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ABSTRACT
We construct Mahler discrete residues for rational functions and

show that they comprise a complete obstruction to the Mahler

summability problem of deciding whether a given rational function

f (x) is of the form д(xp ) −д(x) for some rational function д(x) and
an integer p > 1. This extends to the Mahler case the analogous

notions, properties, and applications of discrete residues (in the shift

case) and q-discrete residues (in the q-difference case) developed
by Chen and Singer. Along the way we define several additional

notions that promise to be useful for addressing related questions

involving Mahler difference fields of rational functions, including

in particular telescoping problems and problems in the (differential)

Galois theory of Mahler difference equations.

CCS CONCEPTS
• Computing methodologies → Algebraic algorithms.
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Mahler operator, difference fields, difference equations, partial frac-
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1 INTRODUCTION
Continuous residues are fundamental and crucial tools in complex

analysis, and have extensive and compelling applications in com-

binatorics [16]. In the last decade, a theory of (q-)discrete residues
was proposed in [14] for the study of telescoping problems, which

has found essential applications in several other closely related
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problems (see [3, 4, 11, 19] for some examples). A theory of residues

for skew rational functions was developed in [9], and then extended

to Ore polynomials and applied to linearized Reed-Solomon codes

in [10]. The elliptic orbit residues defined in [18] have applications

in the combinatorial study of walks in the quarter plane. We pro-

pose here a theory of Mahler discrete residues aimed at bringing to

the Mahler case the successes of these earlier notions of residues.

Let K be a field of characteristic zero and K(x) be the field of

rational functions in an indeterminate x overK. Fix an integerp ≥ 2.

We study the Mahler summability problem for rational functions:
given f (x) ∈ K(x), decide effectively whether f (x) = д(xp ) − д(x)
for some д(x) ∈ K(x); if so, we say f (x) is Mahler summable.

The motivation to study Mahler difference equations comes from

several directions: they find applications in automata theory (auto-

matic sequences), transcendence, and number theory, to name a few.

We refer to [15] for more details, and also for an altogether different

approach to the Mahler summability problem: the algorithm of [15,

§3] computes all the rational solutions to any linear Mahler equa-

tion. Thus with this one can decide, in particular, whether any given
f (x) ∈ K(x) is Mahler summable by computing (or showing non-

existence of) a certificate д(x) ∈ K(x) such that f (x) = д(xp )−д(x).
Our goal here is different: we wish to construct a complete ob-

struction to Mahler summability. Let us elaborate. The image of the

K-linear map ∆ : д(x) 7→ д(xp ) − д(x) is the kernel of some other

K-linear map (call it ∇) — but what is it? Determining such a ∇

explicitly is algorithmically desirable because it allows to decide

the Mahler summability of f (x) ∈ K(x) without computing the

certificate д(x) ∈ K(x), whose computation is often in practice both

expensive and not strictly necessary (cf. [5, §1 and Table 1], [6,

§1 and Table 1], and [7, §1]). We construct such a ∇ explicitly in

Section 4.4, in terms of our new notion of Mahler discrete residues
for rational functions, and prove in Section 4.3:

Main Theorem. f (x) ∈ K(x) is Mahler summable if and only if
all of the Mahler discrete residues of f (x) are zero.

The discrete and q-discrete residues developed in [14] comprise

complete obstructions to the summability problem of deciding

whether f (x) = д(x + 1) − д(x) for some д(x) ∈ K(x) and the

q-summability problem of deciding whether f (x) = д(qx) − д(x)
for some д(x) ∈ K(x) and q ∈ K neither zero nor a root of unity,

respectively. This theoretical property of (q-)discrete residues is pre-
cisely what enables their applications to the telescoping problems

considered in [14] and their indispensable role in the development

of the algorithms in [3, 4]. We envision analogous applications of

Mahler discrete residues to telescoping problems and in the devel-

opment of algorithms to compute (differential) Galois groups for

Mahler difference equations.
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Our strategy is inspired by that of [14] (but see Remark 2.19):

we utilize the coefficients in the partial fraction decomposition of

f (x) to construct an aspiring certificate д(x) ∈ K(x) such that, for

¯f (x) := f (x) +
(
д(xp ) − д(x)

)
, (1.1)

f (x) is Mahler summable if and only if
¯f (x) = 0. The Mahler

discrete residues of f (x) are (vectors whose components are) the

coefficients occurring in the partial fraction decomposition of
¯f (x).

This
¯f (x) plays the role of a Mahler remainder of f (x), analogous

to the remainder of Hermite reduction in the context of integration.

2 PRELIMINARIES
Here we define the notation and conventions used throughout this

work, and prove some ancillary results. We fix once and for all an

algebraically closed field K of characteristic zero and an integer

p ≥ 2 (not necessarily prime). We denote by K(x) the field of

rational functions in an indeterminate x over K. We often suppress

the functional notation and write simply f ∈ K(x) instead of f (x).

Definition 2.1. We denote by σ : K(x) → K(x) the K-linear
endomorphism defined by σ (x) = xp , called the Mahler operator,
so that σ (f (x)) = f (xp ) for f (x) ∈ K(x). We write ∆ := σ − id, so

that ∆(f (x)) = f (xp ) − f (x) for f (x) ∈ K(x).
We say that f ∈ K(x) is Mahler summable if f = ∆(д) for some

д ∈ K(x). The Mahler summability problem for rational functions is:
given f ∈ K(x), decide whether f is Mahler summable.

Let K× = K\{0} denote the multiplicative group of K. Let K×t
denote the torsion subgroup of K×, i.e., the group of roots of unity

in K×. For ζ ∈ K×t , the order of ζ is the smallest r ∈ N such that

ζ r = 1. We fix once and for all a compatible system of p-power
roots of unity (ζpn )n≥0 ⊂ K×t , that is, each ζpn has order pn and

ζ
pℓ

pn = ζpn−ℓ for 0 ≤ ℓ ≤ n. We denote by πn
ℓ
: Z/pnZ ↠ Z/pℓZ

and by πn : Z↠ Z/pnZ the canonical projections.
Each f ∈ K(x) decomposes uniquely as

f = fL + fT , where (2.1)

fL ∈ K[x ,x−1] is a Laurent polynomial and fT =
a
b for polynomials

a,b ∈ K[x] such thatb , 0 and, eithera = 0, or else deg(a) < deg(b)
and gcd(a,b) = 1 = gcd(x ,b). The subscript L stands for “Laurent”,

whereas the subscript T stands for “Tree” (see Definition 2.6).

Lemma 2.2. The decomposition K(x) ≃ K[x ,x−1] ⊕ K(x)T given
by f ↔ fL ⊕ fT as in (2.1) is σ -stable. For f ,д ∈ K(x), f = ∆(д) if
and only if fL = ∆(дL) and fT = ∆(дT ).

Proof. We see that σ (fL) ∈ K[x ,x
−1] for any fL ∈ K[x ,x−1].

By the Euclidean algorithm, gcd(σ (a),σ (b)) = σ (gcd(a,b)) for any
0 , a,b ∈ K[x]. Thus the K-subspace K(x)T is also stabilized by σ .
Hence f = ∆(д) if and only if fL = ∆(дL) and fT = ∆(дT ). □

2.1 Mahler trajectories, trees, and cycles
We let P := {pn | n ∈ Z≥0} denote the multiplicative monoid of

non-negative powers of p. Then P acts on Z by multiplication, and

the set of maximal trajectories for this action is

Z/P :=
{
{0}

}
∪
{
{ipn | n ∈ Z≥0}

�� i ∈ Z such that p ∤ i
}
.

Remark 2.3. The usage of trajectory is perhaps unfamiliar to some

readers: it is standard in the context of monoid (and more generally

semigroup) actions, and replaces the more familiar notion of orbit
for group actions. As in that more familiar setting, the elements

θ ∈ Z/P are pairwise disjoint sets whose union is all of Z.

Definition 2.4. For a maximal trajectory θ ∈ Z/P, we let

K[x ,x−1]θ :=
{∑

j c jx
j ∈ K[x ,x−1]

�� c j = 0 for all j < θ
}
, (2.2)

and call it the θ -subspace. The θ -component fθ of f ∈ K(x) is the
projection of the component fL of f in (2.1) toK[x ,x−1]θ as in (2.2).

Lemma 2.5. For f ,д ∈ K(x), fL = ∆(дL) if and only if fθ = ∆(дθ )
for every maximal trajectory θ ∈ Z/P.

Proof. This follows by observing that the K-linear decomposi-

tion K[x ,x−1]≃
⊕

θ ∈ Z/PK[x ,x
−1]θ is σ -stable (cf. [13, §5]). □

Definition 2.6. We denote by TM the set of equivalence classes

in K× for the equivalence relation α ∼ γ ⇔ αp
r
= γp

s
for some

r , s ∈ Z≥0. For α ∈ K×, we denote by τ (α) ∈ TM the equivalence

class of α under ∼. The elements τ ∈ TM are called Mahler trees.

