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ABSTRACT

We construct Mahler discrete residues for rational functions and
show that they comprise a complete obstruction to the Mahler
summability problem of deciding whether a given rational function
f(x) is of the form g(x?) — g(x) for some rational function g(x) and
an integer p > 1. This extends to the Mahler case the analogous
notions, properties, and applications of discrete residues (in the shift
case) and g-discrete residues (in the g-difference case) developed
by Chen and Singer. Along the way we define several additional
notions that promise to be useful for addressing related questions
involving Mahler difference fields of rational functions, including
in particular telescoping problems and problems in the (differential)
Galois theory of Mahler difference equations.
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1 INTRODUCTION

Continuous residues are fundamental and crucial tools in complex
analysis, and have extensive and compelling applications in com-
binatorics [16]. In the last decade, a theory of (g-)discrete residues
was proposed in [14] for the study of telescoping problems, which
has found essential applications in several other closely related
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problems (see [3, 4, 11, 19] for some examples). A theory of residues
for skew rational functions was developed in [9], and then extended
to Ore polynomials and applied to linearized Reed-Solomon codes
in [10]. The elliptic orbit residues defined in [18] have applications
in the combinatorial study of walks in the quarter plane. We pro-
pose here a theory of Mahler discrete residues aimed at bringing to
the Mahler case the successes of these earlier notions of residues.

Let K be a field of characteristic zero and K(x) be the field of
rational functions in an indeterminate x over K. Fix an integer p > 2.
We study the Mahler summability problem for rational functions:
given f(x) € K(x), decide effectively whether f(x) = g(xP) — g(x)
for some g(x) € K(x); if so, we say f(x) is Mahler summable.

The motivation to study Mahler difference equations comes from
several directions: they find applications in automata theory (auto-
matic sequences), transcendence, and number theory, to name a few.
We refer to [15] for more details, and also for an altogether different
approach to the Mahler summability problem: the algorithm of [15,
§3] computes all the rational solutions to any linear Mahler equa-
tion. Thus with this one can decide, in particular, whether any given
f(x) € K(x) is Mahler summable by computing (or showing non-
existence of) a certificate g(x) € K(x) such that f(x) = g(x?) — g(x).

Our goal here is different: we wish to construct a complete ob-
struction to Mahler summability. Let us elaborate. The image of the
K-linear map A : g(x) — g(xP) — g(x) is the kernel of some other
K-linear map (call it V) — but what is it? Determining such a V
explicitly is algorithmically desirable because it allows to decide
the Mahler summability of f(x) € K(x) without computing the
certificate g(x) € K(x), whose computation is often in practice both
expensive and not strictly necessary (cf. [5, §1 and Table 1], [6,
§1 and Table 1], and [7, §1]). We construct such a V explicitly in
Section 4.4, in terms of our new notion of Mahler discrete residues
for rational functions, and prove in Section 4.3:

MaiN THEOREM. f(x) € K(x) is Mahler summable if and only if
all of the Mahler discrete residues of f(x) are zero.

The discrete and g-discrete residues developed in [14] comprise
complete obstructions to the summability problem of deciding
whether f(x) = g(x + 1) — g(x) for some g(x) € K(x) and the
q-summability problem of deciding whether f(x) = g(gx) — g(x)
for some g(x) € K(x) and g € K neither zero nor a root of unity,
respectively. This theoretical property of (g-)discrete residues is pre-
cisely what enables their applications to the telescoping problems
considered in [14] and their indispensable role in the development
of the algorithms in [3, 4]. We envision analogous applications of
Mahler discrete residues to telescoping problems and in the devel-
opment of algorithms to compute (differential) Galois groups for
Mahler difference equations.
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Our strategy is inspired by that of [14] (but see Remark 2.19):
we utilize the coefficients in the partial fraction decomposition of
f(x) to construct an aspiring certificate g(x) € K(x) such that, for

f) = fx) + (9(xP) = g(x)), (1.1)
f(x) is Mahler summable if and only if f(x) = 0. The Mahler
discrete residues of f(x) are (vectors whose components are) the
coefficients occurring in the partial fraction decomposition of f(x).

This f(x) plays the role of a Mahler remainder of f(x), analogous
to the remainder of Hermite reduction in the context of integration.

2 PRELIMINARIES

Here we define the notation and conventions used throughout this
work, and prove some ancillary results. We fix once and for all an
algebraically closed field K of characteristic zero and an integer
p = 2 (not necessarily prime). We denote by K(x) the field of
rational functions in an indeterminate x over K. We often suppress
the functional notation and write simply f € K(x) instead of f(x).

Definition 2.1. We denote by o : K(x) — K(x) the K-linear
endomorphism defined by o(x) = xP, called the Mahler operator,
so that o(f(x)) = f(xP) for f(x) € K(x). We write A := ¢ —id, so
that A(f(x)) = f(xP) - f(x) for f(x) € K(x).

We say that f € K(x) is Mahler summable if f = A(g) for some
g € K(x). The Mahler summability problem for rational functions is:
given f € K(x), decide whether f is Mahler summable.

Let K* = K\{0} denote the multiplicative group of K. Let K
denote the torsion subgroup of K*, i.e., the group of roots of unity
in K*. For { € K%, the order of { is the smallest r € N such that
{" = 1. We fix once and for all a compatible system of p-power
roots of unity ({pn)n>0 C Kf, that is, each {,n has order p” and
§5n = {yn-c for 0 < £ < n. We denote by 7/ : Z/p"Z — Z/p'Z
and by 7, : Z -» Z/p"Z the canonical projections.

Each f € K(x) decomposes uniquely as

f=fn+fr (2.1)
f1 € K[x,x"!]is a Laurent polynomial and fr = % for polynomials
a,b € K[x] such that b # 0 and, either a = 0, or else deg(a) < deg(b)
and ged(a, b) = 1 = ged(x, b). The subscript L stands for “Laurent”,
whereas the subscript T stands for “Tree” (see Definition 2.6).

where

LEMMA 2.2. The decomposition K(x) ~ K[x,x 1] ® K(x)r given
by f & fL & fr asin(2.1) is o-stable. For f,g € K(x), f = Alg) if
and only if f; = Algr) and fr = Agr).

ProOF. We see that o(f1) € K[x,x!] for any f; € K[x,x7'].
By the Euclidean algorithm, gcd(o(a), o(b)) = o(gcd(a, b)) for any
0 # a,b € K[x]. Thus the K-subspace K(x)7 is also stabilized by o.
Hence f = A(g) if and only if f; = A(gr) and fr = A(g7). O

21

We let P := {p" | n € Z>¢} denote the multiplicative monoid of
non-negative powers of p. Then # acts on Z by multiplication, and
the set of maximal trajectories for this action is

z/P = {{0}} U {{ip" | n € Zso} | i € Z such that p { i}.

Mabhler trajectories, trees, and cycles

Remark 2.3. The usage of trajectory is perhaps unfamiliar to some
readers: it is standard in the context of monoid (and more generally
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semigroup) actions, and replaces the more familiar notion of orbit
for group actions. As in that more familiar setting, the elements
0 € Z/P are pairwise disjoint sets whose union is all of Z.

