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Distributed Time-Varying Quadratic Optimal
Resource Allocation Subject to Nonidentical
Time-Varying Hessians With Application to

Multiquadrotor Hose Transportation
Bo Wang, Shan Sun , and Wei Ren , Fellow, IEEE

Abstract—This article considers the distributed time-varying
optimal resource allocation problem with time-varying quadratic
cost functions and a time-varying coupled equality constraint
for multiagent systems. The objective is to design a distributed
algorithm for agents with single-integrator dynamics to cooper-
atively satisfy the coupled equality constraint and minimize the
sum of all local cost functions. Here, both the coupled equal-
ity constraint and cost functions depend explicitly on time. The
cost functions are in quadratic form and may have nonidenti-
cal time-varying Hessians. To solve the problem in a distributed
manner, an estimator based on the distributed average tracking
method is first developed for each agent to estimate certain global
information. By leveraging the estimated global information and
an adaptive gain scheme, a distributed continuous-time algo-
rithm is proposed, which ensures the agents to find and track
the time-varying optimal trajectories with vanishing errors. We
illustrate the applicability of the proposed method in the optimal
hose transportation problem using multiple quadrotors.

Index Terms—Continuous-time algorithm, distributed control,
optimal resource allocation, time-varying system.

I. INTRODUCTION

D ISTRIBUTED network optimization methods have facil-
itated the development of multiagent systems in the

past decade (see [1] and references therein). Based on the
control techniques, many researchers have developed vari-
ous distributed algorithms to dynamically solve the network
optimization problems, such as unconstrained optimization
problems (see [2]–[6]) and optimal resource allocation
problems (see [7]–[14]) using only local information and
interaction among agents.

The aforementioned works on optimal resource allocation
problems in [7]–[14] focus on dealing with time-invariant
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local cost functions and constraints. However, it should
be noted that the cost functions and constraints in practi-
cal optimization problems might depend explicitly on time.
Recently, the discrete-time (see [15] and references therein)
and continuous-time algorithms (see [16]–[23]) have been
proposed to handle the time-varying optimization problems.
Most of the existing discrete-time algorithms dealing with
time-varying optimization problems require that each opti-
mizer be computed in each discrete-time instance, which is
infeasible when the optimal solution trajectory varies fast.
The sampling period, step size, and computation time at
each step in the discrete-time algorithms will all affect the
upper bound of the tracking errors. On the other hand, the
discrete-time algorithms can hardly be employed for multiple
robots with continuous-time dynamics to swarm around a com-
mon time-varying optimal trajectory as in [16]. Recently, many
scholars have concentrated on developing the continuous-time
methods to track the variations of the optimal solution trajecto-
ries such that the general time-varying optimization problems
can be solved with vanishing errors (see [16]–[23]). Time-
varying unconstrained optimization algorithms are developed
for the swarm tracking behavior of a multirobot system
in [16], and the power output consensus problem in [17]
and [18]. Contrary to the unconstrained optimization problems,
time-varying inequality and equality constraints are consid-
ered in [19] and [20], respectively, while the cost functions
are time invariant. Time-varying cost functions and constraints
are considered simultaneously in [21] and [22] by propos-
ing the centralized algorithms. The prediction-correction
interior-point method, which requires the inverse Hessian
matrices of the cost functions, is presented in [21] to solve
the collision-free robot navigation problem. A novel zeroing
neural network is applied in [22] to solve the time-varying
nonlinear optimization problem. A distributed approach is
developed in [23] to solve the optimization problem with
time-varying cost functions and time-varying local inequality
constraints. As discussed in [16] and [17], the time-varying
optimization problems with quadratic objective functions exist
in the multirobotic system where all robots aim to swarm
around a common time-varying optimal trajectory and the
grid-connected battery energy storage system that involves
with the state-of-charge balancing among multiple battery
packages. Distributed algorithms have been proved to be
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more appropriate for the above spatially distributed multiagent
systems where one agent has only limited access to its neigh-
bors. In addition, while the resource allocation optimization
methods in [8] for a smart grid system consisting of multiple
generators focus on time-invariant cost functions and cou-
pled equality constraints, the local objective functions and
constraints can be time varying when generating electricity
from light, wind, water, and other energy sources that will
consistently change due to the variability of the environ-
ment. There are only a few distributed algorithms, however,
dealing with the time-varying optimization problems where
both the objective functions and the coupled constraints are
time varying (see [15], [24], and their references). When
both the cost functions and equality constraints are time
varying, distributed continuous-time algorithms are proposed
in [24] to address the optimal resource allocation problem
under, respectively, identical time-varying and nonidentical
time-invariant Hessians. However, in some applications, such
as the optimal estimation of distributed processes in [15],
the cost functions have nonidentical time-varying Hessians.
Unfortunately, distributed continuous-time algorithms to solve
the quadratic optimal resource allocation problem subject to
nonidentical time-varying Hessians are not addressed in all the
above-mentioned articles. The main contributions are given
as follows. We propose a distributed continuous-time algo-
rithm to address the optimal resource allocation problem with
time-varying cost functions and a time-varying coupled equal-
ity constraint. Here, each agent only knows its own cost
function and weight coefficient that contributes to the cou-
pled equality constraint. In addition, all local cost functions
are in quadratic form with nonidentical time-varying Hessians.
By developing estimators based on the distributed average
tracking method, which is used for estimating certain global
information, and an adaptive control idea, our continuous-time
algorithm ensures that each agent will track its corresponding
optimal trajectory with vanishing errors. Furthermore, we ana-
lyze the applicability to the optimal hose transportation using
multiple quadrotors from a new point of view. In such a sit-
uation, each quadrotor is able to determine its optimal thrust
output in a distributed manner while reducing the total energy
consumption of the team.

