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1. Introduction

Consider a second-order homogeneous linear q-dilation equation

y(q2x) + a(x)y(qx) + b(x)y(x) = 0, (1.1)

whose coefficients a(x), b(x) ∈ Q̄(x) are rational functions in x with b(x) �= 0, and 
q ∈ Q̄ is neither zero nor a root of unity. Difference equations such as (1.1) are satisfied 
by special functions and generating series occurring in combinatorics, number theory, 
mathematical physics, and many other areas. There has been much recent work devoted 
to the question of which additional functional equations are satisfied by solutions of 
difference equations. We develop algorithms that allow one to discover all the polynomial 
differential equations satisfied by the solutions to (1.1), or to decide that there are none. 
Our methods and results apply equally well, with small and obvious modifications, to 
equations (1.1) where q is not necessarily an algebraic number and the coefficients a, b ∈
C(x) for any computable algebraically closed field C containing Q(q).

Our strategy here is similar to the one followed in [4], where analogous algorithmic 
results were developed in the context of shift difference equations. We apply the differen-
tial Galois theory for difference equations developed in [13], which studies equations such 
as (1.1) from a purely algebraic point of view. This theory attaches a geometric object G
to (1.1), called the differential Galois group, that encodes all the difference-differential 
algebraic relations among the solutions to (1.1). We develop an algorithm to compute 
the differential Galois group G associated to (1.1) by the theory of [13].

The differential Galois theory for difference equations of [13] is a generalization of the 
q-dilation analogue of the Galois theory for difference equations presented in [26], where 
the Galois groups that arise encode the algebraic relations among the solutions to a given 
linear difference equation. An algorithm to compute the Galois group H̃ associated to 
(1.1) by the theory of [26] is developed in [11]—but for technical reasons this algorithm 
works only over the larger base field Q̄({x1/n}n∈N), rather than the field of definition 
Q̄(x) of (1.1). In the course of our computation of the differential Galois group G of 
(1.1), we also extend the algorithm of [11] to compute the Galois group H of (1.1) over 
the smaller original basefield Q̄(x).

A priori one knows that the Galois group H is a linear algebraic group, and the differ-
ential Galois group G is a linear differential algebraic group (Definition 2.7). The Galois 
group H serves as a close upper bound for the differential Galois group G: it is shown in 
[13] that one can consider G as a Zariski-dense subgroup of H (see Proposition 2.10 for 
a precise statement). In view of this fact, our strategy to compute G is to first apply our 
extension (developed in the present work) of the algorithm of [11] to compute H, and 
then compute the additional differential-algebraic equations (if any) that define G as a 
subgroup of H. The computation of G in general can be much more difficult than that of 
H because there are many more linear differential algebraic groups than there are linear 
algebraic groups (more precisely, the latter are instances of the former), so identifying 
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the correct differential Galois group from among these additional possibilities requires 
additional work.

This strategy is reminiscent of the one begun in [9], and concluded in [1–3], to compute 
the parameterized differential Galois group for a second-order linear differential equation 
with differential parameters, where the results of [15,6] are first applied to compute the 
classical (non-parameterized) differential Galois group for the differential equation, and 
one then computes the additional differential-algebraic equations, with respect to the 
parametric derivations, that define the parameterized differential Galois group inside 
the classical one. However, the computation of the differential Galois group G for (1.1)
presents substantial new complications that do not arise in the parameterized differential 
setting. Many of these new complications are inherent to the computation of differential 
Galois groups of difference equations in general, and already arise in the context of 
shift difference equations (see the introduction to [4] for a summary), but a brand new 
technical difficulty arises for the first time in the context of q-difference equations, which 
we describe below. The same difficulties will recur, with a vengeance, in the context of 
Galois theory for difference equations over elliptic curves; our hope is that the treatment 
developed here will serve as a useful blueprint for that more technical setting.

It is known (see [11]) that the Galois group H̃ of any q-difference equation over 
Q̄({x1/n}n∈N) has a cyclic group of connected components H̃/H̃◦. This fact facilitates 
the development of the algorithm of [11]. However, the Galois group H of a q-difference 
equation over Q̄(x) may admit more generally a bicyclic group of connected components, 
which requires the development of new techniques to identify the correct Galois group 
from among this larger set of possibilities.

A theoretical consequence of the results of §6 is Corollary 6.4, which states that 
the unipotent radical of the differential Galois group may only be trivial, the additive 
group of differentially constant σ-invariants, or the full additive group of σ-invariants. 
This result was already known when the whole differential Galois G group was already 
unipotent [13, Prop. 4.3(2)], but not when the unipotent radical is a proper subgroup of 
G. In other contexts (see for example [19,20]) the computation of the unipotent radical 
has turned out to be the main theoretical obstacle in the development of algorithms to 
compute Galois groups in general. We expect that this contribution to the inverse Galois 
problem in the present setting will have useful ramifications in the development of future 
algorithms to compute differential Galois groups for higher-order q-difference equations.

Let us now describe the contents of this work in more detail. In §2, we summarize the 
differential Galois theory for difference equations of [13], and prove some auxiliary results 
that will be used in the sequel. In §3, we recall some known results, and prove some 
new ones, concerning differential relations among solutions to first-order q-difference 
equations. In §4, we summarize Hendriks’ algorithm [12] to compute the Galois group 
H̃ for (1.1) over Q̄({x1/n}n∈N), and explain how to extend it to compute the Galois 
group H for (1.1) over Q̄(x). In §5, we show how to compute the differential Galois 
group G for (1.1) when H is diagonalizable in Proposition 5.2. In §6, we show how to 
compute G when H is assumed to be reducible but non-diagonalizable in Proposition 6.1
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and Proposition 6.2—as a consequence, we show in Corollary 6.4 that the unipotent 
radical of G is always of a very special form. In §7, we compute G in Proposition 7.4, 
Proposition 7.6, and Proposition 7.7, under the assumption that H is irreducible and 
imprimitive (which possibility can arise in three different ways, as a consequence of 
our insistence on computing Galois groups over the basefield Q̄(x) and not just over 
Q̄({x1/n}n∈N)). In §8, we apply results from [5] to compute G in Proposition 8.1, under 
the assumption that H contains SL2. We conclude in §9 by applying these results to 
some concrete examples of q-difference equations; in particular to the one satisfied by 
the colored Jones polynomial of a certain knot.

2. Preliminaries on differential Galois theory for difference equations

We begin with a summary of the differential Galois theory for difference equations 
developed in [13]. Every field is assumed to be of characteristic zero, and every ring is 
assumed to be commutative unless otherwise stated.

Definition 2.1. A σδ-ring is a commutative ring R with unit, equipped with an automor-
phism σ and a derivation δ such that σ (δ(r)) = δ (σ(r)) for every r ∈ R. A σδ-field is 
defined analogously. We write

Rσ = {r ∈ R | σ(r) = r}; Rδ = {r ∈ R | δ(r) = 0}; and Rσδ = Rσ ∩ Rδ,

and refer to these as the subrings of σ-constants, δ-constants, and σδ-constants, respec-
tively.

A σδ-R-algebra is a σδ-ring S equipped with a ring homomorphism R → S that 
commutes with both σ and δ. If R and S are fields, we also say that S is a σδ-field 
extension of R. The notions of σ-R-algebra, δ-R-algebra, σ-field extension, and δ-field 
extension are defined analogously. If z1, . . . , zn ∈ S, we write R{z1, . . . , zn}δ for the 
smallest δ-R-subalgebra of S that contains z1, . . . , zn; as R-algebras, we have

R{z1, . . . , zn}δ = R[{δi(z1), . . . , δi(zn) | i ∈ N}].

If Z = (zij) with 1 ≤ i, j ≤ n is a matrix, we write R = {Z}δ for

R{z11, . . . , z1n, . . . , zn1, . . . , znn}δ.

An important example of a σδ-field that will play a prominent role throughout this 
work is k = Q̄(x), where σ denotes the Q̄-linear automorphism defined by σ(x) = qx for 
some fixed q ∈ Q̄ that is neither zero nor a root of unity, and δ = x d

dx . Note that in this 
case kσ = kδ = Q̄.

Suppose that k is a σδ-field, and consider the matrix difference equation

σ(Y ) = AY, where A ∈ GLn(k). (2.1)
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Definition 2.2. A σδ-Picard-Vessiot ring (or σδ-PV ring) over k for (2.1) is a σδ-k-algebra 
R such that:

(i) R is a simple σδ-ring, i.e., R has no ideals, other than 0 and R, that are stable 
under both σ and δ;

(ii) there exists a matrix Z ∈ GLn(R) such that σ(Z) = AZ; and
(iii) R is generated as a δ-k-algebra by the entries of Z and 1/det(Z), i.e., R =

k{Z, 1/det(Z)}δ.

The matrix Z is called a fundamental solution matrix for (2.1).

Note that when δ = 0, this coincides with the definition of the σ-PV ring over k for 
(2.1) given in [26, Def. 1.5]. In the usual Galois theory of difference equations presented 
in [26], the existence and uniqueness of Picard-Vessiot rings up to k-σ-isomorphism is 
guaranteed by the assumption that kσ is algebraically closed (see [26, §1.1]). Analogously, 
in the difference-differential Galois theory developed in [13], one needs to assume that 
kσ is δ-closed [14,25].

Definition 2.3. The ring of δ-polynomials in n variables over a δ-field C is

C{Y1, . . . , Yn}δ = C[{δi(Y1), . . . , δi(Yn) | i ∈ N}],

the free C-algebra on the symbols δi(Yj), on which δ acts as a derivation in the obvious 
way. We say L ∈ C{Y1, . . . , Yn}δ is a homogeneous linear δ-polynomial if it belongs to 
the C-linear span of the symbols δi(Yj).

If R is a δ-C-algebra, we say that z1 . . . , zn ∈ R are differentially dependent over 
C if there exists a δ-polynomial 0 �= P ∈ C{Y1, . . . , Yn}δ such that P (z1, . . . , zn) = 0; 
otherwise we say that z1, . . . , zn are δ-independent over C. When a single element z ∈ R

is δ-independent (resp., δ-dependent) over C, we say that z is δ-transcendental (resp., 
δ-algebraic) over C.

We say the δ-field C is δ-closed if any system of δ-polynomial equations

{P1 = 0, . . . , Pm = 0 | Pi ∈ C{Y1, . . . , Yn}δ for 1 ≤ i ≤ m}

that has a solution in C̃n for some δ-field extension C̃ ⊇ C already has a solution in Cn.

Theorem 2.4. (Cf. [13, Prop. 2.4]) If kσ = C is δ-closed, there exists a σδ-PV ring for 
(2.1), and it is unique up to σδ-k-isomorphism. Moreover, Rσ = kσ.

For the rest of this section, unless explicitly stated otherwise, we assume that k is a 
σδ-field such that kσ is δ-closed.

Definition 2.5. The σδ-Galois group of (2.1) is the group of σδ-k-automorphisms of the 
σδ-PV ring R for (2.1):
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Galσδ(R/k) = {γ ∈ Autk-alg(R) | γ ◦ σ = σ ◦ γ and γ ◦ δ = δ ◦ γ}.

As in the usual (non-differential) Galois theory of difference equations [26], a 
choice of fundamental solution Z = (zij) ∈ GLn(R) defines a faithful representation 
Galσδ(R/k) ↪→ GLn(kσ) : γ 	→ Mγ , via

γ(Z) =

⎛
⎝γ(z11) · · · γ(z1n)

...
...

γ(zn1) · · · γ(znn)

⎞
⎠ =

⎛
⎝ z11 · · · z1n

...
...

zn1 · · · znn

⎞
⎠ · Mγ .

A different choice of fundamental solution matrix Z ′ ∈ GLn(R) defines a conjugate 
representation of Galσδ(R/k) in GLn(kσ).

Definition 2.6. The systems σ(Y ) = AY and σ(Y ) = BY for A, B ∈ GLn(k) are equiva-
lent if there exists a matrix T ∈ GLn(k) such that σ(T )AT −1 = B. In this case, if Z is a 
fundamental solution matrix for σ(Y ) = AY , then TZ is a fundamental solution matrix 
for σ(Y ) = BY , and therefore the σδ-PV rings of k for these systems defined by the 
choice of fundamental solution matrices Z and TZ, and the associated representations 
of σδ-Galois groups in GLn(kσ), are isomorphic.

Definition 2.7. Suppose that C is a δ-closed field. A linear differential algebraic group
over C is a subgroup G of GLn(C) defined by (finitely many) δ-polynomial equations in 
the matrix entries.

Theorem 2.8. (Cf. [13, Thm. 2.6]) The σδ-PV ring R over k for (2.1) is a reduced ring, 
and any choice of fundamental solution matrix Z ∈ GLn(R) identifies Galσδ(R/k) with 
a linear differential algebraic subgroup of GLn(kσ).

As in [13, p. 337], we observe that if R is a σδ-PV ring over k for (2.1), and K is the 
total ring of fractions of R, then any σδ-k-automorphism of K must leave R invariant, 
whence the group Galσδ(K/k) of such automorphisms coincides with Galσδ(R/k). The 
consideration of the total ring of fractions of R is necessary to obtain the following Galois 
correspondence.

Theorem 2.9. (Cf. [13, Thm. 2.7]) With notation as above, let F be the set of σδ-rings 
F such that k ⊆ F ⊆ K and every non-zero divisor in F is a unit in F , and let G denote 
the set of linear differential algebraic subgroups G of Galσδ(K/k). There is a bijective 
correspondence F ↔ G given by

F 	→ Galσδ(K/F ) = {γ ∈ Galσδ(K/k) | γ(r) = r, ∀r ∈ F}; and

G 	→ KG = {r ∈ K | γ(r) = r, ∀γ ∈ G}.

In particular, an element r ∈ K is left fixed by all of Galσδ(K/k) if and only if r ∈ k.
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The following result relates the σδ-PV rings and σδ-Galois groups of [13] to the σ-PV 
rings and σ-Galois groups considered in [26,12].

Proposition 2.10. (Cf. [13, Prop. 2.8]) Assume kσ is δ-closed. Let R be a σδ-PV ring over 
k for (2.1) with fundamental solution matrix Z ∈ GLn(R), and let S = k[Z, 1/det(Z)] ⊂
R. Then:

(i) S is a σ-PV ring over k for (2.1); and
(ii) Galσδ(R/k) is Zariski-dense in the σ-Galois group Galσ(S/k).

3. Differential relations among solutions of first-order q-difference equations

In this section we recall some known results, and prove some new ones, concerning 
differential relations among solutions of first-order q-difference difference equations. The 
following result is proved in [13, Prop. 3.1].

Proposition 3.1. Let R be a σδ-k-algebra with Rσ = kσ. Suppose b1, . . . , bm ∈ k and 
z1, . . . , zm ∈ R satisfy

σ(zi) − zi = bi; i = 1, . . . , m.

Then z1, . . . , zm are differentially dependent over k if and only if there exists a nonzero 
homogeneous linear δ-polynomial L(Y1, . . . , Ym) with coefficients in kσ and an element 
f ∈ k such that

L(b1, . . . , bm) = σ(f) − f.

For the remainder of this section, we restrict our attention to the σδ-field k = C(x), 
where δ(x) = x, C is a δ-closed field of characteristic zero, and σ is the C-linear auto-
morphism of k defined by setting σ(x) = qx for some q ∈ Cδ that is neither zero nor a 
root of unity.

The following notion of q-discrete residue, defined in [8, Def. 2.7],will be crucial in 
several proofs in this paper.

Definition 3.2. For any non-zero β ∈ C, we call the subset

[β]q = βqZ = {βq� |� ∈ Z} ⊂ C

the qZ-orbit of β in C. Any f ∈ k can be decomposed into the form

f = c + xp1 + p2

xs
+

m∑ ni∑ di,j∑ αi,j,�

(x − βiq�)j
,

i=1 j=1 �=0
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where p1, p2 ∈ C[x]; s, m, ni, di,j ∈ N; c, αi,j,�, βi ∈ C; deg(p2) < s; and the βi are 
non-zero and belong to distinct qZ-orbits.

The q-discrete residue of f at the qZ-orbit [βi]q of multiplicity j (with respect to x) 
is defined as:

q-dres(f, [βi]q, j) =
di,j∑
�=0

q−�jαi,j,�.

In addition, the constant c above is the q-discrete residue of f at infinity, which we 
denote by q-dres(f, ∞).

