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1. Introduction

Consider a second-order homogeneous linear g-dilation equation

y(¢*x) + a(x)y(qz) + b(x)y(z) =0, (1.1)

whose coefficients a(z),b(x) € Q(x) are rational functions in z with b(x) # 0, and
q € Q is neither zero nor a root of unity. Difference equations such as (1.1) are satisfied
by special functions and generating series occurring in combinatorics, number theory,
mathematical physics, and many other areas. There has been much recent work devoted
to the question of which additional functional equations are satisfied by solutions of
difference equations. We develop algorithms that allow one to discover all the polynomial
differential equations satisfied by the solutions to (1.1), or to decide that there are none.
Our methods and results apply equally well, with small and obvious modifications, to
equations (1.1) where ¢ is not necessarily an algebraic number and the coefficients a,b €
C(z) for any computable algebraically closed field C containing Q(q).

Our strategy here is similar to the one followed in [4], where analogous algorithmic
results were developed in the context of shift difference equations. We apply the differen-
tial Galois theory for difference equations developed in [13], which studies equations such
as (1.1) from a purely algebraic point of view. This theory attaches a geometric object G
to (1.1), called the differential Galois group, that encodes all the difference-differential
algebraic relations among the solutions to (1.1). We develop an algorithm to compute
the differential Galois group G associated to (1.1) by the theory of [13].

The differential Galois theory for difference equations of [13] is a generalization of the
g-dilation analogue of the Galois theory for difference equations presented in [26], where
the Galois groups that arise encode the algebraic relations among the solutions to a given
linear difference equation. An algorithm to compute the Galois group H associated to
(1.1) by the theory of [26] is developed in [11]—but for technical reasons this algorithm
works only over the larger base field Q({z'/™},en), rather than the field of definition
Q(z) of (1.1). In the course of our computation of the differential Galois group G of
(1.1), we also extend the algorithm of [11] to compute the Galois group H of (1.1) over
the smaller original basefield Q ().

A priori one knows that the Galois group H is a linear algebraic group, and the differ-
ential Galois group G is a linear differential algebraic group (Definition 2.7). The Galois
group H serves as a close upper bound for the differential Galois group G: it is shown in
[13] that one can consider G as a Zariski-dense subgroup of H (see Proposition 2.10 for
a precise statement). In view of this fact, our strategy to compute G is to first apply our
extension (developed in the present work) of the algorithm of [11] to compute H, and
then compute the additional differential-algebraic equations (if any) that define G as a
subgroup of H. The computation of G in general can be much more difficult than that of
H because there are many more linear differential algebraic groups than there are linear
algebraic groups (more precisely, the latter are instances of the former), so identifying
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the correct differential Galois group from among these additional possibilities requires
additional work.

This strategy is reminiscent of the one begun in [9], and concluded in [1-3], to compute
the parameterized differential Galois group for a second-order linear differential equation
with differential parameters, where the results of [15,6] are first applied to compute the
classical (non-parameterized) differential Galois group for the differential equation, and
one then computes the additional differential-algebraic equations, with respect to the
parametric derivations, that define the parameterized differential Galois group inside
the classical one. However, the computation of the differential Galois group G for (1.1)
presents substantial new complications that do not arise in the parameterized differential
setting. Many of these new complications are inherent to the computation of differential
Galois groups of difference equations in general, and already arise in the context of
shift difference equations (see the introduction to [4] for a summary), but a brand new
technical difficulty arises for the first time in the context of g-difference equations, which
we describe below. The same difficulties will recur, with a vengeance, in the context of
Galois theory for difference equations over elliptic curves; our hope is that the treatment
developed here will serve as a useful blueprint for that more technical setting.

It is known (see [11]) that the Galois group H of any g-difference equation over
Q({z'/"},en) has a cyclic group of connected components H/H®. This fact facilitates
the development of the algorithm of [11]. However, the Galois group H of a g¢-difference
equation over Q(z) may admit more generally a bicyclic group of connected components,
which requires the development of new techniques to identify the correct Galois group
from among this larger set of possibilities.

A theoretical consequence of the results of §6 is Corollary 6.4, which states that
the unipotent radical of the differential Galois group may only be trivial, the additive
group of differentially constant o-invariants, or the full additive group of o-invariants.
This result was already known when the whole differential Galois G group was already
unipotent [13, Prop. 4.3(2)], but not when the unipotent radical is a proper subgroup of
G. In other contexts (see for example [19,20]) the computation of the unipotent radical
has turned out to be the main theoretical obstacle in the development of algorithms to
compute Galois groups in general. We expect that this contribution to the inverse Galois
problem in the present setting will have useful ramifications in the development of future
algorithms to compute differential Galois groups for higher-order ¢-difference equations.

Let us now describe the contents of this work in more detail. In §2, we summarize the
differential Galois theory for difference equations of [13], and prove some auxiliary results
that will be used in the sequel. In §3, we recall some known results, and prove some
new ones, concerning differential relations among solutions to first-order g¢-difference
equations. In §4, we summarize Hendriks’ algorithm [12] to compute the Galois group
H for (1.1) over Q({z'/"},en), and explain how to extend it to compute the Galois
group H for (1.1) over Q(z). In §5, we show how to compute the differential Galois
group G for (1.1) when H is diagonalizable in Proposition 5.2. In §6, we show how to
compute G when H is assumed to be reducible but non-diagonalizable in Proposition 6.1
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and Proposition 6.2—as a consequence, we show in Corollary 6.4 that the unipotent
radical of G is always of a very special form. In §7, we compute G in Proposition 7.4,
Proposition 7.6, and Proposition 7.7, under the assumption that H is irreducible and
imprimitive (which possibility can arise in three different ways, as a consequence of
our insistence on computing Galois groups over the basefield Q(m) and not just over
Q({zY"},en))- In §8, we apply results from [5] to compute G in Proposition 8.1, under
the assumption that H contains SLy. We conclude in §9 by applying these results to
some concrete examples of g-difference equations; in particular to the one satisfied by
the colored Jones polynomial of a certain knot.

2. Preliminaries on differential Galois theory for difference equations

We begin with a summary of the differential Galois theory for difference equations
developed in [13]. Every field is assumed to be of characteristic zero, and every ring is
assumed to be commutative unless otherwise stated.

Definition 2.1. A od-ring is a commutative ring R with unit, equipped with an automor-
phism o and a derivation ¢ such that o (6(r)) = ¢ (o(r)) for every r € R. A oo-field is
defined analogously. We write

R={rcR|o(r)=r}; R ={rcR|dr)=0}; and R°°=R°NR°

and refer to these as the subrings of o-constants, §-constants, and od-constants, respec-
tively.

A 00-R-algebra is a od-ring S equipped with a ring homomorphism R — S that
commutes with both ¢ and §. If R and S are fields, we also say that S is a od-field
extension of R. The notions of o-R-algebra, J-R-algebra, o-field extension, and J-field
extension are defined analogously. If z1,...,2, € S, we write R{z1,...,2,}s for the
smallest d-R-subalgebra of S that contains z1, ..., z,; as R-algebras, we have

R{Zl7 e Zn}5 = R[{dl(zl)a cety 5Z(Zn) | (AS N}]
If Z = (z;;) with 1 <4,j <n is a matrix, we write R = {Z}s for

R{z11y -y Z1ny -y Znls -+ Znn 1o

An important example of a od-field that will play a prominent role throughout this
work is k = Q(z), where o denotes the Q-linear automorphism defined by o(z) = gz for
some fixed ¢ € Q that is neither zero nor a root of unity, and § = x%. Note that in this
case k7 = k° = Q.

Suppose that k is a od-field, and consider the matrix difference equation

o(Y) =AY, where A € GL, (k). (2.1)
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Definition 2.2. A 0d-Picard-Vessiot ring (or 00-PV ring) over k for (2.1) is a od-k-algebra
R such that:

(i) R is a simple od-ring, i.e., R has no ideals, other than 0 and R, that are stable
under both o and §;
(ii) there exists a matrix Z € GL,,(R) such that 0(Z) = AZ; and
(i) R is generated as a d-k-algebra by the entries of Z and 1/det(Z), ie., R =
k{Z,1/det(Z)}s.

The matrix Z is called a fundamental solution matriz for (2.1).

Note that when § = 0, this coincides with the definition of the o-PV ring over k for
(2.1) given in [26, Def. 1.5]. In the usual Galois theory of difference equations presented
in [26], the existence and uniqueness of Picard-Vessiot rings up to k-o-isomorphism is
guaranteed by the assumption that k7 is algebraically closed (see [26, §1.1]). Analogously,
in the difference-differential Galois theory developed in [13], one needs to assume that
k7 is d-closed [14,25].

Definition 2.3. The ring of d-polynomials in n variables over a §-field C' is
C{Yi,..., Yals = CHE V), .., 6'(Ya) | i € NY,

the free C-algebra on the symbols §(Y;), on which § acts as a derivation in the obvious
way. We say L € C{Y1,...,Y,}s is a homogeneous linear §-polynomial if it belongs to
the C-linear span of the symbols §%(Y;).

If R is a 0-C-algebra, we say that z1...,z, € R are differentially dependent over
C' if there exists a §-polynomial 0 # P € C{Y7,...,Y,}s such that P(z1,...,2,) = 0;
otherwise we say that z1,..., z, are d-independent over C. When a single element z € R
is 0-independent (resp., d-dependent) over C, we say that z is d-transcendental (resp.,
d-algebraic) over C.

We say the d-field C is d-closed if any system of d-polynomial equations

{P1 :0,...7P7n:0 | P, GC{Yl,...,Yn}g for ].SZSm}
that has a solution in C™ for some d-field extension C' D C' already has a solution in C™.

Theorem 2.4. (Cf. [13, Prop. 2.4]) If k° = C is §-closed, there exists a c6-PV ring for
(2.1), and it is unique up to od-k-isomorphism. Moreover, R® = k°.

For the rest of this section, unless explicitly stated otherwise, we assume that k is a
od-field such that k7 is d-closed.

Definition 2.5. The od-Galois group of (2.1) is the group of od-k-automorphisms of the
0d-PV ring R for (2.1):
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Gal,s(R/k) = {v € Autyag(R) | yoo =covyand yod =donr}.

As in the usual (non-differential) Galois theory of difference equations [26], a
choice of fundamental solution Z = (z;;) € GL,(R) defines a faithful representation
Galys(R/k) = GL, (k%) : v — M, via

7(211) ’Y(Zm) 211 Tt Zln
V(Z) = - - M.

’Y(an) tee ’Y(Znn) Znl tee Znn

A different choice of fundamental solution matrix Z’ € GL,(R) defines a conjugate
representation of Gal,s(R/k) in GL, (k7).

Definition 2.6. The systems o(Y) = AY and o(Y) = BY for A, B € GL, (k) are equiva-
lent if there exists a matrix T' € GL,, (k) such that o(T)AT~! = B. In this case, if Z is a
fundamental solution matrix for o(Y) = AY, then T'Z is a fundamental solution matrix
for o(Y) = BY, and therefore the 06-PV rings of k for these systems defined by the
choice of fundamental solution matrices Z and TZ, and the associated representations
of 06-Galois groups in GL,,(k7), are isomorphic.

Definition 2.7. Suppose that C' is a d-closed field. A linear differential algebraic group
over C is a subgroup G of GL,(C) defined by (finitely many) d-polynomial equations in
the matrix entries.

Theorem 2.8. (Cf. [13, Thm. 2.6]) The 06-PV ring R over k for (2.1) is a reduced ring,
and any choice of fundamental solution matriz Z € GL,(R) identifies Galys5(R/k) with
a linear differential algebraic subgroup of GLy, (k7).

As in [13, p. 337], we observe that if R is a 0§-PV ring over k for (2.1), and K is the
total ring of fractions of R, then any od-k-automorphism of K must leave R invariant,
whence the group Gal,s(K/k) of such automorphisms coincides with Gal,s5(R/k). The
consideration of the total ring of fractions of R is necessary to obtain the following Galois
correspondence.

Theorem 2.9. (Cf. [13, Thm. 2.7]) With notation as above, let F be the set of od-rings
F such that k C F C K and every non-zero divisor in F is a unit in F, and let G denote
the set of linear differential algebraic subgroups G of Galys(K/k). There is a bijective
correspondence F <> G given by

F s Galos(K/F) = {7 € Galos (K/E) | () =1, ¥r € F}; and
G- KY={recK |~(r)=r VyecG}.

In particular, an element r € K is left fixed by all of Gal,s(K/k) if and only if r € k.
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The following result relates the o§-PV rings and od-Galois groups of [13] to the o-PV
rings and o-Galois groups considered in [26,12].

Proposition 2.10. (Cf. [13, Prop. 2.8]) Assume k° is 6-closed. Let R be a 0§-PV ring over
k for (2.1) with fundamental solution matric Z € GLy,(R), and let S = k[Z,1/det(Z)] C
R. Then:

(i) S is a o-PV ring over k for (2.1); and
(i) Galys(R/k) is Zariski-dense in the o-Galois group Gal,(S/k).

3. Differential relations among solutions of first-order g-difference equations

In this section we recall some known results, and prove some new ones, concerning
differential relations among solutions of first-order g-difference difference equations. The
following result is proved in [13, Prop. 3.1].

Proposition 3.1. Let R be a odé-k-algebra with R° = k°. Suppose bi,...,b,, € k and
21,...,2m € R satisfy

o(z)—z=by; i=1,...,m.
Then z1, ..., 2z, are differentially dependent over k if and only if there exists a nonzero
homogeneous linear §-polynomial L(Y1,...,Y,,) with coefficients in k® and an element

f € k such that

L(b,... bw) =o(f) - f.

