models,
showing the connections between the (top) parametrization of a tight
binding model for a 2D material, the (middle) explicit tight-binding
Hamiltonians (H) and resulting band structure (B.S.) at specific shifts
or twist angles, and (bottom) the configuration-dependent electronic
local density of states (LDOS). The Lθ marked with the red dashed
arrow is the image processing we aim to achieve, e.g., the twist
operator to be learned with a neural network. The solid black arrows
represent well-defined mappings.

input space and the output space, both of which are infinite di-
mensional for highly nonlinear operators. However, universal
approximation theory gives some hope that certain operators
can be learned by neural networks, namely any nonlinear
continuous operator [22,23]. Most recent applications of op-
erator learning focus on solving a nonlinear partial differential
equation [24–26] and reconstruction of a coefficient function
in the differential operators.

In this work, we frame the learning of the twist opera-
tor in a manner analogous to an image processing problem.
The electronic structure of the untwisted and twisted bilayers
are transformed into “images” by plotting their stacking-
dependent local electronic density of states (SD-LDOS)
[27,28], in contrast to the conventional approach of plotting
the momentum variation of eigenvalues (band structure). This
so-called configuration space acts as a compact domain for
understanding moiré electronic structure. In particular, during
the conversion of band structures all moiré flat bands become
“bright spots” in the resulting images (Fig. 2). To simplify
this first attempt at generation of a twist operator, we limit
ourselves to a collection of ten artificial 1D materials, and
mimic the role of the twist angle in 2D materials with a
1D lattice mismatch to generate moiré patterns (Fig. 3). In
Sec. II, we introduce the electronic structure of these moiré
1D materials, the generation of the configuration-space LDOS
maps, and our neural network. In Sec. III, we cover the results
of various neural network trainings, including optimization of
the network and material-agnostic prediction of moiré elec-
tronic structure from “untwisted” reference data. Finally, we
summarize these results and discuss future applications of this
methodology in Sec. IV.

FIG. 2. (a) Top-down view of an aligned 1D bilayer, with atomic
sites represented by vertical lines. The top layer is in orange while
the bottom layer is in purple. (b) A zoomed-in side view showing
the atomic sites as circles at the specific configuration (d) between
the top and bottom layers. (c) Band structure and (d) LDOS for this
aligned bilayer system and a moiré bilayer system. (e) Configuration-
dependent DOS map, for all possible shifts between the two layers in
the aligned geometry, with the selected shift in (a) highlighted with
the white vertical line. (f)–(j) Same as (a)–(e), but for a 1D moiré
pattern with θ = 0.1 and the 1D moiré length indicated in (f) by λθ .
Note that in (b) the two layers are uniformly shifted by d = 0.2, but
in (g) the two layers are aligned at x = 0 and then the top layer is
compressed.

FIG. 3. One-dimensional band structures for the ten Hamiltonian
templates, M1–M10, with randomized parameters. In black is a de-
fault setting for each Hamiltonian, and in color are examples of the
same Hamiltonian with randomized tight-binding parameters.
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II. METHODS

A. 1D moiré electrons

To test the viability of using a neural network for predict-
ing moiré electronic structure, we will consider 1D bilayer
chains. Although most 2D moiré materials are generated by
introducing a relative twist between the two layers of a bilayer,
it is not possible to “twist” two 1D chains. Instead, we use
a relative compression or expansion of the lattice parame-
ter, which can also generate a moiré superlattice, following
recent studies of 1D moiré patterns [28,29]. We define this
lattice mismatch by a parameter θ (not a twist angle, but with
this variable chosen to facilitate conceptual comparison to
twisted 2D systems), such that the bottom layer has lattice
parameter 1 and the top layer has lattice parameter 1 − θ . We
have chosen length to be unitless for notational simplicity.
In Fig. 2, we compare the geometry and electronic structure
between a one-dimensional bilayer with and without a lattice
parameter mismatch. Throughout this work, we fix θ = 0.1,
corresponding to a periodic moiré supercell of 10 and 11 unit
cells for the bottom and top layers, respectively. For both
θ = 0 and θ = 0.1, we calculate the electronic band structure.
Just as in the case of twisted 2D bilayers, the 1D moiré pattern
introduces multiple moiré minibands, with the flattest bands
near the band gap.