The usefulness of the notion of discrete residue stems from the following result.

Proposition 3.3. (Cf. [8, Prop. 2.10]) Let f, g ∈ C[x] be non-zero, relatively prime poly-
nomials. There exists h ∈ k such that σ(h) − h = f/g if and only if q-dres(f/g, ∞) = 0
and q-dres(f/g, [β]q, j) = 0 for every j ∈ N and every 0 �= β ∈ C such that g(β) = 0.

The following computational lemma will be used to sharpen the conclusion of [13, 
Cor. 3.3] in the following Corollary 3.5.

Lemma 3.4. Suppose 0 �= a ∈ Cδ(x), r ∈ Z≥0, and 0 �= β ∈ Cδ is a zero or pole of a. 
Then

q-dres
(

δr

(
δ(a)

a

)
, [β]q, r + 1

)
= (−1)r · r! · βr · q-dres

(
δ(a)

a
, [β]q, 1

)
.

Proof. We may assume without loss of generality that

δ(a)
a

=
d∑

�=0

(
e� + e�q

�β

x − βq�

)
(3.1)

for some 0 �= β ∈ Cδ, d ∈ Z≥0, and e� ∈ Z for � = 0, . . . , d. Observe that in this case 
q-dres

( δ(a)
a , [β]q, 1

)
=
∑d

�=0 βe�, by Definition 3.2. We claim that

δr

(
δ(a)

a

)
=

d∑
�=0

(−1)rr!q�(r+1)βr+1e�

(x − βq�)r+1 + (lower-order terms), (3.2)

which would indeed imply that

q-dres
(

δr

(
δ(a)

a

)
, [β]q, r + 1

)
=

d∑
�=0

(−1)rr!βr+1e�

and conclude the proof of the Lemma. We prove (3.2) by induction. The case r = 0 is 
just (3.1). Assuming (3.2) for some r ≥ 0, note that
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δr+1
(

δ(a)
a

)
=

d∑
�=0

(−1)r+1(r + 1)!q�(r+1)βr+1e�

(
(x − βq�) + βq�

)
(x − βq�)r+2 +(lower-order terms).

This concludes the proof of the claim, and the Lemma. �
The following result sharpens the conclusion of [13, Cor. 3.3].

Corollary 3.5. Let R be a σδ-k-algebra with Rσ = kσ = C. Let a1, . . . , am ∈ Cδ(x)× and 
z1, . . . , zm ∈ R× such that

σ(zi) = aizi; i = 1, . . . , m.

Then z1, . . . , zm are differentially dependent over k if and only if there exist: n1, . . . , nm ∈
Z, not all zero and with gcd(n1, . . . , nm) = 1; c ∈ Z; and an element f ∈ k, such that

n1
δ(a1)

a1
+ · · · + nm

δ(am)
am

= σ(f) − f + c. (3.3)

Proof. First suppose there exist integers n1, . . . , nm, c ∈ Z as in (3.3). Since for each 
i = 1, . . . , m we have that σ

( δ(zi)
zi

)
= δ(zi)

zi
+ δ(ai)

ai
, it follows that

σ

[(
m∑

i=1
niδ

(
δ(zi)

zi

))
− δ(f)

]
=

m∑
i=1

niδ

(
δ(zi)

zi

)
+ δ

(
m∑

i=1
ni

δ(ai)
ai

)
− σ
(
δ(f)

)
=

=
m∑

i=1
niδ

(
δ(zi)

zi

)
+ δ
(
σ(f) − f + c

)
− σ
(
δ(f)

)
=

m∑
i=1

niδ

(
δ(zi)

zi

)
− δ(f).

Therefore,

m∑
i=1

niδ

(
δ(zi)

zi

)
= δ(f) + e

for some e ∈ Rσ = kσ. This shows that z1, . . . , zm are δ-dependent over k, after multi-
plying by (z1 . . . zm)2 on both sides.

Since σ( δ(zi)
zi

) = δ(zi)
zi

+ δ(ai)
ai

for each i = 1, . . . , m, Proposition 3.1 implies that the 
zi are differentially dependent over k if and only if there exists an element f ∈ k and a 
nonzero homogeneous linear δ-polynomial

L(Y1, . . . , Ym) =
m∑

i=1

ri∑
j=0

ci,jδjYi, ci,j ∈ C,

such that

g = L
(

δ(a1)
, . . . ,

δ(am)
)

= σ(f) − f. (3.4)

a1 am
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Let r = max{ ri | ci,ri
�= 0 for some i}. For each 0 �= β ∈ C, it follows from (3.4), 

Proposition 3.3, and Lemma 3.4, that

q-dres(g, [β]q, r + 1) = (−1)r · r! · βr ·
m∑

i=1
ci,r · q-dres

(
δ(ai)

ai
, [β]q, 1

)
= 0. (3.5)

On the other hand, it follows from Definition 3.2 that for each i = 1, . . . , m we have that

q-dres
(

δ(ai)
ai

, [β]q, 1
)

= β · ei for some ei ∈ Z. (3.6)

Substituting (3.6) into (3.5), we have

q-dres(g, [β]q, r + 1) = (−1)r · r! · βr+1 ·
m∑

i=1
ci,r · ei = 0. (3.7)

Since β �= 0, the above equation is equivalent to 
∑m

i=1 ci,r · ei = 0. Since ei ∈ Z for each 

i = 1, . . . , m, we may take the ci,r = ni to be integers. Set c =
∑m

i=1 ni ·q-dres
(

δ(ai)
ai

, ∞
)

. 

Since both ni and q-dres
(

δ(ai)
ai

, ∞
)

are integers, we see that c ∈ Z is divisible by 

gcd(n1, . . . , nm). Moreover, we have

q-dres
(

n1
δ(a1)

a1
+ · · · + nm

δ(am)
am

− c, ∞
)

= 0. (3.8)

By (3.7) and (3.8), the conclusion follows from another application of Proposition 3.3
and dividing both sides by gcd(n1, . . . , nm). �
Remark 3.6. The statement of [13, Cor. 3.3] is equivalent to that of Corollary 3.5, except 
that each ni ∈ Z is replaced with a homogeneous linear δ-polynomial Li(Y ) ∈ Cδ{Y }δ, 
the c ∈ Z is omitted, and (3.3) is replaced with

L1

(
δ(a1)

a1

)
+ · · · + Lm

(
δ(am)

am

)
= σ(f) − f.

We emphasize that our proof of Corollary 3.5 initially follows the same strategy of that 
of [13, Cor. 3.3], and then applies the technology of q-discrete residues of [8], in particular 
the computational Lemma 3.4, to obtained the sharpened conclusion. Although we find 
this result is of independent interest, it also plays an important role in the computation 
of differential Galois groups in the following sections, because it restricts a priori many 
possible differential algebraic groups from occurring as Galois groups.
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4. Hendriks’ algorithm

In this section, we summarize the results of [11] that we will need in our algorithm, 
and explain how to refine them to meet our goals. From now on, we restrict our attention 
to equations of the form

σ2(y) + aσ(y) + by = 0, (4.1)

where a, b ∈ Q̄(x) with b �= 0, and σ is the Q̄-linear automorphism of Q̄(x) defined 
by σ(x) = qx, where q ∈ Q̄ is neither zero nor a root of unity. Our discussion here 
could be generalized to drop the assumption that q is an algebraic number and allowing 
a, b ∈ C0(x), for any computable algebraically closed field C0 containing Q(q), as we 
mentioned in the introduction (see also the introduction to [11]), but at the cost of 
overburdening the notation.

The matrix equation corresponding to (4.1) is

σ(Y ) = AY, where A :=
(

0 1
−b −a

)
∈ GL2(k). (4.2)

We consider Q̄(x) as a σδ-field by setting δ = x d
dx , the Euler derivation. In this section 

only we will denote k = Q̄(x), but in future sections we will recycle notation and de-
note by k the larger σδ-field C(x), where C is a δ-closure of Q̄, and σ is the C-linear 
automorphism of C(x) defined by σ(x) = qx.

The algorithm of [11] computes the σ-Galois group of (4.1) over the larger basefield 
k∞ defined as follows. Let {qn ∈ Q̄ | n ∈ N} denote a compatible system of n-th roots 
of q = q1, so that for any factorization �m = n we have q�

n = qm, and consider the 
cyclic σ-field extension kn = Q̄(xn) of Q̄(x) such that xn

n = x1 = x and x�
n = xm for 

any factorization n = �m, with the σ-field structure given by σ(xn) = qnxn. Then 
the Q̄-linear maps km ↪→ kn defined by xm 	→ x�

n are embeddings of σ-fields. Let 
k∞ = lim−−→ kn =

⋃
n≥1 kn. By [11, Lemmas 9 and 10], the σ-field k∞ has property P:

Definition 4.1. We say a σ-field k has property P if:

(1) k is a C1 (quasi-algebraically closed) field in the sense of [17]; and
(2) if k′ is a finite algebraic extension of k such that σ extends to an automorphism of 

k′ then k′ = k.

This allows Hendriks to compute the σ-Galois group of (4.1) over k∞ by finding a 
gauge transformation T ∈ GL2(k∞) that puts (4.2) in the standard form of [11, Defini-
tion 8].

Another special consequence of the fact that k∞ enjoys property P (Definition 4.1) is 
that the σ-Galois group H∞ for (4.1) over k∞ (and in fact every difference Galois group 
over k∞) is such that its quotient H∞/H◦

∞ by the connected component of the identity 
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H◦
∞ must be a (finite) cyclic group (cf. [11, Thm. 6]). This facilitates the algorithm of 

[11] by ruling out a priori the consideration of algebraic groups whose group of connected 
components is not cyclic (cf. [11, Lem. 12]). The situation for σ-Galois groups over k1
is less restrictive, but we still know by [26, Prop. 12.2(1)] that the σ-Galois group H1
for (4.1) over k1 (and in fact every difference Galois group over k1) has the property 
that the quotient H1/H◦

1 is (finite) bicyclic, i.e., a product of two finite cyclic groups. 
Thus it is possible for us to realize additional algebraic groups H1 as σ-Galois groups for 
(4.1) over k1 that do not occur in the list [11, Lem. 16 and Lem. 20] of possible σ-Galois 
groups over k∞. In particular, any reducible algebraic subgroup of GL2(Q̄) can occur as 
the σ-Galois group for some difference equation (4.1), and any irreducible imprimitive 
algebraic subgroup of GL2(Q̄) with bicyclic group of connected components can occur 
as a Galois group over k1.

The algorithm developed in [11] to compute H∞ proceeds as follows. We first decide 
whether there exists a solution u ∈ k∞ to the Riccati equation

uσ(u) + au + b = 0. (4.3)

If such a solution u exists, then the σ-Galois group H∞ of (4.2) over k∞ is reducible, i.e., 
conjugate to an algebraic subgroup of

Gm(Q̄)2 �Ga(Q̄) �
{(

α β
0 λ

) ∣∣∣∣ α, β, λ ∈ Q̄, αλ �= 0
}

.

Moreover, if there exist at least two distinct solutions u1, u2 ∈ k∞ to (4.3) then H∞ is 
diagonalizable, i.e., conjugate to an algebraic subgroup of

Gm(Q̄)2 �
{(

α 0
0 λ

) ∣∣∣∣ α, λ ∈ Q̄, αλ �= 0
}

;

and if there are at least three distinct solutions in k∞ to (4.3) then there are infinitely 
many, and this occurs if and only if H∞ is an algebraic subgroup of

Gm(Q̄) �
{(

α 0
0 α

) ∣∣∣∣ α ∈ Q̄, α �= 0
}

.

If there is no solution u ∈ k∞ to the Riccati equation (4.3), then H∞ is irreducible by 
[11, Thm. 13]. In this case, the next step is to attempt to find T ∈ GL2(k∞) and r ∈ k∞
such that

σ(T )
(

0 1
−b −a

)
T −1 =

(
0 1

−r 0

)
. (4.4)

If a = 0 already, then we may take T =
( 1 0

0 1

)
and r = b. If a �= 0, we then attempt to 

find a solution e ∈ k∞ to the Riccati equation
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eσ2(e) +
(
σ2( b

a ) − σ(a) + σ(b)
a

)
e + σ(b)b

a2 = 0. (4.5)

If there exists such a solution e ∈ k∞ to (4.5), then it is proved in [11, Thm. 18] that 
there exists a matrix T ∈ GL2(k∞) such that (4.4) is satisfied with

r = −aσ(a) + σ(b) + aσ2( b
a ) + aσ2(e), (4.6)

and H∞ is imprimitive, i.e., conjugate to an algebraic subgroup of

{±1} �Gm(Q̄)2 �
{(

α 0
0 λ

) ∣∣∣∣ α, λ ∈ Q̄, αλ �= 0
}

∪
{(

0 β
ε 0

) ∣∣∣∣ β, ε ∈ Q̄, βε �= 0
}

.

(4.7)
Finally, if a �= 0 and neither (4.3) nor (4.5) admits a solution in k∞, then SL2(Q̄) ⊆

H∞, and we compute H∞ as in [11, §4.4], by determining the image det(H∞) ⊆ Gm(Q̄)
of the determinant homomorphism.

In order to produce an algorithm that computes the σ-Galois group of (4.1) over 
k = k1, we need to be more careful in keeping track of which algebraic extension kn the 
solutions of the Riccati equations (4.3) and (4.5) belong to, and what effect this has on 
the shape of the Galois group. We begin by introducing some additional notation and 
stating some ancillary results. Let ζn ∈ Q̄ for n ∈ N denote a compatible system of n-th 
roots of unity, so that for any factorization �m = n we have ζ�

n = ζm. Then kn is a σ-PV 
ring over km for σ(y) = qny with fundamental solution (1 × 1 matrix) y = xn and cyclic 
σ-Galois group 〈τn,m〉 = Galσ(kn/km) given by τn,m(xn) = ζ�xn, where � = n/m. Let 
S∞ denote a σ-PV ring over k∞ for (4.2) with fundamental solution matrix Y . Then 
Sn = kn[Y, 1/det(Y )] is a σ-PV ring over kn for (4.2). Let us write Hn = Galσ(Sn/kn)
for n ∈ N ∪ {∞}. Then we see that Sn is a σ-PV ring over k1 for the system

σ(Yn) =
( 0 1 0

−b −a 0
0 0 qn

)
Yn, with fundamental solution matrix

Yn =
(

y1 y2 0
σ(y1) σ(y2) 0

0 0 xn

)
.

The following result is proved formally along the same lines of [2, Lem. 3.1 and Prop. 3.2]
and [3, Lem. 12 and Prop. 13], but we include the full argument here for completeness.

Proposition 4.2. Let H̃n := Galσ(Sn/k1) and μn denote the cyclic group of n-th roots of 
unity. Then the intersection S1 ∩ kn = km for some factorization n = �m, and the map

ϕ : H̃n → H1 × μn

γ 	→ (γ|S1 , γ|kn
)

is an isomorphism onto the fiber product
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H1 ×μm
μn = {(γ, ζ) | γ ∈ H1 and ζ ∈ μn such that γ(xm) = ζ�xm}. (4.8)

Proof. Note that S1∩kn ⊂ kn is a k1-subalgebra of kn, and therefore equal to km for some 
m dividing n by classical Galois theory. Since the embedding of H̃n ↪→ GL3(Q̄) : γ 	→ Mγ

is given by γ(Yn) = YnMγ and Yn = Y ⊕(xn), we see that if γ|S1 and γ|kn
are both trivial 

then so is γ, and therefore the group homomorphism ϕ(γ) = (γ|S1 , γ|kn
) is injective. That 

the image of ϕ is contained in the fiber product (4.8) is clear: γ(xn) = ζxn for some 
ζ ∈ μn, and then γ|S1(xm) = γ(xm) = γ(x�

n) = ζ�xm. It remains to show that ϕ surjects 
onto the fiber product (4.8).

Let Ln and L1 be the total rings of fractions of Sn and S1, respectively (we emphasize 
that neither Ln nor L1 is necessarily a field). We still have L1 ∩ kn = km, and H1 =
Galσ(L1/k1) and H̃n = Galσ(Ln/k1). Let us write Galσ(Ln/L1) := {γ ∈ H̃n | γ|L1 =
1} even if L1 is not a field. By Theorem 2.9, Galσ(Ln/L1) is a closed subgroup of 
Galσ(Ln/k).