Remark 2.7. The usage of tree in Definition 2.6 is motivated by the

fact that one can define a digraph structure D(τ ) on the vertex set

τ with an edge from α to γ whenever αp = γ , whose underlying
(undirected) graph is connected and acyclic so long as τ ∩ K×t = ∅.

We find the terminology useful and suggestive also if τ ∩ K×t , ∅,

because even in this exceptional case we do obtain a tree after

collapsing the unique cycle in D(τ ) defined below.

Definition 2.8. For a Mahler tree τ ∈ TM , the Mahler cycle of τ is

C(τ ) := {γ ∈ τ | γ is a root of unity of order coprime to p}.

The cycle length of τ is defined to be e(τ ) := |C(τ )|.

Example 2.9. (Cf. [15, Figures 4 and 5]). Let us illustrate the defi-

nitions of Mahler trees and Mahler cycles with K = C and p = 3. In

this example we write ζn := e
2π

√
−1

n ∈ C×, for concreteness.
The vertices in the digraph D(τ (2)) near α = 2 are:{

9
√
2, ζ3

9
√
2, ζ 2

3

9
√
2

} //
////
3
√
2

%%{
ζ9

9
√
2, ζ 4

9

9
√
2, ζ 7

9

9
√
2

} //
//// ζ3

3
√
2

//
2

//
8 −→ 512{

ζ 2
9

9
√
2, ζ 5

9

9
√
2, ζ 8

9

9
√
2

} //
//// ζ

2

3

3
√
2

99

For α = ζ4, we have C(τ (ζ4)) =
{
ζ4, ζ

3

4

}
, so the cycle length

e(τ (ζ4)) = 2. The vertices in the digraph D(τ (ζ4)) near C(τ (ζ4)) are:{
ζ36, ζ

13

36
, ζ 25

36

}
���� ��

{
ζ 7
36
, ζ 19

36
, ζ 31

36

}
���� ��

ζ12

&&

ζ 7
12

xx
ζ4

��
ζ 3
4\\

ζ 5
12

88

ζ 11
12

ff

{
ζ 5
36
, ζ 17

36
, ζ 29

36

}OO OOOO {
ζ 11
36
, ζ 23

36
, ζ 35

36

}OOOO OO
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Remark 2.10. Let us collect some immediate observations about

Mahler cycles that we shall use, and refer to, throughout the sequel.

For a Mahler tree τ ∈ TM it follows from the Definition 2.6 that

either τ ⊂ K×t or else τ∩K×t = ∅. In particular,C(τ ) = ∅ ⇔ e(τ ) = 0,

which occurs precisely when τ 1 K×t (the non-torsion case).
On the other hand, K×t consists of the pre-periodic points for the

action of the monoid P on K× given by α 7→ αp
n
for n ∈ Z≥0. For

τ ⊂ K×t (the torsion case), the Mahler cycle C(τ ) is a non-empty set

endowed with a simply transitive action of the quotient monoid

P/Pe ≃ Z/eZ, where Pe
:= {pne | n ∈ Z}, and e := e(τ ). We

emphasize that in general C(τ ) is only a set, and not a group. The

Mahler tree τ (1) consists precisely of the roots of unity ζ ∈ K×t
whose order r is such that gcd(r ,pn ) = r for some pn ∈ P, or

equivalently such that every prime factor of r divides p. When

τ ⊂ K×t but τ , τ (1), the cycle length e(τ ) is the order of p in the

group of units (Z/rZ)×, where r > 1 is the common order of the

roots of unity γ ∈ C(τ ), and C(τ ) = {γp
ℓ
| 0 ≤ ℓ ≤ e − 1} for any

given γ ∈ C(τ ). We shall abusively write C(τ ) = {γp
ℓ
| ℓ ∈ Z/eZ}.

2.2 Mahler supports and singular supports
Mahler trees allow us to define the following bespoke variants of

the singular support sing(f ) of a rational function f (i.e., its set of

poles), which are particularly well-suited to the Mahler context.

Definition 2.11. For f ∈ K(x), we define supp(f ) ⊂ TM ∪ {∞},

called the Mahler support of f , as follows:
• ∞ ∈ supp(f ) if and only if fL , 0; and

• for τ ∈ TM , τ ∈ supp(f ) if and only if τ contains a pole of f .

For τ ∈ TM , the singular support of f in τ , denoted by sing(f ,τ ),
is the (possibly empty) set of poles of f contained in τ .

We omit the straightforward proof of the following lemma.

Lemma 2.12. For f ,д ∈ K(x) and 0 , c ∈ Kwe have the following:
(1) supp(f ) = ∅ ⇔ f = 0;
(2) supp(σ (f )) = supp(f ) = supp(c · f ); and
(3) supp(f + д) ⊆ supp(f ) ∪ supp(д).

Definition 2.13. For a Mahler tree τ ∈ TM , the τ -subspace is

K(x)τ :=
{
fT ∈ K(x)T

��
supp(fT ) ⊆ {τ }

}
. (2.3)

For f ∈ K(x), the τ -component fτ of f is the projection of the

component fT of f in (2.1) to the τ -subspace K(x)τ in (2.3).

Lemma 2.14. For f ,д ∈ K(x), fT = ∆(дT ) if and only if fτ = ∆(дτ)
for every Mahler tree τ ∈ TM .

Proof. It follows from Lemma 2.12 that the K-linear decompo-

sition K(x)T ≃
⊕

τ ∈ TM
K(x)τ is σ -stable (cf. [13, §5]). □

2.3 Mahler dispersion
We now define a Mahler variant of the notion of (polar) dispersion

used in [14], following the original definitions in [1, 2].

Definition 2.15. For f ∈ K(x) and τ ∈ supp(f ), the Mahler dis-
persion of f at τ , denoted by disp(f ,τ ), is defined as follows.

If τ ∈ TM , disp(f ,τ ) is the largest d ∈ Z≥0 (if it exists) for which

there exists α ∈ sing(f ,τ ) such that αp
d
∈ sing(f ,τ ). If there is no

such d ∈ Z≥0, then we set disp(f ,τ ) = ∞.

If τ = ∞, let us write fL =
∑N
i=n cix

i ∈ K[x ,x−1]with cncN , 0.

• If fL = c0 , 0 then we set disp(f ,∞) = 0; otherwise

• disp(f ,∞) is the largest d ∈ Z≥0 for which there exists an

index i , 0 such that ci , 0 and cipd , 0.

For f ∈ K(x) and τ ∈ TM ∪ {∞} such that τ < supp(f ), we do not

define disp(f ,τ ) at all (cf. [1, 2, 14]).

Similarly as in the shift andq-difference cases (cf. [17, Lemma 6.3]

and [14, Lemma 2.4 and Lemma 2.9]), Mahler dispersions will play

a crucial role in what follows. As we prove in Corollary 3.2, they

already provide a partial obstruction to summability: if f ∈ K(x) is
Mahler summable then every Mahler dispersion of f is non-zero.

Moreover, Mahler dispersions also detect whether f has any “bad”

poles (i.e., at roots of unity of order coprime to p) according to:

Lemma 2.16. Let f ∈ K(x) and τ ∈ supp(f ). Then disp(f ,τ ) = ∞

if and only if sing(f ,τ ) ∩ C(τ ) , ∅.

Proof. (⇒). If disp(f ,τ ) = ∞, then there exist α ,γ ∈ sing(f ,τ )

such that αp
d
= γ for infinitely many d ∈ Z≥0. Thus, both γ and α

are roots of unity. Let r be the order of α . For any d ∈ Z≥0, the order

of αp
d
is rd := r/gcd(pd , r ), and we see that for every sufficiently

large d , the order rd of αp
d
is coprime to p, and therefore γ is a

root of unity of order coprime to p.

(⇐). Forγ ∈ sing(f ,τ )∩C(τ )we haveγp
e (τ )·n
= γ for everyn ∈ Z≥0

(cf. Remark 2.10), whence disp(f ,τ ) = ∞ by Definition 2.15. □

2.4 Mahler coefficients for partial fractions
We now study the effect of the Mahler operator σ on partial fraction

decompositions. For α ∈ K×,m ∈ N, and 1 ≤ k ≤ m, we define the

Mahler coefficients Vm
k (α) ∈ K implicitly by

σ

(
1

(x − αp )m

)
=

1

(xp − αp )m
=

m∑
k=1

p−1∑
i=0

Vm
k (ζ ipα)

(x − ζ ipα)
k
. (2.4)

These coefficients are computed explicitly with the following result.

Lemma 2.17. There exist universal coefficients Vmk ∈ Q such that

Vm
k (α) = Vmk · αk−pm

for every α ∈ K× and 1 ≤ k ≤ m. Moreover, these Vmk are the firstm
Taylor coefficients at x = 1 of

(xp−1 + · · ·+x + 1)−m =
m∑
k=1

Vmk · (x − 1)m−k +O((x − 1)m ). (2.5)

Proof. We claim thatVm
k (α) = Vm

k (1)·αk−pm for every α ∈ K×.