Definition 2.4. For a maximal trajectory 6 € Z/P, we let
Klx,x 1]g := {Z] ijj e K[x,x™1] | cj=0forallj¢ 9} , (2.2)

and call it the 8-subspace. The 6-component fg of f € K(x) is the
projection of the component f7 of f in (2.1) to K[x, x~!]g asin (2.2).

LEmMA 2.5. For f,g € K(x), fr = Agr) if and only if fy = A(gg)
for every maximal trajectory 0 € Z/P.

Proor. This follows by observing that the K-linear decomposi-
tion K[x, x 1]~ @GGZ/PK[x, x~1]g is o-stable (cf. [13,§5]). O

Definition 2.6. We denote by 7 the set of equivalence classes
in K* for the equivalence relation a ~ y < a?’ = yP’ for some
r,s € Zsg. For a € KX, we denote by 7(a) € Ty the equivalence
class of @ under ~. The elements 7 € Ty are called Mahler trees.

Remark 2.7. The usage of tree in Definition 2.6 is motivated by the
fact that one can define a digraph structure D(z) on the vertex set
T with an edge from « to y whenever o = y, whose underlying
(undirected) graph is connected and acyclic so long as T N K} = 0.
We find the terminology useful and suggestive also if 7 N K} # 0,
because even in this exceptional case we do obtain a tree after
collapsing the unique cycle in D(r) defined below.

Definition 2.8. For a Mahler tree 7 € Ty, the Mahler cycle of 7 is
C(r) := {y € t | y is a root of unity of order coprime to p}.
The cycle length of 7 is defined to be e(7) := |C(7)|.

Example 2.9. (Cf. [15, Figures 4 and 5]). Let us illustrate the defi-
nitions of Mahler trees and Mahler cycles with K = C and p = 3.In

2nV=1
this example we write {, := e~ n € C*, for concreteness.

The vertices in the digraph D(z(2)) near a = 2 are:

{(V2,5532, 32} ——= 2

8 — 512

(632, (342, (02 —= 632 /z

{62, V2.3V —= V2

For a = {4, we have C(t({4)) = {{4.}}. so the cycle length
e(t({s)) = 2. The vertices in the digraph D(7({4)) near C(z({4)) are:

{252 (62052
H W
g

e
N

&) )
il I
(G Gag- 03} {Ge- 032552}
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Remark 2.10. Let us collect some immediate observations about
Mabhler cycles that we shall use, and refer to, throughout the sequel.
For a Mahler tree 7 € 7 it follows from the Definition 2.6 that
either r ¢ K} orelse 7K} = 0. In particular, C(r) = 0 & e(r) = 0,
which occurs precisely when 7 ¢ K (the non-torsion case).

On the other hand, KX consists of the pre-periodic points for the
action of the monoid P on KX given by a + a?” for n € Zs¢. For
7 C K¥ (the torsion case), the Mahler cycle C(7) is a non-empty set
endowed with a simply transitive action of the quotient monoid
P/PC ~ Z[eZ, where P€ := {p"¢ | n € Z}, and e := e(r). We
emphasize that in general C(7) is only a set, and not a group. The
Mahler tree 7(1) consists precisely of the roots of unity ¢ € Ky
whose order r is such that ged(r, p™) = r for some p" € P, or
equivalently such that every prime factor of r divides p. When
7 C K} but 7 # (1), the cycle length e(r) is the order of p in the
group of units (Z/rZ)*, where r > 1 is the common order of the
roots of unity y € C(r), and C(r) = {ypf |0 < ¢ <e—1} forany
given y € C(r). We shall abusively write C(7) = {yp[ | € €Z/eZ}.

2.2

Mahler trees allow us to define the following bespoke variants of
the singular support sing(f) of a rational function f (i.e., its set of
poles), which are particularly well-suited to the Mahler context.

Mabhler supports and singular supports

Definition 2.11. For f € K(x), we define supp(f) C Ta U {o0},
called the Mahler support of f, as follows:
e oo € supp(f) if and only if f; # 0; and
o for 7 € Tpy, 7 € supp(f) if and only if 7 contains a pole of f.
For 7 € Ty, the singular support of f in 7, denoted by sing(f, ),
is the (possibly empty) set of poles of f contained in 7.

We omit the straightforward proof of the following lemma.
LEMMA 2.12. For f,g € K(x) and 0 # ¢ € K we have the following:
(1) supp(f) =0 & f = 0;
(2) supp(a(f)) = supp(f) = supp(c - f); and
(3) supp(f +9g) < supp(f) U supp(q).

Definition 2.13. For a Mahler tree 7 € 7y, the v-subspace is

K(x)r = {fr € K(x)r | supp(fr) € {r}}. (2.3)
For f € K(x), the t-component f; of f is the projection of the
component fr of f in (2.1) to the r-subspace K(x); in (2.3).

LEmMMA 2.14. For f, g € K(x), fr = A(gr) ifand only if fr = A(gr)
for every Mahler tree T € Ty.

Proor. It follows from Lemma 2.12 that the K-linear decompo-
sition K(x)1 = (P, ¢ 7, K(x)r is o-stable (cf. [13, §5]). |

2.3 Mabhler dispersion

We now define a Mahler variant of the notion of (polar) dispersion
used in [14], following the original definitions in [1, 2].

Definition 2.15. For f € K(x) and 7 € supp(f), the Mahler dis-
persion of f at 7, denoted by disp(f, 7), is defined as follows.
If r € Ty, disp(f, 7) is the largest d € Z > (if it exists) for which

there exists a € sing(f, 7) such that o’ e sing(f, 7). If there is no
such d € Z >, then we set disp(f, 7) = o
Zl:n cixt e K[x,x~

If T = oo, let us write f7 = N with cpen # 0.
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o If f1 = co # 0 then we set disp(f, o0) = 0; otherwise
o disp(f, o) is the largest d € Z>( for which there exists an
index i # 0 such that ¢; # 0 and Cipd # 0.

For f € K(x) and 7 € Tj1 U {oo} such that r ¢ supp(f), we do not
define disp(f, 7) at all (cf. [1, 2, 14]).

Similarly as in the shift and g-difference cases (cf. [17, Lemma 6.3]
and [14, Lemma 2.4 and Lemma 2.9]), Mahler dispersions will play
a crucial role in what follows. As we prove in Corollary 3.2, they
already provide a partial obstruction to summability: if f € K(x) is
Mahler summable then every Mahler dispersion of f is non-zero.
Moreover, Mahler dispersions also detect whether f has any “bad”
poles (i.e., at roots of unity of order coprime to p) according to:

LEMMA 2.16. Let f € K(x) and t € supp(f). Thendisp(f,7) = oo
if and only if sing(f,7) N C(r) # 0.

Proor. (=). If disp(f,7) =
such that o?” = y for infinitely many d € Z>¢. Thus, both y and «
are roots of unity. Let r be the order of a. For any d € Z >, the order
of a?” is rq = r/ged(p?,
large d, the order ry of o is coprime to p, and therefore y is a
root of unity of order coprime to p.