We claim that the map

ψ : Galσ(Ln/kn) → Galσ(L1/km)

γ 	→ γ|L1

is an isomorphism. That the image of ψ is contained in the specified group follows from 
L1 ∩ kn = km. To see that ψ is injective, note that if γ ∈ Galσ(Ln/kn) then γ(xn) = 1, 
and if γ|L1 = 1 then γ(Y ) = Y , and therefore γ(Yn) = Yn, so γ = 1. To see that 
ψ is surjective, note that since the projection ψ is an algebraic group homomorphism 
and Galσ(Ln/kn) is an algebraic subgroup of Galσ(Ln/k), the image im(ψ) is a (closed) 
algebraic subgroup of Galσ(L1/km). But since Lim(ψ)

1 ⊆ L1 ∩ kn = km, it follows that 
im(ψ) = Galσ(L1/km) by Theorem 2.9.

Let us now show that ϕ surjects onto the fiber product (4.8). Let (γ, ζ) ∈ H1 ×μm
μn, 

so that γ(xm) = ζ�xm. There exists λ ∈ H̃n such that λ(xn) = ζxn, for otherwise 
{γ|kn

| γ ∈ H̃n} would be a proper subgroup of Gal(kn/k1), which is impossible by 
Theorem 2.9. Then we see that γ′ := γ ◦ λ|−1

L1
∈ Galσ(L1/km) and therefore there exists 

γ̃ ∈ Galσ(Ln/kn) such that ψ(γ̃) = γ̃|L1 = γ′. A computation now shows that γ̃ ◦λ ∈ H̃n

satisfies (γ̃ ◦ λ)|L1 = γ and (γ̃ ◦ λ)(xn) = ζxn, and therefore ϕ(γ̃ ◦ λ) = (γ, ζ), as we 
wanted to show. �

We record the following two consequences of Proposition 4.2.

Corollary 4.3. S1 ∩ kn = k1 if and only if Hn � H1, and S1 ∩ kn = kn if and only if Hn

is a normal subgroup of H1 of index n.

Proof. In any case, Hn is identified with the normal subgroup

{(γ, ζ) ∈ H1 ×μm
μn | ζ = 1} ≤ H̃n,
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which has index n in H̃n. In particular, S1 ∩ kn = k1 if and only if H̃n � H1 × μn and 
Hn � H1 × {1}. On the other hand, S1 ∩ kn = kn if and only if H̃n � H1 ×μn

μn � H1, 
so Hn is as claimed. �
Corollary 4.4. The intersection in S∞ given by k∞ ∩ S1 = km for some m ∈ N, and 
H∞ � H�m for every � ∈ N. In particular, H∞ is a normal subgroup of H1 of index m.

Proof. Note that H∞ ↪→ Hn for every n ∈ N via their actions on the same fundamental 
solution matrix Y ∈ GL2(S∞). Since S1 = k1[Y, det(Y )−1] is finitely generated over k1, 
there is a largest m ∈ N such that S1 admits km as an intermediate σ-k1-subalgebra, 
and we see that H∞ � H�m for every � ∈ N, and H∞ is a closed normal subgroup of H1
of index m. �

Having computed the σ-Galois group H∞ of (4.1) over k∞ as in [11], we can then com-
pute the σ-Galois group H1 of (4.1) over k1 according to the following possibilities. The 
explicit computation of H1 is obtained in each case as a by-product of our computation 
of the corresponding σδ-Galois group of (4.1) in the following sections.

Proposition 4.5. Precisely one of the following possibilities occurs.

(1) There are infinitely many solutions to (4.3) in k1. In this case, H1 is a subgroup of 
Gm(Q̄) (included in GL2(Q̄) as scalar matrices).

(2) There are exactly two solutions u1, u2 ∈ k1 to (4.3). In this case, H1 is diagonalizable 
(but not contained in the group of scalar matrices).

(3) There is exactly one solution u ∈ k1 to (4.3). In this case, H1 is reducible but not 
diagonalizable.

(4) There are no solutions to (4.3) in k1, but there are exactly two solutions u1, u2 ∈
k2\k1 to (4.3), and u2 = ū1 is the Galois conjugate of u1 over k1. In this case, H1
is irreducible and imprimitive.

(5) There are no solutions to (4.3) in k2, and either a = 0 or there is a solution e ∈ k2
to (4.5). In this case, H1 is irreducible and imprimitive.

(6) There are no solutions to (4.3) nor to (4.5) in k2 and a �= 0. In this case, H1 is 
irreducible and primitive, and SL2(Q̄) ⊆ H1.

Proof. It is clear that the possibilities above are mutually exclusive. It remains to show 
that these possibilities are exhaustive, and that the σ-Galois group H1 is as stated in 
each case.

Let us first show that these possibilities are exhaustive. By [11, Thm. 13], there are 
either zero, one, two, or infinitely many solutions to (4.3) in k∞. By [11, Thm. 15], if 
there exists a solution u ∈ k∞ to the Riccati equation (4.3), then there exists a solution 
in k2. Since the coefficients a, b ∈ k = k1, for any solution u ∈ k2\k1 to (4.3) the Galois 
conjugate ū := τ2,1(u) must also satisfy (4.3). Hence, if there is exactly one solution 
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u ∈ k∞ to (4.3), then u ∈ k1, and if there are exactly two solutions u1, u2 ∈ k∞ to (4.3), 
then either u1, u2 ∈ k1, or else u1, u2 ∈ k2\k1 and u2 = ū1 is the Galois conjugate of u1
over k1. In the case where there are infinitely many solutions to (4.3) in k∞, the proof of 
[11, Thm. 15] shows that at least three of these solutions actually belong to k1, in which 
case the proof of [12, Thm. 4.2] shows that there are infinitely many solutions to (4.3)
in k1. This shows that cases (1)–(4) exhaust the possibilities where there is at least one 
solution to (4.3) in k∞. Supposing now that there are no solutions to (4.3) in k∞ and 
a �= 0, by [11, Thm. 15] we again have that if there exists at least one solution in k∞ to 
(4.5), then there exists a solution in k2. This concludes the proof that the possibilities 
listed in Proposition 4.5 are exhaustive and mutually exclusive.

The statements corresponding to the form of the σ-Galois group H1 will be established 
separately in the following sections according to the possibilities listed above, depending 
on the existence of solutions to (4.3) or (4.5) in k1 or k2 as discussed above. �

In view of Proposition 2.10, in order to compute the σδ-group G of (4.1), we will 
first apply the results of [11] to compute the solutions to (4.3) and/or (4.5) in k2, which 
according to the possibilities in Proposition 4.5 (and as we will show in each case in 
the following sections) results in knowing whether the corresponding σ-Galois group 
H is: diagonalizable; reducible (but not diagonalizable); irreducible and imprimitive; or 
irreducible and primitive. We will then compute the additional δ-algebraic equations that 
define G as a subgroup of H in each case (and obtain the explicit computation of H itself 
along the way). In order to apply the theory of [13] to study (4.1), we will consider (4.1)
as a difference equation over the larger basefield C(x) mentioned at the beginning of this 
section, where we recall C is a δ-closed field extension of (Q̄, δ) such that Cδ = Q̄ (the 
existence of such a C is guaranteed by [14,25]), and the σδ-structure of C(x) extends 
that of Q̄(x): σ is the C-linear automorphism of C(x) defined by σ(x) = qx.

Remark 4.6 (Descent from C(x) to Q̄(x)). The application of the results of [11] and 
Proposition 4.5 to compute the σ-Galois group of (4.1) over C(x), rather than over 
Q̄(x), requires some justification. Although it is possible to see from general Tannakian 
principles that the σ-Galois group of (4.1) over C(x) is obtained by base change from Q̄
to C of the σ-Galois group of (4.1) over Q̄(x), it is possible to see this directly in the 
present situation. The point is that the number of solutions to the Riccati equations (4.3)
and (4.5) in C(x2) is the same as the number of solutions in Q̄(x2). This follows from an 
elementary argument: suppose that a given polynomial σ-equation over Q̄(x) admits a 
solution p

q ∈ C(x), where p = anxn + · · · + a1x + a0 and q = bmxm + · · · + b1x + b0. This 
is equivalent to the coefficients ai and bj satisfying bm �= 0 and a system of polynomial 
equations defined over Q̄, which defines an affine algebraic variety V over Q̄. Since Q̄ is 
algebraically closed and C is countable, V (C) and V (Q̄) must have the same cardinality.

Moreover, the possible defining equations for the σ-Galois groups of (4.1) over Q̄(x)
and over C(x), whether in the reducible, irreducible and imprimitive, or irreducible and 
primitive cases, are all witnessed by monomial relations among (the standard form of) 
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elements in Q̄(x). Though we will see this explicitly in each situation in the following 
sections, it is worthwhile to emphasize now that the σ-Galois group of (4.1) over C(x)
consists of the C-points of the σ-Galois group over Q̄(x), i.e., the former is defined as 
an algebraic subgroup of GL2(C) by the same algebraic equations defining the latter as 
an algebraic subgroup of GL2(Q̄).

On the other hand, the σδ-Galois group G of (4.1) that we compute in the following 
sections results, in each case, in defining equations for G ⊆ GL2(C) with coefficients in Q̄, 
and not just in C. The existence of a so-called Q̄-form of G (which is what we in fact end 
up computing) can be expected on general theoretical grounds, because the differential 
Tannakian category generated by the difference module corresponding to (4.1) is defined 
over Q̄(x); see [22] for more details. We do not address here the interesting question of 
to what extent this Q̄-form of G is unique or algorithm-dependent, but rather content 
ourselves with computing a set of defining δ-equations for G as a subset of GL2(C).

5. Diagonalizable groups

We recall the notation introduced in the previous sections: k = C(x), C is a δ-closure 
of Q̄ with Cδ = Q̄, σ denotes the C-linear automorphism of k defined by σ(x) = qx, and 
δ(x) = x. Let us first suppose that there exist at least two distinct solutions u1, u2 ∈ Q̄(x)
to the Riccati equation (4.3) as in items (1) or (2) of Proposition 4.5. Then (4.2) is 
equivalent over Q̄(x) to

σ(Y ) =
(

u1 0
0 u2

)
Y,

in view of the following remark.

Remark 5.1. Given two distinct solutions u1 and u2 to (4.3), the gauge transformation 
(which is different from the one specified in the proof of [12, Thm. 4.2])

T := 1
u1 − u2

·
(

u2 −1
u1 −1

)

satisfies σ(T )AT −1 =
(

u1 0
0 u2

)
.

In this case, we compute G with the following result.

Proposition 5.2. Assume that u1, u2 ∈ Q̄(x) are both different from 0, and let R be the 
σδ-PV ring over k corresponding to the system

σ(Y ) =
(

u1 0
0 u2

)
Y. (5.1)

Then G = Galσδ(R/k) is the subgroup of
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Gm(C)2 =
{(

α1 0
0 α2

) ∣∣∣∣ α1, α2 ∈ C, α1α2 �= 0
}

(5.2)

defined by the following conditions on α1 and α2.

(i) There exist m1, m2 ∈ Z, not both zero, and f ∈ Q̄(x)× such that um1
1 um2

2 = σ(f)
f if 

and only if αm1
1 αm2

2 = 1.
(ii) There exist m1, m2 ∈ Z, not both zero and with gcd(m1, m2) = 1; c ∈ Z; and 

f ∈ Q̄(x) such that m1
δ(u1)

u1
+ m2

δ(u2)
u2

= σ(f) − f + c if and only if δ(m1
δ(α1)

α1
+

m2
δ(α2)

α2
) = 0. Moreover, c = 0 if and only if δ(αm1

1 αm2
2 ) = 0.

(iii) If neither of the conditions above is satisfied, then G = H = Gm(C)2.

Proof. We begin by observing that, if we can find f ∈ k witnessing the relations in items 
(i) or (ii), then we may take f ∈ Q̄(x), since ui ∈ Q̄(x) (cf. [10, Lem. 2.4, Lem. 2.5] and 
Remark 4.6). Note that by Theorem 2.4, Rσ = C. Let y1, y2 ∈ R be non-zero elements 
such that σ(yi) = uiyi. Then 

(
y1 0
0 y2

)
is a fundamental solution matrix for (5.1), so 

y1, y2 ∈ R× and the embedding of G into (5.2) is given by γ(yi) = αγ,iyi for i = 1, 2 and 
γ ∈ G.

The proof of item (i) is standard: given m1, m2 ∈ Z we have that αm1
γ,1αm2

γ,2 = 1 for 
every γ ∈ G if and only if γ(ym1

1 ym2
2 ) = ym1

1 ym2
2 for every γ ∈ G. By Theorem 2.9, this 

is equivalent to ym1
1 ym2

2 = f ∈ k, which in turn is equivalent to σ(f)
f = um1

1 um2
2 .

Setting δ(yi)
yi

=: gi ∈ R for i = 1, 2, we see that

σ(gi) − gi = δ(ui)
ui

and γ(gi) = gi + δ(αγ,i)
αγ,i

. (5.3)

By Corollary 3.5, y1 and y2 are differentially dependent over k if and only if there exist 
m1, m2 ∈ Z, not both zero and with gcd(m1, m2) = 1, c ∈ Z, and f ∈ k such that

m1
δ(u1)

u1
+ m2

δ(u2)
u2

= σ(f) − f + c. (5.4)

Hence, if there do not exist such m1, m2, c ∈ Z and f ∈ k, y1 and y2 are δ-independent 
over k, which implies that G = Gm(C)2 by [13, Prop. 6.26]. This proves item (iii).

Let us establish item (ii). It follows from (5.3) that for any m1, m2 ∈ Z we have

σ(m1g1 + m2g2) − (m1g1 + m2g2) = m1
δ(u1)

u1
+ m2

δ(u2)
u2

; and

γ(m1g1 + m2g2) = (m1g1 + m2g2) + m1
δ(αγ,1)

αγ,1
+ m2

δ(αγ,2)
αγ,2

.

Suppose there exists f ∈ k satisfying (5.4) with c = 0 and gcd(m1, m2) = 1. Then 
m1g1 +m2g2 −f ∈ kσ, which implies that m1g1 +m2g2 ∈ k and therefore δ(αm1

γ,1αm2
γ,2) = 0
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for every γ ∈ G. On the other hand, if δ(αm1
γ,1αm2

γ,2) = 0 for every γ ∈ G with at least one 
mi �= 0, then the same relation holds after replacing mi with mi

gcd(m1,m2) and we see that 
m1g1 + m2g2 = f ∈ k satisfies (5.4) with c = 0.

More generally, suppose there exist f ∈ k and c ∈ Z satisfying (5.4) with 
gcd(m1, m2) = 1. Then we see that m1δ(g1) + m2δ(g2) − δ(f) ∈ kσ, and therefore 
m1δ(g1) + m2δ(g2) ∈ k, which implies that

δ

(
m1

δ(αγ,1)
αγ,1

+ m2
δ(αγ,2)

αγ,2

)
= 0 for every γ ∈ G. (5.5)

On the other hand, assuming (5.5) with at least one mi �= 0, then the same relation 
holds after replacing mi with mi

gcd(m1,m2) , and we have that m1δ(g1) + m2δ(g2) = g ∈ k, 
and therefore

m1δ

(
δ(u1)

u1

)
+ m2δ

(
δ(u2)

u2

)
= σ(g) − g.

By Proposition 3.3, for each β ∈ Q× we have that

0 = q-dres
(

δ

(
δ(um1

1 um2
2 )

um1
1 um2

2

)
, [β]q, 2

)
= −β · q-dres

(
δ(um1

1 um2
2 )

um1
1 um2

2
, [β]q, 1

)
,

where the second equality follows from Lemma 3.4. Hence, letting

c := q-dres
(

δ(um1
1 um2

2 )
um1

1 um2
2

, ∞
)

= m1 ·q-dres
(

δ(u1)
u1

, ∞
)

+m2 ·q-dres
(

δ(u2)
u2

, ∞
)

, (5.6)

we have that c ∈ Z and every q-discrete residue of m1
δ(u1)

u1
+m2

δ(u2)
u2

−c is 0. By another 
application of Proposition 3.3, there exists f ∈ k satisfying (5.4) with c as in (5.6). �
Remark 5.3. To compute the difference-differential Galois group G for (4.1) when there 
exist at least two distinct solutions u1, u2 ∈ Q̄(x) to the Riccati equation (4.3), we 
apply Proposition 5.2 as follows. First, compute the q-discrete residues ri([β]q) :=
q-dres

(
δ(ui)

ui
, [β]q, 1

)
at each qZ-orbit [β]q for β ∈ Q̄× as in Definition 3.2 (note these will 

be zero for any β that is neither a zero nor a pole of u1 or u2). Then decide whether there 
exist relatively prime m1, m2 ∈ Z such that m1r1([β]q) + m2r2([β]q) = 0 for every qZ-
orbit [β]q simultaneously (in general this will be an overdetermined linear system over Q̄, 
so the task is to decide whether there exists a non-zero solution in Q̄2 and then whether 
such a solution can be taken to be in Z2). For any such pair (0, 0) �= (m1, m2) ∈ Z2, 
taking c ∈ Z as in (5.6) the proof of Proposition 5.2 shows that there exists f ∈ Q̄(x)
satisfying (5.4); it is not necessary to determine what the certificate f actually is.