Similar information can be gained by considering the
stacking dependent local density of states (SD-LDOS). To
understand how the electronic structure varies under different
stacking configurations, we first consider a bilayer system
(either aligned or mismatched by θ ) such that the unit cell
corners of the top and bottom layers are vertically aligned at
the origin. We label the top layer’s unit cell nearest to the
origin R0, and then allow this initially aligned unit cell to
move left or right by an amount d . This produces a bilayer
system with the desired stacking d near the origin [Figs. 2(a)
and 2(b)], and to obtain the SD-LDOS we need only consider
the orbitals in R0. The SD-LDOS is then defined as

ρθ,d (E ) = 1

Nk

∑
o∈R0

∑
n,k

∣∣ψnk
o

∣∣2
δ(E − Enk ), (1)

where o are the orbitals in the top-layer unit cell R0 with
stacking d , n indexes the bands of the system, k indexes
the momentum states of the 1D Brillouin zone, and Nk are
the numbers of momentum points sampled. The eigenpairs
{ψnk

o ,Enk} are obtained from a Hamiltonian Hk (θ, d ), which
is a moiré superlattice with lattice mismatch θ and with the
top layer shifted d relative to the bottom layer at R0. Note
that, for the aligned system, the sum over o ∈ R0 is equivalent
to summing over all orbitals in the top-layer, as the system is
periodic within a single lattice length. Comparing the θ = 0
to the θ �= 0 case in Figs. 2(c) and 2(d), we see that the energy
regions that had large variation with d in the aligned system
change the most after the introduction of a moiré pattern.
Importantly, the moiré pattern has converted an “X” shape in
the aligned system’s SD-LDOS into a state that is localized in
space and energy (d = 0.5 and E = 1.75 eV).

We chose ten prototypical classes of tight-binding models
for our study, with their monolayer band structures shown in
Fig. 3. Each model represents a different type of material sym-

metry, and we label them M1 through M10. The first material,
M1, is a two-orbital semimetal, inspired by graphene. The
next three, M2–M4, and M8 are two-orbital materials with
a broken sublattice symmetry, inspired by hexagonal boron
nitride (hBN). The remaining materials are multiorbital sys-
tems with a gap and complicated band hybridizations, inspired
by transition metal dichalcognides, with M7 and M10 being
the most complicated while M5, M6, and M9 are simpler
three-orbital semiconductors. We also introduce parameters of
the interlayer tunneling function, which is defined as

t (r) = νe−(r/R)2
(2)

for r the distance between the two orbitals, ν the interlayer
tunneling strength, and R the interlayer tunneling length.

Although ten materials would be quite a large number
in the context of the study of moiré systems, for machine
learning it is not diverse enough to allow for proper training
of our model. Therefore, we randomize the tight-binding and
interlayer tunneling parameters around a set of base values.
Each material type consists of a Hamiltonian structure and
set of random monolayer parameter distributions, which are
sampled from for each individual element of the datasets. That
is to say, two samples of the same material type are never
identical. For the interlayer tunneling parameters, we also set
ν = 0.3 ± 0.1 eV and R = 0.5 ± 0.1, with uniform random
sampling for each element of the dataset. A full description
of the monolayer Hamiltonians and their randomization is
provided in the Appendix, and the code which generates the
Hamiltonians and performs the neural network training is
made publicly available [30].