(&).Fory € sing(f, 7)NC(r) we have ype(”n =yforeveryn € Zxg
(cf. Remark 2.10), whence disp(f, 7) = co by Definition 2.15. O

oo, then there exist a,y € sing(f, )

r), and we see that for every sufficiently

24

We now study the effect of the Mahler operator ¢ on partial fraction
decompositions. For « € K*, m € N, and 1 < k < m, we define the
Mabhler coefficients V;" () € K implicitly by

Mabhler coefficients for partial fractions

! oS VG
o ((x - aP)M) (xP — ap)m Zl ; (x— é},a)k (2.4)

These coefficients are computed explicitly with the following result.
LEMMA 2.17. There exist universal coefficients V]’C” € Q such that
V(@) = Vi . gkopm
foreverya € KX and 1 < k < m. Moreover, these Vi are the first m
Taylor coefficients at x = 1 of

m

Z VI (x = )™ K 1 O((x—1)™). (2.5)

k=1
Proor. We claim that V" (a) = Vkm(l)~ak’1’m for every o € K*.
To see this, set x = ay for a new indeterminate y, and note that

Pl pxy)m =

ipzj VM (Gha) 1 T U
— (- Gk T &P —aP)m (y? -1"
mRS VG R Ve
_ ,pm b’ _ pm P
P 2D 2 rar Rl I My s

It follows that Vkm({pa) = Vkm(gp)ak’f’m fori =0,...,p—1.In
particular for i = 0 we obtain Vkm(a) = V[”(l)ak—f’m, as claimed.
Setting Vk’" = Vkm(l), we see from (2.4) that V]’C” is the usual con-
(xP — 1)™. The formula (2.5)
A0
(m—-k)! >
+1)7™. O

tinuous residue of order k of f(x) :=

follows from [8, Section 2], where it is shown that VI':’ =
where g(x) :== (x = 1) f(x) = (x7 1 + - .-
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The following immediate consequence of Lemma 2.17 is obtained
by evaluating (2.5) at x = 1.

COROLLARY 2.18. Fora € KX, V/(a) = p~ ™™ P™,

Remark 2.19. We see in (2.4) two phenomena that arise in the
Mabhler context and have no counterpart in the shift and g-dilation
settings considered in [14] — the main inspiration for the present
work. Let f € K(x) such that 0 # f7 as in (2.1). Then:

(1) the number of poles of o(fr) (counted either with or without
multiplicity!) is strictly larger than that of fr; and
(2) the (classical/continuous) higher-order residues of fr “leak”
into the lower-order residues of o(fT).
These two phenomena are mainly responsible for our need to create
new and somewhat intricate bookkeeping devices in the Mahler
setting, which were (invisibly) not necessary in the shift and g¢-
dilation settings considered in [14], in order to develop our proposed
analogous theory of Mahler discrete residues.

Example 2.20. Let us illustrate the definition of Mahler coeffi-
cients with p = 3, m = 2, and a3 = 1. Then (2.4) becomes
ki

VZ-
) —1)2 Zz(x—gg)k’

1i=0

1
G(Q—W

because, by Lemma 2.17, Vk2(§3’) = Vi . ({3’)k_6 = Vi . §3k’ for
k =1, 2. We find in this case, using (2.5) in Lemma 2.17, that

Vi = (P 4x+1)”| = b and Vi = (6 exr )Y
x=1

= _2
x=1 9

One can verify using a computer algebra system (or by hand!) that
the partial fraction decomposition of 9 - (x> — 1)72 is indeed

1 2 03 L2 -2 | —203
G122 (- d)? &—@V x-1 x-8 x-02

3 MAHLER DISPERSION AND SUMMABILITY

The goal of this section is to prove Corollary 3.2 below. This is an
essential ingredient in our proofs, following [14]. The following
result is a Mahler analogue of [12, Lemma 2.6].

ProrosiTION 3.1. Let f,g € K(x) such that f = A(g). Then

supp(f) C supp(g). Moreover, disp(f,7) = disp(g, r) + 1 for every
7 € supp(f), with the convention that co + 1 = co.

Proor. By Lemma 2.12, 7 € supp(f) = 7 € supp(g). We con-
sider separately the two main cases: (1). 7 = oo; and (2). T € Ty;.

(1). For f1,gr € K[x,x~!] as in (2.1), we have 0 # f; = A(gr),
since oo € supp(f), and in particular gy, ¢ K. Then fy = A(gg) for
each 0 € Z/P by Lemma 2.5. Since, for 6 = {0}, f{o} = A(g{0y) =0,
it follows from Definition 2.15 that

disp(f, o0) = max {disp (fy, ) | {0} # 8 € Z/P, fog # 0} .
We claim disp(A (gg), 00) = disp(gg, c0)+1 for every gg € K[x,x1]g
with {0} # 0 € Z/P, which will conclude the proof of (1). To prove
the claim, let us write gg = Z}izo
and Cipa #0,le, disp(gg, ) = d. Then

cl-pjx’Pj, where we assume c; # 0

s pd+1 : i
A(ge) = Cipdxlp —cix' + Z?:l(cipf‘l - cipf)xlpli

from which it follows that disp(A(gg), ) = d + 1, as desired.

528

ISSAC °22, July 4-7, 2022, Villeneuve-d’Ascq, France

(2). By Lemma 2.14, f; = A(g;) for each € 7, and in particular
for each 7 € supp(f). We consider two subcases, depending on
whether disp(g, 7) is finite or not.

In the first subcase, disp(g, 7) =: d < 0. Let a € 7 be such that
o and aP” are poles of g. Let y € 7 such that y? = a. Theny is a
pole of a(g) but not of g (by maximality of d), whence y is a pole

of f. On the other hand, ypdﬂ
a(g), for if a?” were a pole of 6(g) then o™

= o’ isa pole of g but not of

would be a pole of
g, again contradicting maximality of d. Hence y? “isa pole of f.
Thus disp(f, 7) > d + 1. One can show equality by contradiction:
if « € 7 is a pole of f such that al’ is also a pole of f for some
s > d+1, then each of @ and & is either a pole of g or a pole of o(g).
This implies (after tedious but stralghtforward casework) that there
exist 0 < i,j < 1 such that """ and o’ are both poles of g, which
contradicts the maximality of d since in any case s+i—j > s—1 > d.
Hence disp(f, 7) = disp(g, 7) + 1 in this first subcase.

In the last remaining subcase where disp(g, 7) = oo, there exists
y € sing(g, 7) N C(r) by Lemma 2.16. We claim yf’[ e sing(f, ) for
some { € Z/eZ, where e := e(r) > 1 (cf. Remark 2.10, where we
discussed the meaning of ypf for ¢ € Z/eZ, rather than € € Zx).
This will imply that disp(f, 7) = co = disp(g, 7) + 1, by Lemma 2.16.