Comparison With the Existing Literature: In contrast to
the methods in [16]–[18] dealing with time-varying uncon-
strained optimization problems, our algorithm focuses on
addressing the optimal resource allocation problem involving
a time-varying coupled equality constraint. We emphasize that
it is nontrivial to develop a dynamical system that can track
the time-varying optimal solutions when the time-varying cou-
pled constraint is taken into consideration, which leads to a
completely different Karush–Kuhn–Tucker (KKT) condition.
Although the methods in [19]–[24] can deal with time-varying
constrained optimization problems, they are not applicable
to the case in this article. While the time-varying inequal-
ity and equality constraints are dealt with in [19] and [20],
respectively, the considered cost functions are time invari-
ant. That is, the variation of the optimal solutions due to
time-varying cost functions cannot be tracked by using the
methods in [19] and [20]. The algorithms in [21] and [22] are

able to address some constrained time-varying optimization
problems with zero tracking error, but they are centralized
and requires global information to compute the inverse of cer-
tain global matrix. In contrast, our proposed algorithm aims
to use only the local information of each agent and its neigh-
bors. The methods in [23] focus on the optimization problem
with time-varying cost functions and local inequality con-
straints. Here, the inequality constraints are local and known
to each agent. In contrast, our algorithm aims to address a
global coupled equality constraint. All agents need to cooper-
atively satisfy the global constraint while having only partial
information of the coupled time-varying equality constraint.
The quadratic cost functions in [24] are assumed to have
identical time-varying or nonidentical time-invariant Hessians.
In contrast, the proposed algorithm in this article aims to
deal with nonidentical time-varying Hessians for quadratic
cost functions. That is, it is for the first time to design
distributed continuous-time algorithms for the time-varying
optimal resource allocation problem with a time-varying cou-
pled equality constraint and cost functions that have noniden-
tical time-varying Hessians.

The remainder of this article is organized as follows.
Section II introduces the notation and problem description.
In Section III, an estimator is first developed for all agents to
estimate certain global information. By adopting an adaptive
gain scheme and leveraging the estimated global information,
the distributed continuous-time algorithm is then proposed.
It is shown that each agent is able to find and track the
time-varying optimal trajectories. The applicability to the
optimal hose transportation using multiple quadrotors is illus-
trated in Section IV, and a numerical simulation is then per-
formed to corroborate the theoretical result. Finally, Section V
offers the general conclusions.

II. NOTATION AND PROBLEM FORMULATION

A. Notation

We use R, R+, and R++ to represent, respectively, the
set of real, nonnegative, and positive numbers. The set of
n-dimensional real vectors is denoted by R

n. Let Rm×n rep-
resent the set of m × n real matrices. The column vector
with all zeros is denoted by 0n. Let |x| represent the abso-
lute value of any x ∈ R. For a vector x ∈ R

n, let ‖x‖p and
‖x‖∞ denote, respectively, the p-norm and ∞-norm of the
vector x. The 2-norm and ∞-norm of a matrix A are rep-
resented by ‖A‖2 and ‖A‖∞, respectively. Let sgn(x) denote
the signum function for x ∈ R, i.e., sgn(x) = 1 when x is
positive, sgn(x) = −1 when x is negative, and sgn(x) = 0
otherwise. In addition, for a vector x = [x1, . . . , xn]T ∈ R

n,
let sgn(x) = [sgn(x1), . . . , sgn(xn)]T . For a square matrix
A ∈ R

n×n, let �(A) denote the vector of the main diagonal
elements of A. For a vector x = [x1, . . . , xn]T ∈ R

n, let diag(x)
denote the square matrix with the elements of the vector x on
the main diagonal. Given a function f (x, t) : Rn × R+ → R,
∇xf (x, t) ∈ R

n and H(x, t, f (·)) ∈ R
n×n are used to represent

the gradient and Hessian of the function f (x, t). In addition, we
use ∇xtf (x, t) ∈ R

n to denote the partial derivative of ∇xf (x, t)
with respect to t.
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Lemma 1 [25, Th. 1]: Consider the following system:

żi(t) = α
∑

j∈Ni

sgn
(
xj(t)− xi(t)

)

xi(t) = zi(t)+ ri(t) (1)

where xi(t) ∈ R
m, ri(t) ∈ R

m,
∑n

i=1 zi(0) = 0m, α ∈ R++,
r ∈ R++ satisfies r ≥ supt≥0 ‖ṙi(t)‖∞. For the system (1),
if the communication topology among the agents is undi-
rected and connected and α > r, then the states of all
agents will reach average consensus in finite time. That
is, there exists a positive number T ∈ R++ satisfying
T ≤ (1/2)(α − r)

∑n
i=1

∑
j∈Ni

‖xi(0) − xj(0)‖∞ such that
‖xi(t)− (1/n)

∑n
i=1 ri(t)‖2 = 0 for t ≥ T .

B. Problem Description

In this section, we consider the time-varying optimal
resource allocation problem with quadratic convex cost func-
tions and a coupled equality constraint. Suppose that the
networked multiagent system consists of n agents. The com-
munication graph that is connected and undirected among
agents is represented by G. If there is an undirected path
between any two distinct agents in the graph G, then the undi-
rected graph G is connected. The undirected path is denoted
by a sequence of edges (i, j), (j, k), . . . , where i, j, k ∈ I, and
I = {1, 2, . . . , n} denotes the index set of agents. In addition,
let Ni denote the set of neighbors of agent i.

In particular, we suppose that each agent has the
continuous-time single-integrator dynamics

ẋi(t) = ui(t) (2)

where xi(t) ∈ R
m is the state variable associated with the ith

agent, and ui(t) ∈ R
m is the control input for the ith agent.

The objective is to design the distributed control input ui(t),
i ∈ I, for all agents to cooperatively satisfy a time-varying
coupled equality constraint while minimizing the sum of all
local time-varying cost functions, each of which is known to
only one agent. In other words, by employing the proposed
algorithm, we ensure that each agent is able to actively update
its state variable using only local information and interaction
such that the aggregate column vector composed of all local
state variables will track the optimal trajectory

x∗(t) = argmin
x(t)∈Rmn

n∑

i=1

fi(xi(t), t), (3a)

subject to
n∑

i=1

ηi(t)xi(t) =
n∑

i=1

bi(t) (3b)

where x(t) = [xT
1 (t), . . . , xT

n (t)]
T ∈ R

mn is the aggregate col-
umn vector involving all local state variables, ηi(t) ∈ R++
is the weight coefficient that the ith agent contributes to the
coupled equality constraint, ηi(t) and bi(t) ∈ R

m are local
variables that are only known to agent i, and fi(xi(t), t) is
the time-varying convex cost function associated with the ith
agent. For further studies, we define the Lagrange function
associated with the time-varying optimal resource allocation

problem (3) as

L(z(t), t) =
n∑

i=1

fi(xi(t), t)

+ λT(t)

(
n∑

i=1

ηi(t)xi(t)−
n∑

i=1

bi(t)

)
(4)

where λ(t) ∈ R
m is the Lagrange multiplier, and z(t) =

[x(t)T , λ(t)T ]T . Then, we define the dual function of L(z(t), t)
as F(λ(t), t) = minx(t)∈Rmn L(x(t), λ(t), t). The optimal dual
variable is denoted by λ∗(t) = argmaxλ(t)∈Rm F(λ(t), t).
The optimal primal–dual variable is denoted by z∗(t) =
[x∗(t)T , λ∗(t)T ]T .