For the remainder of this section, we restrict our attention to the od-field k = C(z),
where §(z) = x, C' is a d-closed field of characteristic zero, and o is the C-linear auto-
morphism of k defined by setting o(x) = gz for some ¢ € C° that is neither zero nor a
root of unity.

The following notion of g-discrete residue, defined in [8, Def. 2.7],will be crucial in
several proofs in this paper.

Definition 3.2. For any non-zero 5 € C, we call the subset
18ly = B¢" = {84" [te Z} c C
the ¢Z-orbit of B in C. Any f € k can be decomposed into the form

Uz 1]

f—c+xp1+—+zzz amé

11]1@0



8 C.E. Arreche, Y. Zhang / Advances in Applied Mathematics 132 (2022) 102273

where pi,ps € Clz]; s,m,n;,d;j; € N; ¢,0;0,0; € C; deg(p2) < s; and the §; are
non-zero and belong to distinct ¢Z-orbits.

The g-discrete residue of f at the gZ-orbit [3;], of multiplicity j (with respect to z)
is defined as:

di,j
g-dres(f, [Bilg, ) = Z q_ejai,jl'

£=0

In addition, the constant ¢ above is the g-discrete residue of f at infinity, which we
denote by g-dres(f, 00).

The usefulness of the notion of discrete residue stems from the following result.

Proposition 3.3. (Cf. [8, Prop. 2.10]) Let f,g € C[x] be non-zero, relatively prime poly-
nomials. There exists h € k such that o(h) — h = f/g if and only if g-dres(f/g,00) =0
and g-dres(f/g,[Blq,J) =0 for every j € N and every 0 # 5 € C such that g(8) = 0.

The following computational lemma will be used to sharpen the conclusion of [13
Cor. 3.3] in the following Corollary 3.5.

Lemma 3.4. Suppose 0 # a € C°(x), r € Z>o, and 0 # 3 € C° is a zero or pole of a.

Then
g-dres <5’“ (@),[mq,rﬂ) (=1)" -7l B qdres< (@) [5]q,1>.

Proof. We may assume without loss of generality that

o) _ Zi (ot 222) )

x — fBq

for some 0 # € C%, d € Z>o, and e; € Z for £ = 0,...,d. Observe that in this case
q-dres(%’l), Bl 1) = Z(Z:o Beg, by Definition 3.2. We claim that

d rplgt(r+1) grtt

which would indeed imply that
§(a) d
g-dres <5T <T) Blgs T+ 1) = Z(-l)’"r!ﬂ”lee
£=0

and conclude the proof of the Lemma. We prove (3.2) by induction. The case r = 0 is
just (3.1). Assuming (3.2) for some r > 0, note that
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+(lower-order terms).

ot (0(@)) = GO+ D5 e (0 B + )
(") - 2 Ey

This concludes the proof of the claim, and the Lemma. O
The following result sharpens the conclusion of [13, Cor. 3.3].

Corollary 3.5. Let R be a 06-k-algebra with R7 = k° = C. Let ay,...,am € C°(z)* and
2150y 2m € R* such that

o(zi) =a;zi; i=1,...,m.

Then z1, . .., zm are differentially dependent over k if and only if there exist: ny,...,ny, €
Z, not all zero and with ged(nq,...,ny,) =1; ¢ € Z; and an element f € k, such that

o(a o(am,
ny (1)+ Ny, ( ):O'(f)*fﬂLC. (3.3)
ail QA
Proof. First suppose there exist integers nq, .. nm,c € Z as in (3.3). Since for each

i=1,...,m we have that 0(5(%)) 6(z’) + ( , it follows that

a [(ima (S)) ] = S (P2) (502 ) ot -

i=1 v i=1 v

zi 5(*2) 4500 (f)—f+c)—0(5(f))=§;m5<5(j))—5(f)-

Therefore,

i $(FE0) <ot +

for some e € R? = k°. This shows that z1,..., z,, are d-dependent over k, after multi-

plying by (z1 ... 2m)? on both sides.
5(21)) _ (2i) + 6(a

Zi
z; are dlfferentlally dependent over k if and only 1f there exists an element f € k and a

Since o ( ) for each i = 1,...,m, Proposition 3.1 implies that the

nonzero homogeneous linear J-polynomial

E(Yl, . 7Y;n) = iici)j(sj}/i, Cij € C,

i=1 j=0

such that
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Let r = max{ r; | ¢;r, # 0 for some i}. For each 0 # 3 € C, it follows from (3.4),
Proposition 3.3, and Lemma 3.4, that

g-dres(g, [Blg,r+ 1) = (=1)"-r!- 5" - ZC” qdres(és‘?)

=1

flut) =0 G5

On the other hand, it follows from Definition 3.2 that for each i = 1,...,m we have that

g-dres (581) 18q, 1) =8¢ for some e; € Z. (3.6)

Substituting (3.6) into (3.5), we have

g-dres(g, [Blg,r +1) = (=1)" 71 B3 "eip e = 0. (3.7)

Since 8 # 0, the above equation is equivalent to 221 cir-€; = 0. Since e; € Z for each

i =1,...,m, we may take the ¢; , = n; to be integers. Setc:zz 1M q- dres( (a ’) oo).

Since both n; and g-dres (5(’“) oo) are integers, we see that ¢ € Z is divisible by

ged(ng, ..., ny). Moreover, we have
1) O(am,
g-dres (nl(ail) +- 4 nm% —c, oo) =0. (3.8)
1 m

By (3.7) and (3.8), the conclusion follows from another application of Proposition 3.3
and dividing both sides by ged(ni,...,ny,). O

Remark 3.6. The statement of [13, Cor. 3.3] is equivalent to that of Corollary 3.5, except
that each n; € Z is replaced with a homogeneous linear d-polynomial £;(Y) € C°{Y}s,
the ¢ € Z is omitted, and (3.3) is replaced with

£ (M) o gy (M) = () - .
We emphasize that our proof of Corollary 3.5 initially follows the same strategy of that
of [13, Cor. 3.3], and then applies the technology of g-discrete residues of [8], in particular
the computational Lemma 3.4, to obtained the sharpened conclusion. Although we find
this result is of independent interest, it also plays an important role in the computation
of differential Galois groups in the following sections, because it restricts a priori many
possible differential algebraic groups from occurring as Galois groups.
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4. Hendriks’ algorithm

In this section, we summarize the results of [11] that we will need in our algorithm,
and explain how to refine them to meet our goals. From now on, we restrict our attention
to equations of the form

o(y) + ao(y) + by = 0, (4.1)

where a,b € Q(z) with b # 0, and ¢ is the Q-linear automorphism of Q(z) defined
by o(z) = gz, where q € Q is neither zero nor a root of unity. Our discussion here
could be generalized to drop the assumption that ¢ is an algebraic number and allowing
a,b € Cy(z), for any computable algebraically closed field Cj containing Q(q), as we
mentioned in the introduction (see also the introduction to [11]), but at the cost of
overburdening the notation.

The matrix equation corresponding to (4.1) is

o(Y) =AY,  where A:= (_Ob _1a> € GLo(k). (4.2)

We consider Q(z) as a od-field by setting § = x%, the Euler derivation. In this section
only we will denote & = Q(z), but in future sections we will recycle notation and de-
note by k the larger od-field C(x), where C is a d-closure of Q, and ¢ is the C-linear
automorphism of C(z) defined by o(z) = qz.

The algorithm of [11] computes the o-Galois group of (4.1) over the larger basefield
koo defined as follows. Let {g, € Q | n € N} denote a compatible system of n-th roots
of ¢ = qi, so that for any factorization ¢m = n we have ¢ = ¢,,, and consider the
cyclic o-field extension k,, = Q(x,) of Q(x) such that 7 = z; = x and z% = =z, for
any factorization n = ¢m, with the o-field structure given by o(x,) = ¢n2,. Then
the Q-linear maps k,, < k, defined by z,, — xfl are embeddings of o-fields. Let
koo =limk, = Un21 kn. By [11, Lemmas 9 and 10], the o-field ko, has property P:

Definition 4.1. We say a o-field k has property P if:

(1) kis a C; (quasi-algebraically closed) field in the sense of [17]; and
(2) if K is a finite algebraic extension of k such that o extends to an automorphism of
k' then k' = k.

This allows Hendriks to compute the o-Galois group of (4.1) over ko by finding a
gauge transformation 7' € GLa (ko) that puts (4.2) in the standard form of [11, Defini-
tion 8].

Another special consequence of the fact that ko, enjoys property P (Definition 4.1) is
that the o-Galois group H for (4.1) over ko (and in fact every difference Galois group
over ko) is such that its quotient H.,/HS, by the connected component of the identity
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HZ, must be a (finite) cyclic group (cf. [11, Thm. 6]). This facilitates the algorithm of
[11] by ruling out a priori the consideration of algebraic groups whose group of connected
components is not cyclic (cf. [11, Lem. 12]). The situation for o-Galois groups over k;
is less restrictive, but we still know by [26, Prop. 12.2(1)] that the o-Galois group H;
for (4.1) over k; (and in fact every difference Galois group over ki) has the property
that the quotient Hy/H7 is (finite) bicyclic, i.e., a product of two finite cyclic groups.
Thus it is possible for us to realize additional algebraic groups H; as o-Galois groups for
(4.1) over ky that do not occur in the list [11, Lem. 16 and Lem. 20] of possible o-Galois
groups over koo. In particular, any reducible algebraic subgroup of GL3(Q) can occur as
the o-Galois group for some difference equation (4.1), and any irreducible imprimitive
algebraic subgroup of GLQ(Q) with bicyclic group of connected components can occur
as a Galois group over kj.

The algorithm developed in [11] to compute H, proceeds as follows. We first decide

whether there exists a solution u € ky, to the Riccati equation
uo(u) + au+b=0. (4.3)

If such a solution u exists, then the o-Galois group Ho, of (4.2) over ko, is reducible, i.e.,
conjugate to an algebraic subgroup of

Gn(@?x 6@ ={(§ {)

o, B, ) €Q, oz/\;é()}.

Moreover, if there exist at least two distinct solutions uy,us € koo to (4.3) then Hy is
diagonalizable, i.e., conjugate to an algebraic subgroup of

cwer={(5 )

and if there are at least three distinct solutions in ko, to (4.3) then there are infinitely

a, ) eQ, a)\;«éO};

many, and this occurs if and only if H., is an algebraic subgroup of

cx{(3 ?)

If there is no solution u € k, to the Riccati equation (4.3), then H, is irreducible by
[11, Thm. 13]. In this case, the next step is to attempt to find T' € GLy (k) and r € koo

such that
(5 )= (0 0): (1.4)

If a = 0 already, then we may take 7= () and r = b. If a # 0, we then attempt to

find a solution e € ky, to the Riccati equation

aeqQ, a#O}.
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ea?(e) + (02(2) — o(a) + 2)e + 2B — . (4.5)

If there exists such a solution e € ko to (4.5), then it is proved in [11, Thm. 18] that
there exists a matrix T' € GLa (ko) such that (4.4) is satisfied with

r = —ao(a) + o(b) + ac®(2) + ac®(e), (4.6)

and H,, is imprimitive, i.e., conjugate to an algebraic subgroup of

{il}xGm(Q)zz{(g g) areQ, aA#O}U{(S g)‘ﬁ,ee@, Be # o}
7)

(4
Finally, if @ # 0 and neither (4.3) nor (4.5) admits a solution in k.., then SLo (Q) <
H, and we compute Hy, as in [11, §4.4], by determining the image det(Ho) C G, (Q)
of the determinant homomorphism.

In order to produce an algorithm that computes the o-Galois group of (4.1) over
k = k1, we need to be more careful in keeping track of which algebraic extension k,, the
solutions of the Riccati equations (4.3) and (4.5) belong to, and what effect this has on
the shape of the Galois group. We begin by introducing some additional notation and
stating some ancillary results. Let ¢, € Q for n € N denote a compatible system of n-th
roots of unity, so that for any factorization fm = n we have ¢! = ¢,,. Then k, is a -PV
ring over k,, for o(y) = ¢,y with fundamental solution (1 x 1 matrix) y = x,, and cyclic
o-Galois group (7, m) = Galy(ky/kn) given by 7, m(xn) = (ep, where £ = n/m. Let
Soo denote a 0-PV ring over ko for (4.2) with fundamental solution matrix Y. Then
Sp = kn[Y,1/det(Y)] is a 0-PV ring over k, for (4.2). Let us write H,, = Gal,(S,/k»)
for n € N U {oo}. Then we see that S,, is a o-PV ring over k; for the system

0 1 0
o(Y,) = <—b —a 0 ) Y., with fundamental solution matrix

0 0 an
i Yo 0
Yo=|0o() o(y2) 0 |.
0 0 Ty

The following result is proved formally along the same lines of [2, Lem. 3.1 and Prop. 3.2]
and [3, Lem. 12 and Prop. 13], but we include the full argument here for completeness.