Let us prove the claim. Note that the K-subspace S of K(x);,
consisting of rational functions none of whose poles belongs to
C(), or equivalently (by Lemma 2.16), the K-span of the elements
of K(x); having finite dispersion, is o-stable!. So we may assume

Cd(kO)
%—Z )y

K’
=1¢€ Z/eZ - )

where d(k, €) € K such that d(m, £) # 0 for some ¢ € Z/eZ, without
loss of generality, because the other possible poles of g in 7 cannot
contribute to the possible poles of f in C(r) (since S is o-stable).
Then

dw)Z:Z:

k=1C(cZ/eZ

= v (g™ )-dm )
_; {e;ez (x‘gfiypf_l)m

+ (lower-order terms),

_dk b
-

where the V]! are as in (2.4), and therefore?

m (,p). _
fr — A(gf) _ Z Vm (Y ) d(m,f +:l) d(m,f) .

teZ]eZ (x— yf’f)

+ (lower-order terms) + (elements of S).

3.1)

But the coefficients V,;"(ypf) -d(m, € + 1) — d(m, {) cannot be zero

for every ¢ € Z/eZ, for otherwise the computation

_d(m,0)
pem ’

yP

m mp_/+1

d(m, £) = d(m, ff)ﬁv,;;’ ( ) d(m, 5)]_[
j=0

where the middle equality is obtained from Corollary 2.18, would
imply that d(m, £) = 0 for every ¢ € Z/eZ. But this is impossible,
concluding the proof of the claim that f has a pole in C(7). O
!If a denominator b € K[x] has no roots in C(7) then neither does o (b), for if

y € C(r) were aroot of o(b) then y? € C(r) would be a root of b.
2See Remark 4.13, where we systematically elaborate on the details of this computation.
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COROLLARY 3.2. Suppose that f € K(x) is Mahler summable. Then
disp(f, r) is non-zero for every t € supp(f).

Proor. This is a direct consequence of Proposition 3.1. o

4 MAHLER DISCRETE RESIDUES

In this section we define the Mahler discrete residues of f € K(x), in
increasing order of complexity: first at infinity, and then at Mahler
trees T € Ty, separately in the non-torsion case where r ¢ KX, and
finally in the torsion case where 7 C K (cf. Remark 2.10).

4.1 Mabhler discrete residue at infinity

Here we define the Mahler discrete residue of f € K(x) at oo in
terms of the component f; € K[x,x 1] of f in (2.1), and show that
it forms a complete obstruction to the Mahler summability of f .
The proof of Proposition 4.2 below follows the same strategy as
that of [14, Propositions 2.5 and 2.10]: we add to f7 a sequence of
Mahler summable elements to eventually obtain a Mahler remainder
f1 whose apparent dispersion is 0, and then use Corollary 3.2 to
conclude that f; is Mahler summable if and only if this f; = 0.

Definition 4.1. For f € K(x), let fi = 3¢z ijj with ¢j = 0 for
all but finitely many j € Z. The Mahler discrete residue of f at co is

the vector dres(f, o) := (Zjeg Cj) @ K.

€
0eZ/P 0cZ/P

PROPOSITION 4.2. For f € K(x), the component f; € K[x,x 1]
in (2.1) is Mahler summable if and only if dres(f, c0) = 0

Proor. By Lemma 2.5, f1 is Mahler summable if and only if fy
is Mahler summable for all § € Z/P. We shall show fy is Mahler
summable if and only if the 8-component dres(f, 00)g is 0. We prove
this separately in two cases: (1). 0 = {0}; and (2). 6 # {0}.

(1). For 0 = {0}, fio} = co = dres(f, )9 by Definition 4.1. If
dres(f, 00)(o} = 0, then f{o) = 0 is Mahler summable. On the other
hand, if dres(f, 00) (9} # 0 then f{o) # 0 and disp(f{9},0) = 0 by
Definition 2.15, so fo} is not Mahler summable by Corollary 3.2.

(2). Suppose 8 # {0}. The claim is trivial in case fy = 0; assume
fo # 0. Let us write fy = X jcp ijj € K[x,x1]p, where: ;=0
for all but finitely many j € 6 and c; # 0 for at least one j € 6. Let
us write 8 = {ip™ |n € Zxso} fori € O suchthatp {i.Let h € Zxg
be maximal such that c; ph # 0. Letus define recursively: gg)) =0
and, if h > 1, then set

(n+1) i ip"
= Zk=o (Zf 0 Cip* ) v (Z?zo cip‘") xtt
for 0 < n < h — 1. A straightforward induction argument shows:
-k ion
f(n) = fo+A ( (n)) ZII;H—}HI lpkxlp +(Z';:0 Cip{f) x'P" (4.1)

for each 0 < n < h, whence fé )= (dres(f, )g) - xiP" The harm-
less summand for k = h + 1 in (4.1) is included so that the sum
makes sense for n = h, but ¢, x = 0 for every k > h. We see that

- g(en)

ip
fo 7() is Mahler summable if and only if fy is Mahler summable. In
particular, if f Fh) 0 then fo is Mahler summable But if f, Fh) 40
then dlsp(f oo) = 0, and by Corollary 3.2 fg

mable, so neither is fy. Clearly, f(h) =0 & dres(f, ) = 0. O

is not Mahler sum-
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Remark 4.3. For {0} # 0 € Z/P such that fy # 0, the elements
f(h), (h) € K[x,x ']g constructed in the proof of Proposition 4.2

are the f-components of the f,g € K(x) in (1.1). If fy = 0, then we
define fg := 0 =: gg. In any case, we set f{o} = f{oy and g{g) = 0.

4.2 Mahler discrete residues at Mahler trees

Here we define the Mahler discrete residues of f € K(x) at a Mahler
tree 7 € Ty, in terms of the partial fraction decomposition of the
component fr € K(x); in Definition 2.13, and show they comprise a
complete obstruction to the Mahler summability of f;. We proceed
separately in the non-torsion case T ¢ K;( and the torsion case
7 C K¥ (cf. Remark 2.10), depending on which case we represent
the poles of f; in a particular manner.

LEMMA 4.4. For f € K(x) andt € supp(f)NTy such thatt ¢ KX,
there exists y € sing(f,7) and h € Z>¢ such that

sing(f, 1) C Bp(y) == {g};’nyf’”’" | 0<n<hice Z/p"Z}.

Moreover, the elements g;’;nyphw € Pu(y) are uniquely determined
by0 <n < handi € Z/p"Z, relative to the choice of y € sing(f, ).

Proor. Note that the set f1,(y) (mnemonic: “bouquet” of height
h at y) is precisely the union of the sets of roots of the y-polynomials
yP" - yph =0forall 0 < n < h. The elements of S (y) are uniquely
determmed by n and i (relative to the choice of y), because if we had
{mep = {’ yp , then this would force m = n, for 0therw1se
Y e KX contradlctmg our assumptions, and then { J p" implies
that j = i. Let us now show that for any finite set S C r there
existy € Sand h € Zyo such that S C fy(y). For a € S, let
h(a) € Z>o be minimal such that a?™“ e € &P for every £ € S,

where ¢ := {fp | t € Zxo}. Choose y € S such that h(y) =: h
is maximal among all elements of S. We claim that af e yph
for every a € S, which will conclude the proof, since h(a) < h
for every a € S. To prove the claim, note that in any case there
exist t,r € Zs¢ such that o’ = yph and o?"* = ypr, and the
minimality of () and h then imply t > h(a) and r > h. But then

h t h(a)\ pt—h(e) r\ pt—h(a) r+t-h(a)

