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a b s t r a c t

A multi-dimensional switched system or multi-mode multi-dimensional (M3D) system extends the

classic switched system by allowing different subsystem dimensions. The stability problem of the M3D

system, whose state transitions at switching instants can be discontinuous due to the dimension-

varying feature, is studied. The discontinuous state transition is formulated by an affine map that

captures both the dimension variations and the state impulses, with no extra constraint imposed. In the

presence of unstable subsystems, the general criteria featuring a series of Lyapunov-like conditions for

the practical and asymptotic stability properties of the M3D system are provided under the proposed

slow/fast transition-dependent average dwell time framework. Then, by considering linear subsystems,

we propose a class of parametric multiple Lyapunov functions to verify the obtained Lyapunov-

like stability conditions and explicitly reveal a connection between the practical/asymptotic stability

property and the non-vanishing/vanishing property of the impulsive effects in the state transition

process. Further, the obtained stability results for the M3D system are applied to the consensus problem

of the open multi-agent system (MAS), whose network topology can be switching and size-varying

due to the migrations of agents. It shows that through a proper transformation, the seeking of the

(practical) consensus performance of the open MAS with disconnected digraphs boils down to that of

the (practical) stability property of an M3D system with unstable subsystems.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

As an important branch of hybrid systems, switched sys-
tems (Liberzon, 2003) have received much attention over the last
few decades for their simplicity and effectiveness in modeling
systems with both continuous and discontinuous dynamics, see
e.g., Branicky (1998), Hespanha (2004), Hespanha and Morse
(1999), Morse (1995), Shorten, Wirth, Mason, Wulff, and King
(2007) and Zhai, Hu, Yasuda, and Michel (2000), and some recent
works (Kundu, Chatterjee, & Liberzon, 2016; Ren & Xiong, 2019;
Xiang & Xiao, 2014; Yang & Liberzon, 2018; Zhang, Zhuang, &
Shi, 2015; Zhao, Shi, Yin and Nguang, 2017; Zhao, Zhang, Shi, &
Liu, 2012). In most of these existing works on switched systems,
a common and conventional setting is that all the subsystems
(switching modes) share the same state dimension. Such a set-
ting renders the switched system an invariant and individual
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state-space structure, which enables one to analyze the state
evolution of the switched system in a similar fashion to tradi-
tional non-switched systems. Despite providing such a decent
property, the setting of the same state dimension is somehow
ideal as it may not precisely reflect the true picture of a practical
system which works in different modes. For example, a fixed-
wing aircraft can undergo several transitions between the cruise
and the glide phases during multiple flights. Considering these
transitions instantaneous, the aircraft can then be deemed a
switched system with two switching modes (corresponding to
the airborne dynamics in the cruise and the ground dynamics
in the glide phases, respectively). Meanwhile, the aircraft can
exhibit different degrees of freedom (DOF) when airborne (e.g., 6
DOF Cook, 2012) and on the ground (e.g., 5 DOF with the oleo
strut applied to the landing gear (Krüger et al., 1997)). If one tries
to completely but not redundantly describe the motions of the
aircraft in these two different phases using state-space models,
then the required numbers of state variables would be different
accordingly. This clearly does not satisfy the same-dimension
setting and instead leads to a non-canonical switched system
that has multiple different subsystem dimensions. Formally, one
can call such a kind of switched systems the multi-dimensional
switched system.
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Summary of Main Acronyms