Proposition 4.2. Let H, := Gal,(Sp/k1) and p, denote the cyclic group of n-th roots of
unity. Then the intersection S1 Nk, = k,, for some factorization n = {m, and the map

p: H, — H; x Ln,
v = (Vs Vlkn)

is an isomorphism onto the fiber product
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Hy Xy, pin ={(7,0) | ¥ € Hy and ¢ € p such that y(zp) = o} (48)

Proof. Note that S1Nk, C k, is a ki-subalgebra of k,,, and therefore equal to k,, for some
m dividing n by classical Galois theory. Since the embedding of H,, < GLs (Q):v+— M,
is given by v(Y,,) = Y, M, and Y,, = Y @& (z,,), we see that if v|g, and |y, are both trivial
then so is -y, and therefore the group homomorphism ¢(v) = (v|s,, Y|k, ) is injective. That
the image of ¢ is contained in the fiber product (4.8) is clear: v(x,) = (x, for some
C € fin, and then v|s, (z,) = Y(xm) = y(zh) = ¢*x,y,. It remains to show that ¢ surjects
onto the fiber product (4.8).

Let L,, and Ly be the total rings of fractions of S,, and Sj, respectively (we emphasize
that neither L,, nor L; is necessarily a field). We still have Ly Nk, = ky,, and Hy =
Gal, (L /K1) and H,, = Galy(L,/k1). Let us write Gal,(L,/L1) := {y € H, | ¥z, =
1} even if Ly is not a field. By Theorem 2.9, Gal,(L,/L1) is a closed subgroup of
Gal, (L, /k).

We claim that the map

b Galy (Ly/kn) — Galy (L1 k)

Y 7|L1

is an isomorphism. That the image of v is contained in the specified group follows from
Li Nk, = k. To see that ¢ is injective, note that if v € Gal, (L, /k,) then v(x,) =1,
and if v|p, = 1 then v(Y) =Y, and therefore y(Y,) = Y,,, so v = 1. To see that
1) is surjective, note that since the projection % is an algebraic group homomorphism
and Gal, (L, /ky,) is an algebraic subgroup of Gal, (L., /k), the image im(¢) is a (closed)
algebraic subgroup of Gal, (L /k,,). But since Lilm(w) C LNk, = k,,, it follows that
im(¢) = Galy (L1 /ky,) by Theorem 2.9.

Let us now show that ¢ surjects onto the fiber product (4.8). Let (v,¢) € Hy X, fin,
so that v(z,,) = (‘a,,. There exists A € H,, such that Mzn) = Cxp, for otherwise
{Y|r, | ¥ € H,} would be a proper subgroup of Gal(k,/k;), which is impossible by
Theorem 2.9. Then we see that 7/ := o )\|211 € Galy(L1/ky,) and therefore there exists
4 € Galy(Ly /ky) such that ¥(5) = |, = +'. A computation now shows that 4o\ € H,
satisfies (§ o A)|, = v and (§ o A)(zp) = (zp, and therefore (5 o A) = (v,(), as we
wanted to show. O

We record the following two consequences of Proposition 4.2.

Corollary 4.3. S; Nk, = k1 if and only if H, ~ Hy, and Sy Nk, = k, if and only if H,
is a normal subgroup of Hi of index n.

Proof. In any case, H,, is identified with the normal subgroup

{(77<) € Hy X i M ‘ CZ 1} < gn,
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which has index n in H,,. In particular, S; Nk, = kp if and only if H, ~ H; x Ly, and
H, ~ H; x {1}. On the other hand, Sy Nk, = k,, if and only if H,, ~ Hy x,,, pu, ~ Hj,
so H,, is as claimed. O

Corollary 4.4. The intersection in S given by koo N S1 = ky, for some m € N, and
H, ~ Hy,, for every £ € N. In particular, Hy, is a normal subgroup of Hy of index m.

Proof. Note that H,, — H, for every n € N via their actions on the same fundamental
solution matrix Y € GLa(Sw). Since S = k1[Y, det(Y)™1] is finitely generated over ki,
there is a largest m € N such that S; admits k,, as an intermediate o-ki-subalgebra,
and we see that Hy, ~ Hy,, for every £ € N, and H, is a closed normal subgroup of H;
of index m. O

Having computed the o-Galois group Ho of (4.1) over ks as in [11], we can then com-
pute the o-Galois group H; of (4.1) over k; according to the following possibilities. The
explicit computation of H; is obtained in each case as a by-product of our computation
of the corresponding cd-Galois group of (4.1) in the following sections.

Proposition 4.5. Precisely one of the following possibilities occurs.

(1) There are infinitely many solutions to (4.3) in ky. In this case, Hy is a subgroup of
Gm(Q) (included in GLy(Q) as scalar matrices).

(2) There are exactly two solutions uy, us € ky to (4.3). In this case, Hy is diagonalizable
(but not contained in the group of scalar matrices).

(3) There is exactly one solution u € ki to (4.3). In this case, Hy is reducible but not
diagonalizable.

(4) There are no solutions to (4.3) in ki, but there are exactly two solutions uy,us €
ka\k1 to (4.3), and uy = uy is the Galois conjugate of uy over ky. In this case, H;
is irreducible and imprimitive.

(5) There are no solutions to (4.3) in ke, and either a = 0 or there is a solution e € ks
to (4.5). In this case, Hy is irreducible and imprimitive.

(6) There are no solutions to (4.3) nor to (4.5) in ko and a # 0. In this case, Hy is
irreducible and primitive, and SLy(Q) C Hj.

Proof. It is clear that the possibilities above are mutually exclusive. It remains to show
that these possibilities are exhaustive, and that the o-Galois group H; is as stated in
each case.

Let us first show that these possibilities are exhaustive. By [11, Thm. 13], there are
either zero, one, two, or infinitely many solutions to (4.3) in ky. By [11, Thm. 15], if
there exists a solution u € ks to the Riccati equation (4.3), then there exists a solution
in ko. Since the coefficients a,b € k = k1, for any solution u € ky\k; to (4.3) the Galois
conjugate % := 791(u) must also satisfy (4.3). Hence, if there is exactly one solution
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u € koo to (4.3), then u € k1, and if there are exactly two solutions uq, us € koo to (4.3),
then either uq,us € k1, or else uy,us € ko\k1 and us = u; is the Galois conjugate of uy
over ki. In the case where there are infinitely many solutions to (4.3) in ks, the proof of
[11, Thm. 15] shows that at least three of these solutions actually belong to ki, in which
case the proof of [12, Thm. 4.2] shows that there are infinitely many solutions to (4.3)
in k1. This shows that cases (1)—(4) exhaust the possibilities where there is at least one
solution to (4.3) in k. Supposing now that there are no solutions to (4.3) in ks and
a # 0, by [L1, Thm. 15] we again have that if there exists at least one solution in ks to
(4.5), then there exists a solution in ks. This concludes the proof that the possibilities
listed in Proposition 4.5 are exhaustive and mutually exclusive.

The statements corresponding to the form of the o-Galois group H; will be established
separately in the following sections according to the possibilities listed above, depending
on the existence of solutions to (4.3) or (4.5) in k1 or ko as discussed above. O

In view of Proposition 2.10, in order to compute the od-group G of (4.1), we will
first apply the results of [11] to compute the solutions to (4.3) and/or (4.5) in ks, which
according to the possibilities in Proposition 4.5 (and as we will show in each case in
the following sections) results in knowing whether the corresponding o-Galois group
H is: diagonalizable; reducible (but not diagonalizable); irreducible and imprimitive; or
irreducible and primitive. We will then compute the additional §-algebraic equations that
define G as a subgroup of H in each case (and obtain the explicit computation of H itself
along the way). In order to apply the theory of [13] to study (4.1), we will consider (4.1)
as a difference equation over the larger basefield C'(x) mentioned at the beginning of this
section, where we recall C' is a d-closed field extension of (Q,d) such that C° = Q (the
existence of such a C' is guaranteed by [14,25]), and the ogd-structure of C(x) extends
that of Q(z): o is the C-linear automorphism of C(z) defined by o(z) = gx.

Remark 4.6 (Descent from C(z) to Q(z)). The application of the results of [11] and
Proposition 4.5 to compute the o-Galois group of (4.1) over C(x), rather than over
@(x), requires some justification. Although it is possible to see from general Tannakian
principles that the o-Galois group of (4.1) over C(z) is obtained by base change from Q
to C of the o-Galois group of (4.1) over Q(z), it is possible to see this directly in the
present situation. The point is that the number of solutions to the Riccati equations (4.3)
and (4.5) in C(29) is the same as the number of solutions in Q(zz). This follows from an
elementary argument: suppose that a given polynomial o-equation over Q(w) admits a
solution % € C(x), where p = apa™ + -+ -+ ai1x +ap and g = b, z™ + -+ - + byx + by. This
is equivalent to the coefficients a; and b; satisfying b,, # 0 and a system of polynomial
equations defined over Q, which defines an affine algebraic variety V over Q. Since Q is
algebraically closed and C is countable, V(C) and V(Q) must have the same cardinality.

Moreover, the possible defining equations for the o-Galois groups of (4.1) over Q(x)
and over C(z), whether in the reducible, irreducible and imprimitive, or irreducible and
primitive cases, are all witnessed by monomial relations among (the standard form of)



C.E. Arreche, Y. Zhang / Advances in Applied Mathematics 132 (2022) 102273 17

elements in @(m) Though we will see this explicitly in each situation in the following
sections, it is worthwhile to emphasize now that the o-Galois group of (4.1) over C(x)
consists of the C-points of the o-Galois group over Q(:L‘)7 i.e., the former is defined as
an algebraic subgroup of GLy(C) by the same algebraic equations defining the latter as
an algebraic subgroup of GLy(Q).

On the other hand, the od-Galois group G of (4.1) that we compute in the following
sections results, in each case, in defining equations for G C GLy(C) with coefficients in Q,
and not just in C. The existence of a so-called Q-form of G' (which is what we in fact end
up computing) can be expected on general theoretical grounds, because the differential
Tannakian category generated by the difference module corresponding to (4.1) is defined
over Q(x); see [22] for more details. We do not address here the interesting question of
to what extent this Q-form of G is unique or algorithm-dependent, but rather content
ourselves with computing a set of defining J-equations for G as a subset of GLy(C).

5. Diagonalizable groups

We recall the notation introduced in the previous sections: k = C(x), C' is a d-closure
of Q with C? = Q, o denotes the C-linear automorphism of k defined by o(x) = qx, and
§(z) = z. Let us first suppose that there exist at least two distinct solutions u;, us € Q(x)
to the Riccati equation (4.3) as in items (1) or (2) of Proposition 4.5. Then (4.2) is

equivalent over Q(z) to

in view of the following remark.

Remark 5.1. Given two distinct solutions w; and ug to (4.3), the gauge transformation
(which is different from the one specified in the proof of [12, Thm. 4.2])

T:= L N
up —ug \u1 —1

satisfies o(T)AT~! = (“1 0 )

Oug

In this case, we compute G with the following result.

Proposition 5.2. Assume that ui,us € Q(x) are both different from 0, and let R be the
06-PV ring over k corresponding to the system

oY) = (%1 0 ) Y. (5.1)

Then G = Gal,5(R/k) is the subgroup of
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oucr={( 2)

defined by the following conditions on ay and as.

1,00 € C, 102 7£ O} (52)

(i) There exist my,ma € Z, not both zero, and f € Q(x)* such that u]" uy? = # if
and only if a7 ay? =
(i) There exist my,mo € Z, not both zero and with ged(my,m2) = 1; ¢ € Z; and
f € Q(z) such that m1¥f) + mg% =o(f) — f+ cif and only if 6(m15(%11) +
mgé(ai;)) = 0. Moreover, ¢ = 0 if and only if §(a]"* ag'?) = 0.
(iii) If neither of the conditions above is satisfied, then G = H = G,,,(C)?.

Proof. We begin by observing that, if we can find f € k witnessing the relations in items
(i) or (ii), then we may take f € Q(z), since u; € Q(z) (cf. [10, Lem. 2.4, Lem. 2.5] and

Remark 4.6). Note that by Theorem 2.4, R° = C. Let y1,y2 € R be non-zero elements

y1 O
0 y2

y1,Y2 € R* and the embedding of G into (5.2) is given by v(y;) = a,;y; for i = 1,2 and
v e G.
The proof of item (i) is standard: given my,my € Z we have that a;’fiamz =1 for

such that o(y;) = u;y;. Then ( is a fundamental solution matrix for (5.1), so

v,2 T
every v € G if and only if v(y;"y3?) = y7ys 2 for every v € G. By Theorem 2.9, this
is equivalent to yy"'y5'? = f € k, which in turn is equivalent to an) = uy" uy?.

Setting % =:¢9; € R fori=1,2, we see that
0(uy; 0(ty 4
olg) 0= and () = g+ 20 (5.9
(7 Oé,yﬂ'

By Corollary 3.5, y1 and yo are differentially dependent over k if and only if there exist
my, mg € Z, not both zero and with ged(mq,ms) =1, ¢ € Z, and f € k such that

)y, X2~ o) - 4 (54)

mi

Hence, if there do not exist such my,mo,c € Z and f € k, y; and yo are d-independent
over k, which implies that G = G,,,(C)? by [13, Prop. 6.26]. This proves item (iii).
Let us establish item (ii). It follows from (5.3) that for any my,ms € Z we have

o(u o(u
a(migr +magz) — (M1g1 + maga) = ml(u—ll) + m2(u—22); and

) 0
(ay,1) +my (04%2)'
aml Ck’y’g

v(migr + maga) = (M1g1 + maga) + my

Suppose there exists f € k satisfying (5.4) with ¢ = 0 and ged(my, mg) = 1. Then

™M) =0

mig1+mege— f € k%, which implies that mqg; +mogo € k and therefore 5(04%104%2
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for every v € G. On the other hand, if 6(a//'jal'3) = 0 for every v € G with at least one
m; # 0, then the same relation holds after replacing m; with
mig1 +mags = f € k satisfies (5.4) with ¢ = 0.