B. The twist operator

We now assert that the transformation from the aligned
electronic structure to the moiré electronic structure is per-
formed by a generalized twist operator, Lθ . This operation is
usually performed by applying conventional electronic struc-
ture methods to a moiré superlattice, be it with full DFT,
a tight-binding model, or a plane-wave expansion of the
monolayer Bloch states [15]. In Fig. 1, starting with an ac-
curate tight-binding parametrization of a 2D material, one can
generate an aligned or twisted tight-binding model (H) and
then calculate their respective band structure (B.S.). In this
context, the twist operator is not an explicit mapping which
takes untwisted band structure into twisted band structure, but
rather represents the underlying tight-binding parmeterization
shared by both systems and the methodology of generating
a twisted tight-binding supercell. For another example of
this scheme, consider the generation of a continuum model
from stacking-dependent DFT calculations [31]. In this case,
the twist operator is a more explicit transformation from
aligned information to moiré structure, but it is highly ma-
terial specific: the scientist must properly identify and extract
the monolayer masses (variation in band energy with k) and
moiré potentials (variation in band gap with d) correctly, and
then calculate the band structure in a plane-wave basis. Each
extension of this method to a new material is a significant
undertaking [17,19,32] as no automated approach for the gen-
eration of an electronic moiré model exists.
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Our aim here is to approximate the twist operator by a
convolutional neural network (CNN) applied to the SD-LDOS
images, as marked with a red dashed arrow in Fig. 1. In sup-
port of Lθ ’s existence, note that the effect of twisting a bilayer
system is well defined and deterministic given the existence of
a definite electronic structure model and a chosen twist angle.
Also note that the transformation, when viewed in the context
of its operation on a real space Hamiltonian, is analytical with
respect to θ : the moiré pattern causes smooth variation in the
local stacking, and all current studies of moiré interfaces have
found that the local Hamiltonians are likewise smooth in the
stacking order [17–19,31]. But to thoroughly prove the twist
operator’s existence, one must explore how electronic struc-
ture information is embedded in the SD-LDOS. If we assume
that an inverse map from the SD-LDOS to the tight-binding
model which generated it exists, then we can transform the
SD-LDOS of an untwisted system to that of the twisted system
by the conventional moiré supercell tight-binding method.
The geometric operation of twist and the calculation of LDOS
from band structure are material agnostic, so all the material-
dependent information is encoded in the inverse mapping of
SD-LDOS to the tight-binding parameters.

Although the space of possible tight-binding models is in-
finite dimensional, as long as numerous aligned LDOS values
are known it is not unreasonable to expect that some recovery
of the parameters of tight-binding model is possible. We note
that this reconstruction of a tight-binding model from LDOS
is not unique, evidenced by the fact that there is a gauge choice
present in the Wannierzation process [33]. However, the gauge
choice does not affect any physical observables, and so one
could hope that the gauge choice does not effect the efficacy
of mapping LDOS to SD-LDOS. Detailed understanding of
the necessary assumptions and resulting errors in this inverse
mapping to a tight-binding model will be useful in optimizing
our model, but as this work already presents a successful
implementation we will leave a rigorous mathematical de-
scription of Lθ existence to future work.

C. Dataset and CNN

We calculate the SD-LDOS on a uniform grid in both
energy (Ei) and configuration (d j), leading to an 2D array
of LDOS values ρi j . We first calculate the band structure of
each system on a uniform sampling of Nk k-points, and then
implement Eq. (1) by replacing the δ function with a Gaussian
broadening of σ to each eigenvalue:

ρi j ≡ ρθ,d j (Ei ) = 1

Nk

∑
o∈R0

∑
n,k

∣∣ψnk
o

∣∣2 1

σ
√

2π
e− (Ei−Enk )2

2σ2 (3)

with σ = 30 meV. The ρi j can then be interpreted as images
and the learning of the moiré SD-LDOS can naturally be seen
as an image processing problem.

In Fig. 4 we introduce our selected neural network ar-
chitecture, which consists of three components including an
encoder, a fully connected network, and a decoder. This fol-
lows a convolutional autoencoder structure, well known to
provide effective solutions to image processing problems [34].
We found that using such an encoder/decoder CNN structure
decreases the training and test error by a factor of 10 compared

FIG. 4. Selected network architecture, which consists of a fully
connected neural network (for prediction) at the center of a convo-
lutional autoencoder (for image compression/decompression). Each
convolutional layer is given by m@h × w for m nodes of pixel size
h × w, with the algorithm between each layer given below in white
boxes. The number of layers n in the fully connected network at the
center is optimized to find an optimal complexity for our training
duration, with n = 4 displayed here.

to a fully connected neural networks of similar size, and
requires much less training time.