M3D Multi-Mode Multi-Dimensional

MAS Multi-Agent System

ADT Average Dwell Time

MDADT Mode-Dependent Average Dwell Time

TDADT Transition-Dependent Average Dwell

Time

MLF Multiple Lyapunov Function

GUPS Global Uniform Practical Stability

GUAS Global Uniform Asymptotic Stability

To date, the studies on multi-dimensional switched systems

remain in a minority. One of the pioneering explorations was

made in Verriest (2006), where ‘‘multi-mode multi-dimensional

(M3D) system’’ (the term ‘‘M3D system’’ will also be used to

denote ‘‘multi-dimensional switched system’’ in this work) was

first used to indicate switched systems with different subsystem

dimensions. The authors later introduced the concept of pseudo-

continuity in Verriest (2013, Definition 1) to the M3D system,

such that its state trajectory can be meaningfully studied. How-

ever, such a property prohibits the situation where transitions

start from a higher dimensional subsystem to a lower one and

then back to a higher one, in order to avoid a possible loss

of state information (Verriest, 2013). This consequently makes

the pseudo-continuous M3D model less universal. The authors

in Mayo-Maldonado, Rapisarda, and Rocha (2014) studied the

stability of a set of switched linear systems which may share

different state spaces. By letting the state trajectories be concate-

nated via the so-called gluing conditions, stability conditions in

terms of linear matrix inequalities were obtained. Note that the

proposed gluing conditions exclude the case where the state im-

pulses do not vanish, which enables the seeking of the asymptotic

stability but cannot fully cover the state transition situations at

switching instants of an M3D system. In Song and Lin (2017),

the time-variant frequency response function was employed to

characterize hybrid systems with unknown complex structure

that potentially implies different subsystem dimensions, and an

estimation algorithm for the function was proposed based on the

input and output information. Generally speaking, these works

have sparked the studies on the M3D system and yielded some

enlightening results, though, the systemmodels involved still lack

some universality, especially for the state transitions at switching

instants. Moreover, how to seek the stability of M3D systems by

time-dependent switchings, especially in the presence of unstable

subsystems, also deserves to be further investigated. It is notable

that there have been some endeavors on the stability problems

of switched systems with unstable subsystems during the recent

few years, e.g., Shi, Fei, Sun, and Yang (2018), Xiang and Xiao

(2014), Yang, Jiang, Cocquempot, and Zhang (2011), Zhai et al.

(2000) and Zhao, Shi et al. (2017). Among them, the method

of using stable dynamics to compensate the unstable dynam-

ics (Yang et al., 2011; Zhai et al., 2000; Zhao, Shi et al., 2017)

and the techniques featuring the use of the Lyapunov functions

with time-dependent parameters (e.g., the discretized Lyapunov

function (Xiang & Xiao, 2014), and the quasi-time-dependent

function (Shi et al., 2018)) are commonly employed to ensure

the stability of the whole switched system. However, these ap-

proaches for classic switched systems may not be directly applied

to the M3D system due to its more complicated dimension-

varying structure. Considering that the number of relevant results

is also limited, this thus motivates the corresponding part of this

work.

On the other hand, the switched system has long been linked
with the multi-agent system (MAS) owing to a series of early
discussions on switching networks (topologies) (Jadbabaie, Lin, &
Morse, 2003; Olfati-Saber & Murray, 2004; Ren & Beard, 2008).
In general, the commonly considered switching topology exhibits
instantaneous variations in network connections, whereas the
network scale is usually considered to be fixed, see e.g., Dong
and Hu (2016), Liu and Huang (2018), Meng, Yang, Dimarogonas,
and Johansson (2015), Olfati-Saber and Murray (2004), Ren and
Beard (2008) and Saboori and Khorasani (2014). However, such
a setting could not hold for the MAS networks whose nodes
(agents) show dynamic flowing (or migration, e.g., arrivals or
departures of agents) behaviors. For example, some agents may
go offline at certain instants due to faults and go back online after
certain periods with faults fixed. This will cause the scale of the
network to intermittently vary. The MAS with such variations in
the network scale (potentially in connections) is termed the open
MAS (Demazeau & Costa, 1996; Hendrickx & Martin, 2016).

In contrast to its early popularity in the computer commu-
nity (Demazeau & Costa, 1996), the open MAS has not received
much attention until recently in the control community. An initial
effort on the open MAS was made by Hendrickx and Martin
(2016), in which the authors studied the consensus problem un-
der the gossip algorithm that randomly selects a pair of agents at
a certain time instant and then calculates their averages to update
their states. To deal with the scale variations of the network,
the ‘‘scale-independent’’ quantities were considered therein as
the metrics for consensus errors. The agent migration behaviors
were considered to be deterministic, which was also assumed
in Abdelrahim, Hendrickx, and Heemels (2017) for the max con-
sensus problem. The result in Hendrickx and Martin (2016) was
then extended by Hendrickx and Martin (2017) from the de-
terministic migration case to the random case. Note that all
the aforementioned works had established their results on an
implicit assumption of a completely connected communication
graph, which indicates each pair of agents remain connected.
Further, the proportional dynamic consensus problem is studied
for the open MAS by Franceschelli and Frasca (2018), in which
the authors introduced an open distance function to illustrate the
consensus error and proposed a formal stability definition for the
error trajectories. However, the results were also based on the
assumption that the considered directed graph is strongly con-
nected every time. In general, from the aforementioned results
on the open MAS, it can be seen that they were obtained either
by minimizing the impact of the size-varying property of the
topology (Hendrickx & Martin, 2016, 2017) or by specifying some
strong graph connectivity conditions (Abdelrahim et al., 2017;
Franceschelli & Frasca, 2018). Results on consensus problems of
the open MAS that take the size-varying topology into account
while rely on more relaxed graph connectivity settings are still
lacking. On the other hand, the naturally switching and size-
varying feature of the open MAS network has shown a close
relation to the feature of the M3D system under discussion. In
light of the well-known applications of conventional switched
systems to the MASs with switching topologies, it is then of
interest to seek for a possible application of the M3D system to
the open MAS.