Note that the optimal resource allocation problem (3)
appears in many applications (see [20] and references therein).
Different from the case in [20] that ηi(t) = 1 for i ∈ I, the
weight coefficients in problem (3) can be time varying. In
addition, problem (3) is a more general case than that in [20]
because the cost functions fi(xi(t), t) for i ∈ I are time varying.

III. MAIN RESULTS

In this section, we consider the time-varying optimal
resource allocation problem defined by (3) for a net-
worked multiagent system, in which all agents have the
continuous-time single-integrator dynamics (2). For simplic-
ity of notation, we use xi and ui instead of xi(t) and ui(t) in
the following to remove the time dependence. Before moving
on, we need the following assumptions throughout this article.

Assumption 1: The time-varying optimal resource alloca-
tion problem (3) is feasible at all times. That is, there
exists at least x̂(t) = [x̂T

1 (t), . . . , x̂T
n (t)]

T ∈ R
mn such that∑n

i=1 ηi(t)x̂i(t) = ∑n
i=1 bi(t) for any given time t ≥ 0.

Assumption 2: The cost function fi(xi, t) for the ith agent
is in the form of

fi(xi, t) = 1

2
xT

i Hi(t)xi + CT
i (t)xi + di(t) (5)

where Hi(t) = diag([hi1(t), . . . , him(t)]T) ∈ R
m×m, hij(t) ≥ mf

for some mf ∈ R++, |hij(t)| and |ḣij(t)| are upper bounded,
Ci(t) = [ci1(t), . . . , cim(t)]T ∈ R

m, cij(t) ∈ R, |cij(t)| and
|ċij(t)| are upper bounded, j = 1, . . . ,m, and di(t) ∈ R.

Assumption 3: The local weight coefficient ηi(t) and its
time derivative η̇i(t) are bounded for i ∈ I. In addition,
‖bi(t)‖∞ and ‖ḃi(t)‖∞ are bounded for i ∈ I.

Remark 1: It follows from (5) that ∇xi fi(xi, t) = Hi(t)xi +
Ci(t), ∇xitfi(xi, t) = Ḣi(t)xi + Ċi(t), and H(xi, t, fi(·)) = Hi(t)
for i ∈ I. The strong convexity of the cost function (5) ensures
that for any given time t ≥ 0, the optimal solution of (3) is
unique. In addition, di(t) in (5) is insignificant and does not
affect the variation of the optimal solution.

Remark 2: The time-varying quadratic cost function (5) is
suitable for a great class of applications, such as the swarm
tracking behavior in [16] and moving targets tracking in [21]
for multirobot systems. In particular, the class of the local
time-varying cost functions addressed in [16]–[18] is assumed
to have the gradient ∇xi fi(xi, t) = ρxi + ζi(t), where ρ ∈ R++,
and ζi(t) ∈ R

m. That is, these local cost functions are a special
case of Assumption 2.
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Under Assumptions 1–3, we propose the following dis-
tributed continuous-time algorithm:

λi = −(diag(θi(t)))
−1ωi(t) (6a)

ei = ∇xi fi(xi, t)

ηi(t)
+ λi (6b)

˙̂
βi = α‖ei‖1 (6c)

ui = −H−1
i (t)

(
∇xitfi(xi, t)+ αβ̂iηi(t)sgn(ei)+ ηi(t)ei

− ∇xi fi(xi, t)
η̇i(t)

ηi(t)

)
(6d)

where λi ∈ R
m, ei ∈ R

m, α ∈ R++, the initial value of β̂i ∈ R

is a positive constant, i.e., β̂i(0) ∈ R++, and θi(t), ωi(t) ∈
R

m are auxiliary variables driven by the distributed estimators
satisfying

ξ̇i(t) = γ
∑

j∈Ni

sgn
(
ωj(t)− ωi(t)

)
(7a)

ωi(t) = ξi(t)+ gi(t)+ bi(t) (7b)

ψ̇i(t) = β
∑

j∈Ni

sgn
(
θj(t)− θi(t)

)
(7c)

θi(t) = ψi(t)+ φi(t) (7d)

where gi(t) = ηi(t)H
−1
i (t)Ci(t), γ ∈ R++ satisfies γ >

supt≥0 ‖ġi(t) + ḃi(t)‖∞, φi(t) = η2
i (t)�(H

−1
i (t)), β ∈ R++

satisfies β > supt≥0 ‖φ̇i(t)‖∞, the variables ξi(t) ∈ R
m and

ψi(t) ∈ R
m satisfy

∑n
i=1 ξi(0) = ∑n

i=1 ψi(0) = 0m for i ∈ I,
the initial value of θi(t) for i ∈ I is positive, and Ni denotes
the set of neighbors of agent i.

The derivation of the algorithm in (6) is inspired by the
KKT condition and the distributed finite-time average track-
ing method. By transforming the KKT condition of the convex
optimization problem, we can estimate some information about
the optimal primal–dual variable z∗(t) = [x∗(t)T , λ∗(t)]T . Note
that the Lagrange function associated with the time-varying
optimal resource allocation problem (3) is defined as (4).
According to the convex optimization theory, the optimal pair
x∗(t) and λ∗(t) must satisfy the following KKT conditions:

∇xL
(
z∗(t), t

) = ∇x

(
n∑

i=1

fi
(
x∗

i (t), t
)
)

+ λ∗(t)∇x

(
n∑

i=1

ηi(t)x
∗
i (t)

)
= 0mn (8)

∇λL
(
z∗(t), t

) =
n∑

i=1

ηi(t)x
∗
i (t)−

n∑

i=1

bi(t) = 0m. (9)

Equation (8) can be written as

∇xi fi
(
x∗

i (t), t
)+ λ∗(t)ηi(t) = 0m. (10)

For the quadratic objective function (5), we have

∇xi fi
(
x∗

i , t
) = Hi(t)x

∗
i + Ci(t) (11)

where Ci(t) = [ci1(t), . . . , cim(t)]T ∈ R
m.

Substituting (11) to (10), we have

x∗
i = −ηi(t)H

−1
i (t)λ∗(t)− H−1

i (t)Ci(t).