In our network, the encoder plays the role of dimension
reduction and is expected to compress the LDOS calculated
from aligned bilayer system into some generalized parame-
ters in the space of tight-binding models. It takes as input
a window of aligned LDOS, represented by a single chan-
nel 180 × 40 image. The encoder uses rectified linear unit
(ReLU) activation function and it is composed of two convolu-
tional layers and two pooling layers. In the convolution layers,
a 3 × 3 kernel is used when both padding and stride are set
to 1. Between the first pooling layer and second convolution
layer, a batch normalization is applied. A fully connected neu-
ral network is then used to work as the twisting operation, and
represents the second component of the neural network archi-
tecture. It consists of multiple dense layers and uses an ReLU
activation function. Batch normalization is applied between
different fully connected layers. The decoder structure, the last
component of the network architecture, uses an upsampling
CNN and ReLU activation function. It is designed to resem-
ble the process of calculating the LDOS from tight binding
parameters for moiré bilayer systems. Padding and stride in
the decoder structure are set to be 0 and 2, respectively, in
these layers, and batch normalization is applied between two
upsample convolution layers.

For the success of any machine learning application, data
preprocessing is often more important than the chosen archi-
tecture, and so we now discuss our choices of preprocessing
thoroughly. We normalize the SD-LDOS of each bilayer ma-
terial by the maximum value of the aligned SD-LDOS. This
choice means that the moiré LDOS is allowed to be larger than
1, allowing one to predict large DOS enhancement. We next
assume that the full spectrum of the LDOS is not necessary,
and that one can learn local spectral structure instead of the
global structure. In other words, if the width of a truncated
energy window is larger than any parameters in the underlying
model, a local reconstruction of moiré structure from just
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the information in that window should be possible. The SD-
LDOS is calculated first for an energy range [−4.5, 4.5] eV
and 20 different local configurations dj along the 1D unit cell.
We then chose nine energy windows, each with a width of
1.8 eV. Those nine windows are generated by shifting the
bottom energy window up by 0.9 eV eight times, such that
a given energy never appears more than twice in our dataset
for a specific material.

Our full dataset consists of ten types of bilayer materi-
als. To understand the transfer learning of the network, we
also consider a dataset with M7 and M10 removed, and a
dataset with M2, M5, M7, and M8 removed. This first reduced
dataset, labeled R1, has the two most complicated materials
(M7 and M10) removed, and tests how the network performs
for materials that are vastly different than any member of its
training set. In contrast, the second reduced dataset, labeled
R2, is designed to test how the network does on materials
that are similar, but slightly different from other members of
its training set. Although the different datasets differ by their
total number of materials, the training error and test error are
normalized per batch. Therefore, the training and test errors
across datasets are still comparable.

The full dataset and two reduced datasets consists of
20 000, 12 000, and 16 000 SD-LDOS images, respectively,
with each included material type contributing equally. During
the training of our neural networks, 80% of the data are used
as training data with 20% kept in reserve to serve as test
(validation) data. The optimization algorithm used in neural
network training is adaptive moment estimation (ADAM) [35]
with a fixed learning rate set to 0.001 and stochastic small-
batch training scheme applied. For a loss function, we use the
mean square error (MSE) on each truncated energy window
of the SD-LDOS. The MSE, or L2 distance, between the true
ρ (obtained by tight-binding calculation of the moiré bilayer)
and the CNN’s predicted ρ ′ is


 = 1

N

∑
i j

(ρi j − ρ ′
i j )

2. (4)

where N = NdNE is the number of total points in the win-
dowed LDOS. Here we also define the moiré sensitivity 
m,
which is the L2 distance between the aligned and moiré
LDOS. 
m uses an identical formula as above but with ρ and
ρ ′ corresponding to the input and output images respectively
instead, with no reference to the network prediction.

To perform the training, each epoch consists of selecting an
energy window at random and then applying ADAM across
the entire training set in batches. The training error for each
epoch is calculated by summing the MSE of all batches. The
test error is calculated after each epoch finishes by summing
all the MSE of equally sized batches over the whole testing
set. The two errors reflect how well the neural network model
is learning the training data and how well the neural network
predicts results on the unseen data in the test set.