The Z-module M generated by all pairs (m1, m2) ∈ Z2 as in Proposition 5.2(ii) is 
free of rank r ≤ 2. It follows from the proof of Corollary 3.5 that Z2/M is torsion-free, 
and therefore also free of rank 2 − r, since if (dm1, dm2) ∈ M for any 0 �= d ∈ Z, then 
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(m1, m2) ∈ M also. Thus, if the rank of M is r = 2 then M = Z2. It follows that the 
defining equations for G arising from Proposition 5.2(ii) are given by either: a single 
pair (m1, m2), unique up to multiplication by ±1 and with the form of the defining 
equation determined by whether the corresponding value of c in (5.6) is 0; or else the 
two relations corresponding to (1, 0) and (0, 1), with an additional relation occurring 
only in case ci := q-dres( δ(ui)

ui
, ∞) �= 0 for both i = 1, 2, in which case we obtain an 

additional relation given by δ(αd1
1 αεd2

2 ) = 0 with

di := lcm(|c1|, |c2|)
ci

and ε =
{

1 if c1c2 ∈ Z<0;
−1 if c1c2 ∈ Z>0.

(5.7)

Having computed all possible relations arising from Proposition 5.2(ii), let us now 
show how to find the possible relations arising from Proposition 5.2(i), and thus de-
termine all defining equations for G ⊆ Gm(C)2. We still denote by M ⊆ Z2 the 
Z-submodule generated by pairs (m1, m2) as in Proposition 5.2. If M = {(0, 0)} then 
G = Gm(C)2 as in Proposition 5.2(iii), so from now on we assume M is not trivial. We 
saw above that either M = Z2 or else M = Z · (m1, m2) with gcd(m1, m2) = 1.

Suppose M = Z ·(m1, m2). If the value of c given in (5.6) is not 0, then G is defined by 

the single equation δ
(

δ(α
m1
1 α

m2
2 )

α
m1
1 α

m2
2

)
= 0 as in Proposition 5.2(ii). On the other hand, if this 

c = 0, then we must decide whether there exist: a primitive n-th root of unity ζn, integers 
r, s such that 0 ≤ r < s and gcd(r, s) = 1, and g ∈ Q̄(x)× such that um1

1 um2
2 = ζnqr

s
σ(g)

g . 
If so, then G is defined by the single equation (αm1

1 αm2
2 )� = 1 as in Proposition 5.2(i), 

where � := lcm(n, s), the least common multiple of n and s; otherwise, αm1
1 αm2

2 has 
infinite order in Gm(Cδ) for every 

(
α1 0
0 α2

)
∈ G, and G is defined by the single equation 

δ(αm1
1 αm2

2 ) = 0 as in Proposition 5.2(ii) only.
If M = Z2, let again ci := q-dres( δ(ui)

ui
, ∞). If exactly one ci is 0, say c1 = 0 �= c2, 

then we must decide whether there exist: a primitive n-th root of unity ζn, integers r, s
such that 0 ≤ r < s and gcd(r, s) = 1, and g ∈ Q̄(x)× such that u1 = ζnqr

s
σ(g)

g . If so, 
then G is defined by the equations: α�

1 = 1 as in Proposition 5.2(i), with � := lcm(n, s), 
and δ

(
δ(α2)

α2

)
= 0 as in Proposition 5.2(ii); otherwise, G is defined instead by δ(α1) = 0

and δ
(

δ(α2)
α2

)
= 0. The case where c2 = 0 �= c1 is analogous. If c1, c2 �= 0, then we 

must decide whether there exist: a primitive n-th root of unity ζn, integers r, s such that 
0 ≤ r < s and gcd(r, s) = 1, and g ∈ Q̄(x)× such that ud1

1 uεd2
2 = ζnqr

s
σ(g)

g , with d1, d2, ε

defined as in (5.7). If so, then G is defined by the equations δ
(

δ(αi)
αi

)
= 0 for i = 1, 2

as in Proposition 5.2(ii), together with (αd1
1 αεd2

2 )� = 1 as in Proposition 5.2(i), where 

� := lcm(n, s); otherwise, G is defined by δ
(

δ(αi)
αi

)
= 0 for i = 1, 2 only.

The case where M = Z2 and ci := q-dres( δ(ui)
ui

, ∞) = 0 for both i = 1, 2 is similar 
in principle: we must decide whether there exist m1, m2 ∈ Z, a primitive n-th root of 
unity ζn, integers r, s such that 0 ≤ r < s and gcd(r, s) = 1, and g ∈ Q̄(x)× such 
that um1

1 um2
2 = ζnqr

s
σ(g) . If so, then G is defined by δ(αi) = 0 for i = 1, 2 as in 
g
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Proposition 5.2(ii), together with (αm1
1 αm2

2 )� = 1 as in Proposition 5.2(i), where � :=
lcm(n, s); otherwise, G is defined by δ(αi) = 0 for i = 1, 2 only.

The problem of deciding whether u := um1
1 um2

2 = ζnqr
s

σ(g)
g as above for a given single

pair (m1, m2) is addressed in [11, §3]: a straightforward modification of the algorithm 
given there allows us to compute a reduced form ũ = hxn p

q where: h ∈ Q̄×; n ∈ Z; 
p, q ∈ Q̄[x] are monic such that gcd(p, σm(q)) = 1 for every m ∈ Z; if h = ζqt for some 
root of unity ζ and t ∈ Q, then 0 ≤ t < 1; and such that there exists g ∈ Q̄(x)× with 
u = ũσ(g)

g for some g ∈ Q̄(x)×. Thus we only need to check whether ũ = ζnqr
s .

In the case where M = Z2 and ci := q-dres( δ(ui)
ui

, ∞) = 0 for both i = 1, 2, one can 
show that the standard form ũi = hi with hi ∈ Q̄×, and one needs to decide whether h1

and h2 are multiplicatively independent modulo qZ. We do not know how to produce a 
priori bounds on the possible coefficients (m1, m2) such that hm1

1 hm2
2 ∈ qZ in general, 

so in this case only we offer no improvements on the algorithm in [11, §4.2]. But in 
the remaining cases, we have reduced the computation of all the possible relations in 
Proposition 5.2(i) to checking a finite list of possibilities for (m1, m2) ∈ Z2, although 
this requires the ability to compute the q-discrete residues of δ(ui)

ui
(cf. [26, §2.2]).

6. Reducible non-diagonalizable groups

We recall the notation introduced in the previous sections: k = C(x), where C is a 
δ-closure of Q̄, σ denotes the C-linear automorphism of k defined by σ(x) = qx, and 
δ(x) = x.

We now proceed to define the additional notation that we will use throughout this 
section. We will assume that there exists exactly one solution u ∈ Q̄(x) to the Riccati 
equation (4.3), so that the σ-Galois group H for (4.1) is reducible but not diagonalizable 
as in Proposition 4.5(3), and the difference operator implicit in (4.1) factors as

σ2 + aσ + b = (σ − b
u ) ◦ (σ − u),

as we saw in §4. This means that there is a C-basis of solutions {y1, y2} in any σδ-PV 
ring R for (4.1) such that y1, y2 �= 0 satisfy σ(y1) = uy1 and σ(y2) − uy2 = y0, where 
y0 �= 0 satisfies σ(y0) = b

u y0. A fundamental solution matrix for (4.2) is given by

(
y1 y2

σ(y1) σ(y2)

)
=
(

y1 y2
uy1 uy2 + y0

)
. (6.1)

If we now let A =
(

0 1
−b −a

)
, T =

(
1−u 1
−u 1

)
, and v = b

u = −σ(u) − a (since u satisfies 
(4.3)), we have that

σ(T )AT −1 =
(

1 − σ(u) 1
−σ(u) 1

)(
0 1

−b −a

)(
1 −1
u 1 − u

)
=
(

u 1 − u + v
0 v

)
=: B.
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Therefore, the systems (4.2) and σ(Z) = BZ are equivalent (in the sense of Defini-
tion 2.6), and a fundamental solution matrix for the latter system is given by

TY =
(

1 − u 1
−u 1

)(
y1 y2

uy1 uy2 + y0

)
=
(

y1 y2 + y0
0 y0

)
= Z.

For any γ ∈ H, the σ-Galois group for (4.1), we have that

γ

(
y1 y2 + y0
0 y0

)
=
(

y1 y2 + y0
0 y0

)(
αγ ξγ

0 λγ

)
=
(

αγy1 ξγy1 + λγy2 + λγy0
0 λγy0

)
,

(6.2)
and therefore the action of H on the solutions is defined by

γ(y1) = αγy1; γ(y0) = λγy0; and γ(y2) = λγy2 + ξγy1. (6.3)

It will be convenient to define the auxiliary elements

w = y0

uy1
and z = y2

y1
, (6.4)

on which σ acts via

σ(w) = b

uσ(u)w; σ(z) = z + w, (6.5)

and H acts via

γ(w) = λγ

αγ
w; γ(z) = λγ

αγ
z + ξγ

αγ
. (6.6)

We observe that the σ-PV ring

S = k[y1, y2 + y0, y0, (y1y0)−1] = k[y1, w, z, (y1w)−1]

and the σδ-PV ring

R = k{y1, y2 + y0, y0, (y1y0)−1}δ = k{y1, w, z, (y1w)−1}δ.

Our computation of the σδ-Galois group G for (4.1) in this section will be accomplished 
by studying the action of G on y1, w, and z. We begin by defining the unipotent radicals

Ru(H) = H ∩
{(

1 ξ
0 1

) ∣∣∣∣ ξ ∈ C

}
and Ru(G) = G ∩

{(
1 ξ
0 1

) ∣∣∣∣ ξ ∈ C

}
, (6.7)

and observe that Ru(H) (resp., Ru(G)) is an algebraic (resp., differential algebraic) 
subgroup of Ga(C), the additive group of C. By [11, Thm. 13(2)], Ru(H) = Ga(C) if 
and only if there exists exactly one solution u ∈ k to (4.3). We observe that
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Ru(G) = {γ ∈ G | γ(yi) = yi for i = 0, 1}.

The reductive quotient

G/Ru(G) �
{(

αγ 0
0 λγ

) ∣∣∣∣ γ ∈ G

}

is the σδ-Galois group corresponding to the matrix equation

σ(Y ) =
(

u 0
0 v

)
Y, (6.8)

which we compute with Proposition 5.2 and Remark 5.3.
In the following result, we compute the defining equations for the σδ-Galois group 

G for (4.1) in a special case. Recall that u ∈ Q̄(x) denotes the unique solution to the 
Riccati equation (4.3), H denotes the σ-Galois group for (4.1), and w is as in (6.4).

Proposition 6.1. Suppose there is exactly one solution u ∈ k to (4.3) and H is commu-
tative. Then H is a subgroup of

Gm(C) × Ga(C) =
{(

α ξ
0 α

) ∣∣∣∣ α, ξ ∈ C, α �= 0
}

(6.9)

with Ru(H) = Ga(C). Moreover, there exists w ∈ Q̄(x) satisfying (6.5), and G is the 
subgroup of (6.9) defined by the following conditions on α and ξ.

(i) There exist m ∈ N and f ∈ Q̄(x)× such that um = σ(f)
f if and only if αm = 1.

(ii) There exist c ∈ Z and f ∈ Q̄(x) such that δ(u)
u = σ(f) − f + c if and only if 

δ
(

δ(α)
α

)
= 0. Moreover, c = 0 if and only if δ(α) = 0.

(iii) There exist: c ∈ Q̄; f ∈ Q̄(x); and a homogeneous linear δ-polynomial L ∈ Q̄{Y }δ

such that L( δ(u)
u ) −w = σ(f) −f +c if and only if δ

(
ξ
α

)
= L 

(
δ
(

δ(α)
α

))
. Moreover, 

c = 0 if and only if ξ = αL( δ(α)
α ).

(iv) If none of the conditions above is satisfied, then G = H = Gm(C) × Ga(C).

Proof. First recall that when there is exactly one solution u ∈ k to (4.3) the σ-Galois 
group H of (4.1) is reducible but not diagonalizable by [11, Thm. 13], and therefore H
is a non-diagonalizable subgroup of

Gm(C) �Ga(C) =
{(

α ξ
0 λ

) ∣∣∣∣ α, ξ, λ ∈ C, αλ �= 0
}

.

In particular, Ru(H) = Ga(C) and a straightforward computation shows that H is 
commutative if and only if it is actually a subgroup of (6.9). We recall the notation 



24 C.E. Arreche, Y. Zhang / Advances in Applied Mathematics 132 (2022) 102273
introduced at the beginning of this section: v = b
u , {y1, y2} is a C-basis of solutions for 

(4.1) such that σ(y1) = uy1 and σ(y2) − uy2 = y0, where y0 �= 0 satisfies σ(y0) = vy0. 
The embedding H ↪→ GL2(C) : γ 	→ Mγ is as in (6.2), and the action of H on the 
solutions is given in (6.3). The auxiliary elements w and z are defined as in (6.4); they 
are acted upon by σ as in (6.5) and by H as in (6.6). The relation γ(w) = λγ

αγ
w for each 

γ ∈ H from (6.6), together with Theorem 2.9, imply that w ∈ k. Since σ(w) = b
uσ(u)w

from (6.5) and b, u ∈ Q̄(x), if w ∈ k we may actually take w ∈ Q̄(x) by [10, Lem. 2.5]
(cf. Remark 4.6). Thus, if we can find f ∈ k witnessing the relations in items (i) or (ii), 
then we may take f ∈ Q̄(x), as already discussed in the proof of Proposition 5.2, and 
similarly if we can find f ∈ k and c ∈ C witnessing the relation in item (iii), then we 
may take f ∈ Q̄(x) and c ∈ Q̄.

Items (i) and (ii) were already established in Proposition 5.2. Let us prove item (iii). 
Setting δ(y1)

y1
=: g ∈ R we have that

σ(g) − g = δ(u)
u

and γ(g) = g + δ(αγ)
αγ

(6.10)

for γ ∈ G (cf. the proof of Proposition 5.2). On the other hand, the actions of σ and 
γ ∈ G on the element z ∈ R defined in (6.4) in this case is given by

σ(z) − z = w and γ(z) = z + ξγ

αγ
. (6.11)

Consider the relation stipulated in item (iii):

L
(

δ(u)
u

)
− w = σ(f) − f + c, (6.12)

where L ∈ Q̄{Y }δ is a linear differential polynomial, f ∈ Q̄(x), and c ∈ Q̄. It follows from 
(6.10) and (6.11) that, for any homogeneous linear differential polynomial L ∈ C{Y }δ

and γ ∈ G, we have that

σ (L(g) − z) − (L(g) − z) = L
(

δ(u)
u

)
− w; and

γ (L(g) − z) = (L(g) − z) + L
(

δ(αγ)
αγ

)
− ξγ

αγ
.