Then, we have

n∑

i=1

ηix
∗
i = −

n∑

i=1

η2
i (t)H

−1
i (t)λ∗(t)−

n∑

i=1

ηiH
−1
i (t)Ci(t).

(12)

Substituting (12) to (9), we have

λ∗(t)
n∑

i=1

η2
i (t)H

−1
i (t) = −

n∑

i=1

ηiH
−1
i (t)Ci(t)−

n∑

i=1

bi(t).

Then, we have

λ∗(t) = −
(

n∑

i=1

η2
i (t)H

−1
i (t)

)−1

×
(

n∑

i=1

ηiH
−1
i (t)Ci(t)+

n∑

i=1

bi(t)

)
(13)

which can be estimated in a distributed way. It follows
from (13) that the optimal Lagrange multiplier at any time
is independent on the states of the agents. Hence, the right-
hand side of (13) can be estimated according to Lemma 1.
Actually, the aim of (6a) is to obtain the above com-
mon Lagrange multiplier λ∗(t) by estimating the right-hand
side of (13) in a distributed way. Specifically, θi and ωi

in (6a) are introduced to estimate
∑n

i=1 η
2
i (t)H

−1
i (t) and∑n

i=1 ηiH
−1
i (t)Ci(t)+∑n

i=1 bi(t), respectively. After tracking
the Lagrange multiplier, we design (6b)–(6d) to drive the states
xi to satisfy the remaining part of the KKT condition, which
is actually an output tracking problem. The error term in (6b)
means the difference between the gradient and the weighted
Lagrange multiplier. The adaptive gains β̂i in (6c) are designed
to make the error term converge to zero by updating xi(t)
using (6d) such that the KKT condition (10) can be satisfied.
The convergence analysis of algorithm (6) with (7) is provided
in the following.

Theorem 1: Suppose that the fixed undirected graph G is
connected and Assumptions 1–3 hold. By using the con-
troller (6), the state xi and Lagrange multiplier λi of the ith
agent with dynamics (2) will converge to the correspond-
ing optimal state and Lagrange multiplier as t → ∞ for
the time-varying optimal resource allocation problem defined
by (3), respectively. In addition, there exists a constant xmax ∈
R++ such that ‖xi‖∞ ≤ xmax for all time.

Proof: Noting that gi(t) = ηi(t)H
−1
i (t)Ci(t) and φi(t) =

η2
i (t)�(H

−1
i (t)) for i ∈ I, we first show that the global

information
∑n

i=1(gi(t) + bi(t)) and
∑n

i=1 φi(t) can be esti-
mated for each agent in a finite time by leveraging (7).
Note from Assumption 3 that ηi(t), η̇i(t), and ‖ḃi(t)‖∞ are
bounded. Also, note that hij(t) ∈ R++, |hij(t)|, |ḣij(t)|, |cij(t)|,
and |ċij(t)| for j = 1, . . . ,m are upper bounded due to
Assumption 2. Then, we have that ‖ġi(t)‖∞ and ‖φ̇i(t)‖∞
are upper bounded. Note that the fixed undirected graph
G is connected, and ‖ġi(t)‖∞, ‖ḃi(t)‖∞, and ‖φ̇i(t)‖∞ are
upper bounded for i ∈ I. Then, there exists a positive time
T ∈ R++ such that ‖ωi(t) − (1/n)

∑n
i=1(gi(t) + bi(t))‖2 = 0

and ‖θi(t) − (1/n)
∑n

i=1 φi(t)‖2 = 0 for all t ≥ T according
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to Lemma 1. Hence, the Lagrange multiplier λi with dynam-
ics (6a) for i ∈ I will reach consensus in finite time. That is,
we have λi = λj for any t ≥ T ∀i, j ∈ I.

We then show that the gradient of fi(xi, t), i.e., ∇xi fi(xi, t),
converges to −λiηi(t) as t → ∞ for i ∈ I by employ-
ing (6b)–(6d). For the ith agent, we define the Lyapunov
function candidate as Vi = (1/2)eT

i ei +(1/2)(β̂i −β∗)2, where
β∗ ∈ R++ is a positive constant to be determined later. The
time derivative of Vi along (6) is then obtained as

V̇i = eT
i ėi +

(
β̂i − β∗) ˙̂

βi. (14)

Note from (6b) that ėi = ∇̇xi fi(xi, t)[1/ηi(t)] +
∇xi fi(xi, t)([−η̇i(t)]/[η2

i (t)]) + λ̇i, where the time derivative
of ∇xi fi(xi, t) at (xi, t) can be written as Hi(t)ẋi + ∇xitfi(xi, t).
That is, we have

ėi = (
Hi(t)ẋi + ∇xitfi(xi, t)

) 1

ηi(t)

+ ∇xi fi(xi, t)
−η̇i(t)

η2
i (t)

+ λ̇i. (15)

Substituting (15) and (6c) to (14), we have

V̇i = eT
i

((
Hi(t)ẋi + ∇xitfi(xi, t)

) 1

ηi(t)

+ ∇xi fi(xi, t)
−η̇i(t)

η2
i (t)

+ λ̇i

)
+ (β̂i − β∗)α‖ei‖1.

It follows from (2) and (6d) that:

V̇i = eT
i

(
−αβ̂isgn(ei)− ei + λ̇i

)
+ (β̂i − β∗)α‖ei‖1

= −eT
i ei + eT

i λ̇i − β∗α‖ei‖1

≤ −eT
i ei + ‖ei‖1

∥∥λ̇i
∥∥∞ − β∗α‖ei‖1. (16)

Note from (7b) that ω̇i(t) = γ
∑

j∈Ni
sgn(ωj(t)−ωi(t))+ġi(t)+

ḃi(t). Because ‖ġi(t)‖∞ and ‖ḃi(t)‖∞ are upper bounded, we
have that ‖ω̇i(t)‖∞ is bounded. Note from (7d) that θ̇i(t) =
β
∑

j∈Ni
sgn(θj(t)− θi(t))+ φ̇i(t). Because ‖φ̇i(t)‖∞ is upper

bounded, we have that ‖θ̇i(t)‖∞ is bounded. Then, we have
that ‖λ̇i‖∞ is upper bounded for i ∈ I. Hence, by selecting β∗
satisfying β∗α > supt≥0 ‖λ̇i‖∞ + 1, we then obtain from (16)
that

V̇i ≤ −‖ei‖1. (17)