Motivated by the above, this work will focus on the M3D
system as well as its application to the open MAS. The main
contributions are highlighted as follows:

(1) The M3D system, which extends classic switched systems
by allowing different subsystem dimensions, is studied.
The state transition at each switching instant is formulated
by an affine map to characterize the potential dimension
variation and non-vanishing impulse. Compared with other
existing works like Verriest (2013), no extra constraint
needs to be imposed on the state transition process.

2



M. Xue, Y. Tang, W. Ren et al. Automatica 146 (2022) 110644

(2) In the presence of unstable subsystems and potential non-

vanishing impulses in the state transition process, the cri-

teria for the practical stability of the M3D system, which

feature new dwell-time concepts and Lyapunov-like condi-

tions that extend some existing results as in Zhao, Shi et al.

(2017) and Zhao et al. (2012), are provided. For the linear

subsystem case, these stability criteria are verified by a new

class of parametric multiple Lyapunov functions.

(3) The M3D system is applied to address the consensus prob-

lem of the open MAS, whose network structure is switching

and size-varying due to the agent migration behaviors.

Compared with existing works like Abdelrahim et al. (2017)

and Hendrickx and Martin (2016) that entail strong as-

sumptions on graphs, we allow for open MASs with discon-

nected digraphs. By revealing the correspondence between

the connectivity of the size-varying switching digraph and

the stability of the subsystem, the consensus conditions for

the open MAS with disconnected digraphs are established

based on the stability result obtained for the M3D system

with unstable subsystems.

The rest of the paper is organized as follows: Section 2 pro-

vides the system formulation and preliminaries; Section 3

presents the results on the stability of M3D systems; an applica-

tion of the M3D system to the open MAS is presented in Section 4,

where a simulation result is also included; Section 5 gives the

conclusion and some prospects.

The notations used in this work are summarized as follows:

1n denotes an n × 1 vector that is fully composed of ones; N

and N≥0 denote the sets of positive and non-negative integers,

respectively; R and R≥0 denote the sets of real and non-negative

real numbers, respectively; Bm×n denotes the set of m × n 0–1

matrices; Rn and R
m×n denote the sets of n× 1 real vectors and

m×n real matrices, respectively; Cn and C
m×n denote the sets of

n× 1 complex vectors and m× n complex matrices, respectively;

the n× n identity matrix is denoted by In; the Kronecker product

of matrices A and B is denoted by A⊗B; λ(R) denotes the spectrum

of a square matrix R ∈ C
n×n and λi(R) denotes the ith eigenvalue

of R, i ∈ {1, . . . , n}; |S| denotes the cardinality of a set S; ∥...∥
denotes the induced 2-norm of a matrix or the 2-norm of a

vector; Re(...) denotes the real part of a complex number; P >

0 denotes a real positive definite matrix; for a real symmetric

matrix P , λmax(P) and λmin(P) denote its maximum and minimum

eigenvalues, respectively.

2. System formulation and preliminaries

In this section, we will give the mathematical description of

the considered system. Meanwhile, some related concepts will

also be provided as preliminaries.

2.1. System dynamics

Given a Zeno-free (finite number of discontinuities in any

finite time interval) switching signal σ (t), σ : R≥0 → P ,

where P = {1, 2, . . . , s} is the index-set of all s subsystems, an

M3D system with general nonlinear subsystem dynamics or the

nonlinear M3D system is formulated as:

ẋσ (t)(t) = fσ (t)(xσ (t)(t)), (1)

where xσ (t)(t) = [xσ (t),1(t), xσ (t),2(t), . . . , xσ (t),nσ (t)
(t)]T ∈ R

nσ (t) is

the state vector, xσ (t),i(t) ∈ R is the ith component of xσ (t)(t),

i ∈ {1, . . . , nσ (t)} with nφ < +∞ for any φ ∈ P , fφ : R
nφ → R

nφ

is locally Lipschitz w.r.t. xφ(t) and fφ(0) = 0 for each φ ∈ P .

The stability of a subsystem φ is defined about its equilibrium 0.