More generally, suppose there exist f € k and ¢ € Z satisfying (5.4) with
ged(my,me) = 1. Then we see that m1d(g1) + ma2d(g2) — 0(f) € k%, and therefore
m10(g1) + m2d(g2) € k, which implies that

—" - and we see that
ged(my,ma2)

] <m1M + m2M> =0 for every v €QG. (5.5)

Q1 Qy,2

On the other hand, assuming (5.5) with at least one m; # 0, then the same relation

holds after replacing m; with and we have that m10(g1) + m26(g2) = g € k,

m;
ged(ma,ma)”’

s (Y g (9 )

By Proposition 3.3, for each § € Q* we have that

0 = g-dres ((5 (%) , [ﬂ]q,2> = —f - g-dres (%, [Blq 1> ,
u w"y

1 Uz 1 Ug

and therefore

where the second equality follows from Lemma 3.4. Hence, letting

Sl ™ ) 1)
¢ := g-dres (%, oo) = my -q-dres ( (1) , oo) +meg-g-dres ( (u2) , oo) , (5.6)
u™ u u

1 2

5(

we have that ¢ € Z and every g-discrete residue of m; UL;) —i—mgé(uL;) —cis 0. By another

application of Proposition 3.3, there exists f € k satisfying (5.4) with c as in (5.6). O

Remark 5.3. To compute the difference-differential Galois group G for (4.1) when there
exist at least two distinct solutions ui,us € Q(z) to the Riccati equation (4.3), we
apply Proposition 5.2 as follows. First, compute the g¢-discrete residues r;([f],) =

g-dres (5(1?), [Blgs 1) at each ¢Z-orbit [3], for B € Q* as in Definition 3.2 (note these will

u

be zero for any /3 that is neither a zero nor a pole of u; or us). Then decide whether there
exist relatively prime my,my € Z such that myri([8],) + mara([8],) = 0 for every ¢%-
orbit [3], simultaneously (in general this will be an overdetermined linear system over Q,
so the task is to decide whether there exists a non-zero solution in Q2 and then whether
such a solution can be taken to be in Z?2). For any such pair (0,0) # (m,ms) € Z2,
taking ¢ € Z as in (5.6) the proof of Proposition 5.2 shows that there exists f € Q(x)
satisfying (5.4); it is not necessary to determine what the certificate f actually is.

The Z-module M generated by all pairs (my,ms) € Z? as in Proposition 5.2(ii) is
free of rank r < 2. Tt follows from the proof of Corollary 3.5 that Z2/M is torsion-free,
and therefore also free of rank 2 — r, since if (dmy,dms) € M for any 0 # d € Z, then
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(m1,ma) € M also. Thus, if the rank of M is r = 2 then M = Z2. It follows that the
defining equations for G arising from Proposition 5.2(ii) are given by either: a single
pair (mj,ms), unique up to multiplication by +1 and with the form of the defining
equation determined by whether the corresponding value of ¢ in (5.6) is 0; or else the
two relations corresponding to (1,0) and (0,1), with an additional relation occurring
only in case ¢; := g-dres(== ("’) o0) # 0 for both ¢ = 1,2, in which case we obtain an

additional relation given by 5 (Oz1 a5?) = 0 with

di =

lem(lerlJes)) {1 if cieo € Zco; (5.7)

Ci —1if cieo € Z~p.

Having computed all possible relations arising from Proposition 5.2(ii), let us now
show how to find the possible relations arising from Proposition 5.2(i), and thus de-
termine all defining equations for G C G,,(C)?. We still denote by M C Z2 the
Z-submodule generated by pairs (ms,me) as in Proposition 5.2. If M = {(0,0)} then
G = G,,(C)? as in Proposition 5.2(iii), so from now on we assume M is not trivial. We
saw above that either M = Z2 or else M = Z - (m1, m2) with ged(my,mg) = 1.

Suppose M = Z-(mq, msz). If the value of ¢ given in (5.6) is not 0, then G is defined by
the single equation ¢ (%2 = 0 as in Proposition 5.2(ii). On the other hand, if this
¢ = 0, then we must decide whether there exist: a primitive n-th root of unity (,, integers
7,5 such that 0 < 7 < s and ged(r, s) = 1, and g € Q(x)* such that u]" u}"? = an%.
If so, then G is defined by the single equation (aj"*a}"?)* =1 as in Proposition 5.2(i),
where £ := lem(n, s), the least common multiple of n and s; otherwise, o]" a5 has
infinite order in G, (C?) for every ( 0 a ) € G, and G is defined by the single equation
d(a" a5?) = 0 as in Proposition 5.2(ii) only.

If M = Z2, let again ¢; := q—dres(%u:),oo). If exactly one ¢; is 0, say ¢c; = 0 # ca,
then we must decide whether there exist: a primitive n-th root of unity (,, integers r, s
such that 0 < r < s and ged(r,s) = 1, and g € Q(x)* such that u; = (,q" Ugg) If so,
then G is defined by the equations: af = 1 as in Proposition 5.2(i), with £ := lem(n, ),

and 9 (6%2)) = 0 as in Proposition 5.2(ii); otherwise, G is defined instead by §(a;) =0

and ¢ (5%‘2)) = 0. The case where c; = 0 # ¢; is analogous. If ¢1,co # 0, then we
must decide whether there exist: a primitive n-th root of unity (,, integers r, s such that

0<r<sandged(r,s) =1, and g € Q(x)* such that uf*u5? = ¢, q7 22 U(g) , with dy,da, €
defined as in (5.7). If so, then G is defined by the equations § (T) =0fori=1,2
as in Proposition 5.2(ii), together with (af'a5%)¢ = 1 as in Proposition 5.2(i), where
£ :=lem(n, s); otherwise, G is defined by 0 <M> =0 fori=1,2 only.

The case where M = Z? and ¢; := ¢- dres(a(“‘) o0) = 0 for both ¢ = 1,2 is similar
in principle: we must decide whether there exist mq,mo € Z, a primitive n-th root of
unity ¢,, integers r,s such that 0 < r < s and ged(r,s) = 1, and g € Q(x)* such
that u]"'uy? = nqg"(g) If so, then G is defined by 6(a;) = 0 for i« = 1,2 as in
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Proposition 5.2(ii), together with (a]"'a5*?)¢ = 1 as in Proposition 5.2(i), where ¢ :=
lem(n, s); otherwise, G is defined by 6(a;) = 0 for i = 1,2 only.

qur 0(9)
pair (mq,mz) is addressed in [11, §3]: a stralghtforward modiﬁcation of the algorithm

mi m2

The problem of deciding whether u := as above for a given single
given there allows us to compute a reduced form 4 = hm"§ where: h € Q*%; n € Z;
p,q € Q[z] are monic such that ged(p,0™(q)) = 1 for every m € Z; if h = (q' for some
root of unity ¢ and ¢t € Q, then 0 < ¢ < 1; and such that there exists g € Q(z)* with

u = uM for some g € Q(z)*. Thus we only need to check whether @ = (,q".

In the case where M = Z? and ¢; := ¢- dres(é(“l) o0) = 0 for both ¢ = 1,2, one can
show that the standard form u; = h; with h; € Q and one needs to decide whether h;
and hs are multiplicatively independent modulo qZ. We do not know how to produce a
priori bounds on the possible coefficients (my, ms) such that A"*hy*? € ¢% in general,
so in this case only we offer no improvements on the algorithm in [11, §4.2]. But in
the remaining cases, we have reduced the computation of all the possible relations in
Proposition 5.2(i) to checking a finite list of possibilities for (my,ms) € Z2, although
this requires the ability to compute the g-discrete residues of 5(“1) (cf. [26, §2.2]).

6. Reducible non-diagonalizable groups

We recall the notation introduced in the previous sections: k = C(z), where C is a
S-closure of Q, o denotes the C-linear automorphism of & defined by o(x) = gz, and
o(x) = x.

We now proceed to define the additional notation that we will use throughout this
section. We will assume that there exists exactly one solution u € Q(z) to the Riccati
equation (4.3), so that the o-Galois group H for (4.1) is reducible but not diagonalizable
as in Proposition 4.5(3), and the difference operator implicit in (4.1) factors as

o’ +ac+b=(0—2)o(c—u),
as we saw in §4. This means that there is a C-basis of solutions {y1,y2} in any cé-PV

ring R for (4.1) such that y1,y2 # 0 satisfy o(y1) = uy1 and o(y2) — uys = yo, where
Yo # 0 satisfies o(yo) = Lyo. A fundamental solution matrix for (4.2) is given by

(ot o) = (5 i) o1

If we now let A = (Pb fa), T = (1:5 }), and v =
(4.3)), we have that

A= (550 ) (G ) () =6 ) e

= —o(u) — a (since u satisfies
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Therefore, the systems (4.2) and o(Z) = BZ are equivalent (in the sense of Defini-
tion 2.6), and a fundamental solution matrix for the latter system is given by

Ty — (1—w 1\ [wn Y2 _ (v v2two)_,
—u 1 uyr  uy2 + Yo 0 Yo

For any v € H, the o-Galois group for (4.1), we have that

N e (R R AN &) (o &un+ Ay + Ao
0 Yo 0 Yo 0 )\7 0 )wyo ’

(6.2)
and therefore the action of H on the solutions is defined by
Y1) =ayyis (o) = Ayyo;  and  y(y2) = Aye + &y (6.3)
It will be convenient to define the auxiliary elements
w= 2 and z = y_27 (6.4)
uyY1 Y1
on which o acts via
(w) b w (2) =z+w (6.5)
o = o(z) =
uo(u) ’
and H acts via
Ay Ay &
=0 =2 6.6
) = w9l = ek (6.6)

We observe that the o-PV ring

S = kly1,y2 + Yo, ¥o, (y1y0) "] = k[y1, w, 2, (y1w) "]

and the ¢-PV ring

R =k{y1,92 + y0, %0, (1%0) ' }s = k{y1,w, 2, (y1w) ' }5.

Our computation of the od-Galois group G for (4.1) in this section will be accomplished
by studying the action of G on y;, w, and z. We begin by defining the unipotent radicals

Ru(H)Hﬂ{G) %)’gec} and Ru(G)Gﬁ{Gj ﬁ)‘gec}, 6.7)

and observe that R,(H) (resp., R,(G)) is an algebraic (resp., differential algebraic)
subgroup of G,(C), the additive group of C. By [11, Thm. 13(2)], R,(H) = G,(C) if
and only if there exists exactly one solution u € k to (4.3). We observe that
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R.(G)={vye G| y(y;) =y; fori=0,1}.

The reductive quotient

omo={(5 4)]-<c)

is the 0d-Galois group corresponding to the matrix equation

o= (5 0)r, (6:5)

which we compute with Proposition 5.2 and Remark 5.3.

In the following result, we compute the defining equations for the od-Galois group
G for (4.1) in a special case. Recall that u € Q(z) denotes the unique solution to the
Riccati equation (4.3), H denotes the o-Galois group for (4.1), and w is as in (6.4).

Proposition 6.1. Suppose there is exactly one solution u € k to (4.3) and H is commu-
tative. Then H is a subgroup of

6@ x6u0)={(§ &)

a,éeC, a# O} (6.9)

with R,(H) = G4(C). Moreover, there exists w € Q(z) satisfying (6.5), and G is the
subgroup of (6.9) defined by the following conditions on « and .

(i) There exist m € N and f € Q(z)* such that u™ = @ if and only if & = 1.
(ii) There exist ¢ € Z and f € Q(z) such that @ = o(f) — f + c if and only if
0 ((Sg—a)) = 0. Moreover, ¢ = 0 if and only if §(a) = 0.

(iii) There exist: c € Q; f € Q(z); and a homogeneous linear 5-polynomial L € Q{Y}s
such that E(@)—w =o(f)—f+4cif and only if § (g) =L (5 (%)) Moreover,
c=0 if and only if £ = aﬁ((s(a—a)).

(iv) If none of the conditions above is satisfied, then G = H = G,,(C) x G,(C).

Proof. First recall that when there is exactly one solution v € k to (4.3) the o-Galois

group H of (4.1) is reducible but not diagonalizable by [11, Thm. 13], and therefore H
is a non-diagonalizable subgroup of

G (C) X Go(C) = {(8‘ i)

In particular, R,(H) = G,(C) and a straightforward computation shows that H is
commutative if and only if it is actually a subgroup of (6.9). We recall the notation

a, &\ e oz)\;éO}.
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introduced at the beginning of this section: v = %, {y1,y2} is a C-basis of solutions for
(4.1) such that o(y1) = uy; and o(y2) — uy2 = Yo, where yo # 0 satisfies o(yo) = vyo.
The embedding H — GL3(C) : v — M, is as in (6.2), and the action of H on the
solutions is given in (6.3). The auxiliary elements w and z are defined as in (6.4); they
are acted upon by ¢ as in (6.5) and by H as in (6.6). The relation y(w) = 3—1111 for each
v € H from (6.6), together with Theorem 2.9, imply that w € k. Since o(w) = #(u)w
from (6.5) and b,u € Q(z), if w € k we may actually take w € Q(x) by [10, Lem. 2.5]
(cf. Remark 4.6). Thus, if we can find f € k witnessing the relations in items (i) or (ii),
then we may take f € Q(z), as already discussed in the proof of Proposition 5.2, and
similarly if we can find f € k and ¢ € C witnessing the relation in item (iii), then we
may take f € Q(z) and ¢ € Q.