Suppose there exist f ∈ Q̄(x) and a homogeneous linear differential polynomial L ∈
Q̄{Y }δ satisfying (6.12) with c = 0. Then L(g) −z−f ∈ kσ, which implies that L(g) −z ∈
k, and therefore L 

(
δ(αγ)

αγ

)
= ξγ

αγ
for every γ ∈ G by Theorem 2.9. On the other hand, if 

L ∈ Q̄{Y }δ is a linear differential polynomial such that L 
(

δ(αγ)
αγ

)
= ξγ

αγ
for every γ ∈ G, 

then L(g) − z = f ∈ k satisfies (6.12) with c = 0.
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More generally, suppose there exist f ∈ Q̄(x), c ∈ Q̄, and a homogeneous linear 
differential polynomial L ∈ Q̄{Y }δ satisfying (6.12). Then we see that L(δ(g)) − δ(z) −
δ(f) ∈ kσ, and therefore L(δ(g)) − δ(z) ∈ k, which implies that

L
(

δ

(
δ(αγ)

αγ

))
= δ

(
ξγ

αγ

)
(6.13)

for every γ ∈ G. On the other hand, if L ∈ Q̄{Y }δ is a homogeneous linear differential 
polynomial such that (6.13) holds for every γ ∈ G, then L(δ(g)) − δ(g) =: h ∈ k, and 
therefore the element L(g) − z ∈ R is differentially dependent over k. It then follows 
from [13, Prop. 3.10(2.a)] that there exist f ∈ k and c ∈ Cδ = Q̄ satisfying (6.12). This 
concludes the proof of item (iii).

By [13, Cor. 3.2], g and z are differentially dependent over k if and only if there 
exist homogeneous linear differential polynomials L1, L2 ∈ Q̄{Y }δ, not both zero, and 
f̃ ∈ Q̄(x), such that

L1

(
δ(u)

u

)
− L2(w) = σ(f̃) − f̃ . (6.14)

Hence if there do not exist such Li and f̃ , the elements g, z ∈ R are differentially 
independent over k, which implies that G = Gm(C) �Ga(C) by [13, Prop. 6.26]. Thus, 
assume there do exist L1, L2 ∈ Q̄{Y }δ, not both zero, and f̃ satisfying (6.14). If L2 = 0, 
then L1 �= 0 and it follows from (6.14) and (6.10) that g is differentially dependent over 
k, and therefore so is y1. By Corollary 3.5, this implies that there exist f ∈ Q̄(x) and 
c ∈ Z such that δ(u)

u = σ(f) − f + c, as in item (ii). To prove item (iv), let us show that 
if there exist homogeneous linear differential polynomials L1, L2 ∈ Q̄{Y }δ with L2 �= 0
and f̃ ∈ Q̄(x) satisfying (6.14), then we can construct a linear δ-polynomial L ∈ Q̄{Y }δ

and c ∈ Q̄ such that

L
(

δ(u)
u

)
− w = σ(f) − f + c for some f ∈ Q̄(x),

as in item (iii). Let ord(Li) = mi and Li =
∑mi

j=0 ci,jδj(Y ) for i = 1, 2; if L1 = 0, we set 
m1 = 0, and we adopt the convention that ci,j := 0 for every j > mi. By Proposition 3.3, 
the existence of f̃ ∈ k as in (6.14) implies that

0 = q-dres
(

L1

(
δ(u)

u

)
− L2(w), [β]q, j

)
(6.15)

for every qZ-orbit [β]q with β ∈ Q̄× and every j ∈ N. Let r ∈ N be the largest order 
such that

q-dres(w, [β]q, r) �= 0 for some qZ-orbit [β]q.
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Then it follows from (6.15) and Lemma 3.4 that, for each qZ-orbit [β]q with β ∈ Q̄×, 
the q-discrete residues

c1,m2+r−1(−1)m2+r−1(m2 + r − 1)!βm2+r−1q-dres
( δ(u)

u , [β]q, 1
)

= q-dres
(

L1
( δ(u)

u

)
, [β]q, m2 + r

)
and

c2,m2(−1)m2
(m2 + r)!
(r − 1)! βr−1q-dres(w, [β]q, r) = q-dres(L2(w), [β]q, m2 + r)

are equal. Since β �= 0, the above equality is equivalent to

c1,m2+r−1

c2,m2

(−1)r−1(r − 1)!βr−1q-dres
( δ(u)

u , [β]q, 1
)

= q-dres(w, [β]q, r) (6.16)

Set cr−1 = c1,m2+r−1
c2,m2

. Then (6.16) is equivalent to

q-dres
(

cr−1δr−1
(

δ(u)
u

)
− w, [β]q, r

)
= 0

for every qZ-orbit [β]q with β ∈ Q̄× simultaneously. We continue by taking the next 
highest r′ ≤ r − 1 such that q-dres(w, [β]q, r′) �= 0 for some [β]q, and proceed as above 
to find the coefficient cr′−1 ∈ Q̄ of L such that

q-dres
(

cr−1δr−1
(

δ(u)
u

)
+ cr′−1δr′−1

(
δ(u)

u

)
− w, [β]q, j

)
= 0

for every j ≥ r′ and every qZ-orbit [β]q with β ∈ Q× simultaneously. Eventually we will 
have constructed a homogeneous linear δ-polynomial L ∈ Q̄{Y }δ such that

q-dres
(

L
(

δ(u)
u

)
− w, [β]q, j

)
= 0

for every qZ-orbit [β]q with β ∈ Q̄× and every j ∈ N. Set c = q-dres
(

L
(

δ(u)
u

)
− w, ∞

)
∈

Q̄. Then it follows from Proposition 3.3 that L( δ(u)
u ) − w − c = σ(f) − f for some f ∈ k. 

By [10, Lem. 2.4] (cf. Remark 4.6), we may take f ∈ Q̄(x), so we are indeed in case (iii), 
as we wanted to show. �

The main ideas for the proof of the following result were communicated to the first 
author by Singer in [23], during the development of the algorithm in [4].

Proposition 6.2. Suppose there exists exactly one solution u ∈ Q̄(x) to (4.3) and H is 
not commutative. Then Ru(G) = Ru(H) = Ga(C).
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Proof. We recall the notation introduced at the beginning of this section: u ∈ Q̄(x) is 
the unique solution in k to the Riccati equation (4.3), v = b

u , {y1, y2} is a C-basis of 
solutions for (4.1) such that σ(y1) = uy1 and σ(y2) − uy2 = y0, where y0 �= 0 satisfies 
σ(y0) = vy0. The embedding G ↪→ GL2(C) : γ 	→ Mγ is as in (6.2), and the action of G
on the solutions is given in (6.3). The auxiliary elements w and z are defined as in (6.4); 
they are acted upon by σ as in (6.5) and by G as in (6.6).

By [7, Prop. 11], either Ru(G) = Ga(C), or else

Ru(G) =
{(

1 ξ
0 1

) ∣∣∣∣ β ∈ C, L(ξ) = 0
}

, (6.17)

for some nonzero monic homogeneous linear δ-polynomial L ∈ C{Y }δ. Since Ru(G) is 
normal in G, this implies that (cf. [13, Lem. 3.6])

Mγ

(
1 β
0 1

)
M−1

γ =
(

αγ ξγ

0 λγ

)(
1 ξ
0 1

)(
α−1

γ −α−1
γ λ−1

γ ξγ

0 λ−1
γ

)

=
(

1 αγλ−1
γ ξ

0 1

)
∈ Ru(G)

for each γ ∈ G and 
( 1 ξ

0 1

)
∈ Ru(G). If L is as in (6.17), then L(ξ) = 0 ⇒ L(αγλ−1

γ ξ) = 0. 
By [13, Lem. 3.7], this implies that if ord(L) �= 0, then δ(αγλ−1

γ ) = 0 for every γ ∈ G. 
But since L �= 0, ord(L) = 0 if and only if Ru(G) = {0}, which is impossible, for then 
we would have that

G � G/Ru(G) �
{(

αγ 0
0 λγ

) ∣∣∣∣ γ ∈ G

}

is commutative, and since G is Zariski-dense in H by Proposition 2.10, this would force 
H to be commutative also, contradicting our hypotheses.

We proceed by contradiction: assuming Ru(G) �= Ga(C), we will show that Ru(H) =
{0}, contradicting our hypotheses. We have shown above that if Ru(G) �= {0} then 
there exists a monic homogeneous linear δ-polynomial L ∈ C{Y }δ with ord(L) ≥ 1 such 

that Ru(G) is as in (6.17) and δ
(

αγ

λγ

)
= 0 for every γ ∈ G. It follows from (6.6) and 

Theorem 2.9 that the group {λγα−1
γ | γ ∈ G} ⊆ Gm(Q̄) is the σδ-Galois group for the 

system

σ(W ) =
(

b

uσ(u)

)
W,

which by [13, Prop. 2.9] must be integrable over k in the sense of [5, Def. 3.3]. It is shown 
in [5, Prop. 3.6] that this system must then be integrable over Q̄(x), and therefore by 
[24, Thm. 2], there exist t ∈ Q̄(x)× and c, d ∈ Q̄ with c �= 0 such that w̃ := t−1w satisfies
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σ(w̃) = cw̃;

δ(w̃) = dw̃.

It is convenient to point out now that c �= qr for any r ∈ Z, because otherwise we 
would have w̃ = exr for some e ∈ C, which would imply that w ∈ k, contradicting our 
hypothesis that H is not commutative (cf. the proof of Proposition 6.1: H is commutative 
if and only if αγ = λγ for every γ ∈ H if and only if w ∈ k by (6.6) and Theorem 2.9). 
We will need to use the fact that c /∈ qZ at the end of the proof.

We claim that

w̃−1L(w) =: fL ∈ k, and moreover fL = L̃(t) (6.18)

for some homogeneous linear differential polynomial 0 �= L̃ ∈ C{Y }δ. In fact, this is true 
for any non-zero homogeneous linear differential polynomial in C{Y }δ, not just for the 
specific L ∈ C{Y }δ in (6.17). It suffices to show that w̃−1δn(w) belongs to the C-linear 
span D of {δj(t) | j ∈ Z≥0} for every n ∈ N. We prove this by induction: the case n = 0
is clear, since w̃−1w = t ∈ D. Assuming that w̃−1δn(w) = fn ∈ D, we see that

w̃−1δn+1(w) = w̃−1δ(δn(w)) = w̃−1δ(fnw̃) = δ(fn) + dfn ∈ D

as well. Moreover, this computation also shows that L, L̃ ∈ C{Y }δ have the same order 
and the same leading coefficient.

By (6.5) and (6.6), the element L(z) ∈ R satisfies

σ(L(z)) − L(z) = L(w), and γ(L(z)) = λγ

αγ
L(z) + L

(
ξγ

αγ

)

for every γ ∈ G, since δ(λγα−1
γ ) = 0 for γ ∈ G. Hence γ(L(z)) = L(z) for every 

γ ∈ Ru(G), and therefore by Theorem 2.9 we have that L(z) ∈ k〈y0, y1〉δ =: F , the total 
ring of fractions of the σδ-PV ring k{y0, y1, (y0y1)−1}δ for (6.8); we emphasize that the 
latter ring is not necessarily a domain, so F is not necessarily a field.

For γ ∈ G/Ru(G) � Galσδ(F/k) =: Ḡ given by 
(

αγ 0
0 λγ

)
∈ Gm(C)2, let

τγ := γ(w̃−1L(z)) − w̃−1L(z), (6.19)

where we note that since L(z) ∈ F is fixed by Ru(G), the action of the reductive quotient 
Ḡ on L(z) is well-defined. We claim that {τγ | γ ∈ Ḡ} is a 1-cocycle of Ḡ with values 
in the Ḡ-module M := C · w̃−1 (see [18, VI.10]). Since M is the solution space for 
σ(W ) = c−1W in F , it is clear that M is stabilized by Ḡ. Moreover, it follows from 
(6.18) that

σ(τγ) = ((γ − 1) ◦ σ)(w̃−1L(z)) = (γ − 1)
(
c−1w̃−1L(z) + c−1w̃−1L(w)

)
= c−1τγ ,
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since c−1w̃−1L(w) = c−1fL ∈ k and therefore γ(c−1fL) = c−1fL for every γ ∈ Ḡ. Hence 
τγ ∈ M for each γ ∈ Ḡ. To verify the cocycle condition, note that for γ, θ ∈ Ḡ we have 
that

τγθ = γθ(w̃−1L(z)) − w̃−1L(z) = γ
(
θ(w̃−1L(z)) − w̃−1L(z)

)
+
(
γ(w̃−1L(z)) − w̃−1L(z)

)
= γ(τθ) + τγ .

Since G is not commutative (for otherwise H would be commutative, as discussed 
above and contrary to our hypotheses), there exists γ ∈ Ḡ such that αγ �= λγ , and 
therefore m 	→ γ(m) − m is a Ḡ-automorphism of M for such a γ ∈ Ḡ, since Ḡ is 
commutative. By Sah’s Lemma [18, Lem. VI.10.2], the cohomology group H1(Ḡ, M) =
{0}, and in particular {τγ | γ ∈ Ḡ} is a 1-coboundary, i.e., there exists ew̃−1 ∈ C · w̃−1 =
M such that τγ = γ(ew̃−1) − ew̃−1. It follows from the definition of τγ in (6.19) that

γ(w̃−1L(z) − ew̃−1) = w̃−1L(z) − ew̃−1

for every γ ∈ Ḡ, which implies that w̃−1L(z) − ew̃−1 =: g ∈ k by Theorem 2.9. Hence

fLw̃ = L(w) = σ(L(z)) − L(z) = σ(gw̃) − gw̃ = (cσ(g) − g)w̃,

and therefore, since c ∈ Q̄×,

L̃(c−1t) = c−1fL = σ(g) − c−1g,

where 0 �= L̃ ∈ C{Y }δ is the homogeneous linear differential polynomial defined implic-
itly in (6.18). Since c /∈ qZ, it follows from [13, Prop. 6.4(2)] that there exists h ∈ k such 
that

c−1t = σ(h) − c−1h.

But then hw̃ satisfies

σ(hw̃) − hw̃ = (cσ(h) − h)w̃ = tw̃ = w,

and therefore σ(z − hw̃) − (z − hw̃) = 0 by (6.5), which implies that z − hw̃ ∈ C and 
therefore z ∈ k[w] is fixed by Ru(H). But γ(z) = z + ξγ for every γ ∈ Ru(H), and 
therefore Ru(H) = {0}, which contradicts our hypotheses and concludes the proof. �
Remark 6.3. To compute the difference-differential Galois group G for (4.1) when there 
exists exactly one solution u ∈ Q̄(x) to (4.3), we apply Propositions 5.2, 6.1, and 6.2 as 
follows. First, compute the defining equations for the reductive quotient

Ḡ := G/Ru(G) =
{(

αγ 0
0 λ

) ∣∣∣∣ γ ∈ G

}
,

γ
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which is the σδ-Galois group for the system (6.8), as in Proposition 5.2 and Remark 5.3, 
with u1 = u and u2 = v. In particular, this requires computing the q-discrete residues 
q-dres

(
δ(u)

u , [β]q, 1
)

for each qZ-orbit [β]q with β ∈ Q̄×. Note that this will produce 
all the defining equations for G relating α and λ only, and it remains to compute the 
remaining defining equations for G, if there are any.

If uv−1 �= σ(w)
w for any w ∈ Q̄(x) as in Proposition 5.2(i), then Ru(G) = Ga(C) by 

Proposition 6.2, and therefore there are no more defining equations for G. Otherwise, 
compute such a w ∈ Q̄(x), as well as its q-discrete residues q-dres(w, [β]q, j) for every 
qZ-orbit [β]q and j ∈ N (only finitely many of these are non-zero). In this case,

G ⊆ Ḡ × Ga(C) =
{(

α ξ
0 α

) ∣∣∣∣
(

α 0
0 α

)
∈ Ḡ, ξ ∈ C

}
, (6.20)

and this containment is proper if and only if there exist f ∈ Q̄(x), a homogeneous linear 
differential polynomial L ∈ Q̄{Y }δ, and c ∈ Q̄ as in Proposition 6.1(iii).