To see this, set x = αy for a new indeterminate y, and note that

m∑
k=1

p−1∑
i=0

Vm
k (ζ ipα)

(x − ζ ipα)
k
=

1

(xp − αp )m
= α−pm ·

1

(yp − 1)m
=

= α−pm
m∑
k=1

p−1∑
i=0

Vm
k (ζ ip )

(y − ζ ip )
k
= α−pm

m∑
k=1

p−1∑
i=0

Vm
k (ζ ip )α

k

(x − ζ ipα)
k
.

It follows that Vm
k (ζ ipα) = Vm

k (ζ ip )α
k−pm

for i = 0, . . . ,p − 1. In

particular for i = 0 we obtain Vm
k (α) = Vm

k (1)αk−pm , as claimed.

Setting Vmk := Vm
k (1), we see from (2.4) that Vmk is the usual con-

tinuous residue of order k of f (x) := (xp − 1)−m . The formula (2.5)

follows from [8, Section 2], where it is shown that Vmk =
д(m−k )(1)

(m−k )! ,

where д(x) := (x − 1)m f (x) = (xp−1 + · · · + 1)−m . □
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The following immediate consequence of Lemma 2.17 is obtained

by evaluating (2.5) at x = 1.

Corollary 2.18. For α ∈ K×, Vm
m (α) = p−mαm−pm .

Remark 2.19. We see in (2.4) two phenomena that arise in the

Mahler context and have no counterpart in the shift and q-dilation
settings considered in [14] — the main inspiration for the present

work. Let f ∈ K(x) such that 0 , fT as in (2.1). Then:

(1) the number of poles of σ (fT ) (counted either with or without
multiplicity!) is strictly larger than that of fT ; and

(2) the (classical/continuous) higher-order residues of fT “leak”

into the lower-order residues of σ (fT ).

These two phenomena are mainly responsible for our need to create

new and somewhat intricate bookkeeping devices in the Mahler

setting, which were (invisibly) not necessary in the shift and q-
dilation settings considered in [14], in order to develop our proposed

analogous theory of Mahler discrete residues.

Example 2.20. Let us illustrate the definition of Mahler coeffi-

cients with p = 3,m = 2, and α3 = 1. Then (2.4) becomes

σ

(
1

(x − 1)2

)
=

1

(x3 − 1)2
=

2∑
k=1

2∑
i=0

V2k · ζ ki
3

(x − ζ i
3
)k
,

because, by Lemma 2.17, V 2

k (ζ
i
3
) = V2k · (ζ i

3
)k−6 = V2k · ζ ki

3
for

k = 1, 2. We find in this case, using (2.5) in Lemma 2.17, that

V2
2
=
(
x2+x +1

)−2���
x=1
= 1

9
; and V2

1
=
(
(x2+x +1)−2

) ′���
x=1
= − 2

9
.

One can verify using a computer algebra system (or by hand!) that

the partial fraction decomposition of 9 · (x3 − 1)−2 is indeed

1

(x − 1)2
+

ζ 2
3

(x − ζ3)2
+

ζ3

(x − ζ 2
3
)2
+

−2

x − 1

+
−2ζ3
x − ζ3

+
−2ζ 2

3

x − ζ 2
3

.

3 MAHLER DISPERSION AND SUMMABILITY
The goal of this section is to prove Corollary 3.2 below. This is an

essential ingredient in our proofs, following [14]. The following

result is a Mahler analogue of [12, Lemma 2.6].

Proposition 3.1. Let f ,д ∈ K(x) such that f = ∆(д). Then
supp(f ) ⊆ supp(д). Moreover, disp(f ,τ ) = disp(д,τ ) + 1 for every
τ ∈ supp(f ), with the convention that ∞ + 1 = ∞.

Proof. By Lemma 2.12, τ ∈ supp(f ) ⇒ τ ∈ supp(д). We con-

sider separately the two main cases: (1). τ = ∞; and (2). τ ∈ TM .

(1). For fL ,дL ∈ K[x ,x−1] as in (2.1), we have 0 , fL = ∆(дL),
since∞ ∈ supp(f ), and in particular дL < K. Then fθ = ∆(дθ ) for
each θ ∈ Z/P by Lemma 2.5. Since, for θ = {0}, f {0} = ∆(д{0}) = 0,

it follows from Definition 2.15 that

disp(f ,∞) = max {disp (fθ ,∞) | {0} , θ ∈ Z/P, fθ , 0} .

We claim disp(∆ (дθ ),∞) = disp(дθ ,∞)+1 for everyдθ ∈ K[x ,x−1]θ
with {0} , θ ∈ Z/P, which will conclude the proof of (1). To prove

the claim, let us write дθ =
∑d
j=0 cip jx

ip j , where we assume ci , 0

and cipd , 0, i.e., disp(дθ ,∞) = d . Then

∆(дθ ) = cipd x
ipd+1 − cix

i +
∑d
j=1(cip j−1 − cip j )x

ip j ,

from which it follows that disp(∆(дθ ),∞) = d + 1, as desired.

(2). By Lemma 2.14, fτ = ∆(дτ ) for each τ ∈ TM , and in particular

for each τ ∈ supp(f ). We consider two subcases, depending on

whether disp(д,τ ) is finite or not.
In the first subcase, disp(д,τ ) =: d < ∞. Let α ∈ τ be such that

α and αp
d
are poles of д. Let γ ∈ τ such that γp = α . Then γ is a

pole of σ (д) but not of д (by maximality of d), whence γ is a pole

of f . On the other hand, γp
d+1
= αp

d
is a pole of д but not of

σ (д), for if αp
d
were a pole of σ (д) then αp

d+1
would be a pole of

д, again contradicting maximality of d . Hence γp
d+1

is a pole of f .
Thus disp(f ,τ ) ≥ d + 1. One can show equality by contradiction:

if α ∈ τ is a pole of f such that αp
s
is also a pole of f for some

s > d+1, then each of α and αp
s
is either a pole ofд or a pole of σ (д).

This implies (after tedious but straightforward casework) that there

exist 0 ≤ i, j ≤ 1 such that αp
s+i

and αp
j
are both poles of д, which

contradicts the maximality of d since in any case s+i− j ≥ s−1 > d .
Hence disp(f ,τ ) = disp(д,τ ) + 1 in this first subcase.

In the last remaining subcase where disp(д,τ ) = ∞, there exists

γ ∈ sing(д,τ ) ∩ C(τ ) by Lemma 2.16. We claim γp
ℓ
∈ sing(f ,τ ) for

some ℓ ∈ Z/eZ, where e := e(τ ) ≥ 1 (cf. Remark 2.10, where we

discussed the meaning of γp
ℓ
for ℓ ∈ Z/eZ, rather than ℓ ∈ Z≥0).

This will imply that disp(f ,τ ) = ∞ = disp(д,τ )+ 1, by Lemma 2.16.

Let us prove the claim. Note that the K-subspace S of K(x)τ ,
consisting of rational functions none of whose poles belongs to

C(τ ), or equivalently (by Lemma 2.16), the K-span of the elements

of K(x)τ having finite dispersion, is σ -stable1. So we may assume

дτ =
m∑
k=1

∑
ℓ∈ Z/eZ

d(k, ℓ)

(x − γp
ℓ
)k
,

where d(k, ℓ) ∈ K such that d(m, ℓ) , 0 for some ℓ ∈ Z/eZ, without
loss of generality, because the other possible poles of д in τ cannot

contribute to the possible poles of f in C(τ ) (since S is σ -stable).
Then

σ (дτ ) =
m∑
k=1

∑
ℓ∈ Z/eZ

d (k, ℓ)(
xp−γ pℓ

)k =p−1∑
i=0

©­«
∑

ℓ∈ Z/eZ

Vm
m

(
ζ ipγ

pℓ−1
)
·d (m, ℓ)(

x−ζ ipγ p
ℓ−1

)m ª®¬+
+ (lower-order terms),

where the Vm
m are as in (2.4), and therefore

2

fτ = ∆(дτ ) =
∑

ℓ∈ Z/eZ

Vm
m

(
γp

ℓ
)
· d(m, ℓ + 1) − d(m, ℓ)(
x − γp

ℓ
)m +

+ (lower-order terms) + (elements of S). (3.1)

But the coefficients Vm
m (γp

ℓ
) · d(m, ℓ + 1) − d(m, ℓ) cannot be zero

for every ℓ ∈ Z/eZ, for otherwise the computation

d(m, ℓ) = d(m, ℓ)
e−1∏
j=0

Vm
m

(
γp

j
)
= d(m, ℓ)

e−1∏
j=0

γmp j

pmγmp j+1
=
d(m, ℓ)

pem
,

where the middle equality is obtained from Corollary 2.18, would

imply that d(m, ℓ) = 0 for every ℓ ∈ Z/eZ. But this is impossible,

concluding the proof of the claim that f has a pole in C(τ ). □

1
If a denominator b ∈ K[x ] has no roots in C(τ ) then neither does σ (b), for if
γ ∈ C(τ ) were a root of σ (b) then γ p ∈ C(τ ) would be a root of b .
2
See Remark 4.13, where we systematically elaborate on the details of this computation.
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Corollary 3.2. Suppose that f ∈ K(x) is Mahler summable. Then
disp(f ,τ ) is non-zero for every τ ∈ supp(f ).