The switching signal σ (t) is a right-continuous piecewise constant

function, i.e., σ (tk) = σ (t+k ), where tk, k ∈ N denotes the kth

discontinuous (switching) instant of σ (t). Besides, other functions

of t in this work are also assumed to be right continuous. For

(1), denote by Ps the set of indices of all the subsystems with

asymptotically stable equilibria, and denote by Pu the set of

indices of all the subsystems with unstable or marginally stable

equilibria. One then has that Pu

⋂

Ps = ∅ and Pu

⋃

Ps =
P . Particularly, the M3D system with general linear subsystem

dynamics or briefly the linear M3D system can be formulated as

the following closed-loop model with a state feedback control:

ẋσ (t)(t) = (Aσ (t) + Bσ (t)Kσ (t))xσ (t)(t), (2)

where Aσ (t) ∈ R
nσ (t)×nσ (t) , Bσ (t) ∈ R

nσ (t)×r , Kσ (t) ∈ R
r×nσ (t) , r is a

certain positive integer. It can be seen from (1) that the system

state can exhibit different dimensions with the evolution of the

switching signal σ (t), which implies a dimension-varying prop-

erty of the M3D system. This thus makes the M3D system contain

the classic switched system as a special case (by setting nσ (t)

constant for all t). Note that by R
nσ (t) , we do not mean that the

state space itself actually evolves with time, but that the system

state evolves through state spaces with different structures under

the evolution of σ (t).

Remark 1. The M3D systems extend classic switched systems

by allowing different subsystem dimensions. Meanwhile, the

dimension-varying property also potentially complicates the cor-

responding analysis. Given this, one may prefer to circumvent a

direct analysis of an M3D system by converting it into a clas-

sic switched system. Intuitively, two methods are adoptable to

implement such a conversion. The first is to apply the model

reduction technique to the M3D system, such that the reduced

subsystem models have the same dimension (an opposite sit-

uation where the model reduction technique converts classic

switched systems into M3D systems was also suggested in Ver-

riest (2006)). However, this method may come at the cost of

losing part of the state information. The second is to insert extra

components into each subsystem state such that the resultant

subsystems have the equal dimension (Wang & Hadaegh, 2008).

Compared with the first one, the second method does not inflict

a loss of information, though, the introduced components would

potentially cause an unnecessary increase of the computation

burden. Besides, the second method is also ineffective in the case

where the highest allowed dimension is unknown or unfixed.

Thus, it is always meaningful for one to consider a direct analysis

of the M3D system.

The Eq. (1) characterizes the dynamics of an M3D system

in each non-switching period. However, it alone is insufficient

to determine a complete system behavior. One still needs the

switching-time behaviors to bridge all these non-switching dy-

namics together. This thus leads to the following subsection.

2.2. State transitions at switching instants

It is well understood that a typical switched system as studied

in Liberzon (2003) always admits a piecewise differentiable state

trajectory with a continuous state transition at each switching

instant, i.e., x(t+k ) = x(t−k ), k ∈ N. However, this is in general not

the case for an M3D system, since the dimension variation that

takes place at any switching instant will surely render the system

a discontinuous state transition in the meantime. Moreover, a

discontinuous state transition process can also be brought by

the traditional state jump/impulse as considered for impulsive

systems (Ren & Xiong, 2019). Taking both the aforementioned

factors into account, we can thus formulate the state transition of

3
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Fig. 1. Illustration of the state transitions at switching instants t1 , t2 , t3 of an M3D system. The smaller colored dashed box enclosing a state component (in a blue

solid box) denotes that the component is under dimension reduction (red) or dimension expansion (green) or state impulse (purple). The transition at t1 features pure

dimension reductions on xσ (t−
1
),2 and xσ (t−

1
),4 , while other components of xσ (t−

1
) remain unchanged in value; the transition at t2 features a pure dimension expansion

between xσ (t−
2
),2 and xσ (t−

2
),3 , in which the newly added component xσ (t+

3
),3 is assigned the value of Φ2,3 while all the components of xσ (t−

2
) remain unchanged in

value; the transition at t3 does not exhibit any change in dimension but it features a pure state impulse brought by Φ3,2 to xσ (t−
3
),2 that yields xσ (t+

3
),2 with a different

value, while other components of xσ (t−
3
) remain unchanged in value. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

the M3D system (1) at each switching instant tk, k ∈ N as follows:

xσ (t+
k
)(t
+
k ) = Ξσ (t+

k
),σ (t−

k
)xσ (t−

k
)(t
−
k )+Φk, (3)

where Ξσ (t+
k
),σ (t−

k
) ∈ B

n
σ (t
+
k

)
×n

σ (t
−
k

) and Φk ∈ R
n
σ (t
+
k

) . Ξσ (t+
k
),σ (t−

k
) is

a special 0–1 matrix indicating the dimension variation (e.g., re-
duction or expansion) of xσ (t−

k
)(t
−
k ) at tk, which is obtained by

removing certain rows from (dimension reduction) or by in-
serting zero rows into (dimension expansion) certain positions
of an identity matrix In

σ (t
−
k

)
. On the other hand, Φk is a real

vector indicating the impulse occurring to the transformed state
Ξσ (t+

k
),σ (t−

k
)xσ (t−

k
)(t
−
k ) at tk, and satisfies ∥Φk∥ ≤ Φ̄ , where Φ̄ > 0

is a certain constant. An illustration of the state transition process
(3) characterized by Ξσ (t+

k
),σ (t−

k
) and Φk of the M3D system (1) is

provided in Fig. 1 (see the caption for detailed descriptions).