Let us first compute the defining equations of G in (6.20) when q-dres(w, [β]q, j) = 0
for every qZ-orbit [β]q and j ∈ N, in which case q-dres(w, ∞) =: c �= 0 and −w =
σ(f) −f −c for some f ∈ Q̄(x) by Proposition 3.3, as in Proposition 6.1(iii). In this case, 
G is contained in the subgroup of (6.20) defined by δ

(
ξ
α

)
= 0, and Ru(G) ⊆ Ga(Cδ). If 

δ(u)
u = σ(f̃) − f̃ for some f̃ ∈ Q̄(x) as in Proposition 5.2(ii), so that δ(αγ) = 0 for every 

γ ∈ G, then G is the subgroup of (6.20) defined by δ(ξ) = 0, and Ru(G) = Ga(Cδ). If 
there exist f̃ ∈ Q̄(x) and 0 �= c̃ ∈ Z as in Proposition 5.2(ii), so that δ

(
δ(αγ)

αγ

)
= 0 for 

every γ ∈ G but there exists γ ∈ G such that δ(αγ) �= 0, then G is the subgroup of (6.20)
defined by c̃ξ = cδ(α), and Ru(G) = {0}. If there are no f̃ ∈ Q̄(x) and c̃ ∈ Z such that 
δ(u)

u = σ(f̃) − f̃ + c̃, then G is precisely the subgroup of (6.20) defined by δ
(

ξ
α

)
= 0, 

and Ru(G) = Ga(Cδ).
Assuming now that some q-discrete residue q-dres(w, [β]q, j) �= 0, let r ∈ N be as 

large as possible such that q-dres(w, [β]q, r) �= 0 for some qZ-orbit [β]q. Write the linear 
differential polynomial

L =
r−1∑
i=0

ciδ
i(Y ) ∈ Q̄{Y }δ

with undetermined coefficients, and decide whether the system of linear equations over 
Q̄ defined by setting

q-dres
(

L
(

δ(u)
u

)
− w, [β]q, j

)
= 0 (6.21)

for every qZ-orbit [β]q and 1 ≤ j ≤ r admits a solution. If there is no solution, then 
again we have that Ru(G) = Ga(C) and G is precisely the group in (6.20). If there is a 
solution, then it is unique and cr−1 �= 0. In this case, setting
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c := c0 · q-dres
(

δ(u)
u

, ∞
)

− q-dres (w, ∞) , (6.22)

there exists f ∈ Q̄(x) as in Proposition 6.1(iii) by Proposition 3.3, and G is the subgroup 
of (6.20) defined by the corresponding relation stipulated in Proposition 6.1, depending 
on whether the c ∈ Q̄ defined in (6.22) is zero or not. If c = 0 then Ru(G) = 0, and if 
c �= 0 then Ru(G) = Ga(Cδ).

Since Ru(G) = {0} whenever there is not exactly one solution u ∈ Q̄(x) to (4.3) (i.e., 
either there is no solution or there is more than one solution to (4.3) in Q̄(x)), we deduce 
the following result from Remark 6.3, which generalizes [13, Prop. 4.3(2)].

Corollary 6.4. If G is the σδ-Galois group of (4.1), then the unipotent radical Ru(G) is 
either {0}, Ga(Cδ), or Ga(C).

7. Irreducible and imprimitive groups

In this section we will denote k1 = C(x), where C is a δ-closure of Q̄, σ denotes the 
C-linear automorphism of k defined by σ(x) = qx, and δ(x) = 1. It will be convenient to 
use similar notation as that of Section 4: fix once and for all q2 ∈ Q̄ such that q2

2 = q, and 
let k2 := C(x2) be the σδ-field extension of k1 defined by setting x2

2 = x, σ(x2) = q2x2, 
and δ(x2) = 1

2x2.
Let us now suppose that there are no solutions in Q̄(x) to the first Riccati equation 

(4.3). We claimed in the statement of Proposition 4.5, but have not yet proved, that 
under these conditions the σ-Galois group H for (4.1) over k should be irreducible, and 
that H should be imprimitive if and only if one of the following possibilities holds:

(1) there exist two solutions u1, u2 ∈ Q̄(x2)\Q̄(x) to the first Riccati equation (4.3) such 
that u2 = ū1 is the Galois conjugate of u1 over Q̄(x); or

(2) either a = 0 or else there exists a solution e ∈ Q̄(x) to the second Riccati equation 
(4.5); or

(3) a �= 0 and there exist two solutions e1, e2 ∈ Q̄(x2)\Q̄(x) to the second Riccati 
equation (4.5) such that e2 = ē1 is the Galois conjugate of e1 over Q̄(x).

Note that (2) and (3) above are mutually exclusive and together exhaust the possibility 
that the more compact Proposition 4.5(5) holds. We will address each of the possibilities
(1), (2), and (3) above in Sections 7.1, 7.2, and 7.3, respectively, and establish in each 
case that H is indeed irreducible and imprimitive in each of these scenarios, as stated in 
Proposition 4.5.

By [26, Prop. 12.2(1)], in any case the group of connected components H/H◦ must be 
bicyclic. The irreducible and imprimitive algebraic subgroups of GL2(Q̄) with bicyclic 
group of connected components are listed in the following result, which we prove using the 
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classification of the algebraic subgroups of GL2(C) developed in [21]. In the classification 
below we denote {±1} × {±1} by {±1}2 and Gm(C) × Gm(C) by Gm(C)2.

Lemma 7.1. If H is an irreducible and imprimitive algebraic subgroup of GL2(C) such 
that H/H◦ is bicyclic, then H is the subgroup of

{±1} �Gm(C)2 =
{(

α1 0
0 α2

) ∣∣∣∣ α1, α2 ∈ C×
}

∪
{(

0 λ1
λ2 0

) ∣∣∣∣ λ1, λ2 ∈ C×
}

(7.1)

defined by precisely one of the following sets of conditions on α1, α2, λ1, and λ2.

(1) H = D−
m for some m ∈ N, defined as the subgroup of (7.1) such that (α1α2)m = 1

and (λ1λ2)m = −1; or
(2) H = D+

m for some m ∈ N, defined as the subgroup of (7.1) such that (α1α2)m = 1
and (λ1λ2)m = 1; or

(3) H = {±1}2�Gm(C), defined as the subgroup of (7.1) such that α2
1 = α2

2 and λ2
1 = λ2

2; 
or

(4) H = {±1} �Gm(C)2 as in (7.1), with no other conditions on α1, α2, λ1, and λ2.

Proof. The algebraic subgroups H ⊆ GL2(C) are classified in [21] according to their 
projective image H̄ ⊆ PGL2(C). Since H is irreducible and imprimitive with bicyclic 
group of connected components, it is an infinite non-commutative subgroup of (7.1), and 
therefore its projective image is either H̄ = Dn, the dihedral group of order 2n for some 
n ≥ 2, or else H̄ = D̄∞, the projective image of

D∞ =
{(

α 0
0 α−1

) ∣∣∣∣ α ∈ C×
}

∪
{(

0 −λ
λ−1 0

) ∣∣∣∣ λ ∈ C×
}

.

If H̄ = Dn then Dn must be commutative, since the algebraic quotient map H → H̄

factors through H/H◦, which we are assuming is abelian, and therefore n = 2 (corre-
sponding to Dn � K4, the Klein four-group) in this case. By [21, Thm. 4], the minimal
subgroups (see [21, §2] for the definition) of GL2(C) having projective image D2 are D2,�

for some � ∈ Z≥0, where

D2,� :=
〈

ζ2�+1

(
i 0
0 −i

)
,

(
0 i
i 0

)〉

and ζ2�+1 denotes a primitive (2�+1)-th root of unity. Therefore the only infinite sub-
groups H ⊆ GL2(C) having projective image D2 are given by C× · D2,�, which are all 
equal to π−1(D2), where π : GL2(C) → PGL2(C) is the projection map. Finally, note 
that C× ·D2,� for any � ∈ Z≥0 is precisely the subgroup of (7.1) defined by the conditions 
in item (3): α2

1 = α2
2 and λ2

1 = λ2
2.



C.E. Arreche, Y. Zhang / Advances in Applied Mathematics 132 (2022) 102273 33
If H̄ = D̄∞, then either H = {±1} � Gm(C) in (7.1) as in item (4), or else H =
μn · D∞,� for some � ∈ Z≥0 and some n ∈ N, where μn denotes the group of n-th roots 
of unity, and

D∞,� :=
〈{(

α 0
0 α−1

) ∣∣∣∣ α ∈ C×
}

,

(
0 ζ2�+1

ζ2�+1 0

)〉
,

where again ζ2�+1 is a primitive (2�+1)-th root of unity, since by [21, Thm. 4] the D∞,� are 
all the minimal subgroups of GL2(C) with projective image D̄∞. All of these groups have 
the property that H/H◦ is bicyclic. It remains to show that for any n ∈ N and � ∈ Z≥0
the group μn · D∞,� is one of the groups described by the conditions in either item (1) or 
item (2). Let us write Δn,� :=

{(
α1 0
0 α2

) ∣∣∣ α1, α2 ∈ C×
}

∩ (μn · D∞,�), the group of all 

diagonal matrices contained in μn · D∞,�, and ∇n,� :=
{(

0 λ1
λ2 0

) ∣∣∣ λ1, λ2 ∈ C×
}

∩ (μn ·
D∞,�) for the complementary coset of Δn,� in μn ·D∞,� consisting of all the antidiagonal 
matrices contained in μn · D∞,�. Then we see that ∇n,� = ζ2�+1 · Δn,� ·

( 0 1
1 0

)
, and 

Δn,� = 〈ζn, ζ2�〉 ·
{(

α 0
0 α−1

) ∣∣ α ∈ C×}. Therefore,

Δn,� =
{(

α1 0
0 α2

) ∣∣∣∣ α1, α2 ∈ C×, (α1α2)m = 1
}

, where

m : =

⎧⎪⎪⎨
⎪⎪⎩

1
2 lcm(n, 2�) if � ≥ 1;
n
2 if � = 0 and 2|n;
n if � = 0 and 2 � n;

because (〈ζn, ζ2�〉)2 = 〈ζm〉 with m defined as above. Since

∇n,� =
{(

0 α1ζ2�+1

α2ζ2�+1 0

) ∣∣∣∣ α1, α2 ∈ C×, (α1α2)m = 1
}

,

we have that μn · D∞,� is the group described in item (2) if and only if 2�|m (which 
occurs precisely when either � = 0 or else � ≥ 1 and 2�+1|n), and μn · D∞,� is the 
group described in item (1) otherwise, since for � ≥ 1 we always have that 2�−1|m, and 
therefore (ζ2

2�+1α1α2)m = (ζ2�α1α2)m = −1, precisely when 2� � m, 2�−1|m (with � ≥ 1), 
and (α1α2)m = 1. �
Remark 7.2. Given an irreducible and imprimitive algebraic subgroup H ⊆ GL2(C) such 
that the group of connected components H/H◦ is bicyclic, we can uniquely identify it 
among the possibilities listed in Lemma 7.1 by the knowledge of two auxiliary groups:

Δ(H) :=
{(

α1 0
0 α2

) ∣∣∣∣ α1, α2 ∈ C×
}

∩ H and

det(H) = {det(h) | h ∈ H} ⊆ Gm(C),
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respectively the subgroup of diagonal matrices in H and the image of H under the 
determinant map. Indeed, Δ(H) = Gm(C)2 if and only if H = {±1} � Gm(C)2 as in 

Lemma 7.1(4); Δ(H) =
{(

α1 0
0 α2

) ∣∣∣ α1, α2 ∈ C×, α2
1 = α2

2

}
if and only if H = {±1}2 �

Gm(C) is as in Lemma 7.1(3); and Δ(H) =
{(

α1 0
0 α2

) ∣∣∣ α1, α2 ∈ C×, (α1α2)m
}

for some 

m ∈ N if and only if H is one of the groups D−
m or D+

m described respectively in items (1) 
or (2) of Lemma 7.1. To decide between these cases, note that det(H) = 〈α1α2, −λ1λ2〉
has det(H)m = 〈(−1)m(λ1λ2)m〉; hence, if m is even, then H = D−

m if and only if 
det(H) = μ2m and H = D+

m if and only if det(H) = μm; and if m is odd, then H = D−
m

if and only if det(H) = μm and H = D+
m if and only if det(H) = μ2m.

7.1. Irreducible and imprimitive (1): diagonalizable over the quadratic extension

Supposing there are no solutions to (4.3) in Q̄(x), but there are two solutions u, ̄u ∈
Q̄(x2) to (4.3), Galois-conjugate over Q̄(x), the system (4.2)

σ(Y ) =
(

0 1
−b −a

)
Y with fundamental solution matrix Y =

(
y1 y2

σ(y1) σ(y2)

)
; and

σ(Z) =
(

u 0
0 ū

)
Z with fundamental solution matrix Z =

(
z1 0
0 z2

)
(7.2)

are equivalent over Q̄(x2) via the gauge transformation Z = TY , where (cf. Remark 5.1)

T :=
( ū

u−ū
−1

u−ū
u

u−ū
−1

u−ū

)
∈ GL2(Q̄(x2)). (7.3)

Let us write S2 = k2[Y, det(Y )−1] = k2[z1, z2, (z1z2)−1] for the σ-PV ring for (4.2) (or 
equivalently for (7.2)) over k2. Then S1 = k1[Y, det(Y )−1] ⊂ S2 is a σ-PV ring for (4.2)
over k1. Let us also write Hi = Galσ(Si/ki) for i = 1, 2, and H̃ = Galσ(S2/k1). Since 
(7.2) is a diagonal system, the group H2 is diagonalizable. By Proposition 4.2,

H̃ � H1 ×μm
μ2,

where m ∈ {1, 2} is determined by the intersection S1 ∩ k2 = km inside S2, and H2 is 
an index-m subgroup of H1. We claim that any τ̃ ∈ H̃ such that τ̃(x2) = −x2 has the 
property that τ := τ̃ |S1 ∈ H1 is given by an anti-diagonal matrix. From this it will follow 
that H2 has index exactly 2 in H1, and H1 = H2 ∪ H2 · τ is irreducible and imprimitive, 
as claimed in Proposition 4.5(4).

To see this, let Mτ ∈ GL2(C) such that τ(Y ) = Y Mτ . Then for the gauge transfor-
mation T given in (7.3) we see that

τ̃(Z) = τ̃(TY ) = T̄ Y Mτ =
( 0 1 )ZMτ .
1 0
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On the other hand, we see that σ(τ̃(z1)) = τ̃(σ(z1)) = τ̃(uz1) = ūτ̃(z1), and therefore 
τ̃(z1) = λ2z2 for some λ2 ∈ C×. A similar computation shows that τ̃(z2) = λ1z1 for 
some λ1 ∈ C×. From this it follows that

τ̃(Z) =
(

τ̃(z1) 0
0 τ̃(z2)

)
=
(

λ2z2 0
0 λ1z1

)
=
(

0 1
1 0

)
Z

(
0 λ1
λ2 0

)
.

Hence Mτ =
(

0 λ1
λ2 0

)
, as we wanted to show.

Remark 7.3. Having established that the σ-Galois group H1 for (4.2) over k1 is indeed ir-
reducible and imprimitive as claimed in Proposition 4.5(4), we can compute this H1 from 
among the possibilities listed in Lemma 7.1 as explained in Remark 7.2, by determining 
the subgroup Δ(H1) of diagonal matrices in H1, and the group det(H1) ⊆ Gm(C).

Since det(H1) is the σ-Galois group for the system σ(y) = by, we see that det(H1) =
μm if and only if m ∈ N is the smallest positive integer such that bm = σ(f)

f for some 

f ∈ Q̄(x), and if there is no such m then det(H1) = Gm(C).
Since Δ(H1) = H2 is the σ-Galois group for (7.2) over k2, we can compute the defining 

equations for

Δ(H1) ⊆
{(

α1 0
0 α2

) ∣∣∣∣ α1, α2 ∈ C×
}

as follows:

(1) (α1α2)m = 1 if and only if (uū)m = σ(f)
f for some f ∈ Q̄(x2)× (and in this case H1

is D−
m or D+

m);
(2) α2

1 = α2
2 if and only if 

(
u
ū

)2 = σ(f)
f for some f ∈ Q̄(x2) (and in this case H1 =

{±1}2 �Gm(C));
(3) if none of these possibilities holds, then Δ(H1) = Gm(C)2 (and in this case H1 =

{±1} �Gm(C)2).

The computation of the σδ-Galois group G1 for (4.2) over k1, assuming that the 
corresponding σ-Galois group H1 has already been computed as in Remark 7.3, will be 
achieved analogously in the following result, by studying the σδ-Galois group G2 for 
(4.2) over k2.

Proposition 7.4. Suppose there are no solutions to (4.3) in Q̄(x), and let u, ̄u ∈ Q̄(x2)
satisfy (4.3). Then G1 is the subgroup of

{±1} �Gm(C)2 =
{(

α1 0
0 α2

)
,

(
0 λ1
λ2 0

) ∣∣∣∣ α1α2 �= 0, λ1λ2 �= 0
}

(7.4)

defined by the following conditions on α1, α2, λ1, and λ2.
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(1) If H1 = D−
m as in Lemma 7.1(1) or H1 = D+

m as in Lemma 7.1(2), then G1 = H1.
(2) If H1 = {±1}2 �Gm(C) as in Lemma 7.1(3), then:

(a) there exist 0 �= c ∈ 2Z and g ∈ Q̄(x) such that δ(b)
b = σ(g) − g + c if and only if 

G1 is the subgroup of H1 defined by δ
(

δ(α1)
α1

+ δ(α2)
α2

)
= 0 = δ

(
δ(λ1)

λ1
+ δ(λ2)

λ2

)
;

(b) otherwise, G1 = H1.