)/P =al = (ap )P = ()/P )P =P ,
and since y ¢ K} we obtain that h + h(a) = r + t, from which it
follows that r = h and t = h(«), as claimed. O

LEMMA 4.5. Let 7 € Ty witht C K} and e := e(r). Choose
y € C(z). Then for a € T there are uniquen € Zxg, i € Z/p"Z, and

t € Z/€eZ, with eithern =i = 0 orp 1 i, such that a = {;n ypfine(n)

Proo¥. There exist integers n, t € Zs such that a?” = y?", and
we may take this n to be as small as possible and replace t with
{ := m(t). The p" distinct solutions to y?" = ng) one of which
isy = a, are all of the form {;;nypfine(m fori € Z/p"Z. Since n is
minimal, eithern =i=0orelse 1 <i <p” —1withp {i. O
Definition 4.6. For f € K(x) and r € supp(f) N Tu, the height of
f at 7, denoted by h(f, 7), is defined as follows.

o If 7 ¢ K, h(f, 7) is the smallest h € Z ¢ such that sing(f, 7)
is contained in S, (y) for some y € sing(f, r) asin Lemma 4.4.

o If r C K}, h(f,7) is the smallest h € Z5 such that "
belongs to C(7) for every a € sing(f, 7).
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Remark 4.7. Suppose f € K(x) and 7 € supp(f) N Tpr. We always
have h(f, ) < co. One can show that h(f, ) > disp(f, r) provided

that disp(f, 7) < oo, but even then the inequality may be strict.
4.2.1 Mahler discrete residues at Mahler trees: the non-torsion case.

LEmMA 4.8. Let f € K(x) and suppose T € supp(f) N Tpr such
that T ¢ K. Then there exists y € sing(f,7) such that the partial
fraction decomposition of fr is of the form

1n=0

cy(k,n, i) , (42)

i€Z/p"Z (x — é’i phn k
( oY )
where m > 1 is the highest order of a pole of f in sing(f, ) and the
height h := h(f, r) is as in Definition 4.6.

The coefficients cy (k, n, i) € K are uniquely determined by f and
the choice of y, and moreover for any y,y € t as above we have
V= {;hyfor some j € Z/p"Z, and

cy(k,m i) = ¢ (k, i+ n,’;(j)) . (4.3)

ProoF. We obtain the existence of y € sing(f,7) such that
sing(f, ) € Bp(y) by Lemma 4.4 and Definition 4.6. The existence
and uniqueness of the coefficients cy (k, n, i) € K satisfying (4.2) fol-
lows directly from the existence and uniqueness of partial fraction

"€ ()
are uniquely determined by n and i (relative to the choice of y),
by Lemma 4.4. For any y € smg(f 7) such that sing(f, 7) C fr(¥)

i ok
decompositions, since in this case the elements 117" %24

we would have j?" = yP and yP" = yp such that 0 < n, 7 < h,

which would force i = h = n since y ¢ K. Hence j = g;hy for
some j € Z/phZ, and the computation
cy(k,n,i) _ cy (k,n,i) cy (k,n,i+j)
(xfg/;nyph_n)k ( §1+] ph n)k ( §t+j ph n)k
implies the transformation formula (4.3). O

Remark 4.9. Writing f7 as in (4.2), let us compute the effect of o:

. hen\—k
o (ZZL] (ZiEZ/p”Z C}/(k’ n, l) . (x - {;,n)/p ) )) (4.4)

m ph—(nﬂ))

k=1

V(e y

; h—(n+1)\*
i€ Z/pn1Z. (xfg;nﬂyp n )

for each 0 < n < h — 1, where the Vks are asin (2.4) fork <s < m.

-cy (s,n,w2H(i))

Definition 4.10. For f € K(x) and © € Ty with r ¢ K7, the
Mabhler discrete residue of f at v of degree k € N is the vector
dres(f,7,k) € @, ¢, K defined in terms of the ¢, (k, n, i) in the
partial fraction decomposition of f; in Lemma 4.8 as follows.

Set dres(f, 7, k) := 0 if 7 ¢ supp(f) or if k > m. For z € supp(f)
and « € 7, the component dres(f, 7, k) := 0 whenever aph * yP}f
For1<k<manda = §ihy with i € Z/p"Z, the component
dres(f,7,k)a = ¢y (k, h, 1);

where for 0 < n < hand i € Z/p"Z we define recursively (in n):

¢y (k,0,0) :=cy(k,0,0); and,forl1<n<handieZ/p"Z, (45)

_n) -EY (s,n

(cf. (4.4)), where the Vks are asin (2.4) fork <s < m.

m
bykomi) = cy(komi)+ YV (g;;"yl’h — 17", (1)
s=k
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Remark 4.11. Note that the definition of dres(f, 7, k) for r ¢ K}
given above is independent of the choice of y € sing(f, 7), because
for any possibly different y = §;hy with j € Z/phZ we obtain
g”h)? gVHJy =: a. The equality of the expressions
¢y (k, h, i) = dres(f, 7, k)a = cY(k h, i+ j)

foralli € Z/p"Z,
and therefore ¢j (k, n, i) = ¢y (k,n, i + Jr,}:(j)) for every 0 < n < h.

follows from (4.3), since é},n)’p = g;lnj’jy

4.2.2  Mabhler discrete residues at Mahler trees: the torsion case.

LEmMA 4.12. Let f € K(x) and suppose © € supp(f) such that
T C KX. Then for anyy € C(r) the partial fraction decomposition of

fris oftheform
dy(k,n,i,0)

fr-ZZ DY — |

=1n=0\icZ/pnz\tcZ/eZ (x gl e ”e<"))

where:m > 1 is the highest order of a pole of f in sing(f, r); the height
h := h(f, 1) is as in Definition 4.6; the restricted sum Y, is taken over
i € Z/p™Z such that p t i whenevern # 0; and e := e(r) > 1.

The coefficients dy (k, n, i,£) € K are uniquely determined by f
and y, and moreover for anyy,y € C(r) we havey = ypj for some
j€eZ/eZ, and

(4.6)

dy(k,n,i,£) = dy(k,n,i,¢ + j). (4.7)

Proor. If 7 ¢ K then e > 1 (cf. Remark 2.10). We then have
by Lemma 4.5 that for any given choice of y € C(r) the elements
,,yP{ el with n € Zso
0 or else p 1 i. The

a € T can be written uniquely as a = {}

and i € Z/p™Z such that either n
set of elen{}ents)a € 7 such that o?" € C(r) are precisely the
a= § i 7" \with n < h. It follows that the apparent poles in
(4.6) are all distinct and include all the poles of f, and therefore the
coefficients dy (k, n, i,£) € K are uniquely determined by f and y.
It also follows from Lemma 4.5 that for any other € C(7) there
exists j € Z/eZ such that j = y?’, and therefore the computation
dy (k,n,i,6) dy (k,n,i,0) dy (k,n,i,0+7)
i —re(n)\k i (+j-me(n)\k i f+j-me(n)\ K
(x=gin 7?7 (g TN (g pp )

implies the transformation formula (4.7).