Remark 2. The state transition process (3) is pivotal to deter-
mine a complete evolution of the M3D system (1) as it defines
how the system behaves at each switching instant. The above
parameter settings for the affine expression of (3) do not cause
any loss of generality, since given any pair of vectors xσ (t+

k
)(t
+
k ) ∈

R
n
σ (t
+
k

) and xσ (t−
k
)(t
−
k ) ∈ R

n
σ (t
−
k

) , each type of dimension variations

between them can be fulfilled by a unique 0–1 matrix Ξσ (t+
k
),σ (t−

k
),

and any value jump that is not the result of dimension variations
can be captured by Φk. Note that the formulation (3) does not
impose any extra constraint on the state transition process com-
pared with the ‘‘pseudo-continuity’’ required in Verriest (2013).
Specifically, the case of potential ‘‘loss of information’’ when
the dimension decreases and then increases that was disallowed
by the ‘‘pseudo-continuity’’, can now be interpreted as the self-
impulse of the state brought by the offset term Φk. Moreover, it is
clear that the case of Ξσ (t+

k
),σ (t−

k
) = In

σ (t
−
k

)
and Φk = 0 indicates a

trivial continuous state transition at tk. The case of Ξσ (t+
k
),σ (t−

k
) =

In
σ (t
−
k

)
and Φk ̸= 0 indicates a pure impulse between states with

the same dimension.

2.3. Two types of state impulses

The discontinuity of (3) is brought by the dimension variation
indicated by Ξσ (t+

k
),σ (t−

k
) and/or the state impulse indicated by Φk.

In particular, it is notable that for a pure dimensional transfor-
mation at tk, i.e., xσ (t+

k
)(t
+
k ) = Ξσ (t+

k
),σ (t−

k
)xσ (t−

k
)(t
−
k ), the value of

xσ (t+
k
)(t
+
k ) always linearly depends on that of the state xσ (t−

k
)(t
−
k )

through Ξσ (t+
k
),σ (t−

k
). We thus call xσ (t+

k
)(t
+
k ) state-dependent under

such a pure dimensional transformation. It can also be concluded
that a pure dimensional transformation always yields a state-
dependent xσ (t+

k
)(t
+
k ). However, when one takes the state impulse

brought by Φk into account, then the previously defined state
dependency might not necessarily hold for xσ (t+

k
)(t
+
k ) since its

value will also depend on that of Φk. Given this, we consider to
classify Φk into the following two types:

(a) State-independent Φk: The value of Φk relies solely on the
switching instant tk or k, i.e., there is no explicit relation between
Φk and xσ (t−

k
)(t
−
k ). This indicates xσ (t+

k
)(t
+
k ) does not linearly rely

on the state xσ (t−
k
)(t
−
k ) as the pure dimensional transformation

case. Note that in this case, Φk ̸≡ 0 and can be deemed unknown
except the upper bound Φ̄ of its norm.

(b) State-dependent Φk: The value of Φk relies on that of
xσ (t−

k
)(t
−
k ). Specifically, we have the following explicit formulation

for state-dependent Φk:

Φk = Ξ̂σ (t+
k
),σ (t−

k
)xσ (t−

k
)(t
−
k ), (4)

in which Ξ̂σ (t+
k
),σ (t−

k
) ∈ R

n
σ (t
+
k

)
×n

σ (t
−
k

) is a given matrix. As a result,

the state transition (3) with state-dependent Φk in (4) can be
rewritten as:

xσ (t+
k
)(t
+
k ) = Ξ̌σ (t+

k
),σ (t−

k
)xσ (t−

k
)(t
−
k ), (5)

where Ξ̌σ (t+
k
),σ (t−

k
) = Ξσ (t+

k
),σ (t−

k
) + Ξ̂σ (t+

k
),σ (t−

k
).

Remark 3. The above two types of the impulse Φk reflect two
evolution properties it could have. For the state-independent
Φk, its evolution does not rely on any variable except k, which
means that it will never spontaneously converge to zero regard-
less of the evolution of the state xσ (t−

k
)(t
−
k ). We thus say that the

state-independent Φk has a non-vanishing property. For the state-
dependent Φk that satisfies (4), its evolution linearly depends on

the state xσ (t−
k
)(t
−
k ) through the matrix Ξ̂σ (t+

k
),σ (t−

k
), which indi-

cates that it would potentially converge to zero with a convergent
xσ (t−

k
)(t
−
k ). Accordingly, we say that the state-dependent Φk has a

4
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vanishing property. Note that such non-vanishing and vanishing

properties considered for the state impulses are similar to the

non-vanishing and vanishing perturbations featured in perturbed

systems (see e.g., Khalil (2002, Chapter 9)). As we shall see later,

these two types of Φk can result in different stabilities for the

M3D system.