(3) If H1 = {±1} �Gm(C)2 as in Lemma 7.1(4), then:

(a) there exist c ∈ 2Z and g ∈ Q̄(x) such that δ(b)
b = σ(g) − g + c if and only 

if δ
(

δ(α1)
α1

+ δ(α2)
α2

)
= 0 = δ

(
δ(λ1)

λ1
+ δ(λ2)

λ2

)
; moreover, c = 0 if and only if 

δ(α1α2) = 0 = δ(λ1λ2);
(b) otherwise, G1 = H1.

Proof. Since the systems (4.2) and (7.2) are equivalent over k2, and the latter system 
is diagonal, we can compute G2 with Proposition 5.2 and Remark 5.3, but with a small 
caveat. Namely, after replacing δ with δ2 := 2δ, we see that k2 as a σδ2-field behaves 
just as k1: σ(x2) = q2x2 and δ2(x2) = x2. Thus we may compute the δ2-algebraic group 
G2 ⊆ Gm(C)2 over k2 using the procedure described in Remark 5.3 exactly as stated 
there, and then simply replace every instance of δ2 in the defining equations for G2 with 
1
2δ a posteriori. But since the system (7.2) has such a special form, not every possibility 
listed in Proposition 5.2 may occur.

We saw in Remark 5.3 that G2 is a proper subgroup of Gm(C)2 if and only if there 
exist: m1, m2 ∈ Z, not both zero and with gcd(m1, m2) = 1; c ∈ Z; and g ∈ Q̄(x2), such 
that

m1
δ2(u)

u
+m2

δ2(ū)
ū

= σ(g)−g+c ⇐⇒ m2
δ2(u)

u
+m1

δ2(ū)
ū

= σ(ḡ)−ḡ+c. (7.5)

Let us consider the submodule M ⊆ Z2 generated by relatively prime pairs (m1, m2)
such that there exist g ∈ Q̄(x2) and c ∈ Z satisfying the above conditions. Then, as we 
saw in Remark 5.3, either M = {0} is trivial; or M = Z · (m1, m2) is infinite cyclic; 
or M = Z2. Moreover, M = {0} is trivial if and only if the σδ-Galois group G2 for 
(7.2) is all of Gm(C)2. In this case we must have G1 = H1 = {±1} �Gm(C)2, because 
G1 is Zariski-dense in H1 by Proposition 2.10, and therefore G1 contains at least one 
anti-diagonal matrix, whence it contains all anti-diagonal matrices.

From now on we assume that M is not trivial. It follows from (7.5) that at least one 
of (1, 1) or (1, −1) belongs to M . In any case it is useful to observe that

q2-dres
(

δ2(u)
, ∞
)

= d = q2-dres
(

δ2(ū)
, ∞
)

,

u ū
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where d ∈ Z is the common degree of u and ū considered as rational functions in x2. 
Therefore, (1, −1) ∈ M if and only if δ(α1α2) = 0 for every 

(
α1 0
0 α2

)
∈ G2.

We claim that actually (1, −1) ∈ M if and only if H1 = {±1}2 � Gm(C) as in 
Lemma 7.1(3). As explained in Remark 7.3, H1 = {±1}2 � Gm(C) if and only if there 
exists f ∈ Q̄(x2)× such that 

(
u
ū

)2 = σ(f)
f , which in turn implies that

δ2(u)
u

− δ2(ū)
ū

= σ

(
1
2

δ2(f)
f

)
− 1

2
δ2(f)

f
.

Thus if H = {±1} � Gm(C) then (1, −1) ∈ M . To establish the opposite implication, 
let us study the reduced form of u: there exists v ∈ ¯Q(x2) such that u σ(v)

v = exn
2

p1
p2

, 
where e ∈ Q̄× is such that if e ∈ qZ2 then e = 1, n ∈ Z is arbitrary, and p1, p2 ∈ Q̄[x2]
are monic such that gcd(x2, p1) = gcd(x2, p2) = gcd(p1, σm(p2)) = 1 for every m ∈ Z. 
We say that exn

2
p1
p2

is the reduced form of u. We then see that the reduced form of ū is 
(−1)nexn

2
p̄1
p̄2

. Although it need not be the case that the reduced form of u
ū is exactly

(−1)n p1p̄2

p2p̄1
,

(because it is possible for gcd(p1, σm(p̄2)) �= 1 for some m ∈ Z), we see that in any case 
the reduced form of u

ū is similarly given by

(−1)n p̃1

p̃2

for some p̃1, p̃2 ∈ Q̄[x2] monic and such that gcd(x2, p̃1) = gcd(x2, p̃2) = gcd(p̃1, σm(p̃2))
= 1 for every m ∈ Z. But then we see that if, say, p̃1 �= 1, then there exists β ∈ Q̄× such 
that p̃1(β) = 0, and we have that

q2-dres
(

δ2(p̃1)
p̃1

, [β]q2 , 1
)

�= 0 = q2-dres
(

δ2(p̃2)
p̃2

, [β]q2 , 1
)

,

and similarly if we assume instead that p̃2 �= 1. Therefore, if either p̃1 �= 1 or p̃2 �= 1, it is 
impossible to have (1, −1) ∈ M . Or in other words, if (1, −1) ∈ M then u

ū = (−1)n σ(f̃)
f̃

for some f̃ ∈ Q̄(x2)×. But in this case we then see that n must be odd, for otherwise we 

would have that α1 = α2 for every 
(

α1 0
0 α2

)
∈ G2, and since G2 is Zariski-dense in H2

the same relation would be satisfied by every diagonal matrix in H1, but this does not 
occur for any of the possibilities for H1 listed in Lemma 7.1. This concludes the proof 
that (1, −1) ∈ M if and only if H1 = {±} �Gm(C) as in Lemma 7.1(3).

In case we do have (1, −1) ∈ M , we must decide whether M = Z · (1, −1) or M = Z2. 
We have that M = Z · (1, −1) if and only if G2 = H2, which implies that G1 = H1. On 
the other hand, we have M = Z2 if and only if (1, 1) ∈ M also, i.e., (7.5) is satisfied with 
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m1 = 1 = m2. But then after adding those two equations together we see that there 
exists f ∈ Q̄(x) (not just in Q̄(x2)), such that

δ(b)
b

= δ(u)
u

+ δ(ū)
ū

+ σ

(
δ(w)

w

)
− δ(w)

w
= σ(f) − f + 2c.

Indeed, writing u − ū = x2w with w ∈ Q̄(x)× and f := 1
2(g + ḡ) + δ(w)

w ∈ Q̄(x), 
where g ∈ Q̄(x2) and c ∈ Z are as in (7.5), the above equation results from comparing 
determinants in σ(T )AT −1 =

(
u 0
0 ū

)
with T as in (7.3). Furthermore, in this case we must 

have c �= 0, for otherwise we would have that G1 ⊆ GL2(Cδ) is differentially constant, 
which by [5, Thm. 3.7(ii)] would imply that G1 is commutative. But this is impossible, 
since G1 is Zariski-dense in H1 by Proposition 2.10, so H1 would have to be commutative 
also, yielding a contradiction. Thus, G2 is a proper subgroup of H2 if and only if

G2 =
{(

α 0
0 α

)
,

(
α 0
0 −α

) ∣∣∣∣ α ∈ C× with δ

(
δ(α)

α

)
= 0
}

.

Since for any 
( 0 ±λ

λ 0

)
∈ G1 we have that λ2 ( 1 0

0 1

)
∈ G2, we see that δ

(
δ(λ)

λ

)
= 0 also, 

concluding the proof of item (2).
It remains to show that the statements in items (1) and (3) are correct when M =

Z ·(1, 1). If H1 = D−
m or H1 = D+

m, then G2 = H2 and therefore G1 = H1. This establishes 
item (1). Finally, supposing H1 = {±1} � Gm(C)2 and M = Z · (1, 1), the arguments 
above and in Remark 5.3 show that this occurs if and only if δ(b)

b = σ(f) − f + 2c, if and 

only if det(G2) ⊆
{

α ∈ C×
∣∣∣ δ
(

δ(α)
α

)}
, with equality if and only if c �= 0, and moreover 

c = 0 if and only if det(G2) = {α ∈ C× | δ(α) = 0}. Since G2 has index 2 in G1, det(G2)
has index at most 2 in det(G1); but since det(G2) is divisible in either case, we see that 
det(G2) = det(G1), concluding the proof of item (3). �
7.2. Irreducible and imprimitive (2): rational system of imprimitivity

Supposing there are no solutions to (4.3) in Q̄(x2), and either a = 0 or there exists a 
solution e ∈ Q̄(x) to (4.5), we proceed as follows. The non-existence of solutions to (4.3)
in k2 implies there are no solutions in k∞ either, which in turn implies that the σ-Galois 
group H∞ for (4.2) over k∞ is irreducible, and since H∞ ⊆ H1, the σ-Galois group for 
(4.2) over k1, we then have that H1 must be irreducible also.

The system (4.2) in this case is equivalent to

σ(Y ) =
(

0 1
−r 0

)
Y, (7.6)

for some r ∈ Q̄(x) as we saw in §4, which implies that H∞ is imprimitive. Since H∞
has finite index in H1, the classification of algebraic subgroups of GL2(C) from [21] then 
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implies that H1 must also be imprimitive, and therefore H1 must be one of the irreducible 
imprimitive subgroups of GL2(C) with bicyclic group of connected components listed in 
Lemma 7.1.

Remark 7.5. In this case, we can compute the σ-Galois group H1 for (7.6) over k1 from 
among the possibilities listed in Lemma 7.1 with the aid of Remark 7.2 by computing 
the diagonal subgroup Δ(H1) and the image of the determinant det(H1) as follows. As 
before, det(H1) = μm, the group of m-th roots of unity, if and only if m is the smallest 
positive integer such that bm = σ(f)

f for some f ∈ Q̄(x)×; if there is no such m, then 
det(H1) = Gm(C). On the other hand, Δ(H1) is precisely the σ2-Galois group for the 
system

σ2(Z) =
(

−r 0
0 −σ(r)

)
Z (7.7)

over k1, which we can compute as in Proposition 5.2 and Remark 5.3 by considering k1
as a σ2-field. We see that

Δ(H1) ⊆
{(

α1 0
0 α2

) ∣∣∣∣ α1, α2 ∈ C×
}

is the subgroup defined by the following conditions on α1 and α2:

(1) (α1α2)m = 1 if and only if m is the smallest positive integer such that (rσ(r))m =
σ2(f)

f for some f ∈ Q̄(x)×;
(2) otherwise Δ(H1) = Gm(C)2.

The omission of the possibility that H1 = {±1}2 � Gm(C) as in Lemma 7.1(3) is de-
liberate. This is impossible under the present assumptions because α2

1 = α2
2 for every (

α1 0
0 α2

)
∈ Δ(H1) if and only if 

(
σ(r)

r

)2
= σ2(f)

f for some f ∈ Q̄(x)×. But if we let 

v ∈ Q̄(x)× such that r σ(v)
v = exn p1

p2
is reduced, with e ∈ Q̄× such that e ∈ qZ if and 

only if e = 1, n ∈ Z, and p1, p2 ∈ Q̄[x] monic such that gcd(x, p1) = gcd(x, p2) =
gcd(p1, σm(p2)) for every m ∈ Z, we would then have that the reduced form of σ(r) is 
exactly σ(r)σ2(v)

σ(v) = eqnxn σ(p1)
σ(p2) , and therefore

σ(r)
r

σ2(v)
v

= qn σ(p1)p2

p1σ(p2) .

This element is not necessarily reduced with respect to σ2, but the reduced form of σ(r)
r

with respect to σ2 is given by

qε p̃1
,

p̃2
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where ε = 0 if n is even and ε = 1 if n is odd, and p̃1, p̃2 ∈ Q̄[x] are again monic such that 
gcd(x, p̃1) = gcd(x, p̃2) = gcd(p̃1, σ2m(p̃2)) = 1 for every m ∈ Z. We then have that the 

reduced form of σ(r)
r with respect to σ2 is 

(
p̃1
p̃2

)2
, and therefore 

(
σ(r)

r

)2
= σ2(f)

f for some 

f ∈ Q̄(x)× if and only if p̃1 = 1 = p̃2, but this would imply that σ(r)
r = σ2(f̃)

f̃
for some 

f̃ ∈ Q̄(x)× already, which in turn would imply that α1 = α2 for every 
(

α1 0
0 α2

)
∈ Δ(H1), 

which is not possible according to the classification of Lemma 7.1.
In fact, we may pursue this further to conclude that it is also impossible to have

δ(σ(r))
σ(r) − δ(r)

r
= σ2(g) − g + c (7.8)

for some g ∈ Q̄(x) and c ∈ Z. This is because if, say, p̃1 �= 1, then there would exist 
β ∈ Q̄× such that p̃1(β) = 0, and then we would have that

q2-dres
(

δ(p̃1)
p̃1

, [β]q2 , 1
)

�= 0 = q2-dres
(

δ(p̃2)
p̃2

, [β]q2 , 1
)

,

and similarly with the roles of p̃1 and p̃2 exchanged. But since

δ(σ(r))
σ(r) − δ(r)

r
= δ(p̃1)

p̃1
− δ(p̃2)

p̃2

modulo (σ2 − 1)(Q̄(x)), we see that (7.8) is impossible unless p̃1 = 1 = p̃2, which we 
already ruled out above.

Having computed the σ-Galois group H1 for (4.2) over k1 as above, we can now 
compute the σδ-Galois group G1 for (4.2) over k1 with the following result.

Proposition 7.6. Suppose there are no solutions to (4.3) in Q̄(x2), and either a = 0 or 
there exists a solution to (4.5) in Q̄(x). Then H1 �= {±1}2�Gm(C) as in Lemma 7.1(3), 
and G1 is the subgroup of

{±1} �Gm(C)2 =
{(

α1 0
0 α2

)
,

(
0 λ1
λ2 0

) ∣∣∣∣ α1α2 �= 0, λ1λ2 �= 0
}

(7.9)

defined by the following conditions on α1, α2, λ1, and λ2.

(1) If H1 = D−
m as in Lemma 7.1(1) or H1 = D+

m as in Lemma 7.1(2), then G1 = H1.
(2) If H1 = {±1} �Gm(C)2 as in Lemma 7.1(4), then:

(a) there exist c ∈ Z and g ∈ Q̄(x) such that δ(b)
b = σ(g) − g + c if and only 

if δ
(

δ(α1)
α1

+ δ(α2)
α2

)
= 0 = δ

(
δ(λ1)

λ1
+ δ(λ2)

λ2

)
; moreover, c = 0 if and only if 

δ(α1α2) = 0 = δ(λ1λ2);
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(b) otherwise, G1 = H1.

Proof. The fact that H1 �= {±1}2 �Gm(C) as in Lemma 7.1(3) under these conditions 
was already established in Remark 7.5. Let us denote by Δ(G1) the subgroup of diag-
onal matrices in G1, which coincides with the σ2δ-Galois group for (7.7) over k1. We 
may compute Δ(G1) using the results of Proposition 5.2 and Remark 5.3. We again 
denote by M ⊆ Z2 the submodule generated by (m1, m2) ∈ Z2, not both zero and with 
gcd(m1, m2) = 1, such that there exist c ∈ Z and g ∈ Q̄(x) such that

m1
δ(σ(r))

σ(r) + m2
δ(r)

r
= σ2(g) − g + c, (7.10)

which is equivalent to

m2
δ(σ(r))

σ(r) + m1
δ(r)

r
= σ2

(
σ(g) − m1

δ(r)
r

)
−
(

σ(g) − m1
δ(r)

r

)
+ c.

As we saw in Remark 5.3, either M = {0} is trivial; or M = Z ·(m1, m2); or M = Z2. But 
it follows from the above computation that if M is not trivial, then at least one of (1, 1)
or (1, −1) belongs to M . But we saw in Remark 7.5 that we cannot have (1, −1) ∈ M , 
since the relation (7.8) is impossible. The only possibilities that remain are therefore 
M = {0} or M = Z · (1, 1).