Items (i) and (ii) were already established in Proposition 5.2. Let us prove item (iii).

Setting % =: g € R we have that
o(u o
olg) —g= ) an (g) =g+ o) (6.10)
u oy

for v € G (cf. the proof of Proposition 5.2). On the other hand, the actions of ¢ and
v € G on the element z € R defined in (6.4) in this case is given by

o(z)—z=w and v(z)=z+ 5—7 (6.11)
Qy
Consider the relation stipulated in item (iii):
J
E((;)) —w=o(f)—f+gc (6.12)

where £ € Q{Y}5 is a linear differential polynomial, f € Q(z), and ¢ € Q. It follows from
(6.10) and (6.11) that, for any homogeneous linear differential polynomial £ € C{Y};
and v € G, we have that

Suppose there exist f € Q(z) and a homogeneous linear differential polynomial £ €
Q{Y}5 satisfying (6.12) with ¢ = 0. Then £(g)—z— f € k°, which implies that £(g)—z €
k, and therefore £ (%) = i—: for every v € G by Theorem 2.9. On the other hand, if

L € Q{Y}s is a linear differential polynomial such that £ (5(%:)) = i—: for every v € G,
then L(g) — z = f € k satisfies (6.12) with ¢ = 0.
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More generally, suppose there exist f € Q(m), ¢ € Q, and a homogeneous linear
differential polynomial £ € Q{Y}s satisfying (6.12). Then we see that £((g)) — 6(z) —
5(f) € ko, and therefore £(6(g)) — §(z) € k, which implies that

c (5 (M» s (fi) (6.13)
Qy Qny
for every v € G. On the other hand, if £ € Q{Y}; is a homogeneous linear differential
polynomial such that (6.13) holds for every v € G, then £(§(g)) — 6(g) =: h € k, and
therefore the element L£(g) — z € R is differentially dependent over k. It then follows
from [13, Prop. 3.10(2.a)] that there exist f € k and ¢ € C? = Q satisfying (6.12). This
concludes the proof of item (iii).
By [13, Cor. 3.2], g and z are differentially dependent over k if and only if there
exist homogeneous linear differential polynomials £1, Lo € Q{Y}s, not both zero, and
f € Q(x), such that

£ (M) - Lot = o(h) - J. (6.14)

u

Hence if there do not exist such £; and f, the elements g,z € R are differentially
independent over k, which implies that G = G,,,(C) x G,(C) by [13, Prop. 6.26]. Thus,
assume there do exist £1, Lo € Q{Y}5, not both zero, and f satisfying (6.14). If L5 =0,
then £; # 0 and it follows from (6.14) and (6.10) that g is differentially dependent over
k, and therefore so is y;. By Corollary 3.5, this implies that there exist f € Q(:c) and
¢ € Z such that @ =o(f) — f +¢, as in item (ii). To prove item (iv), let us show that
if there exist homogeneous linear differential polynomials £, Lo € Q{Y}s with L5 # 0
and f € Q(z) satisfying (6.14), then we can construct a linear 6-polynomial £ € Q{Y}5
and ¢ € Q such that

E(M) —~w=o0(f)— f+c forsome feQ(z),

u

as in item (iii). Let ord(£;) = m; and £; = Z;.n:io ¢ ;00 (Y) for i =1,2; if £4 =0, we set
my = 0, and we adopt the convention that ¢; ; := 0 for every j > m,;. By Proposition 3.3,
the existence of f € k as in (6.14) implies that

0= geares (12 (M) = £atw). 9.5 (6.15)

for every ¢Z-orbit [B]q with g € Q* and every j € N. Let r € N be the largest order
such that

g-dres(w, [8]4,7) # 0 for some q%-orbit [A],.
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Then it follows from (6.15) and Lemma 3.4 that, for each ¢Z-orbit [], with 3 € Q*,
the ¢-discrete residues

Cl,m2+r71(_]—)m2+7._1(m2 4o — 1)!5m2-§—7-_1q_dres(6:)7 [6}q7 1)
= q—dres(£1 (%), [Blg, ma + 7’)
and

(mg +1)!
(r—1)!

are equal. Since 8 # 0, the above equality is equivalent to

C2,my (—1)72 B g- dres(w, [Bq, ) = g-dres(La(w), [Bq, m2 + 7)

Cl,mo+r—1 (_1)7’ 1( ) 67" lq dres(5(u) q, ) — q_dres(w’ [B]Q’T) (616)

CQ,mz

Set ¢,y = 2= Then (6.16) is equivalent to

g-dres <cr15T_1 (@) —w, [ﬁ]qﬂ“> =0

for every ¢%-orbit [B]y with 8 € Q* simultaneously. We continue by taking the next
highest ' < r — 1 such that g-dres(w, [B]q, ') # 0 for some [§],, and proceed as above
to find the coefficient ¢,v_1 € Q of £ such that

g-dres <cr_15” (%“)) I (i;)) —w, [/3]q,j) 0

for every j > 1’ and every ¢%-orbit [B]q with 8 € Q* simultaneously. Eventually we will
have constructed a homogeneous linear §-polynomial £ € @{Y}g such that

g-dres (z: (%‘)) —w, [BlanJ ) 0

for every gZ-orbit [3], with 3 € Q* and every j € N. Set ¢ = g-dres (.C (%) —w, oo) €

Q. Then it follows from Proposition 3.3 that E(%) —w—c=o0(f)— f for some f € k.
By [10, Lem. 2.4] (cf. Remark 4.6), we may take f € Q(x), so we are indeed in case (iii),
as we wanted to show. O

The main ideas for the proof of the following result were communicated to the first
author by Singer in [23], during the development of the algorithm in [4].

Proposition 6.2. Suppose there exists exactly one solution u € Q(z) to (4.3) and H is
not commutative. Then R, (G) = R, (H) = G4(C).
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Proof. We recall the notation introduced at the beginning of this section: u € Q(z) is
the unique solution in k to the Riccati equation (4.3), v = %, {y1,y2} is a C-basis of
solutions for (4.1) such that o(y1) = uy1 and o(y2) — uys = yo, where yo # 0 satisfies
o(y0) = vyo. The embedding G — GLy(C) : v+ M, is as in (6.2), and the action of G
on the solutions is given in (6.3). The auxiliary elements w and z are defined as in (6.4);
they are acted upon by o as in (6.5) and by G as in (6.6).

By [7, Prop. 11], either R, (G) = G,(C), or else

Ru(G) = {(é §> ’66(], L) :o}, (6.17)

for some nonzero monic homogeneous linear d-polynomial £ € C{Y }s. Since R,(G) is
normal in G, this implies that (cf. [13, Lem. 3.6])

—1 g1yl
(s (i )69
(5“7 erio

for each v € G and (é f) € Ry(G). If Lis as in (6.17), then L(§) = 0 = L(ay ;&) = 0.
By [13, Lem. 3.7], this implies that if ord(L) # 0, then §(a,A;') = 0 for every v € G.
But since £ # 0, ord(£) = 0 if and only if R,(G) = {0}, which is impossible, for then
we would have that

¢=a/m@={(% \)|vec)

is commutative, and since G is Zariski-dense in H by Proposition 2.10, this would force
H to be commutative also, contradicting our hypotheses.

We proceed by contradiction: assuming R, (G) # G,(C), we will show that R,(H) =
{0}, contradicting our hypotheses. We have shown above that if R,(G) # {0} then
there exists a monic homogeneous linear d-polynomial £ € C{Y}s with ord(£) > 1 such

that R, (G) is as in (6.17) and ¢ (i—:) = 0 for every v € G. It follows from (6.6) and
Theorem 2.9 that the group {)\A,a,;l | v € G} C G,,(Q) is the 06-Galois group for the

system
)= (o)

which by [13, Prop. 2.9] must be integrable over k in the sense of [5, Def. 3.3]. It is shown

in [5, Prop. 3.6] that this system must then be integrable over Q(z), and therefore by
[24, Thm. 2], there exist ¢ € Q(z)* and ¢,d € Q with ¢ # 0 such that @ := ¢~ w satisfies
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&
Il
&

c

d

)

o(w)
5()

&

It is convenient to point out now that ¢ # ¢" for any r € Z, because otherwise we
would have @ = ez” for some e € C, which would imply that w € k, contradicting our
hypothesis that H is not commutative (cf. the proof of Proposition 6.1: H is commutative
if and only if ay = A\, for every v € H if and only if w € k by (6.6) and Theorem 2.9).
We will need to use the fact that ¢ ¢ ¢Z at the end of the proof.

We claim that

W L(w) =: fr € k, and moreover fo=L(t) (6.18)

for some homogeneous linear differential polynomial 0 # £ € C{Y};. In fact, this is true
for any non-zero homogeneous linear differential polynomial in C{Y};, not just for the
specific £ € C{Y'}s in (6.17). It suffices to show that w~16"(w) belongs to the C-linear
span D of {67(t) | j € Z>o} for every n € N. We prove this by induction: the case n =0
is clear, since W~ 'w =t € D. Assuming that W~ 16" (w) = f,, € D, we see that

W (w) = w6 (6" (w) = W (f®) = 6(fn) +df, €D

as well. Moreover, this computation also shows that £, £ € C {Y'}s have the same order
and the same leading coefficient.
By (6.5) and (6.6), the element £(z) € R satisfies

a(L(z)) — L(z) = L(w), and  y(L(z))=—LL(z)+ L (gi)

for every v € G, since §(A\ya;') = 0 for v € G. Hence y(L(z)) = L(z) for every
v € Ry (G), and therefore by Theorem 2.9 we have that £(z) € k{yo,y1)s =: F, the total
ring of fractions of the o8-PV ring k{yo,y1, (yoy1) '}s for (6.8); we emphasize that the
latter ring is not necessarily a domain, so F' is not necessarily a field.

For v € G/R,(G) ~ Gal,s(F/k) =: G given by (aO” )\07) € G (C)? let

7 =y L(2) — 0 L(2), (6.19)

where we note that since £(z) € F is fixed by R, (G), the action of the reductive quotient
G on L(z) is well-defined. We claim that {7, | v € G} is a 1-cocycle of G with values
in the G-module M := C - @~ (see [18, VI.10]). Since M is the solution space for
o(W) = ¢ 'W in F, it is clear that M is stabilized by G. Moreover, it follows from

(6.18) that

o(7) = (7= Do o) L£(2)) = (v — V(e 0 L(z) + ¢ o~ L(w)) = ',
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since ¢~ L(w) = ¢~ fz € k and therefore y(¢™ fz) = ¢~ f for every v € G. Hence
7y, € M for each v € G. To verify the cocycle condition, note that for v,6 € G we have
that

Ty = V(D L(2)) — 0 L(2) = y(0(0 " L(2)) — 0 L(2)) + (v(@ " L(2)) — d T L(2))
=(79) + 7.

Since G is not commutative (for otherwise H would be commutative, as discussed
above and contrary to our hypotheses), there exists v € G such that oy # Ay, and
therefore m — ~(m) —m is a G-automorphism of M for such a v € G, since G is
commutative. By Sah’s Lemma [18, Lem. V1.10.2], the cohomology group H(G, M) =
{0}, and in particular {7, | ¥ € G} is a 1-coboundary, i.e., there exists ew ™' € C-w ! =
M such that 7, = y(ew 1) — ew!. It follows from the definition of 7., in (6.19) that

YW L(2) —ew ™) = 0T L(2) — e
for every v € G, which implies that w~'£(z) — ew ™! =: g € k by Theorem 2.9. Hence
few = L(w) = 0(L(2)) — L(2) = o(gw) — g = (co(g) — g)w,
and therefore, since ¢ € Q%
L)y =cfr=0(g)—c 'y,

where 0 # L € C{Y}s is the homogeneous linear differential polynomial defined implic-
itly in (6.18). Since ¢ ¢ ¢%, it follows from [13, Prop. 6.4(2)] that there exists h € k such
that

c't=0o(h) —c'h.
But then hw satisfies
o(h®) — hiv = (co(h) — h)w = tw = w,
and therefore o(z — h) — (2 — hw) = 0 by (6.5), which implies that z — hw € C and
therefore z € k[w] is fixed by R,(H). But v(z) = z + &, for every v € R, (H), and

therefore R, (H) = {0}, which contradicts our hypotheses and concludes the proof. O

Remark 6.3. To compute the difference-differential Galois group G for (4.1) when there
exists exactly one solution u € Q(x) to (4.3), we apply Propositions 5.2, 6.1, and 6.2 as
follows. First, compute the defining equations for the reductive quotient

G = G/R.(G) = {(Og )&) ‘ e G},
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which is the od-Galois group for the system (6.8), as in Proposition 5.2 and Remark 5
with u; = u and us = v. In particular, this requires computing the g-discrete re51dues
q- dres( w) [B]q,l) for each gZ-orbit [], with 3 € Q*. Note that this will produce
all the deﬁnlng equations for G relating o and A only, and it remains to compute the
remaining defining equations for G, if there are any.

If uv=! # % for any w € Q(x) as in Proposition 5.2(i), then R,(G) = G,(C) by
Proposition 6.2, and therefore there are no more defining equations for G. Otherwise,
compute such a w € Q(z), as well as its g-discrete residues g-dres(w, [3], ) for every
q%-orbit [B], and j € N (only finitely many of these are non-zero). In this case,

GgéxGa(C)—{(g‘ g)‘ (8‘ O)ea gec} (6.20)

and this containment is proper if and only if there exist f € Q(z), a homogeneous linear
differential polynomial £ € Q{Y};, and ¢ € Q as in Proposition 6.1(iii).