2.4. Related concepts

Before proceeding, some definitions will be presented. Note

in this work we consider the switching signal σ (t) and any

dynamical system on a general time interval [t0, tf ], where t0 ≥ 0

and tf ∈ (t0,+∞) denote the initial and final times of interest,

respectively. Moreover, let N(t0, tf ) denote the total number of

switchings on [t0, tf ].

Definition 1. TheM3D system (1) is said to be globally uniformly

practically stable (GUPS), if there exist a class KL function β and a

scalar ϵ ≥ 0 such that for any initial state xσ (t0)(t0) and admissible

σ (t),

∥xσ (t)(t)∥ ≤ β(∥xσ (t0)(t0)∥, t − t0)+ ϵ, ∀t ≥ t0, (6)

where ϵ is called the ultimate bound of xσ (t)(t) as t → +∞.

Particularly, if one has ϵ = 0, then (1) is said to be globally

uniformly asymptotically stable (GUAS).

The global uniform practical stability (GUPS) defined for the

M3D system (1) is an extension of those defined for classic

switched systems (see e.g., Zhai and Michel (2002, Definition 1)).

The global uniform asymptotic stability (GUAS) can be deemed a

special case of the GUPS when ϵ = 0.

The next definition is given for a switching signal σ (t).

Definition 2. Consider a switching signal σ (t) on the interval

[t0, tf ]. For any [tk, tf ] ⊆ [t0, tf ], k ∈ {0, . . . ,N(t0, tf )}, and

t ∈ [tk, tf ], denote the number of switchings (transitions) from

φ̂ ∈ P to φ ∈ P on [tk, t] by Nφ,φ̂(tk, t) and denote the total

active periods of φ pertaining to these switchings by Tφ,φ̂(tk, t).

Then, for the constant N̂φ,φ̂ ≥ 0, the scalar τφ,φ̂(tk, t) satisfying

Nφ,φ̂(tk, t) ≤ N̂φ,φ̂ +
Tφ,φ̂(tk, t)

τφ,φ̂(tk, t)
, (7)

is called the (slow) piecewise transition-dependent average dwell

time (TDADT) of the switching signal σ (t), and in particular

τφ,φ̂(t0, t) is called the (slow) TDADT of σ (t). Correspondingly, for

the constant N̂φ,φ̂ ≤ 0, the scalar τφ,φ̂(tk, t) satisfying

Nφ,φ̂(tk, t) ≥ N̂φ,φ̂ +
Tφ,φ̂(tk, t)

τφ,φ̂(tk, t)
, (8)

is called the fast piecewise TDADT of σ (t), and in particular

τφ,φ̂(t0, t) is called the fast TDADT of σ (t).

Remark 4. Definition 2 extends the existing dwell-time concepts

in three aspects. First, the proposed TDADT extends the exist-

ing mode-dependent average dwell time (MDADT) (Zhao et al.,

2012) and average dwell time (ADT) (Hespanha & Morse, 1999)

by allowing the same subsystem to have different ADTs w.r.t.

different predecessors. This means a TDADT is actually defined

w.r.t. the switching (transition) between a subsystem and its

predecessor (hence the name ‘‘transition-dependent’’). Such a

transition-dependent feature also makes the TDADT more flexible

in characterizing the switching of an M3D system, given that its

state transition processes between a subsystem and different pre-

decessors can be different due to the dimension-varying property.

Second, the concept of the fast TDADT is accordingly an extension

of the fast MDADT proposed in Zhao, Shi et al. (2017, Eq. (4)).

Opposite to the slow MDADT (Zhao, Shi et al., 2017, Eq. (3)), the

fast MDADT imposes an upper bound instead of a lower one on

the average active period of a subsystem. As was pointed out

in Zhao, Shi et al. (2017), such ‘‘fast-switching’’ property usually

applies to the unstable subsystems whose active periods need to

be short enough to have their destabilizing dynamics properly

neutralized. Third, the piecewise TDADT is a further extension of

the TDADT concept, which more detailedly defines the TDADT of

a subsystem φ with the predecessor φ̂ on each subinterval [tk, t],
k ∈ {0, . . . ,N(t0, t)} of an interval [t0, t] of interest. As we will see

later, this concept is linked with the GUPS property of the M3D

system. Note that the piecewise property as stated in Definition 2

can also be introduced to the ADT or MDADT analogously. Also

note that the piecewise TDADT brings no more conservativeness

than the classic (fixed) dwell time (Morse, 1995). This is because

the (fixed) dwell time requires all the active periods [tk, tk+1) in
[t0, tf ], k = 0, . . . ,N(t0, tf ) − 1 to have a same bound, while the

piecewise TDADT only requires the average active period of the

subsystem φ with the predecessor φ̂ on each subinterval [tk, tf ] ⊆
[t0, tf ], k ∈ {0, . . . ,N(t0, tf )} to have a same bound, which means

the latter contains the former as a special case.