= i

o
Remark 4.13. Writing f; as in (4.6), let us compute the effect of o:

o\ —k
(S Beez k00,0 (=) o

S z;nkvks )'d (s,0,0,£+1)
- +
kzzll [e; (x yP )k
SES S Ve (G ) dy (5.0.0.0)
+ZZ Z k k(_pyl 212800 ;
=1i=1\¢feZ/eZ (x gpyl’ )

and for n > 1 and each ¢ € Z/eZ we have

m dy(k,n,i,¢ Y il R
o k=1 ZiEZ/p"Z }/( s, 1, )' (x_é( nY ) ( . )

e

k
i b—me(n+1)
=1\ieZ/pn+'Z <x_§;n+l v )

where the Vks are as in (2.4) for k < s < m.

Ve

)y (s,m, N 0),0)
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The following technical lemma is essential for the definition of

Mahler discrete residues in the torsion case. The map D™ defined
below already appeared (anonymously) in (3.1). It captures the effect
of A on the (classical/continuous) residues at poles in the Mahler
cycle C(7) (see Definition 2.8), according to the computation (4.8).

LEmMA 4.14. Lett € Tpy witht C K ande := e(r). Fory € C(r)

and m € N, define Z))(,m) c KmXe — KM€ py

" (dk,e) 1<k <m » (4.10)

CeZ/eZ

ek, 0)1<k<m P
Z/eZ

wheredy ¢ = cr ¢~ ZS ka

in (2.4). Then D)(,m) is invertible and has no non-trivial fixed points.

(yp ) - ¢s,¢+1, and where the Vks are as

ProoF. Let 0 # (ck ¢) € K"™*¢, and write (di ¢) := Z)y")(ck,[).
Let 1 < r < mbe as large as possible such that ¢, , # 0 for some
t € Z/eZ. To see that (di_¢) # 0, note that, for each £ € Z/eZ,
Zgnzr IS (Ype) “Cs,0+1 = Cr,0 — Vrr(yp[) “Cr,0+1
because ¢ ¢4 = 0 whenever s > r, and we see just as at the end of
proof of Proposition 3.1 that the d, , cannot be zero forall £ € Z/eZ
because this would imply that every ¢, , = 0, contradicting our
choice of r. Moreover, we also cannot have di , = ci ¢ for every
1 <k <mand? € Z/eZ, for this would also imply that ¢, p = 0
for every ¢ € Z/eZ, again contradicting our choice of r. O

dr,t’ =Cr ¢ —

Definition 4.15. With notation as in Lemma 4.14, the inverse of
Z))(,m) is denoted by .E;,m)

Definition 4.16. For f € K(x) and r € Ty with r c KJ, the
Mabhler discrete residue of f at v of degree k € N is the vector
dres(f,7,k) € EBQET K defined in terms of the dy (k, n, i, £) in the
partial fraction decomposition of f; in Lemma 4.12 as follows.

Set dres(f, 7,k) := 0if ¢ ¢ supp(f) or if k > m. For ¢ € supp(f)
and a € 7, the component dres(f, 7, k) := 0 whenever the smallest
integer r € Z> such that aP” € C(r) is different from h.

Ifh=0,thenforl1 <k <manda = yf’[ € C(r) with € € Z/eZ,

the component
dres(f,7,k) ot = dy (k,0,0,0).

Ifh>1,thenfor1 <k <m and = & P With i € Z/phZ
such that p 1 i and ¢ € Z/eZ, the component
dres(f.7.k)q := dy (k. h,i,0);

dy (k,0,0,0) = ¢y (k. ),

where we set

with (4.11)

(cy (k. 0)1 <k <m = L™ (dy (K, 0,0,0) 1 < <1 (4.12)

(eZ]eZ LEZ]eZ

for the linear map L;,m) in Definition 4.15; and for 1 < n < h and
i € Z/p"Z with p t i we define recursively (in n):

dy(k,n,i,0) := dy (k,n, i, £) +
f e (n) 7
+ E V(G ) dy (sin

(cf. (4.9)) where the Vks are as in (2.4).

(4.13)
-1,z (i),¢),

Remark 4.17. Note that the definition of dres(f, 7, k) for T ¢ K}
given above is independent of the choice of y € C(r), because for
i = y?’ with j € Z/eZ we have (!, § gt re® {ihypﬁj_ne(h) =
The equality of the expressions P
dy(k,h,i,0) = dres(f,7,k)q = dy (k. h i, +j)
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follows from (4.7), after observing that D)(;m) ocyc; = Z))(,m) , where
cyc; : KMX¢ — KMX€ : (cx ¢) = (ck,¢4)) for j € Z/eZ. Tt follows
that cyc; OL;m) = .[:J(,m) and therefore d},(k, n,i,f) = oiy (k,n,i,{+j)
for every 0 < n < h.

4.3 Proof of the Main Theorem

Our proof of Proposition 4.18 below follows a strategy similar to
that of [14, Propositions 2.5 and 2.10]: we add to f; a sequence of
Mahler summable elements to eventually obtain a Mahler reduction
fr whose apparent dispersion is 0, and then use Corollary 3.2 to
conclude that f; is Mahler summable if and only if this f; = 0.

There is a wrinkle: for 7 € supp(f) in the torsion case r C K}
such that the height h(f, 7) = 0 (see Definition 4.6), disp(f, 7) = oo
by Lemma 2.16. Corollary 3.2 remains silent in this case, for which
we provide a specialized argument relying on Lemma 4.14.

PROPOSITION 4.18. For f € K(x) and v € Ty, the component fr
is Mahler summable if and only if dres(f, r,k) = 0 for every k € N.

Proor. The Proposition is trivial for 7 ¢ supp(f) & fr = 0.
Assume from now on that 7 € supp(f). The proofs in the different
cases 7 ¢ KX versus 7 C K proceed in parallel below.

Write f; as in Lemma 4.8 if 7 ¢ K?; and as in Lemma 4.12 if
T C K¥. Let us define recursively: gg.o) :=0;and, if h:= h(f,7) > 1
as in Definition 4.6, then for 0 < n < h — 1 set

Z

=1\ieZ/p"Z

(n+1)

&y (k,n, i)
gz L

( gp” thin)k

=g +

in case 7 ¢ K}, with ¢ (k, n, i) as in (4.5); and

Z

=1 \i€Z/p"Z\l€Z/eZ

dy (k,n,i, )
( _é;rlyp[_”em))k
in case r ¢ K}, with dy(k n,i,f) as in (4.11) for n = 0 and as

in (4.13) for n > 1. Setting f(") fr+ A( (T”)), an induction

argument then shows that, for every 0 < n < h,

(n+1)

P (n)

=9

m  h+l

w55

k=1s=n+1\i€Z/pZ

)

cy(k,s,i)
(e-ggar™)"

&, (k,n,i)

. (4.14)
i thn
k=1\ieZ/pnZ (x—§pnY )
in case 7 ¢ K¥; and
htl
“n) i i Zf dy(k,s,1,0)
’ i pl-me(s)\
“1s=n+1\ieZ/psZ é’eZ/eZ( xX=Cos¥ )
’ dy (k,n,i,€)
+Z Z (4.15)