III. RESULTS

We first consider networks trained on the full dataset, with
varying numbers of fully connected (FCN) layers, as shown in
Fig. 5(a). The rapid decay of each learning curve suggests that

(a) (b)

FIG. 5. (a) Training error curves for differing numbers of fully
connected layers in the neural network. (b) Training error versus test
error, which is measured in logarithm (base 10) of the average mean
square error per batch after 1200 epochs of training.

the most important optimization occurs after only a hundred
epochs, but refinement of the network does continue even after
a thousand epochs. The training error with six FCN layers
is larger than the training error with two FCN layers after
100 epochs of training, but the six FCN network outperforms
the two FCN network after 600 epochs. This means we can
sacrifice accuracy at long training times for accuracy at short
training times by decreasing the number of layers, which is
a valuable feature for larger datasets. We also compared the
final epoch’s test error and training error among the different
number of FCN layers after 1200 epochs in Fig. 5(b). For this
fixed training time, we find a uniform minimum in both the
training and testing error at four FCN layers. Therefore, in the
following sections, the networks shown will always consist
of four FCN layers. It is also not surprising to see that the
test error is always greater than the training error, as the test
error consists of bilayer materials unknown to the network and
some overfitting to the training set is expected.

Although the learning curves imply some success in the
prediction of SD-LDOS in moiré bilayers, direct comparison
of the predictions is more illuminating. Figure 6 presents
the performance of a model trained on the full dataset for
six different material samples in the test set. The predic-
tions (P) and the tight-binding calculation (output, O) for the
samples M1, M3, and M7 are nearly indistinguishable. For
the sample M2, the primary “bright-spot” singularity in the
predicted SD-LDOS is shifted down in energy compared to
the true result, and a more moderate singularity was missed
just below that. The most complicated spectrum, the sample
of M10, is surprisingly reproduced quite well, with only the
relative intensity of the different features slightly incorrect.
The prediction of the M6 sample is not accurate near −4 eV,
but this is not completely unexpected. Because this feature is
near the border of the energy window, and because a large
region of this window consists of a band gap (zero density),
the network may not be gaining enough information from
the input (I) to correctly predict the moiré structure near the
window boundaries.
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FIG. 6. Comparison of configuration-dependent LDOS maps
calculated from aligned bilayer Hamiltonians (input, I), moiré
Hamiltonians (output, O), and predictions from our CNN (P) which
are generated from the supplied input after training. Six representa-
tive cases are shown here, for bilayers of material types M1, M2, M3,
M6, M7, and M10.

In Fig. 7, we show the evolution of the network prediction
during the training for an M10 sample in the testing set. Even
with just 100 epochs of training, the prediction is already
good enough to easily identify the pattern of the LDOS, which
corresponds with the observed fast decay of the training error
in Fig. 5(a). However, comparison between LDOS prediction
after 100 epochs and 1000 epochs indicates that, during the

FIG. 7. Evolution of the CNN prediction quality with increasing
training time on an Hamiltonian sampled from M10. Input (I) is the
LDOS calculated from the aligned bilayer Hamiltonian and output
(O) is the LDOS calculated from the moiré bilayer Hamiltonian. The
panels in the middle show the predicted LDOS from neural network
after corresponding 100, 200, 500, and 1000 epochs.

FIG. 8. (a) Training error curve and (b) test error curve during
the training process from 100 epochs to 400 epochs, given in mean
square error (MSE) per batch. The full model as well as the two
reduced models are shown in different colors. The solid lines give
the error averaged over 20 epochs whereas the lighter colors give
maximum and minimum error within the last three epochs. (c) Com-
parison of the test errors for the F, R1, and R2 models, binned by the
type of material, after 1200 epochs of training.

long tail of the training, the network begins to capture the finer
structure of the SD-LDOS and generate a smoother image.

We now turn to networks trained on the reduced datasets
R1 and R2. In Fig. 8(a), the training errors among the
three datasets are very similar. However the testing error in
Fig. 6(b), which is calculated over all ten types of bilayer
material (including those not in the R1 and R2 training sets),
shows that removing materials from the training set naturally
makes the performance on the full test set worse, and is
roughly proportional the number of materials removed. We
summarize the test error after the final epoch for each of the
three networks in Fig. 6(c). For the material types M2, M5,
M7, M8, and M10, which are dropped at least once, it can
be seen that a reduced model trained without samples of that
material type can cause up to four times larger total MSE for
that material.

However, the increase in the MSE does not tell the full
story of this transfer learning test. Let us investigate how the
different networks performed on a sample of the M2 material
in the test set, as shown in Fig. 9. As M2 was not in R2’s
training set, but was in the training for R1 and the full (F) set,
one might expect that the result from the R2 network would
be significantly worse than the other two. However, all three
networks perform quite well on this M2 sample. So although
the average MSE of M2 by the R2 network is higher, transfer
learning appears to be occurring in this example.