Proof. This is a direct consequence of Proposition 3.1. □

4 MAHLER DISCRETE RESIDUES
In this section we define theMahler discrete residues of f ∈ K(x), in
increasing order of complexity: first at infinity, and then at Mahler

trees τ ∈ TM , separately in the non-torsion case where τ 1 K×t , and
finally in the torsion case where τ ⊂ K×t (cf. Remark 2.10).

4.1 Mahler discrete residue at infinity
Here we define the Mahler discrete residue of f ∈ K(x) at ∞ in

terms of the component fL ∈ K[x ,x−1] of f in (2.1), and show that

it forms a complete obstruction to the Mahler summability of fL .
The proof of Proposition 4.2 below follows the same strategy as

that of [14, Propositions 2.5 and 2.10]: we add to fL a sequence of

Mahler summable elements to eventually obtain aMahler remainder
¯fL whose apparent dispersion is 0, and then use Corollary 3.2 to

conclude that fL is Mahler summable if and only if this
¯fL = 0.

Definition 4.1. For f ∈ K(x), let fL =
∑
j ∈Z c jx

j
with c j = 0 for

all but finitely many j ∈ Z. The Mahler discrete residue of f at ∞ is

the vector dres(f ,∞) :=
(∑

j ∈θ c j
)
θ ∈ Z/P

∈
⊕

θ ∈ Z/P

K.

Proposition 4.2. For f ∈ K(x), the component fL ∈ K[x ,x−1]
in (2.1) is Mahler summable if and only if dres(f ,∞) = 0.

Proof. By Lemma 2.5, fL is Mahler summable if and only if fθ
is Mahler summable for all θ ∈ Z/P. We shall show fθ is Mahler

summable if and only if the θ -component dres(f ,∞)θ is 0. We prove

this separately in two cases: (1). θ = {0}; and (2). θ , {0}.

(1). For θ = {0}, f {0} = c0 = dres(f ,∞){0} by Definition 4.1. If

dres(f ,∞){0} = 0, then f {0} = 0 is Mahler summable. On the other

hand, if dres(f ,∞){0} , 0 then f {0} , 0 and disp(f {0},∞) = 0 by

Definition 2.15, so f {0} is not Mahler summable by Corollary 3.2.

(2). Suppose θ , {0}. The claim is trivial in case fθ = 0; assume

fθ , 0. Let us write fθ =
∑
j ∈θ c jx

j ∈ K[x ,x−1]θ , where: c j = 0

for all but finitely many j ∈ θ and c j , 0 for at least one j ∈ θ . Let
us write θ = {ipn | n ∈ Z≥0} for i ∈ θ such that p ∤ i . Let h ∈ Z≥0

be maximal such that ciph , 0. Let us define recursively: д
(0)

θ := 0;

and, if h ≥ 1, then set

д
(n+1)
θ :=

∑n
k=0

(∑k
ℓ=0

cipℓ

)
x ip

k
= д

(n)
θ +

(∑n
ℓ=0

cipℓ

)
x ip

n

for 0 ≤ n ≤ h − 1. A straightforward induction argument shows:

¯f
(n)
θ := fθ +∆

(
д
(n)
θ

)
=
∑h+1
k=n+1 cipk x

ipk +
(∑n

ℓ=0
cipℓ

)
x ip

n
(4.1)

for each 0 ≤ n ≤ h, whence ¯f
(h)
θ = (dres(f ,∞)θ ) · x

iph
. The harm-

less summand for k = h + 1 in (4.1) is included so that the sum

makes sense for n = h, but cipk = 0 for every k > h. We see that

¯f
(h)
θ is Mahler summable if and only if fθ is Mahler summable. In

particular, if
¯f
(h)
θ = 0 then fθ is Mahler summable. But if

¯f
(h)
θ , 0

then disp( ¯f
(h)
θ ,∞) = 0, and by Corollary 3.2

¯f
(h)
θ is not Mahler sum-

mable, so neither is fθ . Clearly, ¯f
(h)
θ = 0 ⇔ dres(f ,∞)θ = 0. □

Remark 4.3. For {0} , θ ∈ Z/P such that fθ , 0, the elements

¯f
(h)
θ ,д

(h)
θ ∈ K[x ,x−1]θ constructed in the proof of Proposition 4.2

are the θ -components of the
¯f ,д ∈ K(x) in (1.1). If fθ = 0, then we

define
¯fθ := 0 =: дθ . In any case, we set

¯f {0} := f {0} and д{0} := 0.

4.2 Mahler discrete residues at Mahler trees
Here we define the Mahler discrete residues of f ∈ K(x) at a Mahler

tree τ ∈ TM , in terms of the partial fraction decomposition of the

component fτ ∈ K(x)τ in Definition 2.13, and show they comprise a

complete obstruction to the Mahler summability of fτ . We proceed

separately in the non-torsion case τ 1 K×t and the torsion case
τ ⊂ K×t (cf. Remark 2.10), depending on which case we represent

the poles of fτ in a particular manner.

Lemma 4.4. For f ∈ K(x) and τ ∈ supp(f )∩TM such that τ 1 K×t ,
there exists γ ∈ sing(f ,τ ) and h ∈ Z≥0 such that

sing(f ,τ ) ⊆ βh (γ ) :=
{
ζ ipnγ

ph−n
��
0 ≤ n ≤ h; i ∈ Z/pnZ

}
.

Moreover, the elements ζ ipnγ
ph−n ∈ βh (γ ) are uniquely determined

by 0 ≤ n ≤ h and i ∈ Z/pnZ, relative to the choice of γ ∈ sing(f ,τ ).

Proof. Note that the set βh (γ ) (mnemonic: “bouquet” of height

h atγ ) is precisely the union of the sets of roots of they-polynomials

yp
n
−γp

h
= 0 for all 0 ≤ n ≤ h. The elements of βh (γ ) are uniquely

determined by n and i (relative to the choice of γ ), because if we had
ζ
j
pmγ

ph−m= ζ ipnγ
ph−n

, then this would forcem = n, for otherwise
γ ∈ K×t contradicting our assumptions, and then ζ

j
pn = ζ ipn implies

that j = i . Let us now show that for any finite set S ⊂ τ there

exist γ ∈ S and h ∈ Z≥0 such that S ⊆ βh (γ ). For α ∈ S , let

h(α) ∈ Z≥0 be minimal such that αp
h(α )

∈ ξ P for every ξ ∈ S ,

where ξ P := {ξp
t
| t ∈ Z≥0}. Choose γ ∈ S such that h(γ ) =: h

is maximal among all elements of S . We claim that αp
h(α )

= γp
h

for every α ∈ S , which will conclude the proof, since h(α) ≤ h
for every α ∈ S . To prove the claim, note that in any case there

exist t , r ∈ Z≥0 such that αp
t
= γp

h
and αp

h(α )

= γp
r
, and the

minimality of h(α) and h then imply t ≥ h(α) and r ≥ h. But then

γp
h
= αp

t
=
(
αp

h(α ) )pt−h(α )

=
(
γp

r )pt−h(α )

= γp
r+t−h(α )

,

and since γ < K×t we obtain that h + h(α) = r + t , from which it

follows that r = h and t = h(α), as claimed. □

Lemma 4.5. Let τ ∈ TM with τ ⊂ K×t and e := e(τ ). Choose
γ ∈ C(τ ). Then for α ∈ τ there are unique n ∈ Z≥0, i ∈ Z/pnZ, and
ℓ ∈ Z/eZ, with either n = i = 0 or p ∤ i , such that α = ζ ipnγ

pℓ−πe (n)
.

Proof. There exist integers n, t ∈ Z≥0 such that αp
n
= γp

t
, and

we may take this n to be as small as possible and replace t with

ℓ := πe (t). The p
n
distinct solutions to yp

n
= γp

ℓ
, one of which

is y = α , are all of the form ζ ipnγ
pℓ−πe (n)

for i ∈ Z/pnZ. Since n is

minimal, either n = i = 0 or else 1 ≤ i ≤ pn − 1 with p ∤ i . □

Definition 4.6. For f ∈ K(x) and τ ∈ supp(f ) ∩ TM , the height of
f at τ , denoted by h(f ,τ ), is defined as follows.