Because Vi ≥ 0 and V̇i ≤ 0, we obtain that ei is bounded,
that is, ei ∈ L∞. Integrating both sides of (17), we have that
ei ∈ L2. It follows from (16) that ėi = −αβ̂isgn(ei)−ei+λ̇i, we
have that ‖ėi‖∞ is bounded. According to Barbǎlat’s lemma
in [26], we have that ei with (6b) for i ∈ I will converge to
zero, i.e., lim

t→∞ei(t) = 0m. That is, we have

∇xi fi(xi, t) = −λiηi(t) (18)

as t → ∞ for i ∈ I.
It follows from (5) that ∇xi fi(xi, t) = Hi(t)xi + Ci(t) for

i ∈ I. Then, we have xi = H−1
i (t)∇xi fi(xi, t)−H−1

i (t)Ci(t) for
i ∈ I. Because λi = λj after a finite time T ∀i, j ∈ I, let the
variable λ(t) denote the identical Lagrange multiplier such that
λi = λ(t) for any t ≥ T . Because lim

t→∞∇xi fi(xi, t) = −λiηi(t),

we have xi → −ηi(t)H
−1
i (t)λ(t)− H−1

i (t)Ci(t) as t → ∞ for
i ∈ I. Summing up all the weighted xi as t → ∞, we have

n∑

i=1

ηi(t)xi → −
n∑

i=1

η2
i (t)H

−1
i (t)λ(t)

−
n∑

i=1

ηi(t)H
−1
i (t)Ci(t). (19)

Note from (7) that gi(t) = ηi(t)H
−1
i (t)Ci(t) and φi(t) =

η2
i (t)�(H

−1
i (t)). It follows from the estimated global

information by using (7) and (6a) that:

λ(t) = −
(

diag

(
n∑

i=1

φi(t)

))−1( n∑

i=1

gi(t)+
n∑

i=1

bi(t)

)
(20)

for t ≥ T . Substituting (20) to (19), we then have

n∑

i=1

ηi(t)xi →
n∑

i=1

bi(t) (21)

as t → ∞.
It follows from Assumption 1 that the optimal solution

of the problem (3) can be characterized by the KKT con-
ditions for all time. For t ≥ T , we obtain the gradient of
L(z(t), t) with respect to z(t) as ∇zL(z(t), t) = [(∇x1 f1(x1, t)+
η1(t)λ(t))T , . . . , (∇xn fn(xn, t) + ηn(t)λ(t))T , (

∑n
i=1 ηi(t)xi −∑n

i=1 bi(t))T ]T , where z(t) = [xT
1 , . . . , xT

n , λ
T(t)]T . Because

λi = λ(t) for t ≥ T and lim
t→∞∇xi fi(xi, t) = −λiηi(t), we have

lim
t→∞∇xi fi(xi, t) + ηi(t)λ(t) = 0m. Because

∑n
i=1 ηi(t)xi →

∑n
i=1 bi(t) as t → ∞, we have lim

t→∞∇zL(z(t), t) = 0m(n+1).

Motivated by the mean-value theorem presented in the
proof of [21, Proposition 2], we obtain that the expan-
sion of ∇zL(z(t), t) with respect to z(t) around z∗(t) where
∇zL(z∗(t), t) = 0m(n+1) can be written as ∇zL(z(t), t) =
∇zzL(η(t), t)(z(t) − z∗(t)), in which the argument η(t) is
formed by a convex combination of z(t) and z∗(t). Then,
we have ‖z(t) − z∗(t)‖2 = ‖∇−1

zz L(η(t), t)∇zL(z(t), t)‖2 ≤
‖∇−1

zz L(η(t), t)‖2‖∇zL(z(t), t)‖2. Due to the strong convexity,
we have ‖∇−1

zz L(η(t), t)‖2 is upper bounded. We then obtain
that the variable z(t) will converge to the optimal solution
z∗(t) for the optimization problem defined by (3) because
lim

t→∞∇zL(z(t), t) = 0m(n+1). That is, the states xi and Lagrange

multiplier λi of the ith agent using the algorithm (6) with (7)
will track the corresponding optimal trajectories as t → ∞,
respectively.

It follows from (5) that ∇xi fi(xi, t) = Hi(t)xi+Ci(t). Because
λi = λ(t) for t ≥ T , it follows from (18) that xi →
−ηi(t)H

−1
i (t)λ(t)−H−1

i (t)Ci(t) as t → ∞ for i ∈ I. Defining
ẽi = xi − (1/n)

∑n
j=1 xj, we have ẽi = (1/n)

∑n
j=1(xi − xj).

Then, we have

ẽi → −1

n

n∑

j=1

(
λ(t)

(
ηi(t)H

−1
i (t)− ηj(t)H

−1
j (t)

)

+ H−1
i (t)Ci(t)− H−1

j (t)Cj(t)
)

(22)

as t → ∞ for i ∈ I. According to Assumptions 2 and 3,
we have that |ηi(t)|, ‖Hi(t)‖∞, and ‖Ci(t)‖∞ are bounded.
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Then, we have ẽi is bounded as t → ∞. Note from (21) that∑n
i=1 ηi(t)xi → ∑n

i=1 bi(t) as t → ∞. It follows from (3) that
ηi(t) is always positive. According to Assumption 3, ‖bi(t)‖∞
are bounded for i ∈ I. Then, there is a positive constant
ηmin satisfying ηmin < supt≥0 |ηi(t)| for i ∈ I such that
(1/n)

∑n
i=1 ‖xi‖∞ ≤ (1/nηmin)

∑n
i=1 ‖bi(t)‖∞. By invoking

the definition of ẽi, we have xi = ẽi +(1/n)∑n
j=1 xj and hence

‖xi‖∞ ≤ ‖ẽi‖∞ + 1

nηmin

n∑

i=1

‖bi(t)‖∞. (23)

Specifically, substituting gi(t) = ηi(t)H
−1
i (t)Ci(t) and φi(t) =

η2
i (t)�(H

−1
i (t)) to (20), we have

λ(t) = −
(

diag

(
n∑

i=1

η2
i (t)�

(
H−1

i (t)
)))−1

×
(

n∑

i=1

ηi(t)H
−1
i (t)Ci(t)+

n∑

i=1

bi(t)

)
. (24)

Substituting (24) to (22), we have

‖ẽi‖∞ ≤ 1

n

∥∥∥∥∥∥

(
diag

(
n∑

i=1

η2
i (t)�

(
H−1

i (t)
)))−1

∥∥∥∥∥∥∞

×
(

n∑

i=1

∥∥∥ηi(t)H
−1
i (t)Ci(t)

∥∥∥∞ +
n∑

i=1

‖bi(t)‖∞

)

×
n∑

j=1

∥∥∥
(
ηi(t)H

−1
i (t)− ηj(t)H

−1
j (t)

)∥∥∥∞

+ 1

n

n∑

j=1

∥∥∥H−1
i (t)Ci(t)− H−1

j (t)Cj(t)
∥∥∥∞. (25)

Note from (25) that ‖ẽi‖∞ is bounded. Also, note that∑n
i=1 supt≥0 ‖bi(t)‖∞ is bounded. There exists a constant

xmax ≥ supt≥0 ‖ẽi‖∞ + (1/nηmin)
∑n

i=1 supt≥0 ‖bi(t)‖∞ such
that ‖xi‖∞ ≤ xmax for all time.