Let us first compute the defining equations of G in (6.20) when ¢-dres(w, [8]4,7) =0
for every ¢Z-orbit [8], and j € N, in which case g-dres(w,o0) =: ¢ # 0 and —w =
o(f)— f —c for some f € Q(z) by Proposition 3.3, as in Proposition 6.1(iii). In this case,
G is contained in the subgroup of (6.20) defined by § (E) =0, and R,(G) C G,(C°). If
@ = o(f) — f for some f € Q(z) as in Proposition 5.2(ii), so that () = 0 for every
v € G, then G is the subgroup of (6.20) defined by §(¢) = 0, and R, (G) = G,(C?). If
there exist f € Q(x) and 0 # ¢ € Z as in Proposition 5.2(ii), so that d (5(%3)) = 0 for
every v € G but there exists v € G such that §(ay) # 0, then G is the subgroup of (6.20)
defined by & = cd(a), and R, (G) = {0}. If there are no f € Q(z) and & € Z such that
@ = 0(f) — f + & then G is precisely the subgroup of (6.20) defined by d (%) =0,
and R, (G) = G4(C?).

Assuming now that some g-discrete residue g-dres(w, [8]q,7) # 0, let » € N be as
large as possible such that g-dres(w, [8]q,7) # 0 for some q%-orbit [Blq. Write the linear
differential polynomial

L= i o' (Y) € Q{Y}s
1=0

with undetermined coefficients, and decide whether the system of linear equations over

Q defined by setting
g-dres <£ (ﬁ) —w, [,B]q,j) =0 (6.21)

u

for every qZ-orbit [3], and 1 < j < r admits a solution. If there is no solution, then
again we have that R,(G) = G,(C) and G is precisely the group in (6.20). If there is a
solution, then it is unique and ¢,_; # 0. In this case, setting
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¢ := cg - g-dres (5(11)’ oo) — g-dres (w, 00) , (6.22)
u

there exists f € Q(x) as in Proposition 6.1(iii) by Proposition 3.3, and G is the subgroup
of (6.20) defined by the corresponding relation stipulated in Proposition 6.1, depending
on whether the ¢ € Q defined in (6.22) is zero or not. If ¢ = 0 then R, (G) = 0, and if
¢ # 0 then R,(G) = G,(C?).

Since R, (G) = {0} whenever there is not exactly one solution u € Q(z) to (4.3) (i.e
either there is no solution or there is more than one solution to (4.3) in Q(z)), we deduce
the following result from Remark 6.3, which generalizes [13, Prop. 4.3(2)].

Corollary 6.4. If G is the 0d-Galois group of (4.1), then the unipotent radical R,(G) is
either {0}, G4(C?), or G,(C).

7. Irreducible and imprimitive groups

In this section we will denote k; = C'(z), where C is a d-closure of Q, o denotes the
C-linear automorphism of k defined by o(z) = qx, and §(z) = 1. It will be convenient to
use similar notation as that of Section 4: fix once and for all g» € Q such that ¢5 = ¢, and
let ko := C(x2) be the od-field extension of k; defined by setting 3 = z, o(12) = gax2,
and 0(x2) = %.732.

Let us now suppose that there are no solutions in Q(z) to the first Riccati equation
(4.3). We claimed in the statement of Proposition 4.5, but have not yet proved, that
under these conditions the o-Galois group H for (4.1) over k should be irreducible, and
that H should be imprimitive if and only if one of the following possibilities holds:

(1) there exist two solutions u1,us € Q(22)\Q() to the first Riccati equation (4.3) such
that uy = @, is the Galois conjugate of u; over Q(z); or

(2) either a = 0 or else there exists a solution e € Q(z) to the second Riccati equation
(4.5); or

(3) @ # 0 and there exist two solutions ej,es € Q(22)\Q(z) to the second Riccati
equation (4.5) such that e; = é; is the Galois conjugate of e; over Q(x).

Note that (2) and (3) above are mutually exclusive and together exhaust the possibility
that the more compact Proposition 4.5(5) holds. We will address each of the possibilities
(1), (2), and (3) above in Sections 7.1, 7.2, and 7.3, respectively, and establish in each
case that H is indeed irreducible and imprimitive in each of these scenarios, as stated in
Proposition 4.5.

By [26, Prop. 12.2(1)], in any case the group of connected components H/H® must be
bicyclic. The irreducible and imprimitive algebraic subgroups of GLq ((@) with bicyclic
group of connected components are listed in the following result, which we prove using the
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classification of the algebraic subgroups of GL2(C) developed in [21]. In the classification
below we denote {#1} x {£1} by {#1}? and G,,(C) x G,,(C) by G,,(C)2.

Lemma 7.1. If H is an irreducible and imprimitive algebraic subgroup of GLo(C) such
that H/H® is bicyclic, then H is the subgroup of

{il}xGm(C)Q:{<%1 OEL) al,ageCX}U{<;\)2 >(‘)1>‘/\1,)\260X} (7.1)

defined by precisely one of the following sets of conditions on aq, g, A1, and As.

(1) H = D,, for some m € N, defined as the subgroup of (7.1) such that (i)™ =1
and (A A2)™ = —1; or

(2) H = D}, for some m € N, defined as the subgroup of (7.1) such that (aya2)™ =1
and (M A2)™ =1; or

(3) H = {£1}2xG,,(C), defined as the subgroup of (7.1) such that a2 = a3 and A\? = \3;
or

(4) H = {£1} x G,,,(C)? as in (7.1), with no other conditions on oy, as, A1, and \o.

Proof. The algebraic subgroups H C GLy(C) are classified in [21] according to their
projective image H C PGLy(C). Since H is irreducible and imprimitive with bicyclic
group of connected components, it is an infinite non-commutative subgroup of (7.1), and
therefore its projective image is either H = D,,, the dihedral group of order 2n for some
n > 2, or else H = Do, the projective image of

pe{(5 2) [ecedo{( ) [recr).

If H = D,, then D,, must be commutative, since the algebraic quotient map H — H

factors through H/H®°, which we are assuming is abelian, and therefore n = 2 (corre-
sponding to D,, ~ K, the Klein four-group) in this case. By [21, Thm. 4], the minimal
subgroups (see [21, §2] for the definition) of GLy(C') having projective image Dy are Ds 4

(o %) 2 )

and (ye1 denotes a primitive (2¢+1)-th root of unity. Therefore the only infinite sub-
groups H C GL3(C) having projective image Dy are given by C* - Dy 4, which are all
equal to 7~ 1(Dy), where 7 : GLo(C) — PGLy(C) is the projection map. Finally, note
that C* - Dy g for any £ € Z > is precisely the subgroup of (7.1) defined by the conditions
in item (3): o = a3 and \? = \3.

for some ¢ € Z>(, where
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If H = Dy, then either H = {£1} x G,,(C) in (7.1) as in item (4), or else H =
tn, - Dog ¢ for some ¢ € Z>o and some n € N, where p,, denotes the group of n-th roots

i ({5 ) e} (. 5)

where again (ye41 is a primitive (2¢+1)-th root of unity, since by [21, Thm. 4] the D ¢ are

of unity, and

all the minimal subgroups of GLy(C) with projective image Do.. All of these groups have
the property that H/H?® is bicyclic. It remains to show that for any n € N and ¢ € Z >
the group gy, - Doo ¢ is one of the groups described by the conditions in either item (1) or

item (2). Let us write A, ¢ := {(al 0 ) ’ a1, ap € C’X} N (tn, - Do r), the group of all

0 o
diagonal matrices contained in fiy, - Do ¢, and V, ¢ := {(f2 ’\01) ‘ A1, Ao € CX} N (p, -

D ¢) for the complementary coset of A, ¢ in p, - Do ¢ consisting of all the antidiagonal

matrices contained in g, - Do ¢. Then we see that Vi, ¢ = Coer1 - Ay y - (? (1)), and
Ane = (G, Car) - {(g agl) | o € C*}. Therefore,

0 m
A {(061 a2> ay,as € C* ()™ = 1}, where
ilem(n,2%) if £ > 1;
m:= 4% if £ =0 and 2|n;
n

if £ =0and 2{n;

because (((n, Coe))? = ((m) with m defined as above. Since

_ 0 a1Cpe+1
Vn,é B {<02<2£+1 0 )

we have that fi, - Do is the group described in item (2) if and only if 2¢|m (which

ar,ap € O, (a1an)™ = 1}’

occurs precisely when either £ = 0 or else £ > 1 and 2“1\71), and fiy - Do ¢ is the
group described in item (1) otherwise, since for £ > 1 we always have that 2/=%|m, and
therefore (24, a100)™ = (Craran)™ = —1, precisely when 2¢  m, 2/~ |m (with ¢ > 1),
and (v1a2)™=1. O

Remark 7.2. Given an irreducible and imprimitive algebraic subgroup H C GL3(C') such
that the group of connected components H/H® is bicyclic, we can uniquely identify it
among the possibilities listed in Lemma 7.1 by the knowledge of two auxiliary groups:

s {(5 2)

det(H) = {det(h) | h € H} C G(C),

al,ager}ﬂH and
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respectively the subgroup of diagonal matrices in H and the image of H under the
determinant map. Indeed, A(H) = G,,(C)? if and only if H = {£1} x G,,,(C)? as in
Lemma 7.1(4); A(H) = {(al 0 ) ) ar,an € C*, af = a%} if and only if H = {£1}? x

0a2

Gm(C) isasin Lemma 7.1(3); and A(H) = {(061 0?2) ‘ o, 00 € CX, (alag)m} for some
m € N if and only if H is one of the groups D, or D described respectively in items (1)
or (2) of Lemma 7.1. To decide between these cases, note that det(H) = (ajaa, —A1\2)
has det(H)™ = {((—=1)™(A1A2)™); hence, if m is even, then H = D_ if and only if
det(H) = piom, and H = D if and only if det(H) = p; and if m is odd, then H = D,
if and only if det(H) = ., and H = D;} if and only if det(H) = piom.

7.1. Irreducible and imprimitive (1): diagonalizable over the quadratic extension

Supposing there are no solutions to (4.3) in Q(x), but there are two solutions u, % €

Q(x3) to (4.3), Galois-conjugate over Q(z), the system (4.2)

oY) = 0 1 Y with fundamental solution matrix Y = ( ¥ Y2 ). and
—b —a o(y1) o(y2)
o(Z) = (g 2) Z with fundamental solution matrix Z = (2’01 ZO2> (7.2)

are equivalent over Q(acg) via the gauge transformation Z = TY, where (cf. Remark 5.1)

T := (i ?ﬂ) € GLy(Q(z2)). (7.3)

Let us write Sy = ko[Y,det(Y) 1] = ka[21, 22, (2122) 1] for the o-PV ring for (4.2) (or
equivalently for (7.2)) over ko. Then S; = k1[Y,det(Y)™!] C Sy is a o-PV ring for (4.2)
over ky. Let us also write H; = Gal,(S;/k;) for i = 1,2, and H = Gal,(S2/k1). Since
(7.2) is a diagonal system, the group Hs is diagonalizable. By Proposition 4.2,

H ~ H1 X o 12,

where m € {1,2} is determined by the intersection S; N ke = k;,, inside Sa, and Hs is
an index-m subgroup of H;. We claim that any 7 € H such that 7(x2) = —xo has the
property that 7 := 7|g, € H; is given by an anti-diagonal matrix. From this it will follow
that Hs has index exactly 2 in Hy, and Hy = Hs U Hs - 7 is irreducible and imprimitive,
as claimed in Proposition 4.5(4).

To see this, let M, € GL2(C) such that 7(Y) = Y M,. Then for the gauge transfor-
mation 7" given in (7.3) we see that

F(Z2)=7TY)=TYM, = (") ZM,.
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On the other hand, we see that o(7(z1)) = 7(0(21)) = 7(uz1) = u7(#1), and therefore
7(21) = A2zo for some Ay € C*. A similar computation shows that 7(z2) = Aj2; for
some \; € C'*. From this it follows that

@ (9 )= ()~ )<L %)

Hence M, = (/\02 )61 ), as we wanted to show.
Remark 7.3. Having established that the o-Galois group H; for (4.2) over k; is indeed ir-
reducible and imprimitive as claimed in Proposition 4.5(4), we can compute this H; from
among the possibilities listed in Lemma 7.1 as explained in Remark 7.2, by determining
the subgroup A(H;) of diagonal matrices in Hy, and the group det(Hy) C G,,,(C).

Since det(H;) is the o-Galois group for the system o(y) = by, we see that det(H;) =
tm if and only if m € N is the smallest positive integer such that b = @ for some
f € Q(x), and if there is no such m then det(H;) = G,,(C).

Since A(H7) = Hs is the o-Galois group for (7.2) over k2, we can compute the defining

equations for

1,09 € c* }
as follows:

(1) (aqag)™ =1 if and only if (ua)™ = @ for some f € Q(z2)* (and in this case H;
is D, or D;});

(2) o} = o3 if and only if (%)2 = @ for some f € Q(z2) (and in this case H; =
{£1}? x G (0));

(3) if none of these possibilities holds, then A(H;) = G,,(C)? (and in this case H; =
{£1} x G, (C)?).

The computation of the gd-Galois group Gy for (4.2) over ki, assuming that the
corresponding o-Galois group H; has already been computed as in Remark 7.3, will be
achieved analogously in the following result, by studying the od-Galois group G, for
(4.2) over k.