(et )

in case r € K. The harmless summand for s = h + 1 in (4.14) and
(4.15) is included so that the sums make sense for n = h, but we set
every ¢y (k,h + 1,i) := 0 in (4.14) and every dy (k, h + 1,i,£) := 0 in
(4.15). The induction argument is straightforward, requiring only:
the recursive definition of the coefficients ¢y (k, n, i) in (4.5), and the

=1\i€eZ/p"Z \CeZ/eZ



Session 16: Symbolic Integration and Summation

computation (4.4), in case T ¢ K; the recursive definition of the
coefficients d}, (k,n,i,£) in (4.11) and (4.13), and the computations
(4.8) and (4.9), in case r C K}; and a moderate amount of space
and courage to write it down in detail in each case. It then follows
from (4.14) and Definition 4.10 (in case 7 ¢ K), or from (4.15) and
Definition 4.16 (in case T C KY), that

(h) Z Z dres(f 7,k) g

k=1Q€T (x - a)k
which holds uniformly in both cases 7 ¢ K and 7 ¢ K. Also in
both of these cases we see that f(h) fT + A(g(h)) and therefore
fr is Mahler summable if and only if f

We claim that fT( is Mahler summable 1f and only if f; Fh) — o,
This will establish the Proposition, since fT = 0 if and only if
dres(f,7,k) = 0 for all k € N by (4.16). The non-trivial implication:
f(h) #0= f(h) is not Mahler summable, is proved in two subcases:
(1). if either 7 ¢ K or h # 0; and (2). if both 7 ¢ K and h = 0.

(1). In case T ¢ KX, by Definition 4.10 f ") has no poles outside
of{{’hy |i€Z/p"Z}. Incase r ¢ KX and h # 0, by Definition 4.16
f, has no poles outside of{{’ },p | €Z/eZ and i € (Z/p"Z)*}
(cf. Lemma 4.5). Thus if e1ther T¢ K orh#0, dlSp(f(h), 7) = 0.
By Corollary 3.2, f

(2). Note that f; = T M in (4.16) in this last remaining subcase
where h = 0 and r C K}, and the Definition 4.16 gives

m dres(f,7,k) ¢
fr—Z 5 Ldy(k0) _$ /o

=10cZ]eZ (x = yP )k k=1¢€€cZ]eZ (x = yP)k
where we write d), (k, ) in lieu of dy (k,0,0,¢), to simplify notation.
Since 7 € supp(f), we must have dres(f,z,m) # 0. We claim
that f; cannot be Mahler summable. To prove the claim, let again
(1) = N0 Yeezgez ek O) - (x — ypf)fk despite having h = 0,
where the ¢y (k, £) are as in (4.12). By the computation (4.8) and the
Definition 4.15 of the map L<’")

s(ript-1).
Fenea)- 35 3 e
=1i=1¢cZ/eZ (x—§,§yp’ )
Hence f; is Mahler summable if and only if f, is Mahler summable.
In particular, if fr =0, then f; is Mahler summable. On the other
hand, if f; # 0, then disp(f;,7) = 0, in which case f; cannot be
Mahler summable by Corollary 3.2. Hence f; is Mahler summable
if and only if f; = 0. Let us now show that f; # 0 = f; # 0.
In any case, the partial fraction coefficients of f; satisfy

, (4.16)

is Mahler summable.

1s not Mahler summable.

Z;n k V]j (é/;l;)’pf) . Cy(k,g + l) =
Eomm Ve (rP) ey e € 1) = G - (e (.0 = dy (K, 0)

where the first equality follows from V(¢ 117 ypf ) =¢, ;;k Vew? ‘ ) inde-
pendently of s by Lemma 2.17, and the second equality follows from
the Definition 4.15 of L;m) . By Lemma 4.14, since the map Z)i,m) has
no non-trivial fixed points, we cannot have ¢, (k, £) = dy (k, £) for ev-
ery k and ¢ unless all dy (k, £) = 0. So indeed f; # 0 = fr#0. O

Remark 4.19. For f € K(x), 7 € supp(f) N Tar, and h := h(f, 1) as

in Definition 4.6, the f; (h), g(Th)e K(x); constructed in the proof of
Proposition 4.18 are the 7-components of the f, g € K(x) in (1.1).
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ProOF oF THE MAIN THEOREM. Let f € K(x). By Lemma 2.2,
f is Mahler summable if and only if both f; and fr are Mahler
summable. By Proposition 4.2, f is Mahler summable if and only if
dres(f, o) = 0. By Lemma 2.14, fr is Mahler summable if and only
if f; is Mahler summable for all 7 € 73s. By Proposition 4.18, f7 is
Mahler summable if and only if dres(f,7,k) =0 forallk e N. O

4.4 Mahler reduction
We can now define the Mahler reduction (1.1): f = f + A(g)

promised in the introduction for any f € K(x), in terms of the
decompositions f = fr + fr and g = g + gr as in (2.1), by setting

Z fo and gg = Z go; and

0eZ/P 0eZ/P
_ =(h(f, h
fr= Y AT and gr= ) M0
T e supp(f) 7 € supp(f)

as in Remark 4.3 and Remark 4.19. It is clear from the definitions
thatc- f = ¢ f for ¢ € K. Setting fi ¥ fo := fi + f2 defines a
K-linear structure on {f | f € K(x)} such that V : f +— fis
K-linear and has the desired property that ker(V) = im(A).

5 EXAMPLES

Let us illustrate the Mahler discrete residues at Mahler trees in two

small examples, with notation as in Example 2.9. Example 5.1 gives

a Mahler summable f in the non-torsion case v ¢ K. Example 5.2

gives a non-Mahler summable f in the torsion case 7 C K.

Example 5.1. Let r = 7(2), and consider the following f = f; with
. 3 3 2.3 i

sing(f,7) = {2, V2, V2, & V2}. By Definition 4.6, h = h(f,7) = 1.

L3S eplkani)
31-n

(x = 5n V2
2

—x0 +4x3 + x% — 4x
27 - 2)?

f=

(x -

)k

=1 Z R &

=Gt 18§‘f (x— gg?f)z 94 & x—é”'éf’
fory := V2 as in Lemma 4.8. By Deﬁmtlon 4.10, for 0 < i<2:
dres(f., 7. Vg1, = 55 + VAED) - (-1 + V(Ep) -0

9y
=555 G~ =

_§3‘
9y*
dres(f.7.2)51, = S + VA@Y) - (1) = S 372 = 0

[
8y

by Lemma 2.17 and Example 2.20. Therefore f should be Mahler

summable. And indeed, f = A((x — 2)72).

Example 5.2. Let 7 =7({4), and consider the following f = f; with
sing(f, T) = {F, 14;21, fzs}. By Definition 4.6, h = h(f,1) = 1.

and

f= x6 1 3 x%; + x§4 3+ xg%lz + x§127 = 11215 + x€1521121
The map L( ) in Definition 4.15 sends(é, 6) — (4, 4) By
Definition 4.16, for 1 < i < 2;£ > 1; witha; ¢ := §3 3 f2’+3€:
dres(f,7, Ve, , = s Q41 +V (ai,e) - ;11 . f[ !
=3aipt (@) 3[ 1 =1 i #0,

by Lemma 2.17. Therefore f is not Mahler summable.