Remark 3: Both of the algorithms in [24] and (6) employ
the distributed average tracking method (7) to estimate certain
global information to guarantee the consensus of Lagrange
multipliers. The algorithm (6), however, adopts a differ-
ent method to update the states and Lagrange multipliers.
The algorithms in [24] are able to address the problem (3)
with nonidentical constant Hessians and identical time-varying
Hessians. In contrast, the proposed algorithm (6) can address
the general case of nonidentical time-varying Hessians.

Remark 4: Different from the existing Laplacian-gradient
algorithm dealing with optimal resource allocation problems as
in [27] and so on, where each agent requires exchanging gra-
dient information, the algorithm (6) with (7) is able to address
the time-varying optimal resource allocation problem (3) for
privacy-sensitive situations where each individual agent is
allowed to access only the estimated information. In addition,
the methods in [27] focus on static optimization problems
while the proposed algorithm (6) with (7) can address the
optimization problem with time-varying cost functions.

Remark 5: Given that all states are upper bounded, the
algorithm (6) will also be feasible when a linear inequal-
ity constraint containing (23) is imposed on the optimization
problem (3).

Remark 6: To avoid the singularity in (6a), the minimum
initial value of θi(t) for i ∈ I is supposed to be positive.
Letting θ1(0) > 0, for example, be the minimum initial vari-
able, it follows that β

∑
j∈N1

sgn(θj(0)−θ1(0)) > 0 and hence,
ψ̇i(t) > 0. Noting that φi(t) = η2

i (t)�(H
−1
i (t)) and Hi(t) is

a diagonal matrix with positive elements, we have φ̇i(t) > 0.
Then, it follows from (7d) that θ̇i(t) = ψ̇i(t)+φ̇i(t) > 0, which
implies that θ1 will increase. Because all θis will reach con-
sensus such that ‖θi(t)− (1/n)

∑n
i=1 φi(t)‖2 = 0 for all t ≥ T

and φi(t) > 0, we have that θi of each agent will be positive all
the time. Hence, there will be no singularity problem in (6a).

IV. CASE STUDY FOR HOSE TRANSPORTATION USING

MULTIPLE QUADROTORS

In this section, we aim at showing that the result of
Theorem 1 for the time-varying optimal resource allocation
problem (3) subject to nonidentical time-varying Hessians can
be employed for multiple quadrotors to cooperatively transport
a hose.

The collaboration of multiple quadrotors has received grow-
ing attention, and the multiquadrotor system is becoming
a promising robotic platform for aerial transportation due
to the simplicity, practicality, and agility (see [28]–[31]).
In particular, multiple quadrotors are employed to transport
hoses in [32] and [33] or fabrics in [34] for practical appli-
cations in recent years. As for the hose transportation using
multiple quadrotors in [32] and [33], a catenary-based method
is proposed in [32] to calculate the desired space configuration
among all quadrotors, where each quadrotor towing the hose
will undertake the equal load and hence, have the same energy
consumption. Different from the case in [32] that all quadro-
tors have the same energy consumption, the aim of this section
is to employ nonidentical quadrotors to transport a hose while
minimizing the total energy consumption of the team. By tak-
ing into consideration the different energy cost function of
each quadrotor and employing the result of Theorem 1, each
quadrotor is able to determine the optimal thrust that it should
undertake, which leads to reducing the total energy consump-
tion of the team. Then, the calculated optimal thrust can be
used by the method in [32] to determine the desired space
configuration of the team.

It is common that all working quadrotors have different
energy consumption functions due to the different configura-
tion and payload for applications, such as the spraying system
in Fig. 1, the recovery system for fixed-wing UAVs in [30], and
the fabrics transportation system in [34]. Therefore, to reduce
the total energy consumption of the team, it is to be hoped
that quadrotors are able to find the optimal thrust according
to their own energy consumption functions and hence, adjust
the space configuration by the method in [32] with the help
of tension sensors.

The hoses in Fig. 1 can be considered deformable lin-
ear objects as discussed in [32] and [33]. The quasistationary
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Fig. 1. Illustration of a spraying system using multiple quadrotors.

Fig. 2. Model of a catenary curve between two points A and B.

dynamics of hoses hanging from multiple quadrotors has been
formulated in [32] and [35] by employing a catenary curve
model. In particular, the catenary curve model between two
distinct nodes A and B is illustrated in Fig. 2, where we
have the geometric relationship y − y0 = a · cosh([x̃ − x̃0/a])
with respect to the reference frame (x̃, y). Here, the parameter
a ∈ R is the ratio between T0 and ω̂, i.e., a = (T0/ω̂), where
ω̂ ∈ R++ is the weight of unit length of the catenary hoses
and T0 ∈ R is the horizontal tension of the catenary, x̃0 ∈ R is
the distance from the lowest point of the catenary to the refer-
ence frame (x̃, y) in the horizon direction, y0 ∈ R is the sum
of a and the distance from the lowest point of the catenary to
the reference frame (x̃, y) in the vertical direction, and cosh(·)
is the hyperbolic cosine function. As discussed in [32], the
tension forces on nodes A and B can be expressed by

⎧
⎪⎪⎨

⎪⎪⎩

F1 = − ω̂·lx̃
2·λ0

F2 = ω̂
2

(−ly · coth(λ0)+ L0
)

F3 = −F1
F4 = ω̂ · L0 − F2

(26)

where L0 ∈ R++ denotes the total length of the catenary in
Fig. 2, lx̃, ly ∈ R denote the distances between A and B in the
reference (x̃, y), coth(·) is the hyperbolic cotangent function,

and λ0 ∈ R+ satisfies

λ0 =

⎧
⎪⎪⎨

⎪⎪⎩

106, if
(

l2x̃ + l2y
)

= 0
√

3

(
L2

0−l2y
l2x̃

− 1

)
, if

(
L2

0 ≥ l2x̃ + l2y
)
.