Proposition 7.4. Suppose there are no solutions to (4.3) in Q(x), and let u,u € Q(x3)
satisfy (4.3). Then Gy is the subgroup of

{£1} X G (C)? = {(061 o?2> ’ </\02 /})1)

defined by the following conditions on a1, as, A1, and Aa.

a1 ?é 0, /\1/\2 75 0} (74)
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(1) If Hy = D, as in Lemma 7.1(1) or Hy = D}}, as in Lemma 7.1(2), then G, = H;.
(2) If Hy = {#+1}? x G,,(C) as in Lemma 7.1(3), then:

b
G is the subgroup of Hy defined by ¢ (5%1) + 5%") =0= (5(A1) + M}.
(b) otherwise, Gy = Hj.

(a) there exist 0 # c € 27 and g € Q(x) such that ) o(g) — g+ c if and only if
)

(3) If Hy = {+1} x G,,,(C)? as in Lemma 7.1(4), then:

a) there exist ¢ € an gE_:r such that —= = o(g) — g + ¢ if and only
h ] 27 and Q h that %) if and onl

if 0 (% + %) =0= 5(5%1) + 5%2)); moreover, ¢ = 0 if and only if

(5(0(10[2) =0= (5(/\1)\2),’
(b) otherwise, Gy = Hj.

Proof. Since the systems (4.2) and (7.2) are equivalent over ks, and the latter system
is diagonal, we can compute G5 with Proposition 5.2 and Remark 5.3, but with a small
caveat. Namely, after replacing & with d := 26, we see that ko as a odo-field behaves
just as ky: o(x2) = gax2 and dz(z2) = 2. Thus we may compute the dy-algebraic group
G2 C G,,(C)? over ko using the procedure described in Remark 5.3 exactly as stated
there, and then simply replace every instance of 5 in the defining equations for Go with
%5 a posteriori. But since the system (7.2) has such a special form, not every possibility
listed in Proposition 5.2 may occur.

We saw in Remark 5.3 that G is a proper subgroup of G,,(C)? if and only if there
exist: my, my € Z, not both zero and with ged(my,ms) = 1; ¢ € Z; and g € Q(x3), such
that

mly—i—mg@ =o(g)—g+c = m2¥+m1@ =0(g)—g+e. (7.5)

Let us consider the submodule M C Z? generated by relatively prime pairs (mj,ms)
such that there exist g € Q(z2) and ¢ € Z satisfying the above conditions. Then, as we
saw in Remark 5.3, either M = {0} is trivial; or M = Z - (m1,ms) is infinite cyclic;
or M = Z?. Moreover, M = {0} is trivial if and only if the od-Galois group Gy for
(7.2) is all of G,,(C)2. In this case we must have G; = H; = {£1} x G,,(C)?, because
(G1 is Zariski-dense in H; by Proposition 2.10, and therefore (G; contains at least one
anti-diagonal matrix, whence it contains all anti-diagonal matrices.

From now on we assume that M is not trivial. It follows from (7.5) that at least one
of (1,1) or (1,—1) belongs to M. In any case it is useful to observe that

ga-dres (52(u) , oo) = d = go-dres <(52(u) , OO) )
U

U



C.E. Arreche, Y. Zhang / Advances in Applied Mathematics 132 (2022) 102273 37

where d € Z is the common degree of v and u considered as rational functions in zo.
Therefore, (1,—1) € M if and only if 6(ayaz) = 0 for every (O‘l 0 ) € Gs.

0 a2
We claim that actually (1,—1) € M if and only if H; = {£1}? x G,,(C) as in
Lemma 7.1(3). As explained in Remark 7.3, H; = {+1}? x G,,,(C) if and only if there

exists f € Q(x2)* such that (%)2 = @, which in turn implies that

Oo(u) _da(a) _ (152(f)) 1)

U U 2 f 2 f
Thus if H = {£1} x G,,(C) then (1,—1) € M. To establish the opposite implication,
let us study the reduced form of u: there exists v € Q(xz2) such that UUT”) = ewgg—;,

where e € Q% is such that if e € ¢Z then e = 1, n € Z is arbitrary, and p1, ps € Q2]
are monic such that ged(za,p1) = ged(xa,p2) = ged(pr, 0™ (p2)) = 1 for every m € Z.
We say that egcgg—; is the reduced form of u. We then see that the reduced form of u is

(—1)”6.’175”;—;. Although it need not be the case that the reduced form of 2 is exactly

(_1 nplﬁQ
pab1’

(because it is possible for ged(py, 0™ (p2)) # 1 for some m € Z), we see that in any case
the reduced form of = is similarly given by

(-1

for some jy, pa € Q[x2] monic and such that ged(zq, 1) = ged(wa, p2) = ged(P1, 0™ (P2))
=1 for every m € Z. But then we see that if, say, §; # 1, then there exists 8 € Q* such
that p1(8) = 0, and we have that

ga-dres (%, [Blgzs 1> # 0 = go-dres (@, [Blgss 1) ,

b2

and similarly if we assume instead that pa # 1. Therefore, if either p; # 1 or pa # 1, it is
impossible to have (1, —1) € M. Or in other words, if (1, —-1) € M then £ = (—1)”%3()
for some f € Q(z2)*. But in this case we then see that n must be odd, for otherwise we

would have that a; = as for every ggl 0?2) € (9, and since G5 is Zariski-dense in Hy

the same relation would be satisfied by every diagonal matrix in H;, but this does not
occur for any of the possibilities for H; listed in Lemma 7.1. This concludes the proof
that (1,—1) € M if and only if H; = {£} x G,,,(C) as in Lemma 7.1(3).

In case we do have (1,—1) € M, we must decide whether M = Z - (1,—1) or M = Z2.
We have that M = Z - (1,—1) if and only if Gy = Hs, which implies that Gy = H;. On

the other hand, we have M = Z? if and only if (1,1) € M also, i.e., (7.5) is satisfied with
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m1 = 1 = mo. But then after adding those two equations together we see that there
exists f € Q(z) (not just in Q(z3)), such that

2, 50 (52

%bb) =o(f)— f+2c

Indeed, writing u — @ = zow with w € Q(z)* and f := (g +g) + % € Q(x),
where g € Q(z2) and ¢ € Z are as in (7.5), the above equation results from comparing
determinants in o(T)AT ' = (§ 2) with T as in (7.3). Furthermore, in this case we must
have ¢ # 0, for otherwise we would have that Gy C GLy(C?) is differentially constant,
which by [5, Thm. 3.7(ii)] would imply that G; is commutative. But this is impossible,
since (1 is Zariski-dense in Hq by Proposition 2.10, so H; would have to be commutative
also, yielding a contradiction. Thus, G is a proper subgroup of Hs if and only if

(%:{(35D,<g 20 aeCXmma(ﬁ@):o}

!
Since for any (2 iOA) € G we have that \? ((1J (1)) € Go, we see that § (%ﬁ‘)) = 0 also,

concluding the proof of item (2).

It remains to show that the statements in items (1) and (3) are correct when M =
Z-(1,1).If Hy = D,, or H; = D;}., then G2 = Hs and therefore G; = H;. This establishes
item (1). Finally, supposing H; = {£1} x G,,(C)? and M = Z - (1,1), the arguments
above and in Remark 5.3 show that this occurs if and only if @ =o(f)— f+2c, if and
only if det(G2) C {a e Cx ’ 1 (@) }, with equality if and only if ¢ # 0, and moreover
¢ =0if and only if det(G2) = {o € C* | §(a) = 0}. Since G2 has index 2 in G1, det(G2)
has index at most 2 in det(G1); but since det(G2) is divisible in either case, we see that
det(G2) = det(G1), concluding the proof of item (3). O

7.2. Irreducible and imprimitive (2): rational system of imprimitivity

Supposing there are no solutions to (4.3) in Q(zz), and either a = 0 or there exists a
solution e € Q(z) to (4.5), we proceed as follows. The non-existence of solutions to (4.3)
in ko implies there are no solutions in k., either, which in turn implies that the o-Galois
group Ho, for (4.2) over ko is irreducible, and since Ho, C Hi, the o-Galois group for
(4.2) over ki, we then have that H; must be irreducible also.

The system (4.2) in this case is equivalent to

dﬂZ(i @K (7.6)

for some r € Q(z) as we saw in §4, which implies that H,, is imprimitive. Since Ho
has finite index in Hj, the classification of algebraic subgroups of GLg(C') from [21] then
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implies that H; must also be imprimitive, and therefore H; must be one of the irreducible
imprimitive subgroups of GLo(C') with bicyclic group of connected components listed in
Lemma 7.1.

Remark 7.5. In this case, we can compute the o-Galois group H; for (7.6) over ky from
among the possibilities listed in Lemma 7.1 with the aid of Remark 7.2 by computing
the diagonal subgroup A(H;) and the image of the determinant det(H;) as follows. As
before, det(H;) = pm, the group of m-th roots of unity, if and only if m is the smallest
positive integer such that b™ = 2 for some f € Q(x)*; if there is no such m, then
det(H;) = G, (C). On the other hand, A(H;) is precisely the o2-Galois group for the
system

o*(Z) = (_07" Uo(r)) Z (7.7)

over ky, which we can compute as in Proposition 5.2 and Remark 5.3 by considering k;
as a o2-field. We see that

s (3 2)

is the subgroup defined by the following conditions on a7 and «s:

aq, o GCX}

(1) (a1ag)™ =1 if and only if m is the smallest positive integer such that (ro(r))™ =
2 —
JT(f) for some f € Q(x)*;
(2) otherwise A(H;) = G,,(C)2%.

The omission of the possibility that H; = {£1}? x G,,(C) as in Lemma 7.1(3) is de-

liberate. This is impossible under the present assumptions because a? = o3 for every

2 > _
(0‘1 0 ) € A(H,) if and only if (M) = UT(f) for some f € Q(z)*. But if we let

0 as r

v € Q(x)* such that r# = ex"ﬁ—; is reduced, with e € Q* such that e € ¢% if and
only if e = 1, n € Z, and py,pa € Q[z] monic such that ged(z,p1) = ged(x, p2) =
ged(py, 0™ (p2)) for every m € Z, we would then have that the reduced form of o(r) is

exactly o(r) f((;})) — eq"z" 5&;

, and therefore

o(r)o*(v)  ,o(p)p2

q .
r v P1U(P2)

This element is not necessarily reduced with respect to o2, but the reduced form of #

with respect to o2 is given by
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where € = 0 if nis even and ¢ = 1 if n is odd, and p1, ps € Q[m] are again monic such that
ged(x, 1) = ged(xw, po) = ged(Pr, 2™ (p2)) = 1 for every m € Z. We then have that the

N2 2
reduced form of 2o with respect to o2 is (2—;) , and therefore (@) = @ for some

T

f € Q(z)* if and only if p; = 1 = P, but this would imply that o) _ W) for some
r f

f € Q(x)* already, which in turn would imply that oy = ay for every (061 (32) € A(Hy),

which is not possible according to the classification of Lemma 7.1.

In fact, we may pursue this further to conclude that it is also impossible to have

o%(g) —g+c (7.8)

for some g € Q(x) and ¢ € Z. This is because if, say, p; # 1, then there would exist
B € Q* such that $;(8) = 0, and then we would have that

e (U2 1) 10 e (A2, 1),

and similarly with the roles of p; and ps exchanged. But since

o(r) r D1 D2

modulo (02 — 1)(Q(x)), we see that (7.8) is impossible unless p; = 1 = f, which we
already ruled out above.

Having computed the o-Galois group H; for (4.2) over ki as above, we can now
compute the od-Galois group G; for (4.2) over k; with the following result.

Proposition 7.6. Suppose there are no solutions to (4.3) in Q(x2), and either a = 0 or
there exists a solution to (4.5) in Q(x). Then Hy # {+1}?>x G,,(C) as in Lemma 7.1(3),
and G is the subgroup of

et ={(% o) (v 3

defined by the following conditions on oy, s, A1, and Ao.

109 7& 0, )\1)\2 75 0} (79)

(1) If Hy = D,, as in Lemma 7.1(1) or H; = D}, as in Lemma 7.1(2), then G; = H;.

(2) If Hy = {#1} x G,,,(C)? as in Lemma 7.1(4), then:

(a) there exist ¢ € Z and g € Q(z) such that @ = o(g9) — g + ¢ if and only
if 6 (% + M) =0= 5(6(%11) + 6%2)); moreover, ¢ = 0 if and only if

a2

6(0&1042) =0= (5(/\1/\2),’
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(b) otherwise, Gy = Hj.

Proof. The fact that H; # {+1}? x G,,,(C) as in Lemma 7.1(3) under these conditions
was already established in Remark 7.5. Let us denote by A(G1) the subgroup of diag-
onal matrices in Gy, which coincides with the o2§-Galois group for (7.7) over k;. We
may compute A(G7) using the results of Proposition 5.2 and Remark 5.3. We again
denote by M C Z? the submodule generated by (my,ms) € Z?2, not both zero and with
ged(my, mg) = 1, such that there exist ¢ € Z and g € Q(z) such that

3o o)

*02 — Cc .
() 2= =0(9)—g+¢c (7.10)

which is equivalent to

m% +m1@ =o? (U(g) - ml%’Q) - <U(g) —m1@> +ec.