The predictions of the SD-LDOS by the R2 network on
two samples of materials not in its training set are presented
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FIG. 9. Comparison of the full training model and reduced train-
ing models on a Hamiltonian sampled from M2. Input (I) is LDOS
calculated from the aligned bilayer Hamiltonian and output (O) is
the SD-LDOS calculated in the moiré bilayer Hamiltonian, both
via exact diagonalization. The last three panels shows the predicted
moiré SD-LDOS from CNN models based on different training sets:
F is the full training model which includes all materials, R1 the model
where M7 and M10 are dropped in the training set, and R2 the model
when M2, M5, M7, and M8 are dropped.

in Fig. 10. In principle, dropping almost half of the full dataset
should lead to a poor network prediction, as implied from
higher MSE error in Fig. 8. This is evident to some extent
in Fig. 10(c), which shows a poor prediction by the network
on this unseen material. Indeed, many examples can be found
from the dropped material types which show large errors,
arising from an incorrect energy shift or LDOS height of the
singularity, and in many cases a complete failure to predict a
similar SD-LDOS pattern. However, there still exists some ev-
idence of effective transfer learning in this task. Figures 10(b)
and 10(e) show examples of good neural net predictions on

FIG. 10. Predictions by the reduced model R2 (dropping M2,
M5, M7, and M8) of one sample of M2 and one of M7. (a) and (d) are
the full spectrum stacking dependent local densities of states (SD-
LDOS) of the aligned bilayer material from M2 and M7, respectively.
(b) and (c) show the SD-LDOS input (I), output (O), and network
prediction (P) for two selected windows of the M2 spectrum, with
(e) and (f) the same but for the M7 spectrum.

FIG. 11. CNN prediction error as a function of each window’s
electronic structure sensitivity to moiré structure, 
m, trained on the
full data set (F). Each point corresponds to a specific material and
spectral window sample in the test set. The input (I), output (O),
and CNN predicted (P) SD-LDOS for four selected points are shown
above and below the main plot, with the three panels of each inset in
that respective order.

the unseen material types. There are also numerous predic-
tions where the singularity is not perfectly reconstructed, for
example with a slight energy shift as in Fig. 10(f), but is still
good enough for a screening task. Our reduced model can
predict LDOS well on some of the unseen data because similar
band structures within a truncated energy window exist across
the training data. Successful learning of the local electronic
structure is a clear suggestion of effective transfer learning,
and the larger MSE in M7 and M10 of model R1 is simply
a sign that band structures similar to M7 and M10 are not
present in the rest of the data, which was indeed the guiding
motivation in defining that reduced model.

To better understand whether the learning from the full data
set is effective and why the R1 and R2 networks have re-
duced performance on average, but on many specific material
samples still perform quite well, we will need to investigate
the distribution of the MSE contribution from the test set. In
Fig. 11, we investigate how the MSE and the sensitivity of the
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moiré electronic structure are related [
 and 
m respectively,
as defined in Eq. (4)]. As a reminder, large moiré sensitivity

m corresponds to materials which have large differences
in their aligned and moiré electronic structures. Even for
samples with substantial moiré sensitivity (
m > 0.08), the
prediction MSE could still be small. Furthermore, we find that
the samples of M8 (blue) tend to be the hardest to predict
and have large moiré sensitivity. In contrast, the samples of
M1 (orange) are the easiest to predict and tend to have the
smallest moiré sensitivity. This helps explain why M8 shows
the highest amount of transfer learning error (in the orange
MSE of Fig. 8) while M1 shows the smallest learning error
across all models.

There are four specific material samples emphasized in the
insets of Fig. 11, comparing the true SD-LDOS to the network
prediction. The upper panels represent cases where the error
is relatively large compared to 
m. For both these cases, the
error is mostly due to an energy offset between the true and
predicted LDOS singularity features. However, ignoring this
relative shift, the qualitative prediction of the CNN is still
quite good even though the MSE loss function considers both
of these predictions as poor. Within this context, we expect
the increased MSE on the removed materials in R1 and R2 is
also caused by the networks inability to properly predict the
relative shift in singular SD-LDOS features. The bottom left
inset of Fig. 11 is an example where both the error and moiré
sensitivity are small. Here the small sensitivity is due to a large
amount of shift-independent LDOS in the aligned system, but
the prediction of the moiré features (near −2.5 eV) is still
good. The bottom right panel shows the case where 
m is
large, but the error is small, and is among the most impressive
predictions from this testing set. The patterns of moiré SD-
LDOS here are very complex, but the neural network predicts
it accurately. The scattering plot also suggests that even when
the MSE error is large, the LDOS prediction could be good
enough as a screening tool for correlated materials.