Note from (26) that the tension forces F1,F2,F3,F4 ∈ R are
functions related to lx̃ and ly. Based on the catenary theory,
Estévez et al. [32] and Suzuki et al. [33] have verified that it
is feasible to estimate the positions of quadrotors towing hoses
by measuring the tension forces, which means that the tension
forces that each quadrotor provides can be employed to deter-
mine its relative position. That is, once we obtain the optimal
thrust that each quadrotor should undertake, the desired fly-
ing position can be calculated by using the aforementioned
catenary theory-based method.

On the other hand, as discussed in [36], the minimum power
P ∈ R++ that the quadrotors expend when moving forward in
the air is given by

P = F

(
vsin(σ )+ 2F

πnrD2
r ρ̂
√

[vcos(σ )]2 + [vsin(σ )+ vin]2

)

(27)

where F ∈ R is the thrust force generated on the propellers,
ρ̂ ∈ R is the density of the surrounding air, σ ∈ R is the
angle of attack for steady flight, sin(·) and cos(·) are the
sine and cosine functions, respectively, the positive integer
nr is the number of rotors with diameter Dr ∈ R, v ∈ R

is the total free stream speed, i.e., the translation speed in
addition with wind velocity, and vin ∈ R is the induced veloc-
ity. In addition, according to the dynamics about quadrotors
presented in [36] and [37], we have that the required thrust
Ft to sustain the flying height and forward velocity is for-

mulated by Ft =
√

F2
w + F2

h , where Ft ∈ R+ and Fw ∈ R

satisfying Fw = (mq +mp)g denote the total weight, including
the quadrotor and payload, where mq ∈ R++ and mp ∈ R+
are the mass of the quadrotor and payload, respectively, and
g ∈ R denotes the gravitational acceleration, and Fh ∈ R sat-
isfying Fh = (1/2)ρ̂Af Cdv2

h denotes the drag force caused by
the airflow in the horizontal direction, where Cd ∈ R is the
drag coefficient, vh ∈ R denotes the air speed, and Af ∈ R is
the projected area perpendicular to the air speed vh. Generally
speaking, the thrust generated by a quadrotor exactly balances
the gravity and drag forces due to the translation motion and
air flow. That is, we have

F = Ft =
√

F2
w + F2

h (28)

for a quadrotor when it is moving forward in the air.
Accordingly, to optimize the total energy consumption for
multiple quadrotors towing a hose, we need to solve the
following time-varying optimal resource allocation problem:

min
n∑

i=1

fi(xi, t) s.t.
n∑

i=1

xi =
n∑

i=1

Ft,i(t) (29)

where xi ∈ R denotes the thrust generated by the ith quadrotor,
fi(xi, t) = (1/2)ai(t)x2

i +ĉi(t)xi denotes the power consumption
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derived from (27) for the ith quadrotor, in which ai(t) and ĉi(t)
are the corresponding coefficients, Ft,i(t) is the required thrust
to counter the gravity and drag forces for the ith quadrotor with
payload, and n is the number of quadrotors. Because the cost
functions in (29) satisfy Assumption 2, ai(t), ĉi(t), and their
derivatives for i ∈ I in practice are bounded, and ηi(t) = 1, it
follows from Theorem 1 that the time-varying optimal resource
allocation problem (29) for the transportation of hoses can be
solved by using the algorithm (6) with (7). Here, it should be
noted that (23) becomes

‖xi‖∞ ≤ ‖ẽi‖∞ + 1

n

n∑

i=1

∥∥Ft,i(t)
∥∥∞ (30)

where ẽi is given by (22). Specifically, as for problem (29),
we have ηi(t) = 1 and Hi(t) = ai(t) for i ∈ I. Then, (22)
becomes

ẽi → −1

n
λ(t)

n∑

j=1

(
a−1

i (t)− a−1
j (t)

)

− 1

n

n∑

j=1

(
a−1

i (t)ĉi(t)− a−1
j (t)ĉj(t)

)
. (31)

Substituting φi(t) = a−1
i (t) and gi(t) = a−1

i (t)ĉi(t) to (20), we
have

λ(t) = −
(

n∑

i=1

a−1
i (t)

)−1( n∑

i=1

a−1
i (t)ĉi(t)+

n∑

i=1

Ft,i(t)

)
.

(32)

Substituting (32) to (31), we have

ẽi ≤ 1

n

(
n∑

i=1

a−1
i (t)

)−1( n∑

i=1

a−1
i (t)|ĉi(t)| +

n∑

i=1

|Ft,i(t)|
)

×
n∑

j=1

∣∣a−1
i (t)− a−1

j (t)
∣∣

+ 1

n

n∑

j=1

∣∣a−1
i (t)ĉi(t)− a−1

j (t)ĉj(t)
∣∣. (33)

Hence, to employ the result of Theorem 1, we impose a stricter
assumption that the thrust that each quadrotor can provide is
always greater than the upper bound given by (30) where ẽi

satisfies (33). Furthermore, once the optimal thrust that each
quadrotor should undertake is determined, the team of these
quadrotors will move to the corresponding desired position
calculated by the method in [32] to reduce the total energy
consumption.

In what follows, we consider the problem of hose transporta-
tion using multiple quadrotors as shown in Fig. 1. Because
the key of the optimal hose transportation problem is to find
and track the time-varying desired thrust that each quadrotor
should undertake, we focus on dealing with the time-varying
optimal resource allocation problem (29). The optimal strat-
egy (6) with (7) ensures that each quadrotor actively deter-
mines its desired optimal thrust in a distributed way. A
numerical simulation is performed to demonstrate the effec-
tiveness of the proposed distributed continuous-time algorithm

Fig. 3. Communication graph among n = 6 agents.

Fig. 4. State trajectories xi(t) using (6) and (7) under the graph shown in
Fig. 3 for time-varying cost functions and constraints. xi(t) from i = 1 to
i = 6 are indicated by, respectively, red, black, blue, cyan, magenta, and
green lines.

for the problem (29). Suppose that there are six quadrotors.
Fig. 3 shows the connected undirected communication graph
among all quadrotors.