As we saw in Remark 5.3, either M = {0} is trivial; or M = Z-(mq,ms); or M = Z2. But
it follows from the above computation that if M is not trivial, then at least one of (1, 1)
or (1,—1) belongs to M. But we saw in Remark 7.5 that we cannot have (1,—1) € M,
since the relation (7.8) is impossible. The only possibilities that remain are therefore
M={0}or M=7-(1,1).

If M = {0}, then A(G1) = G,,,(C)?, and therefore G; = H; = {£1} x G,,,(C)?%. Let
us now suppose that M = Z - (1,1). Then if H; = D,, as in Lemma 7.1(1) or H; = D,
as in Lemma 7.1(2), then A(G1) = A(H;), which implies that G; = Hy, as claimed in
item (1). It remains to establish item (2) under the assumption that M =Z - (1,1). But
here we again have that det(A(G1)) C {a e C* ‘ ] (@) } with equality if and only if
¢ # 0in (7.10), and moreover this ¢ = 0 if and only if det(A(G1)) = {a € C* | §(a) = 0}.
Since A(G1) has finite index in G; and det(A(Gy)) is divisible in either case, we obtain
that det(G1) = det(A(G1)), which concludes the proof of item (2). O

7.3. Irreducible and imprimitive (3): quadratic system of imprimitivity

Supposing there are no solutions to (4.3) in Q(z2), a # 0, and there are no solutions to
(4.5) in Q(z), let us now assume that there is a solution e € Q(z2) to (4.5), and therefore
the Galois conjugate € of e over Q(z) also satisfies (4.5), since this Riccati equation with
respect to o2 is defined over @(m) Here again we have that the non-existence of solutions
to (4.3) in Q(z2) implies that there are no solutions to (4.3) in all of ks, which implies
that H, is irreducible as explained in §4. Since Ho, C Hs C H; (which again denote
the o-Galois groups for (4.2) over koo, k2, and ki, respectively), we then have that Hs
and H; must also be irreducible. Moreover the existence of the solution e € kg to (4.5)
implies that H,, must be imprimitive, and since H,, has finite index in H; and in Hs,
the classification of the algebraic subgroups of GL2(C') of [21] implies that H; and Ho
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must be imprimitive also. By [26, Prop. 12.2(1)], both H; and H; must have bicyclic
groups of connected components, and thus they must both be included in the list of
irreducible imprimitive subgroups given in Lemma 7.1. By Corollary 4.3, H, C H; has
index either 1 or 2. We will show that Hy # Hi, which implies that the index of Hs
in H, is exactly 2. A straightforward computation shows that the only groups listed in
Lemma 7.1 admitting another such group as an index-2 subgroup are H; = D}, with m
even, with Hs then given by one of the groups D;/2 or D;/Q.

To see that Hy # Hy in this case, recall from [11, Thm. 18] that e € Q(x) satisfies
(4.5) ifand only if d := e+2 has the property that dy+o(y) =: zq satisfies 02(2q)+rzq = 0
with r := —ao(a) + o(b) + ac?(d) if and only if y satisfies (4.1). We see that this is
equivalent to z7 := dy + o(y) satisfying 02(z7) + 727 = 0, where d and 7 denote the
Galois conjugates of d,r € Q(x2) over Q(z). Since e # €, we also have d # d and r # 7.
At this point, we could compute Hs directly as in Remark 7.5, where in particular the
subgroup of diagonal matrices A(Hy) in Hy corresponds to the o2-Galois group for the
system

oY) = 4@y ® (7.11)

over ky, where A?) := g(A)A. A computation shows that setting

d 1 _
T := (J 1) S GLQ(Q(.IQ))
we have that

2 @p-1_ (-7 0
o (T)AY'T _<0 _)7

and therefore (7.11) is equivalent over ko to the system

o2(Z2?) = <‘0’“ 0) Z (7.12)
-7
via the gauge transformation Z(?) = TY (),

If, contrary to our contention, we did have that H; = Ho, then the o2-Galois group
H1(2) for the system (7.11) over k; would coincide with A(Hs), and in particular we
would have H1(2) = A(H;) = A(H3) being diagonal. We will show that this is not the
case. For this, consider the system

(2) (2
a?2(W) = A 0 W, with fundamental solution matrix W = Y 0 ,
0 q 0 )
(7.13)
where Y2 in turn denotes a (2 x 2) fundamental solution matrix for (7.11) over k. Let

H® denote the o>-Galois group for the system (7.13) over k;. Let 7 € H® such that
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T(x2) = —x9, and let 7 := T|g, € Hfz) denote the restriction of ¥ to the o>-PV ring
corresponding to the system (7.11): S£2) = ki [Y®) det(YP)~1). Let M, € GLy(C)
denote the matrix corresponding to 7 € Hfz), so that 7(Y(?)) = Y2 M. Since the

system (7.12) is diagonal, we have that

TY? = 7(2) _ (21 0)
0 z9 ’

where 02(21) = —7r21 and 0?(23) = —729. But then we see that

FZD) =Ty @) =Ty M, = (? é) ZP M.

On the other hand, 02(7(21)) = 7(02(21)) = 7(—r21) = —77(21), and therefore 7(21) =
Aazg for some Ao € C*. Similarly we see that 7(z2) = A1z; for some Ay € C*, and

@y (01 2 (0 A1
o (1 ) (0 8)

This shows that M, = (;)2 )E)l ), as we wanted to show.

therefore

Proposition 7.7. Suppose there are no solutions to (4.3) in Q(x2), a # 0, and there
are no solutions to (4.5) in Q(z) but there exists a solution to (4.5) in Q(x3). Then
G1 = Hy = D\, for the smallest even positive integer m € 2N such that b™ = # for

some f € Q(z)*.

Proof. The remarks above show that under these assumptions the o-Galois group Ho
for (4.2) over k; has index exactly 2 in the o-Galois group Hj for (4.2) over k;. Thus
H; = D} as in Lemma 7.1(2) for some even positive integer m € 2N, and Hy is then
one of D /2 OF D:TFL /2° In either case, it follows from Proposition 7.6, applied over ko
instead of ki, that Hy = G5 is also the 0d-Galois group G for (4.2) over ko. Since the
index of G5 in Gy, the od-Galois group for (4.2) over kq, is also 2 = [H; : Hs|, in then
follows that G = H; = Djn in this case, as claimed. O

8. Irreducible and primitive groups
Let us denote again k = C(x), where C is a d-closure of Q, o denotes the C-linear

automorphism of k defined by o(z) = gz, and §(z) = 1. We write H for the o-Galois
group and G for the 0d-Galois group for

o= (% L)y (5.1)
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over k, where a,b € Q(x) and b # 0. In this section we consider the case where a # 0
and there are no solutions in Q(z3) to (4.3) nor to (4.5), which is equivalent to the
condition that SLo(C') C H by the results of [11] summarized in §4. In this case, H is
reductive and the connected component of the identity H® is either SLa(C') or GLy(C),
and in either case the derived subgroup H®9®" = SLy(C). Therefore by [5, Thm. 5.2]
SL2(C) C G, and hence G € GLy(C) is determined by the image the determinant map
det(G) C G, (C), which is the od-Galois group for o(y) = by over k. The proof of the
following result is immediate.

Proposition 8.1. Suppose there are no solutions to (4.3) in Q(x2), a # 0, and there are

no solutions to (4.5) in Q(x3). Then det(G) C G,,(C) is determined as follows.

(1) There exist a smallest positive integer m € N and f € Q(x)* such that b™ = @
if and only if det(G) = wum, the group of m-th roots of unity.

(2) There exist ¢ € Z and f € @(w) such that @ = o(f) — f 4+ c if and only if
det(G) € {a ccx|s (@
is proper, in which case det(G) = {a € C* | 6(a) = 0}.

(8) Otherwise, det(G) = G,,,(C).

= 0}. Moreover, ¢ = 0 if and only if this containment

9. Examples

In this section we compute the od-Galois group G associated to some concrete second-
order linear difference equations

a?(y) +ao(y) +by =0 (4.1)

over Q(z) with respect to the g-dilation operator o(z) = gz, where ¢ € Q* is not a
root of unity. We will first apply the algorithm of [11] to compute the o-Galois group H
associated to the equation, and then apply our algorithm to compute G.

9.1. Example

Let us consider (4.1) with

5 6(x —1)*(¢*2* + 6gz 4 6)

b= d

e 22 +6x+6 > an
oo s Q) A + 2% + (T4 — 24q 4+ T)a® — 6(g + D +12
- 2% + 62 + 6 '

Applying the procedure in [11, §4.1] or using a computer algebra system (for example,
with the QHypergeometricSolution command included in the Maple package QDiffer-
enceEquations) one can verify that there is exactly one solution u € Q(x) to the first
Riccati equation (4.3) in this case, given by
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wi= a3 (x —1)%
After computing

b (x—1)%(¢*z? 4 6gz + 6)
uo(u)  (qr —1)2(22 4 62 +6) ’

we see that

2 +624+6 -
satisfies 0(w) = —%—w, and therefore we are in the setting of Proposition 6.1. After

uo(u)

verifying that

o(u)

u

:5+x317é0(f)—f+c for any f € Q(x) and ¢ € Z,

we proceed to attempt to find a linear differential operator £ € Q[d] of smallest possible
order such that there exist f € Q(z) and ¢ € Q satisfying

£<5(u)> —w=o(f)—f+c
U
Since

x2+6x—|—6_ 5 8

w12 (@o12 -1}

has as its only non-zero g-discrete residues:
g-dres(w, [1]4,2) = 5; g-dres(w, [1]4,1) = 8; and g-dres(w,o00) =1,

we see that if there exists such an £ € Q[J] then its order must be exactly 1. Writing
L = e + eg, we find that

£<M>_w:—2€1—5 —2e1 + 2e9 — 8

u (x —1)2 x—1

+5€0 - 1,

which has the desired form o(f) — f + ¢ for some f € Q(z) and ¢ € Q if and only if

—2e1 —5=0=—2¢1 +2¢9)—8 <= 612—3 andeozg.

The corresponding value of ¢ = beg — 1 = 12—3 # 0. With this, we conclude that the
o0-Galois group for (4.1) over k; for this choice of coefficients a,b € Q(x) is

G:{(‘g g) 0,EcC, a0, 5(2):—252(@)+;5<@>}.
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9.2. Ezample

Let us consider (4.1) with
a=—(¢+¢/?Hz and  b=¢"%® - 2).

Since the valuations at = 0 of the coefficients are v(a) = 1 and v(b) = 1, we are in the
case where v(b) < 2v(a) and v(b) is odd, and therefore there are no solutions to (4.3) in
Q(x) (cf. [11, §4.1]). However, u = z +x'/? € Q(2/?) and @ = = — 2'/? € Q(x'/?) both
satisfy (4.3). Since

@:2—'—&#00)_]64_6 for any f € Q(x) and ¢ € Z,

we deduce that det(G) = G,,(C). Since there is no f € Q(2/?)* such that

(1) = (2221) o)

w) T \zV/2-1)  f 7

we conclude that the od-Galois group G for (4.1) over k; for this choice of coefficients
a,b € Q(x) is

G_{il}xGm(C)Q—{(og ci)z)’(AOz AOl)

9.8. Example

1,9, A1, Ag GOX}.

Let us consider (4.1) with a = 0 and b = —¢'/?z. This example was discussed in [5,
§4.1], as an example of a projectively integrable system whose o-Galois group H was
solvable but not abelian; in fact it was proved there using ad-hoc methods that

{5 06 8605

We can now prove this systematically, as well as find the corresponding od-Galois group

a,)\ECX}.

G, using the results of §7.1. Since the valuations at = 0 of the coefficients are v(a) = co

and v(b) = 1, we are in the case where v(b) < 2v(a) and v(b) is odd, and therefore there

are no solutions to (4.3) in Q(z) (cf. [11, §4.1]). However we see that u = 2/2 € Q(z/?)
§5(b)

and @ = —u = —z'/2 € Q(21/2) both satisfy (4.3). Since 22 = 1, we see that det(G) =

{a eC* ‘ 4] (@) = 0}. We also verify that (%) = (1) = 1. This concludes the
computation that

{3 )G 40 ) )

a, e C*,

(£2)-0-o()}
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9.4. Ezample

In [16] the authors develop algorithms for desingularization of ¢-difference-differential
operators. In [16, Example 5.2], those results were applied to study the difference equa-
tions satisfied by the colored Jones polynomials of several knots. In spite of the name,
a colored Jones polynomial is not actually a polynomial in general, but rather consists
of an infinite sequence of rational functions in Q(q), where ¢ is a formal indeterminate.
We refer to [16, §5] and the references therein for additional details. The second-order
g-difference equation (4.1) with the following choice of coefficients is satisfied by the
colored Jones polynomial (after normalization) of the knot K™t (see [16, §5, Fig. 1]):

(g — 1)(qz + 1)(q4x4 — 32 — ¢®x? — qa® — qx + 1)
¢?a?(qz? — 1)

a =

and
b— ¢ -1
qr? —1
To compute the od-Galois group for
y(¢*x) + a(z)y(gz) + b(x)y(z) = 0 (9-1)

over C(z), where C is a d-closure of the d-constant field Q(q), we proceed as follows.
Using the QHypergeometricSolution command included in the Maple package QDiffer-
enceEquations, we have verified that the Riccati equations (4.3) and (4.5) do not admit
any solutions in C(2'/?). Therefore SLy(C) € G C H, where H denotes the o-Galois
group, as discussed in §4 and §8. We see that

P -1 o(ga?—1)

b =
gz —1 gz —1

Therefore, G = SLy(C) in this case.
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