IV. CONCLUSION

We have trained a convolution neural network to predict
moiré electronic structure, which may allow for the identifica-
tion of good candidates for correlated phases from 2D material
databases. Our CNN uses an encoder-decoder structure, with
a fully connected network at the center. To test the viability of
such an approach, we have focused on the simplified problem
of learning 1D moiré electronic structures at a fixed moiré
mismatch of θ = 0.1, and found that the network can predict
the SD-LDOS of 1D materials. Note that much of the useful
information that is obtained from exact treatment of the moiré
electronic structure problem, such as explicit band structures
and symmetry representations of those bands, does not appear
obtainable with this approach. We see our approach as a pow-
erful addition to the scientific toolbox, but emphasize that it is
by no means a complete replacement for existing approaches.

Ten classes of artificial bilayer structures were designed
and thousands of individual materials were generated from
randomization of tight-binding parameters. When trained on
the full data set, the neural network makes excellent predic-
tions of moiré electronic structure. In most cases, we find
accurate predictions of singularities in the SD-LDOS, which

indicate the energy and localization pattern of moiré flat
bands. The shape and scale of such singularities is inaccu-
rate in some instances, possibly caused by failures in data
preprocessing or unfortunate energy window cutoffs. When
training on the full dataset, the learning curves show that a
more complex network may give better predictions but would
require a much longer training time.

We also investigate the network’s ability to make predic-
tions on materials outside of its training set by using two
different reduced data sets which drop specific classes of the
1D moiré materials. By comparing these models’ results with
the model trained on the full data set, we find that the neural
network predictions for unfamiliar materials are still reliable.
This supports our hypothesis that there exists a universal twist
operator, and confirms that moiré electronic structure can be
captured by the local structure of the aligned SD-LDOS. The
overall performance of the network is best understood by
comparison of the prediction error 
 to the moiré sensitivity

m. We find that the majority of our validation set has 
 <


m/5, with the network performing performing significantly
better on some materials over others.

Although this work has shown the effectiveness of apply-
ing neural networks to learn moiré electronic structure, the
mathematical theory behind the framework is still not fully
explored. A clearer mathematical framework for describing
operator learning of moiré electronic structure would help
clarify and improve any machine learning application on this
topic. To extend this methodology to also take a given twist
angle, θ , as an additional input, the most straightforward
approach would be to train multiple networks for each θ in
a set of angles, and then interpolate results between them.
A more sophisticated, and likely better performing approach,
is to insert the parameter θ as a special parameter to the
network, perhaps as a linear operation on each layer of the
network instead of just in the initial input layer. This would
allow the entire network to have a smooth dependence on the
desired twist-angle, including the filtering functions and the
fully connected layers, allowing for transfer learning between
data at different angles.

Moreover, since the neural network framework has been
able to predict the 1D moiré electronic structure, it is natu-
ral to extend the framework to 2D moiré material. Although
there are no conceptual difficulties in this generalization, the
elements of the datasets will be three dimensional (volumetric
data) instead of two dimensional (images), likely leading to
significantly longer training times. The performance of neural
networks can be tested on an artificial library of materials in
the 2D case, but now comparison to first principles calcula-
tions and experimental data become possible. Another key
ingredient in the electronic structure of 2D moiré material
is relaxation of the atomic structures. It is straightforward to
incorporate relaxation into the neural network based method
by replacing the unrelaxed twisted SD-LDOS with data from
relaxed calculations, but its effects on the training speed and
prediction accuracy are uncertain.
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APPENDIX: 1D HAMILTONIANS AND BAND
CALCULATIONS