• If τ 1 K×t ,h(f ,τ ) is the smallesth ∈ Z≥0 such that sing(f ,τ )
is contained in βh (γ ) for someγ ∈ sing(f ,τ ) as in Lemma 4.4.

• If τ ⊂ K×t , h(f ,τ ) is the smallest h ∈ Z≥0 such that αp
h

belongs to C(τ ) for every α ∈ sing(f ,τ ).
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Remark 4.7. Suppose f ∈ K(x) and τ ∈ supp(f ) ∩ TM . We always

have h(f ,τ ) < ∞. One can show that h(f ,τ ) ≥ disp(f ,τ ) provided
that disp(f ,τ ) < ∞, but even then the inequality may be strict.

4.2.1 Mahler discrete residues at Mahler trees: the non-torsion case.

Lemma 4.8. Let f ∈ K(x) and suppose τ ∈ supp(f ) ∩ TM such
that τ 1 K×t . Then there exists γ ∈ sing(f ,τ ) such that the partial
fraction decomposition of fτ is of the form

fτ =
m∑
k=1

h∑
n=0

©­­«
∑

i ∈ Z/pnZ

cγ (k,n, i)(
x − ζ ipnγ

ph−n
)k ª®®¬ , (4.2)

wherem ≥ 1 is the highest order of a pole of f in sing(f ,τ ) and the
height h := h(f ,τ ) is as in Definition 4.6.

The coefficients cγ (k,n, i) ∈ K are uniquely determined by f and
the choice of γ , and moreover for any γ , γ̃ ∈ τ as above we have
γ̃ = ζ

j
ph
γ for some j ∈ Z/phZ, and

cγ̃ (k,n, i) = cγ
(
k,n, i + πhn (j)

)
. (4.3)

Proof. We obtain the existence of γ ∈ sing(f ,τ ) such that

sing(f ,τ ) ⊆ βh (γ ) by Lemma 4.4 and Definition 4.6. The existence

and uniqueness of the coefficients cγ (k,n, i) ∈ K satisfying (4.2) fol-

lows directly from the existence and uniqueness of partial fraction

decompositions, since in this case the elements ζ ipnγ
ph−n∈ βh (γ )

are uniquely determined by n and i (relative to the choice of γ ),
by Lemma 4.4. For any γ̃ ∈ sing(f ,τ ) such that sing(f ,τ ) ⊆ βh (γ̃ )

we would have γ̃p
ñ
= γp

h
and γp

n
= γ̃p

h
such that 0 ≤ n, ñ ≤ h,

which would force ñ = h = n since γ < K×t . Hence γ̃ = ζ
j
ph
γ for

some j ∈ Z/phZ, and the computation

cγ̃ (k,n,i)(
x−ζ ipn γ̃

ph−n
)k = cγ̃ (k,n,i)(

x−ζ i+jpn γ ph−n
)k = cγ (k,n,i+j)(

x−ζ i+jpn γ ph−n
)k

implies the transformation formula (4.3). □

Remark 4.9. Writing fτ as in (4.2), let us compute the effect of σ :

σ

(∑m
k=1

(∑
i ∈ Z/pnZ cγ (k,n, i) ·

(
x − ζ ipnγ

ph−n
)−k ))

(4.4)

=

m∑
k=1

©­«
∑

i ∈ Z/pn+1Z

∑m
s=k V

s
k

(
ζ i
pn+1

γ p
h−(n+1)

)
·cγ (s,n,πn+1n (i))(

x−ζ i
pn+1

γ ph−(n+1)
)k ª®¬

for each 0 ≤ n ≤ h − 1, where the V s
k are as in (2.4) for k ≤ s ≤ m.

Definition 4.10. For f ∈ K(x) and τ ∈ TM with τ 1 K×t , the
Mahler discrete residue of f at τ of degree k ∈ N is the vector

dres(f ,τ ,k) ∈
⊕

α ∈τ K defined in terms of the cγ (k,n, i) in the

partial fraction decomposition of fτ in Lemma 4.8 as follows.

Set dres(f ,τ ,k) := 0 if τ < supp(f ) or if k > m. For τ ∈ supp(f )

and α ∈ τ , the component dres(f ,τ ,k)α := 0 whenever αp
h
, γp

h
.

For 1 ≤ k ≤ m and α = ζ i
ph
γ with i ∈ Z/phZ, the component

dres(f ,τ ,k)α := ĉγ (k,h, i);

where for 0 ≤ n ≤ h and i ∈ Z/pnZ we define recursively (in n):

ĉγ (k, 0, 0) := cγ (k, 0, 0); and, for 1 ≤ n ≤ h and i ∈ Z/pnZ, (4.5)

ĉγ (k,n, i) := cγ (k,n, i) +
m∑
s=k

V s
k

(
ζ ipnγ

ph−n
)
· ĉγ

(
s,n − 1,πnn−1(i)

)
(cf. (4.4)), where the V s

k are as in (2.4) for k ≤ s ≤ m.

Remark 4.11. Note that the definition of dres(f ,τ ,k) for τ 1 K×t
given above is independent of the choice of γ ∈ sing(f ,τ ), because

for any possibly different γ̃ = ζ
j
ph
γ with j ∈ Z/phZ we obtain

ζ i
ph
γ̃ = ζ

i+j
ph

γ =: α . The equality of the expressions

ĉγ̃ (k,h, i) = dres(f ,τ ,k)α = ĉγ (k,h, i + j)

follows from (4.3), since ζ ipn γ̃
ph−n = ζ

i+j
pn γp

h−n
for all i ∈ Z/pnZ,

and therefore ĉγ̃ (k,n, i) = ĉγ (k,n, i + π
h
n (j)) for every 0 ≤ n ≤ h.

4.2.2 Mahler discrete residues at Mahler trees: the torsion case.

Lemma 4.12. Let f ∈ K(x) and suppose τ ∈ supp(f ) such that
τ ⊂ K×t . Then for any γ ∈ C(τ ) the partial fraction decomposition of
fτ is of the form

fτ =
m∑
k=1

h∑
n=0

©­­«
∑′

i ∈ Z/pnZ

©­­«
∑

ℓ∈ Z/eZ

dγ (k,n, i, ℓ)(
x − ζ ipnγ

pℓ−πe (n)
)k ª®®¬

ª®®¬ , (4.6)

where:m ≥ 1 is the highest order of a pole of f in sing(f ,τ ); the height
h := h(f ,τ ) is as in Definition 4.6; the restricted sum

∑′ is taken over
i ∈ Z/pnZ such that p ∤ i whenever n , 0; and e := e(τ ) ≥ 1.

The coefficients dγ (k,n, i, ℓ) ∈ K are uniquely determined by f
and γ , and moreover for any γ , γ̃ ∈ C(τ ) we have γ̃ = γp

j
for some

j ∈ Z/eZ, and
dγ̃ (k,n, i, ℓ) = dγ (k,n, i, ℓ + j). (4.7)

Proof. If τ ⊂ K×t then e ≥ 1 (cf. Remark 2.10). We then have

by Lemma 4.5 that for any given choice of γ ∈ C(τ ) the elements

α ∈ τ can be written uniquely as α = ζ ipnγ
pℓ−πe (n)

with n ∈ Z≥0

and i ∈ Z/pnZ such that either n = i = 0 or else p ∤ i . The

set of elements α ∈ τ such that αp
h

∈ C(τ ) are precisely the

α = ζ ipnγ
pℓ−πe (n)

with n ≤ h. It follows that the apparent poles in
(4.6) are all distinct and include all the poles of f , and therefore the
coefficients dγ (k,n, i, ℓ) ∈ K are uniquely determined by f and γ .
It also follows from Lemma 4.5 that for any other γ̃ ∈ C(τ ) there

exists j ∈ Z/eZ such that γ̃ = γp
j
, and therefore the computation

dγ̃ (k,n,i, ℓ)(
x−ζ ipn γ̃

pℓ−πe (n)
)k = dγ̃ (k,n,i, ℓ)(

x−ζ ipnγ
pℓ+j−πe (n)

)k = dγ (k,n,i, ℓ+j)(
x−ζ ipnγ

pℓ+j−πe (n)
)k

implies the transformation formula (4.7). □

Remark 4.13. Writing fτ as in (4.6), let us compute the effect of σ :

σ

(∑m
k=1

∑
ℓ∈ Z/eZ dγ (k, 0, 0, ℓ) ·

(
x − γp

ℓ
)−k )

(4.8)

=

m∑
k=1

©­«
∑

ℓ∈ Z/eZ

∑m
s=k V

s
k

(
γ p

ℓ
)
·dγ (s,0,0, ℓ+1)(

x−γ pℓ
)k ª®¬ +

+

m∑
k=1

p−1∑
i=1

©­«
∑

ℓ∈ Z/eZ

∑m
s=k V

s
k

(
ζ ipγ

pℓ−1
)
·dγ (s,0,0, ℓ)(

x−ζ ipγ p
ℓ−1

)k ª®¬ ;
and for n ≥ 1 and each ℓ ∈ Z/eZ we have

σ

(∑m
k=1

∑′
i ∈Z/pnZ dγ (k,n, i, ℓ) ·

(
x − ζ ipnγ

pℓ−πe (n)
)−k )

(4.9)

=

m∑
k=1

©­«
∑′

i ∈ Z/pn+1Z

∑m
s=k V

s
k

(
ζ i
pn+1

γ p
ℓ−πe (n+1)

)
·dγ (s,n,πn+1n (i), ℓ)(

x−ζ i
pn+1

γ pℓ−πe (n+1)
)k ª®¬ ;

where the V s
k are as in (2.4) for k ≤ s ≤ m.
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The following technical lemma is essential for the definition of

Mahler discrete residues in the torsion case. The mapD
(m)
γ defined

below already appeared (anonymously) in (3.1). It captures the effect

of ∆ on the (classical/continuous) residues at poles in the Mahler

cycle C(τ ) (see Definition 2.8), according to the computation (4.8).