Acknowledgements. We thank the anonymous referees for their
careful reading and valuable suggestions. We also thank Manuel
Kauers for pointing us to relevant literature at a crucial juncture.



Session 16: Symbolic Integration and Summation

REFERENCES

[1] Sergei A. Abramov. 1971. On the summation of rational functions. U. S. S. R.

[2

(6

[7

[9

[

=

[

=

Comput. Math. and Math. Phys. 11, 4 (1971), 324-330. https://doi.org/10.1016/
0041-5553(71)90028-0

Sergei A. Abramov. 1974. Solution of linear finite-difference equations with
constant coefficients in the field of rational functions. U. S. S. R. Comput. Math. and
Math. Phys. 14, 4 (1974), 247-251. https://doi.org/10.1016/0041-5553(74)90095-0
Carlos E. Arreche. 2017. Computation of the difference-differential Galois group
and differential relations among solutions for a second-order linear difference
equation. Communications in Contemporary Mathematics 19, 06 (2017), 1650056.
https://doi.org/10.1142/50219199716500565

Carlos E. Arreche and Yi Zhang. 2022. Computing differential Galois groups of
second-order linear g-difference equations. Advances in Applied Mathematics 132
(2022), 102273. https://doi.org/10.1016/j.aam.2021.102273

Alin Bostan, Shaoshi Chen, Frédéric Chyzak, and Ziming Li. 2010. Complexity
of Creative Telescoping for Bivariate Rational Functions. In Proceedings of the
2010 International Symposium on Symbolic and Algebraic Computation (Munich,
Germany) (ISSAC ’10). Association for Computing Machinery, New York, NY,
USA, 203-210. https://doi.org/10.1145/1837934.1837975

Alin Bostan, Shaoshi Chen, Frédéric Chyzak, Ziming Li, and Guoce Xin. 2013.
Hermite Reduction and Creative Telescoping for Hyperexponential Functions. In
Proceedings of the 38th International Symposium on Symbolic and Algebraic Com-
putation (Boston, Maine, USA) (ISSAC ’13). Association for Computing Machinery,
New York, NY, USA, 77-84. https://doi.org/10.1145/2465506.2465946

Alin Bostan, Pierre Lairez, and Bruno Salvy. 2013. Creative Telescoping for
Rational Functions Using the Griffiths: Dwork Method. In Proceedings of the 38th
International Symposium on Symbolic and Algebraic Computation (Boston, Maine,
USA) (ISSAC ’13). Association for Computing Machinery, New York, NY, USA,
93-100. https://doi.org/10.1145/2465506.2465935

Manuel Bronstein. 1992. Formulas for series computations. Applicable Algebra
in Engineering, Communication and Computing 2, 3 (1992), 195-206. https:
//doi.org/10.1007/BF01294333

Xavier Caruso. 2021. A theory of residues for skew rational functions. Journal
de ’Ecole polytechnique — Mathématiques 8 (2021), 1159-1192. https://doi.org/

533

=
&

[14

[15

[16

(18

[19]

ISSAC °22, July 4-7, 2022, Villeneuve-d’Ascq, France

10.5802/jep.169

Xavier Caruso and Amaury Durand. 2021. Duals of linearized Reed-Solomon
codes. https://doi.org/10.48550/ARXIV.2110.12675

Shaoshi Chen. 2018. Bivariate Extensions of Abramov’s Algorithm for Rational
Summation. In Advances in Computer Algebra, Carsten Schneider and Eugene
Zima (Eds.). Springer International Publishing, Cham, 93-104.

Shaoshi Chen, Ruyong Feng, Pingchuan Ma, and Michael F. Singer. 2021. Separa-
bility Problems in Creative Telescoping. In Proceedings of the 2021 on International
Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Fed-
eration) (ISSAC ’21). Association for Computing Machinery, New York, NY, USA,
83-90. https://doi.org/10.1145/3452143.3465514

Shaoshi Chen, Qing-Hu Hou, George Labahn, and Rong-Hua Wang. 2016. Ex-
istence Problem of Telescopers: Beyond the Bivariate Case. In Proceedings of
the ACM on International Symposium on Symbolic and Algebraic Computation
(Waterloo, ON, Canada) (ISSAC ’16). Association for Computing Machinery, New
York, NY, USA, 167-174. https://doi.org/10.1145/2930889.2930895

Shaoshi Chen and Michael F. Singer. 2012. Residues and Telescopers for Bivariate
Rational Functions. Adv. Appl. Math. 49, 2 (aug 2012), 111-133. https://doi.org/
10.1016/j.aam.2012.04.003

Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba. 2018.
Computing solutions of linear Mahler equations. Math. Comp. 87, 314 (2018),
2977-3021. https://doi.org/10.1090/mcom/3359

Philippe Flajolet and Robert Sedgewick. 2009. Analytic Combinatorics. Cambridge
University Press, Cambridge, UK. https://doi.org/10.1017/CB09780511801655
Charlotte Hardouin and Michael F. Singer. 2008. Differential Galois theory of
linear difference equations. Math. Ann. 342, 2 (2008), 333-377. https://doi.org/
10.1007/500208-008-0238-z

Charlotte Hardouin and Michael F. Singer. 2021. On differentially algebraic
generating series for walks in the quarter plane. Selecta Mathematica 27, 5 (2021),
89. https://doi.org/10.1007/s00029-021-00703-9

Qing-Hu Hou and Rong-Hua Wang. 2015. An Algorithm for Deciding the Summa-
bility of Bivariate Rational Functions. Adv. Appl. Math. 64, C (mar 2015), 31-49.
https://doi.org/10.1016/j.aam.2014.11.002


https://doi.org/10.1016/0041-5553(71)90028-0
https://doi.org/10.1016/0041-5553(71)90028-0
https://doi.org/10.1016/0041-5553(74)90095-0
https://doi.org/10.1142/S0219199716500565
https://doi.org/10.1016/j.aam.2021.102273
https://doi.org/10.1145/1837934.1837975
https://doi.org/10.1145/2465506.2465946
https://doi.org/10.1145/2465506.2465935
https://doi.org/10.1007/BF01294333
https://doi.org/10.1007/BF01294333
https://doi.org/10.5802/jep.169
https://doi.org/10.5802/jep.169
https://doi.org/10.48550/ARXIV.2110.12675
https://doi.org/10.1145/3452143.3465514
https://doi.org/10.1145/2930889.2930895
https://doi.org/10.1016/j.aam.2012.04.003
https://doi.org/10.1016/j.aam.2012.04.003
https://doi.org/10.1090/mcom/3359
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1007/s00208-008-0238-z
https://doi.org/10.1007/s00208-008-0238-z
https://doi.org/10.1007/s00029-021-00703-9
https://doi.org/10.1016/j.aam.2014.11.002

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mahler trajectories, trees, and cycles
	2.2 Mahler supports and singular supports
	2.3 Mahler dispersion
	2.4 Mahler coefficients for partial fractions

	3 Mahler dispersion and summability
	4 Mahler discrete residues
	4.1 Mahler discrete residue at infinity
	4.2 Mahler discrete residues at Mahler trees
	4.3 Proof of the Main Theorem
	4.4 Mahler reduction

	5 Examples
	References