In the numerical simulation, we suppose that the cost func-
tion of each agent is given by fi(xi, t) = (1/2)ai(t)x2

i + ĉi(t)xi,
where ai(t) = 3 + sin(0.25it) and ĉi(t) = cos(0.508it). All
quadrotors should collectively satisfy the coupled time-varying
constraint denoted by

∑n
i=1 bi(t), where bi(t) = 20 +

sin(0.15it). We set the parameters of estimator (7) as γ = 0.76
and β = 0.12. Because 2 ≤ ai(t) ≤ 4, −1 ≤ ĉi(t) ≤ 1, 19 ≤
bi(t) ≤ 21, and n = 6, we have (1/3) ≤ (

∑n
i=1 a−1

i (t))−1 ≤
(2/3),

∑n
i=1 a−1

i (t)|ĉi(t)| ≤ 3, 114 ≤ ∑n
i=1 |bi(t)| ≤ 126,∑n

j=1 |a−1
i (t) − a−1

j (t)| ≤ (3/2), and
∑n

j=1 |a−1
i (t)ĉi(t) −

a−1
j (t)ĉj(t)| ≤ 6. Then, it follows from (33) that ẽi ≤ (135/6)

and hence, xi ≤ (135/6)+21 = 43.5. The solid lines in Fig. 4
show the trajectories of the states of all quadrotors leveraging
algorithm (6) with (7). The dashed lines in Fig. 4 represent the
optimal solutions obtained by the MATLAB tool, which is a
centralized method. It can be seen from Fig. 4 that the state of
each quadrotor converges to the corresponding optimal solu-
tion of the optimization problem (29). It can also be seen that
the states of all agents are less than 43.5 in Fig. 4. For compar-
ison, we also employ the algorithm in [20] to solve the optimal
resource allocation problem (29). As shown in Fig. 5, the
state of each quadrotor cannot converge to its corresponding
time-varying optimal solution.
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Fig. 5. State trajectories xi(t) using the algorithm in [20] under the graph
shown in Fig. 3 for time-varying cost functions and constraints. xi(t) from
i = 1 to i = 6 are indicated by, respectively, red, black, blue, cyan, magenta,
and green lines.

Fig. 6. New communication graph among n = 6 agents.

Because Lemma 1 always holds provided that the graph G is
fixed, undirected, and connected, the number of agents and the
connectivity of the graph (e.g., in terms of the diameter) do not
affect the convergence of our algorithm. They only affect the
convergence rate of the distributed average tracking method
while all the agents track the optimal trajectories eventually.
The reason is that the upper bound of the finite convergence
time for the distributed average tracking method is given by
T ≤ (1/2)(α − r)

∑n
i=1

∑
j∈Ni

‖xi(0)− xj(0)‖∞, and both the
number of the agents and the connectivity of the graph affect
the value of

∑n
i=1

∑
j∈Ni

‖xi(0) − xj(0)‖∞. To illustrate, we
have realized a simulation under a new communication graph
as shown in Fig. 6 where the number of agents is still n = 6
but the connectivity of the graph is different from Fig. 3. The
state trajectories of all the agents are shown in Fig. 7. Another
simulation is realized under the graph as shown in Fig. 8 where
the number of agents is n = 10. The state trajectories of all the
agents are shown in Fig. 9. In addition, because the coefficient
matrix Hi(t) is required to be a diagonal matrix such that the
elements of the optimization variable are not affected by each
other, the behavior of our algorithm will not change with a
different size of the optimization variable.

Remark 7: Because the position of each quadrotor can
be derived by the tensions on the hose and the position
of a neighboring quadrotor according to [32] and [33], the
key of determining the optimal flying position is to calcu-
late the optimal thrust that each quadrotor should undertake.
Therefore, by assuming that each quadrotor is able to fly to the

Fig. 7. States trajectories using (6) and (7) under the graph shown in Fig. 6.
xi(t) from i = 1 to i = 6 are indicated by different colored lines as before.

Fig. 8. Communication graph among n = 10 agents.

Fig. 9. State trajectories xi(t) using (6) and (7) under the graph shown in
Fig. 8. xi(t) from i = 1 to i = 10 are indicated by different colored lines as
before.

desired position steadily with external disturbance, which has
already been achieved by some reliable flight control software,
such as PX4 and Crazyflie, our algorithm focuses on how to
calculate the desired optimal thrust in a distributed way. That
is, xi(t) in Figs. 4 and 5 is the optimal desired thrust that each
quadrotor should undertake rather than the desired position.

Remark 8: The key of carrying out a realistic and complete
simulation is to build a model that can give the final states or
shape of the catenary curve quickly for every quasi-stationary
state of quadrotors with different tensions, which has been
discussed in [32]. That is, once the desired thrust for each
quadrotor is determined, the desired formation of quadrotors
can be provided to all the quadrotors for transporting the hoses.
Here, the quasistationary dynamics of the chain of vehicles are
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not neglected but modeled by a multicatenary system where
the forces exerted on the quadrotors can be calculated based
on the theory of catenary curve. In addition, to employ our
algorithm, the detailed cost functions of all quadrotors over
any arbitrary time horizon are necessary.

V. CONCLUSION

In this article, we have proposed a distributed
continuous-time algorithm for the optimal resource allocation
problem under quadratic time-varying cost functions subject
to nonidentical time-varying Hessians and a time-varying
coupled equality constraint. We have employed an estimator
driven from the distributed average tracking idea to estimate
certain global information involving all local cost functions
and the equality constraint. By leveraging an adaptive gain
scheme and the estimated global information, the proposed
distributed continuous-time algorithm has been proved to
converge to the time-varying optimal solutions under some
mild assumptions. The proposed algorithm has been shown
to deal with the problem of transporting hoses using multiple
quadrotors. The performance of the proposed algorithm has
been demonstrated in a numerical simulation. Noting that our
proposed algorithms need to employ a distributed estimator
driven from the average tracking idea to track the time-varying
optimal Lagrange multiplier, how to design finite-time dis-
tributed average tracking algorithms is the primary difficulty
for the distributed time-varying optimal resource allocation
problem under a directed graph. While there are a few works
dealing with the distributed average tracking problem under
directed graphs, to the best of our knowledge, the existing
distributed average tracking algorithms under directed graphs
can just guarantee a bounded tracking error or have restrictive
assumptions which make them not applicable to our problem.
We will consider the time-varying optimization problem
under directed graphs by means of developing the distributed
average tracking algorithms that can guarantee zero tracking
error in the future.
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