Lemma 4.14. Let τ ∈ TM with τ ⊂ K×t and e := e(τ ). For γ ∈ C(τ )

andm ∈ N, define D(m)
γ : Km×e → Km×e by

D
(m)
γ : (ck, ℓ)1≤k≤m

ℓ∈ Z/eZ
7→

(
dk, ℓ

)
1≤k≤m
ℓ∈ Z/eZ

, (4.10)

where dk, ℓ := ck, ℓ −
∑m
s=k V

s
k
(
γp

ℓ )
· cs, ℓ+1, and where theV s

k are as

in (2.4). Then D
(m)
γ is invertible and has no non-trivial fixed points.

Proof. Let 0 , (ck, ℓ) ∈ K
m×e

, and write (dk, ℓ) := D
(m)
γ (ck, ℓ).

Let 1 ≤ r ≤ m be as large as possible such that cr, ℓ , 0 for some

ℓ ∈ Z/eZ. To see that (dk, ℓ) , 0, note that, for each ℓ ∈ Z/eZ,

dr, ℓ = cr, ℓ −
∑m
s=r V

s
r
(
γp

ℓ )
· cs, ℓ+1 = cr, ℓ −V r

r
(
γp

ℓ )
· cr, ℓ+1

because cs, ℓ+1 = 0 whenever s > r , and we see just as at the end of

proof of Proposition 3.1 that the dr, ℓ cannot be zero for all ℓ ∈ Z/eZ
because this would imply that every cr, ℓ = 0, contradicting our

choice of r . Moreover, we also cannot have dk, ℓ = ck, ℓ for every
1 ≤ k ≤ m and ℓ ∈ Z/eZ, for this would also imply that cr, ℓ = 0

for every ℓ ∈ Z/eZ, again contradicting our choice of r . □

Definition 4.15. With notation as in Lemma 4.14, the inverse of

D
(m)
γ is denoted by L

(m)
γ .

Definition 4.16. For f ∈ K(x) and τ ∈ TM with τ ⊂ K×t , the
Mahler discrete residue of f at τ of degree k ∈ N is the vector

dres(f ,τ ,k) ∈
⊕

α ∈τ K defined in terms of the dγ (k,n, i, ℓ) in the

partial fraction decomposition of fτ in Lemma 4.12 as follows.

Set dres(f ,τ ,k) := 0 if τ < supp(f ) or if k > m. For τ ∈ supp(f )
and α ∈ τ , the component dres(f ,τ ,k)α := 0whenever the smallest

integer r ∈ Z≥0 such that αp
r
∈ C(τ ) is different from h.

If h = 0, then for 1 ≤ k ≤ m and α = γp
ℓ
∈ C(τ ) with ℓ ∈ Z/eZ,

the component

dres(f ,τ ,k)γ pℓ := dγ (k, 0, 0, ℓ).

If h ≥ 1, then for 1 ≤ k ≤ m and α = ζ i
ph
γp

ℓ−πe (h)
with i ∈ Z/phZ

such that p ∤ i and ℓ ∈ Z/eZ, the component

dres(f ,τ ,k)α := ˆdγ (k,h, i, ℓ); where we set

ˆdγ (k, 0, 0, ℓ) := cγ (k, ℓ), with (4.11)(
cγ (k, ℓ)

)
1≤k≤m
ℓ∈ Z/eZ

:= L
(m)
γ

( (
dγ (k, 0, 0, ℓ)

)
1≤k≤m
ℓ∈ Z/eZ

)
(4.12)

for the linear map L
(m)
γ in Definition 4.15; and for 1 ≤ n ≤ h and

i ∈ Z/pnZ with p ∤ i we define recursively (in n):

ˆdγ (k,n, i, ℓ) := dγ (k,n, i, ℓ) + (4.13)

+
∑m
s=k V

s
k
(
ζ ipnγ

pℓ−πe (n) )
· ˆdγ

(
s,n − 1,πnn−1(i), ℓ

)
,

(cf. (4.9)) where the V s
k are as in (2.4).

Remark 4.17. Note that the definition of dres(f ,τ ,k) for τ ⊂ K×t
given above is independent of the choice of γ ∈ C(τ ), because for

γ̃ = γp
j
with j ∈ Z/eZ we have ζ i

ph
γ̃p

ℓ−πe (h)
= ζ i

ph
γp

ℓ+j−πe (h)
=: α .

The equality of the expressions

ˆdγ̃ (k,h, i, ℓ) = dres(f ,τ ,k)α = ˆdγ (k,h, i, ℓ + j)

follows from (4.7), after observing that D
(m)

γ̃ ◦ cycj = D
(m)
γ , where

cycj : K
m×e → Km×e

: (ck, ℓ) 7→ (ck, ℓ+j ) for j ∈ Z/eZ. It follows

that cycj ◦L
(m)

γ̃ = L
(m)
γ and therefore

ˆdγ̃ (k,n, i, ℓ) = ˆdγ (k,n, i, ℓ+j)

for every 0 ≤ n ≤ h.

4.3 Proof of the Main Theorem
Our proof of Proposition 4.18 below follows a strategy similar to

that of [14, Propositions 2.5 and 2.10]: we add to fτ a sequence of

Mahler summable elements to eventually obtain a Mahler reduction
¯fτ whose apparent dispersion is 0, and then use Corollary 3.2 to

conclude that fτ is Mahler summable if and only if this
¯fτ = 0.

There is a wrinkle: for τ ∈ supp(f ) in the torsion case τ ⊂ K×t
such that the height h(f ,τ ) = 0 (see Definition 4.6), disp(f ,τ ) = ∞

by Lemma 2.16. Corollary 3.2 remains silent in this case, for which

we provide a specialized argument relying on Lemma 4.14.

Proposition 4.18. For f ∈ K(x) and τ ∈ TM , the component fτ
is Mahler summable if and only if dres(f ,τ ,k) = 0 for every k ∈ N.

Proof. The Proposition is trivial for τ < supp(f ) ⇔ fτ = 0.

Assume from now on that τ ∈ supp(f ). The proofs in the different

cases τ 1 K×t versus τ ⊂ K×t proceed in parallel below.

Write fτ as in Lemma 4.8 if τ 1 K×t ; and as in Lemma 4.12 if

τ ⊂ K×t . Let us define recursively: д
(0)
τ := 0; and, if h := h(f ,τ ) ≥ 1

as in Definition 4.6, then for 0 ≤ n ≤ h − 1 set

д
(n+1)
τ := д

(n)
τ +

m∑
k=1

©­«
∑

i ∈ Z/pnZ

ĉγ (k,n,i)(
x−ζ ipnγ

ph−n
)k ª®¬

in case τ 1 K×t , with ĉγ (k,n, i) as in (4.5); and

д
(n+1)
τ := д

(n)
τ +

m∑
k=1

©­«
∑′

i ∈Z/pnZ

©­«
∑

ℓ∈Z/eZ

ˆdγ (k,n,i, ℓ)(
x−ζ ipnγ

pℓ−πe (n)
)k ª®¬ª®¬

in case τ ⊂ K×t , with
ˆdγ (k,n, i, ℓ) as in (4.11) for n = 0 and as

in (4.13) for n ≥ 1. Setting
¯f
(n)
τ := fτ + ∆

(
д
(n)
τ

)
, an induction

argument then shows that, for every 0 ≤ n ≤ h,

¯f
(n)
τ =

m∑
k=1

h+1∑
s=n+1

©­«
∑

i ∈ Z/psZ

cγ (k,s,i)(
x−ζ ips γ

ph−s
)k ª®¬ +

+

m∑
k=1

©­«
∑

i ∈ Z/pnZ

ĉγ (k,n,i)(
x−ζ ipnγ

ph−n
)k ª®¬ (4.14)

in case τ 1 K×t ; and

¯f
(n)
τ =

m∑
k=1

h+1∑
s=n+1

©­«
∑′

i ∈ Z/psZ

©­«
∑

ℓ∈ Z/eZ

dγ (k,s,i, ℓ)(
x−ζ ips γ

pℓ−πe (s )
)k ª®¬ª®¬ +

+

m∑
k=1

©­«
∑′

i ∈ Z/pnZ

©­«
∑

ℓ∈ Z/eZ

ˆdγ (k,n,i, ℓ)(
x−ζ ipnγ

pℓ−πe (n)
)k ª®¬ª®¬ (4.15)

in case τ ⊂ K×t . The harmless summand for s = h + 1 in (4.14) and

(4.15) is included so that the sums make sense for n = h, but we set
every cγ (k,h + 1, i) := 0 in (4.14) and every dγ (k,h + 1, i, ℓ) := 0 in