3. Stability analysis of M3
D systems

In this section, we are going to present one of the main results

of this work concerning the stability of the M3D systems (1) and

(2) with the state transition process (3). In the following, assign

φ = σ (t+k ), φ̂ = σ (t−k ) for a switching instant tk ∈ [t0, tf ] and
denote the number of switchings on [tk, t] by N(tk, t), t ∈ [tk, tf ],
k ∈ N.

3.1. Stability criteria for general nonlinear M3D system

The following theorem gives the stability criteria for the gen-

eral nonlinear M3D system (1).

Theorem 1. Consider the M3D system (1) with the switching signal

σ (t) on [t0, tf ], 0 ≤ t0 < tf < +∞. If for any φ, φ̂ ∈ P , there exist

class K∞ functions κ , κ , constants γ̃φ , Ωφ,φ̂ > 0, Θ̃ ≥ 0, and a

non-negative function Vφ(t, xφ(t)) : R≥0 × R
nφ → R≥0, such that

∀t ∈ [t0, tf ],

κ(∥xφ(t)∥) ≤ Vφ(t, xφ(t)) ≤ κ(∥xφ(t)∥), (9)

V̇φ(t, xφ(t)) ≤ γ̃φVφ(t, xφ(t)), (10)

Vφ(t
+
k , xφ(t

+
k )) ≤ Ωφ,φ̂Vφ̂(t

−
k , xφ̂(t

−
k ))+ Θ̃, (11)

where γ̃φ > 0, 0 < Ωφ,φ̂ < 1, ∀φ ∈ Pu; γ̃φ < 0, Ωφ,φ̂ > 1,

∀φ ∈ Ps, and that σ (t) satisfies

τφ,φ̂(tj, tf ) ≥ −
lnΩφ,φ̂

γ̃φ

, j = 0, . . . ,N(t0, tf ), (12)

for any φ ∈ Ps, φ̂ ∈ P , and

τφ,φ̂(tj, tf ) ≤ −
lnΩφ,φ̂

γ̃φ

, j = 0, . . . ,N(t0, tf ), (13)

for any φ ∈ Pu, φ̂ ∈ P , then (1) is GUPS with ϵ = κ−1(ϵ̃), where

ϵ̃ = Θ̃ c̃e−
˜̂
N

1−eς
, ς = max∀φ,φ̂∈P,j ς

j

φ,φ̂
, ς

j

φ,φ̂
= τφ,φ̂(tj, tf )γ̃φ + lnΩφ,φ̂ ,

∀j ∈ {1, . . . ,N(t0, tf )}, τφ,φ̂ = τφ,φ̂ for any φ ∈ Ps, τφ,φ̂ = τφ,φ̂ for

any φ ∈ Pu, c̃ = e
∑

∀φ,φ̂∈P
N̂

φ,φ̂
lnΩ

φ,φ̂ ,
˜̂
N = min∀j

∑

∀φ,φ̂∈P ς
j

φ,φ̂
N̂φ,φ̂ .

Particularly, if Θ̃ = 0, then (1) is GUAS with (12), (13) satisfied for

j = 0.

5
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Proof of Theorem 1. Throughout this proof, we use Vσ (t)(t) to
denote Vσ (t)(t, xσ (t)(t)) for brevity. It can be obtained from (10)
and (11) that ∀t ∈ [tk, tk+1), k = 0, . . . ,N(t0, tf ),

Vσ (t)(t)

≤e
γ̃
σ (t
+
k

)
(t−tk)

(

Ωσ (t+
k
),σ (t−

k
)e

γ̃
σ (t
+
k−1

)
(tk−tk−1)

× Vσ (t+
k−1)

(t+k−1)+ Θ̃

)

≤e
γ̃
σ (t
+
k

)
(t−tk)

(

Ωσ (t+
k
),σ (t−

k
)Ωσ (t+

k−1),σ (t−
k−1)

× e
γ̃
σ (t
+
k−1

)
(tk−tk−1)

e
γ̃
σ (t
+
k−2

)
(tk−1−tk−2)

Vσ (t+
k−2)

(t+k−2)

+ Ωσ (t+
k
),σ (t−

k
)e

γ̃
σ (t
+
k−1

)
(tk−tk−1)

Θ̃ + Θ̃

)

. . .