Each 1D material is defined by three objects: the hopping
terms between orbitals within the same unit cell (H0), hopping
terms to orbitals in the unit cell to the right (Hx), and the
orbital positions (A = {r1, r2, . . . }, with the ith column of A
giving the (x, y) location of atom i). The electronic hopping
terms to orbitals in the left-neighboring unit cell are given by
H−x = H†

x . For example, if there are three orbitals in the unit
cell of the 1D material, then H0 and H+ are 3 × 3 matrices. If
we construct a 1D supercell consisting of ten units, then the
full Hamiltonian for that layer will be a 30 × 30 matrix that
depends on the crystal momentum k. We assume that each
monolayer has an unstrained lattice parameter of α = 1, and
that each bilayer has an interlayer distance z = 1 between the
layers. Every orbital in a given layer has the same z coordi-
nate (e.g., there is no vertical difference between the atomic
positions).

We calculate electronic structure efficiently using Bloch’s
theorem for a given 1D crystal momentum kx. We include
the phase by modifying the hopping element from orbital j
to orbital i according to

ti j → ti je
ikxr

i j
x , (A1)

where ri jx is the x distance from orbital j to orbital i. If ti j cor-
responds to a coupling which traverses the supercell’s periodic
boundary condition, then it is understood that ri j is taken as if
one of the orbitals has been moved to its periodic partner in the
neighboring supercell. Interlayer couplings, between orbitals

TABLE II. Tight-binding parameters for M7 and M10.

Mi M7 M10

t i1 2.5 ± 1.5 −1 ± 0.5
t i2 −1.5 ± 0.5 1 ± 0.5
t i3 1.5 ± 0.5 −1.5 ± 0.5
oi1 −4.5 ± 1.5 3 ± 1
oi2 −3 ± 1 0
oi3 −4.5 ± 1.5 3 ± 2
oi4 2 ± 2 −3 ± 2

i and j of neighboring chains, are given by Eq. (2) of the main
text, with r = ri j .

We now provide the details of the Hamiltonians for each
of the ten material types. The material index is given as a
superscript of each matrix or parameter, for example H1

0 and
t1
1 correspond to the on-site Hamiltonian and first tunneling

parameter of M1, respectively. The tunneling (t) and on-site
energies (o) for all materials are given in Tables I and II, with
parameters given as a ± b to indicate that the parameter is
randomly sampled from a uniform distribution in the range
[a − b, a + b]. The atomic geometry and band structure for
each monolayer is shown in Fig. 12.

For M1, M2, and M3, the Hamiltonians are given by

Hi
0 =

(
oi1 t i1
t i1 oi2

)
, Hi

x =
(

0 t i1
0 0

)
, Ai =

(
0 0.5
0 0

)
.

(A2)
The M4 and M8 Hamiltonians are given by

Hi
0 =

(
oi1 t i1
t i1 oi2

)
, Hi

x =
(

0 t i1
t i1 0

)
,

Ai =
(

0 0
−0.5 0.5

)
. (A3)

FIG. 12. Monolayer atomic geometry and band structures for the
ten 1D materials used in this work. The geometry is displayed from
a top-down view, with the atoms in the primitive unit cell colored
in dark grey and with each line between atoms representing an
electronic hopping in the tight-binding model.
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The M5, M6, and M9 Hamiltonians are given by

Hi
0 =

⎛
⎝oi1 t i1 t i1
t i1 oi2 t i2
t i1 t i2 oi1

⎞
⎠, Hi

x =
⎛
⎝0 t i1 t i1

0 0 0
0 0 0

⎞
⎠,

Ai =
(

0 0.5 0.5
0 0.5 −0.5

)
. (A4)

Finally, M7 and M10 are given by

Hi
0 =

⎛
⎜⎜⎝
oi1 t i2 t i1 t i1
t i2 oi2 t i2 t i2
t i1 t i2 oi3 t i3
t i1 t i2 t i3 oi4

⎞
⎟⎟⎠,

Hi
x = σ i

⎛
⎜⎜⎜⎜⎝

0 t i2 t i1 t i1
0 0 t i2 t i2
0 t i2 0 0

0 t i2 0 0

⎞
⎟⎟⎟⎟⎠,

Ai =
(

0 0.5 0.5 0.5
0 0 −0.5 0.5

)
, (A5)

with σ i = −1 for M7 and σ i = 1 for M10.
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