(4.15). The induction argument is straightforward, requiring only:

the recursive definition of the coefficients ĉγ (k,n, i) in (4.5), and the
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computation (4.4), in case τ 1 K×t ; the recursive definition of the

coefficients
ˆdγ (k,n, i, ℓ) in (4.11) and (4.13), and the computations

(4.8) and (4.9), in case τ ⊂ K×t ; and a moderate amount of space

and courage to write it down in detail in each case. It then follows

from (4.14) and Definition 4.10 (in case τ 1 K×t ), or from (4.15) and

Definition 4.16 (in case τ ⊂ K×t ), that

¯f
(h)
τ =

m∑
k=1

∑
α ∈ τ

dres(f ,τ ,k)α

(x − α)k
, (4.16)

which holds uniformly in both cases τ 1 K×t and τ ⊂ K×t . Also in

both of these cases we see that
¯f
(h)
τ = fτ + ∆(д

(h)
τ ), and therefore

fτ is Mahler summable if and only if
¯f
(h)
τ is Mahler summable.

We claim that
¯f
(h)
τ is Mahler summable if and only if

¯f
(h)
τ = 0.

This will establish the Proposition, since
¯f
(h)
τ = 0 if and only if

dres(f ,τ ,k) = 0 for all k ∈ N by (4.16). The non-trivial implication:

¯f
(h)
τ , 0 ⇒ ¯f

(h)
τ is not Mahler summable, is proved in two subcases:

(1). if either τ 1 K×t or h , 0; and (2). if both τ ⊂ K×t and h = 0.

(1). In case τ 1 K×t , by Definition 4.10
¯f
(h)
τ has no poles outside

of {ζ i
ph
γ | i ∈ Z/phZ}. In case τ ⊂ K×t and h , 0, by Definition 4.16

¯f
(h)
τ has no poles outside of {ζ i

ph
γp

ℓ
| ℓ ∈ Z/eZ and i ∈ (Z/phZ)×}

(cf. Lemma 4.5). Thus if either τ 1 K×t or h , 0, disp( ¯f
(h)
τ ,τ ) = 0.

By Corollary 3.2,
¯f
(h)
τ is not Mahler summable.

(2). Note that fτ = ¯f
(h)
τ in (4.16) in this last remaining subcase

where h = 0 and τ ⊂ K×t , and the Definition 4.16 gives

fτ =
m∑
k=1

∑
ℓ∈Z/eZ

dγ (k, ℓ)

(x − γp
ℓ
)k
=

m∑
k=1

∑
ℓ∈Z/eZ

dres(f ,τ ,k)γ pℓ

(x − γp
ℓ
)k
,

where we write dγ (k, ℓ) in lieu of dγ (k, 0, 0, ℓ), to simplify notation.

Since τ ∈ supp(f ), we must have dres(f ,τ ,m) , 0. We claim

that fτ cannot be Mahler summable. To prove the claim, let again

д
(1)
τ :=

∑m
k=1

∑
ℓ∈ Z/eZ c(k, ℓ) ·

(
x − γp

ℓ )−k
despite having h = 0,

where the cγ (k, ℓ) are as in (4.12). By the computation (4.8) and the

Definition 4.15 of the map L
(m)
γ ,

ˇfτ := fτ + ∆
(
д
(1)
τ

)
=

m∑
k=1

p−1∑
i=1

∑
ℓ∈ Z/eZ

∑m
s=k V

s
k

(
ζ ipγ

pℓ−1
)
·cγ (k, ℓ)(

x−ζ ipγ p
ℓ−1

)k .

Hence fτ is Mahler summable if and only if
ˇfτ is Mahler summable.

In particular, if
ˇfτ = 0, then fτ is Mahler summable. On the other

hand, if
ˇfτ , 0, then disp( ˇfτ ,τ ) = 0, in which case

ˇfτ cannot be

Mahler summable by Corollary 3.2. Hence fτ is Mahler summable

if and only if
ˇfτ = 0. Let us now show that fτ , 0 ⇒ ˇfτ , 0.

In any case, the partial fraction coefficients of
ˇfτ satisfy∑m

s=k V
s
k

(
ζ ipγ

pℓ
)
· cγ (k, ℓ + 1) =

= ζ ikp ·
∑m
s=k V

s
k

(
γp

ℓ
)
· cγ (k, ℓ + 1) = ζ ikp ·

(
cγ (k, ℓ) − dγ (k, ℓ)

)
where the first equality follows fromV s

k (ζ
i
pγ

pℓ
) = ζ ikp V s

k (γ
pℓ
) inde-

pendently of s by Lemma 2.17, and the second equality follows from

the Definition 4.15 ofL
(m)
γ . By Lemma 4.14, since the mapD

(m)
γ has

no non-trivial fixed points, we cannot have cγ (k, ℓ) = dγ (k, ℓ) for ev-

ery k and ℓ unless all dγ (k, ℓ) = 0. So indeed fτ , 0 ⇒ ˇfτ , 0. □

Remark 4.19. For f ∈ K(x), τ ∈ supp(f ) ∩ TM , and h := h(f ,τ ) as

in Definition 4.6, the
¯f
(h)
τ ,д

(h)
τ ∈ K(x)τ constructed in the proof of

Proposition 4.18 are the τ -components of the
¯f ,д ∈ K(x) in (1.1).

Proof of the Main Theorem. Let f ∈ K(x). By Lemma 2.2,

f is Mahler summable if and only if both fL and fT are Mahler

summable. By Proposition 4.2, fL is Mahler summable if and only if

dres(f ,∞) = 0. By Lemma 2.14, fT is Mahler summable if and only

if fτ is Mahler summable for all τ ∈ TM . By Proposition 4.18, fτ is

Mahler summable if and only if dres(f ,τ ,k) = 0 for all k ∈ N. □

4.4 Mahler reduction
We can now define the Mahler reduction (1.1):

¯f = f + ∆(д)
promised in the introduction for any f ∈ K(x), in terms of the

decompositions
¯f = ¯fL + ¯fT and д = дL +дT as in (2.1), by setting

¯fL :=
∑

θ ∈ Z/P

¯fθ and дL :=
∑

θ ∈ Z/P

дθ ; and

¯fT :=
∑

τ ∈ supp(f )

¯f
(h(f ,τ ))
τ and дT :=

∑
τ ∈ supp(f )

д
(h(f ,τ ))
τ

as in Remark 4.3 and Remark 4.19. It is clear from the definitions

that c · f = c · ¯f for c ∈ K. Setting ¯f1 +̃ ¯f2 := f1 + f2 defines a

K-linear structure on { ¯f | f ∈ K(x)} such that ∇ : f 7→ ¯f is

K-linear and has the desired property that ker(∇) = im(∆).

5 EXAMPLES
Let us illustrate the Mahler discrete residues at Mahler trees in two

small examples, with notation as in Example 2.9. Example 5.1 gives

a Mahler summable f in the non-torsion case τ 1 K×t . Example 5.2

gives a non-Mahler summable f in the torsion case τ ⊂ K×t .

Example 5.1. Let τ = τ (2), and consider the following f = fτ with

sing(f ,τ ) = {2, 3
√
2, ζ3

3
√
2, ζ 2

3

3
√
2}. By Definition 4.6, h = h(f ,τ ) = 1.

f =
−x6 + 4x3 + x2 − 4x

(x − 2)2(x3 − 2)2
=

2∑
k=1

1∑
n=0

3
n−1∑
i=0

cγ (k,n, i)(
x − ζ i

3
n

3
√
2

3
1−n )k

= −1
(x−2)2 +

1

18
3
√
2

·

2∑
i=0

ζ 2i
3

(x−ζ i
3

3
√
2)2

− 1

9
3
√
4

·

2∑
i=0

ζ i
3

x−ζ i
3

3
√
2

,

for γ :=
3
√
2 as in Lemma 4.8. By Definition 4.10, for 0 ≤ i ≤ 2:

dres(f ,τ , 1)ζ i
3
γ =

−ζ i
3

9γ 2
+V 2

1
(ζ i
3
γ ) · (−1) +V 1

1
(ζ i
3
γ ) · 0

=
−ζ i

3

9γ 2
− 2

9
· (ζ i

3
γ )−5 = 0; and

dres(f ,τ , 2)ζ i
3
γ =

ζ 2i
3

18γ +V
2

2
(ζ i
3
γ ) · (−1) =

ζ 2i
3

18γ − 3
−2(ζ i

3
γ )−4) = 0;

by Lemma 2.17 and Example 2.20. Therefore f should be Mahler

summable. And indeed, f = ∆((x − 2)−2).