If M = {0}, then Δ(G1) = Gm(C)2, and therefore G1 = H1 = {±1} �Gm(C)2. Let 
us now suppose that M = Z · (1, 1). Then if H1 = D−

m as in Lemma 7.1(1) or H1 = D+
m

as in Lemma 7.1(2), then Δ(G1) = Δ(H1), which implies that G1 = H1, as claimed in 
item (1). It remains to establish item (2) under the assumption that M = Z · (1, 1). But 
here we again have that det(Δ(G1)) ⊆

{
α ∈ C×

∣∣∣ δ
(

δ(α)
α

)}
with equality if and only if 

c �= 0 in (7.10), and moreover this c = 0 if and only if det(Δ(G1)) = {α ∈ C× | δ(α) = 0}. 
Since Δ(G1) has finite index in G1 and det(Δ(G1)) is divisible in either case, we obtain 
that det(G1) = det(Δ(G1)), which concludes the proof of item (2). �
7.3. Irreducible and imprimitive (3): quadratic system of imprimitivity

Supposing there are no solutions to (4.3) in Q̄(x2), a �= 0, and there are no solutions to 
(4.5) in Q̄(x), let us now assume that there is a solution e ∈ Q̄(x2) to (4.5), and therefore 
the Galois conjugate ē of e over Q̄(x) also satisfies (4.5), since this Riccati equation with 
respect to σ2 is defined over Q̄(x). Here again we have that the non-existence of solutions 
to (4.3) in Q̄(x2) implies that there are no solutions to (4.3) in all of k∞, which implies 
that H∞ is irreducible as explained in §4. Since H∞ ⊆ H2 ⊆ H1 (which again denote 
the σ-Galois groups for (4.2) over k∞, k2, and k1, respectively), we then have that H2
and H1 must also be irreducible. Moreover the existence of the solution e ∈ k2 to (4.5)
implies that H∞ must be imprimitive, and since H∞ has finite index in H1 and in H2, 
the classification of the algebraic subgroups of GL2(C) of [21] implies that H1 and H2



42 C.E. Arreche, Y. Zhang / Advances in Applied Mathematics 132 (2022) 102273
must be imprimitive also. By [26, Prop. 12.2(1)], both H1 and H2 must have bicyclic 
groups of connected components, and thus they must both be included in the list of 
irreducible imprimitive subgroups given in Lemma 7.1. By Corollary 4.3, H2 ⊆ H1 has 
index either 1 or 2. We will show that H2 �= H1, which implies that the index of H2
in H1 is exactly 2. A straightforward computation shows that the only groups listed in 
Lemma 7.1 admitting another such group as an index-2 subgroup are H1 = D+

m with m
even, with H2 then given by one of the groups D−

m/2 or D+
m/2.

To see that H2 �= H1 in this case, recall from [11, Thm. 18] that e ∈ Q̄(x2) satisfies 
(4.5) if and only if d := e + b

a has the property that dy+σ(y) =: zd satisfies σ2(zd) +rzd = 0
with r := −aσ(a) + σ(b) + aσ2(d) if and only if y satisfies (4.1). We see that this is 
equivalent to zd̄ := d̄y + σ(y) satisfying σ2(zd̄) + r̄zd̄ = 0, where d̄ and r̄ denote the 
Galois conjugates of d, r ∈ Q̄(x2) over Q̄(x). Since e �= ē, we also have d �= d̄ and r �= r̄. 
At this point, we could compute H2 directly as in Remark 7.5, where in particular the 
subgroup of diagonal matrices Δ(H2) in H2 corresponds to the σ2-Galois group for the 
system

σ2(Y (2)) = A(2)Y (2) (7.11)

over k2, where A(2) := σ(A)A. A computation shows that setting

T :=
(

d 1
d̄ 1

)
∈ GL2(Q̄(x2))

we have that

σ2(T )A(2)T −1 =
(

−r 0
0 −r̄

)
,

and therefore (7.11) is equivalent over k2 to the system

σ2(Z(2)) =
(

−r 0
0 −r̄

)
Z(2) (7.12)

via the gauge transformation Z(2) = TY (2).
If, contrary to our contention, we did have that H1 = H2, then the σ2-Galois group 

H
(2)
1 for the system (7.11) over k1 would coincide with Δ(H2), and in particular we 

would have H(2)
1 = Δ(H1) = Δ(H2) being diagonal. We will show that this is not the 

case. For this, consider the system

σ2(W ) =
(

A(2) 0
0 q

)
W, with fundamental solution matrix W =

(
Y (2) 0

0 x2

)
,

(7.13)
where Y (2) in turn denotes a (2 × 2) fundamental solution matrix for (7.11) over k1. Let 
H̃(2) denote the σ2-Galois group for the system (7.13) over k1. Let τ̃ ∈ H̃(2) such that 
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τ̃(x2) = −x2, and let τ := τ̃ |S1 ∈ H
(2)
1 denote the restriction of τ̃ to the σ2-PV ring 

corresponding to the system (7.11): S
(2)
1 := k1[Y (2), det(Y (2))−1]. Let Mτ ∈ GL2(C)

denote the matrix corresponding to τ ∈ H
(2)
1 , so that τ(Y (2)) = Y (2)Mτ . Since the 

system (7.12) is diagonal, we have that

TY (2) = Z(2) =
(

z1 0
0 z2

)
,

where σ2(z1) = −rz1 and σ2(z2) = −r̄z2. But then we see that

τ̃(Z(2)) = τ̃(TY (2)) = T̄ Y (2)Mτ =
(

0 1
1 0

)
Z(2)Mτ .

On the other hand, σ2(τ̃(z1)) = τ̃(σ2(z1)) = τ̃(−rz1) = −r̄τ̃(z1), and therefore τ̃(z1) =
λ2z2 for some λ2 ∈ C×. Similarly we see that τ̃(z2) = λ1z1 for some λ1 ∈ C×, and 
therefore

τ̃(Z(2)) =
(

0 1
1 0

)
Z(2)

(
0 λ1
λ2 0

)
.

This shows that Mτ =
(

0 λ1
λ2 0

)
, as we wanted to show.

Proposition 7.7. Suppose there are no solutions to (4.3) in Q̄(x2), a �= 0, and there 
are no solutions to (4.5) in Q̄(x) but there exists a solution to (4.5) in Q̄(x2). Then 
G1 = H1 = D+

m for the smallest even positive integer m ∈ 2N such that bm = σ(f)
f for 

some f ∈ Q̄(x)×.

Proof. The remarks above show that under these assumptions the σ-Galois group H2
for (4.2) over k1 has index exactly 2 in the σ-Galois group H1 for (4.2) over k1. Thus 
H1 = D+

m as in Lemma 7.1(2) for some even positive integer m ∈ 2N, and H2 is then 
one of D−

m/2 or D+
m/2. In either case, it follows from Proposition 7.6, applied over k2

instead of k1, that H2 = G2 is also the σδ-Galois group G2 for (4.2) over k2. Since the 
index of G2 in G1, the σδ-Galois group for (4.2) over k1, is also 2 = [H1 : H2], in then 
follows that G1 = H1 = D+

m in this case, as claimed. �
8. Irreducible and primitive groups

Let us denote again k = C(x), where C is a δ-closure of Q̄, σ denotes the C-linear 
automorphism of k defined by σ(x) = qx, and δ(x) = 1. We write H for the σ-Galois 
group and G for the σδ-Galois group for

σ(Y ) =
(

0 1
−b −a

)
Y (8.1)
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over k, where a, b ∈ Q̄(x) and b �= 0. In this section we consider the case where a �= 0
and there are no solutions in Q̄(x2) to (4.3) nor to (4.5), which is equivalent to the 
condition that SL2(C) ⊆ H by the results of [11] summarized in §4. In this case, H is 
reductive and the connected component of the identity H◦ is either SL2(C) or GL2(C), 
and in either case the derived subgroup H◦,der = SL2(C). Therefore by [5, Thm. 5.2]
SL2(C) ⊆ G, and hence G ⊆ GL2(C) is determined by the image the determinant map 
det(G) ⊆ Gm(C), which is the σδ-Galois group for σ(y) = by over k. The proof of the 
following result is immediate.

Proposition 8.1. Suppose there are no solutions to (4.3) in Q̄(x2), a �= 0, and there are 
no solutions to (4.5) in Q̄(x2). Then det(G) ⊆ Gm(C) is determined as follows.

(1) There exist a smallest positive integer m ∈ N and f ∈ Q̄(x)× such that bm = σ(f)
f

if and only if det(G) = μm, the group of m-th roots of unity.
(2) There exist c ∈ Z and f ∈ Q̄(x) such that δ(b)

b = σ(f) − f + c if and only if 
det(G) ⊆

{
α ∈ C×

∣∣∣ δ
(

δ(α)
α

)
= 0
}

. Moreover, c = 0 if and only if this containment 
is proper, in which case det(G) = {α ∈ C× | δ(α) = 0}.

(3) Otherwise, det(G) = Gm(C).

9. Examples

In this section we compute the σδ-Galois group G associated to some concrete second-
order linear difference equations

σ2(y) + aσ(y) + by = 0 (4.1)

over Q̄(x) with respect to the q-dilation operator σ(x) = qx, where q ∈ Q× is not a 
root of unity. We will first apply the algorithm of [11] to compute the σ-Galois group H
associated to the equation, and then apply our algorithm to compute G.

9.1. Example

Let us consider (4.1) with

b = q3x6 (x − 1)4(q2x2 + 6qx + 6)
x2 + 6x + 6 ; and

a = −q3x3 (2q2)x4 + 4(q2 + q)x3 + (7q2 − 24q + 7)x2 − 6(q + 1)x + 12
x2 + 6x + 6 .

Applying the procedure in [11, §4.1] or using a computer algebra system (for example, 
with the QHypergeometricSolution command included in the Maple package QDiffer-
enceEquations) one can verify that there is exactly one solution u ∈ Q̄(x) to the first 
Riccati equation (4.3) in this case, given by
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u := x3(x − 1)2.

After computing

b

uσ(u) = (x − 1)2(q2x2 + 6qx + 6)
(qx − 1)2(x2 + 6x + 6) ,

we see that

w := x2 + 6x + 6
(x − 1)2 ∈ Q̄(x)×

satisfies σ(w) = b
uσ(u) w, and therefore we are in the setting of Proposition 6.1. After 

verifying that

δ(u)
u

= 5 + 2
x − 1 �= σ(f) − f + c for any f ∈ Q̄(x) and c ∈ Z,

we proceed to attempt to find a linear differential operator L ∈ Q̄[δ] of smallest possible 
order such that there exist f ∈ Q̄(x) and c ∈ Q̄ satisfying

L
(

δ(u)
u

)
− w = σ(f) − f + c.

Since

w = x2 + 6x + 6
(x − 1)2 = 5

(x − 1)2 + 8
x − 1 + 1

has as its only non-zero q-discrete residues:

q-dres(w, [1]q, 2) = 5; q-dres(w, [1]q, 1) = 8; and q-dres(w, ∞) = 1,

we see that if there exists such an L ∈ Q̄[δ] then its order must be exactly 1. Writing 
L = e1δ + e0, we find that

L
(

δ(u)
u

)
− w = −2e1 − 5

(x − 1)2 + −2e1 + 2e0 − 8
x − 1 + 5e0 − 1,

which has the desired form σ(f) − f + c for some f ∈ Q̄(x) and c ∈ Q̄ if and only if

−2e1 − 5 = 0 = −2e1 + 2e0 − 8 ⇐⇒ e1 = −5
2 and e0 = 3

2 .

The corresponding value of c = 5e0 − 1 = 13
2 �= 0. With this, we conclude that the 

σδ-Galois group for (4.1) over k1 for this choice of coefficients a, b ∈ Q̄(x) is

G =
{(

α ξ
0 α

) ∣∣∣∣ α, ξ ∈ C, α �= 0, δ

(
ξ
)

= −5
δ2
(

δ(α)
)

+ 3
δ

(
δ(α)

)}
.

α 2 α 2 α
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9.2. Example

Let us consider (4.1) with

a = −(q + q1/2)x and b = q1/2(x2 − x).

Since the valuations at x = 0 of the coefficients are v(a) = 1 and v(b) = 1, we are in the 
case where v(b) ≤ 2v(a) and v(b) is odd, and therefore there are no solutions to (4.3) in 
Q̄(x) (cf. [11, §4.1]). However, u = x + x1/2 ∈ Q̄(x1/2) and ū = x − x1/2 ∈ Q̄(x1/2) both 
satisfy (4.3). Since

δ(b)
b

= 2 + 1
x − 1 �= σ(f) − f + c for any f ∈ Q̄(x) and c ∈ Z,

we deduce that det(G) = Gm(C). Since there is no f ∈ Q̄(x1/2)× such that

(u

ū

)2
= x

(
x1/2 + 1
x1/2 − 1

)2

= σ(f)
f

,

we conclude that the σδ-Galois group G for (4.1) over k1 for this choice of coefficients 
a, b ∈ Q̄(x) is

G = {±1} �Gm(C)2 =
{(

α1 0
0 α2

)
,

(
0 λ1
λ2 0

) ∣∣∣∣ α1, α2, λ1, λ2 ∈ C×
}

.

9.3. Example

Let us consider (4.1) with a = 0 and b = −q1/2x. This example was discussed in [5, 
§4.1], as an example of a projectively integrable system whose σ-Galois group H was 
solvable but not abelian; in fact it was proved there using ad-hoc methods that

H =
{(

α 0
0 α

)
,

(
α 0
0 −α

)
,

(
0 λ
λ 0

)
,

(
0 λ

−λ 0

) ∣∣∣∣ α, λ ∈ C×
}

.

We can now prove this systematically, as well as find the corresponding σδ-Galois group 
G, using the results of §7.1. Since the valuations at x = 0 of the coefficients are v(a) = ∞
and v(b) = 1, we are in the case where v(b) ≤ 2v(a) and v(b) is odd, and therefore there 
are no solutions to (4.3) in Q̄(x) (cf. [11, §4.1]). However we see that u = x1/2 ∈ Q̄(x1/2)
and ū = −u = −x1/2 ∈ Q̄(x1/2) both satisfy (4.3). Since δ(b)

b = 1, we see that det(G) ={
α ∈ C×

∣∣∣ δ
(

δ(α)
α

)
= 0
}

. We also verify that 
(

u
ū

)
= (−1)2 = 1. This concludes the 

computation that

G =
{(

α 0
0 α

)
,

(
α 0
0 −α

)
,

(
0 λ
λ 0

)
,

(
0 λ

−λ 0

) ∣∣∣∣ α, λ ∈ C×,

δ

(
δ(α)

)
= 0 = δ

(
δ(λ)

)}
.

α λ
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9.4. Example

In [16] the authors develop algorithms for desingularization of q-difference-differential 
operators. In [16, Example 5.2], those results were applied to study the difference equa-
tions satisfied by the colored Jones polynomials of several knots. In spite of the name, 
a colored Jones polynomial is not actually a polynomial in general, but rather consists 
of an infinite sequence of rational functions in Q(q), where q is a formal indeterminate. 
We refer to [16, §5] and the references therein for additional details. The second-order 
q-difference equation (4.1) with the following choice of coefficients is satisfied by the 
colored Jones polynomial (after normalization) of the knot Ktwist

−1 (see [16, §5, Fig. 1]):

a =
(qx − 1)(qx + 1)

(
q4x4 − q3x3 − q3x2 − qx2 − qx + 1

)
q2x2

(
qx2 − 1

)
and

b = q3x2 − 1
qx2 − 1

To compute the σδ-Galois group for

y(q2x) + a(x)y(qx) + b(x)y(x) = 0 (9.1)

over C(x), where C is a δ-closure of the δ-constant field Q(q), we proceed as follows. 
Using the QHypergeometricSolution command included in the Maple package QDiffer-
enceEquations, we have verified that the Riccati equations (4.3) and (4.5) do not admit 
any solutions in C(x1/2). Therefore SL2(C) ⊆ G ⊆ H, where H denotes the σ-Galois 
group, as discussed in §4 and §8. We see that

b = q3x2 − 1
qx2 − 1 = σ(qx2 − 1)

qx2 − 1 .

Therefore, G = SL2(C) in this case.
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