Example 5.2. Let τ =τ (ζ4), and consider the following f = fτ with

sing(f ,τ ) = {ζ ±1
4
, ζ ±1

12
, ζ ±5

12
}. By Definition 4.6, h = h(f ,τ ) = 1.

f =
1

x6 + 1
= 1

6

(
ζ 3

4

x−ζ4
+

ζ4
x−ζ 3

4

+
ζ 7

12

x−ζ12
+

ζ12
x−ζ 7

12

+
ζ 11

12

x−ζ 5

12

+
ζ 5

12

x−ζ 11

12

)
.

The map L
(1)

ζ4
in Definition 4.15 sends (

ζ 3

4

6
,
ζ4
6
) 7→ (

ζ 3

4

4
,
ζ4
4
). By

Definition 4.16, for 1 ≤ i ≤ 2; ℓ ≥ 1; with αi, ℓ := ζ i
3
ζ 3

ℓ−1

4
= ζ 4i+3

ℓ

12
:

dres(f ,τ , 1)αi, ℓ =
1

6
· αi, ℓ+1 +V

1

1
(αi, ℓ) ·

1

4
· ζ 3

ℓ−1

4

= 1

6
· αi, ℓ+1 +

1

12
· (αi, ℓ)

−2 · ζ 3
ℓ−1

4
= 1

4
· αi, ℓ+1 , 0,

by Lemma 2.17. Therefore f is not Mahler summable.

Acknowledgements. We thank the anonymous referees for their

careful reading and valuable suggestions. We also thank Manuel

Kauers for pointing us to relevant literature at a crucial juncture.

Session 16: Symbolic Integration and Summation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

532



REFERENCES
[1] Sergei A. Abramov. 1971. On the summation of rational functions. U. S. S. R.

Comput. Math. and Math. Phys. 11, 4 (1971), 324–330. https://doi.org/10.1016/

0041-5553(71)90028-0

[2] Sergei A. Abramov. 1974. Solution of linear finite-difference equations with

constant coefficients in the field of rational functions. U. S. S. R. Comput. Math. and
Math. Phys. 14, 4 (1974), 247–251. https://doi.org/10.1016/0041-5553(74)90095-0

[3] Carlos E. Arreche. 2017. Computation of the difference-differential Galois group

and differential relations among solutions for a second-order linear difference

equation. Communications in Contemporary Mathematics 19, 06 (2017), 1650056.
https://doi.org/10.1142/S0219199716500565

[4] Carlos E. Arreche and Yi Zhang. 2022. Computing differential Galois groups of

second-order linear q-difference equations. Advances in Applied Mathematics 132
(2022), 102273. https://doi.org/10.1016/j.aam.2021.102273

[5] Alin Bostan, Shaoshi Chen, Frédéric Chyzak, and Ziming Li. 2010. Complexity

of Creative Telescoping for Bivariate Rational Functions. In Proceedings of the
2010 International Symposium on Symbolic and Algebraic Computation (Munich,

Germany) (ISSAC ’10). Association for Computing Machinery, New York, NY,

USA, 203–210. https://doi.org/10.1145/1837934.1837975

[6] Alin Bostan, Shaoshi Chen, Frédéric Chyzak, Ziming Li, and Guoce Xin. 2013.

Hermite Reduction and Creative Telescoping for Hyperexponential Functions. In

Proceedings of the 38th International Symposium on Symbolic and Algebraic Com-
putation (Boston, Maine, USA) (ISSAC ’13). Association for Computing Machinery,

New York, NY, USA, 77–84. https://doi.org/10.1145/2465506.2465946

[7] Alin Bostan, Pierre Lairez, and Bruno Salvy. 2013. Creative Telescoping for

Rational Functions Using the Griffiths: Dwork Method. In Proceedings of the 38th
International Symposium on Symbolic and Algebraic Computation (Boston, Maine,

USA) (ISSAC ’13). Association for Computing Machinery, New York, NY, USA,

93–100. https://doi.org/10.1145/2465506.2465935

[8] Manuel Bronstein. 1992. Formulas for series computations. Applicable Algebra
in Engineering, Communication and Computing 2, 3 (1992), 195–206. https:

//doi.org/10.1007/BF01294333

[9] Xavier Caruso. 2021. A theory of residues for skew rational functions. Journal
de l’École polytechnique — Mathématiques 8 (2021), 1159–1192. https://doi.org/

10.5802/jep.169

[10] Xavier Caruso and Amaury Durand. 2021. Duals of linearized Reed-Solomon

codes. https://doi.org/10.48550/ARXIV.2110.12675

[11] Shaoshi Chen. 2018. Bivariate Extensions of Abramov’s Algorithm for Rational

Summation. In Advances in Computer Algebra, Carsten Schneider and Eugene

Zima (Eds.). Springer International Publishing, Cham, 93–104.

[12] Shaoshi Chen, Ruyong Feng, Pingchuan Ma, and Michael F. Singer. 2021. Separa-

bility Problems in Creative Telescoping. In Proceedings of the 2021 on International
Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Fed-

eration) (ISSAC ’21). Association for Computing Machinery, New York, NY, USA,

83–90. https://doi.org/10.1145/3452143.3465514

[13] Shaoshi Chen, Qing-Hu Hou, George Labahn, and Rong-Hua Wang. 2016. Ex-

istence Problem of Telescopers: Beyond the Bivariate Case. In Proceedings of
the ACM on International Symposium on Symbolic and Algebraic Computation
(Waterloo, ON, Canada) (ISSAC ’16). Association for Computing Machinery, New

York, NY, USA, 167–174. https://doi.org/10.1145/2930889.2930895

[14] Shaoshi Chen and Michael F. Singer. 2012. Residues and Telescopers for Bivariate

Rational Functions. Adv. Appl. Math. 49, 2 (aug 2012), 111–133. https://doi.org/

10.1016/j.aam.2012.04.003

[15] Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba. 2018.

Computing solutions of linear Mahler equations. Math. Comp. 87, 314 (2018),
2977–3021. https://doi.org/10.1090/mcom/3359

[16] Philippe Flajolet and Robert Sedgewick. 2009. Analytic Combinatorics. Cambridge

University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511801655

[17] Charlotte Hardouin and Michael F. Singer. 2008. Differential Galois theory of

linear difference equations. Math. Ann. 342, 2 (2008), 333–377. https://doi.org/

10.1007/s00208-008-0238-z

[18] Charlotte Hardouin and Michael F. Singer. 2021. On differentially algebraic

generating series for walks in the quarter plane. Selecta Mathematica 27, 5 (2021),
89. https://doi.org/10.1007/s00029-021-00703-9

[19] Qing-Hu Hou and Rong-HuaWang. 2015. An Algorithm for Deciding the Summa-

bility of Bivariate Rational Functions. Adv. Appl. Math. 64, C (mar 2015), 31–49.

https://doi.org/10.1016/j.aam.2014.11.002

Session 16: Symbolic Integration and Summation ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

533

https://doi.org/10.1016/0041-5553(71)90028-0
https://doi.org/10.1016/0041-5553(71)90028-0
https://doi.org/10.1016/0041-5553(74)90095-0
https://doi.org/10.1142/S0219199716500565
https://doi.org/10.1016/j.aam.2021.102273
https://doi.org/10.1145/1837934.1837975
https://doi.org/10.1145/2465506.2465946
https://doi.org/10.1145/2465506.2465935
https://doi.org/10.1007/BF01294333
https://doi.org/10.1007/BF01294333
https://doi.org/10.5802/jep.169
https://doi.org/10.5802/jep.169
https://doi.org/10.48550/ARXIV.2110.12675
https://doi.org/10.1145/3452143.3465514
https://doi.org/10.1145/2930889.2930895
https://doi.org/10.1016/j.aam.2012.04.003
https://doi.org/10.1016/j.aam.2012.04.003
https://doi.org/10.1090/mcom/3359
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1007/s00208-008-0238-z
https://doi.org/10.1007/s00208-008-0238-z
https://doi.org/10.1007/s00029-021-00703-9
https://doi.org/10.1016/j.aam.2014.11.002

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mahler trajectories, trees, and cycles
	2.2 Mahler supports and singular supports
	2.3 Mahler dispersion
	2.4 Mahler coefficients for partial fractions

	3 Mahler dispersion and summability
	4 Mahler discrete residues
	4.1 Mahler discrete residue at infinity
	4.2 Mahler discrete residues at Mahler trees
	4.3 Proof of the Main Theorem
	4.4 Mahler reduction

	5 Examples
	References