≤e

∑k−1
j=1

(

lnΩ
σ (t
+
k−j

),σ (t
−
k−j

)
+γ̃

σ (t
+
k−j

)
(tk−j+1−tk−j)

)

× e
lnΩ

σ (t
+
k

),σ (t
−
k

)
+γ̃

σ (t
+
k

)
(t−tk)

e
γ̃
σ (t
+
0

)
(t1−t0)

Vσ (t+
0
)(t
+
0 )

+

k−1
∑

ν=0

e

∑ν
j=1

(

lnΩ
σ (t
+
k−j+1

),σ (t
−
k−j+1

)
+γ̃

σ (t
+
k−j

)
(tk−j+1−tk−j)

)

× e
γ̃
σ (t
+
k

)
(t−tk)

Θ̃. (14)

In (14), grouping the terms of the same φ, φ̂ together, ∀φ, φ̂ ∈ P ,

φ ̸= φ̂, and applying respectively (7) and (8) to φ ∈ Ps and φ ∈ Pu

for k = 0, one has:

Vσ (t)(t) ≤e

∑

∀φ,φ̂∈P
(γ̃φ+

lnΩ
φ,φ̂

τ
φ,φ̂

(t0,t)
)T

φ,φ̂
(t0,t)+N̂

φ,φ̂
lnΩ

φ,φ̂

× Vσ (t+
0
)(t
+
0 )+ Λ̃kΘ̃, (15)

where τφ,φ̂ = τφ,φ̂ for any φ ∈ Ps, τφ,φ̂ = τφ,φ̂ for any φ ∈ Pu,
and

Λ̃k =

k
∑

j=1

e

∑

∀φ,φ̂∈P

(

γ̃φTφ,φ̂
(tk−j+1,t)+lnΩ

N
φ,φ̂

(tk−j+1,t)

φ,φ̂

)

. (16)

Note that in this work we always rule out the trivial case of
finite number of switchings in infinite time interval. This implies
k → +∞ as t → +∞ in (16), which consequently makes Λ̃k

a non-negative infinite series as t → +∞. Further, denoting

ς
j

φ,φ̂
= γ̃φτφ,φ̂(tj, t) + lnΩφ,φ̂ , it follows from (12) and (13) that

ς
j

φ,φ̂
≤ 0, ∀φ, φ̂ ∈ P , j ∈ {1, . . . ,N(t0, t)}. Then, by respectively

applying (7) and (8) to φ ∈ Ps and φ ∈ Pu in (16), one can obtain
that

Λ̃k ≤

k
∑

j=1

c̃e

∑

∀φ,φ̂∈P
ς
k−j+1

φ,φ̂
(N

φ,φ̂
(tk−j+1,t)−N̂

φ,φ̂
)

≤

k
∑

j=1

c̃eςN(tk−j+1,t)−
˜̂
N

≤

k
∑

j=1

c̃eς (j−1)−
˜̂
N =

c̃e−
˜̂
N (1− eςk)

1− eς
, (17)

where ς = max∀φ,φ̂∈P,j ς
j

φ,φ̂
, c̃ = e

∑

∀φ,φ̂∈P
N̂

φ,φ̂
lnΩ

φ,φ̂ ,
˜̂
N =

min∀j
∑

∀φ,φ̂∈P ς
j

φ,φ̂
N̂φ,φ̂ . It then follows from (17) that limk→+∞

Λ̃k ≤
c̃e−
˜̂
N

1−eς
, which along with (15) implies that limt→+∞ Vσ (t)(t) ≤

ϵ̃, where ϵ̃ = Θ̃ c̃e−
˜̂
N

1−eς
≥ 0, and the first addend of (15) becomes

a class KL function of Vσ (t+
0
)(t
+
0 ), t . By (9) and Definition 1, one

further concludes that limt→+∞ ∥xσ (t)(t)∥ ≤ κ−1(ϵ̃), and the M3D

system (1) is GUPS with ϵ = κ−1(ϵ̃). In particular, if Θ̃ = 0, then

it follows from (15) that with (12) and (13) satisfied for j = 0,

limt→+∞ Vσ (t)(t) = 0. By (9), this indicates limt→+∞ ∥xσ (t)(t)∥ =
0, which implies that (1) is GUAS. ■

Remark 5. Theorem 1 provides the stability criteria in terms of a

Lyapunov-like or multiple Lyapunov function (MLF) Vσ (t) for the

M3D system (1) under TDADT switchings. The conditions (12)

and (13) impose constraints on σ (t) in the sense of slow and

fast switchings, respectively. That (12) and (13) are satisfied for

j > 0 implies that the system should perform piecewise TDADT

switchings for the GUPS property (note that a tightest ϵ̃ among

different choices of N̂φ,φ̂ can be obtained by setting N̂φ,φ̂ = 0,

∀φ, φ̂ ∈ P , i.e., ϵ̃ = Θ̃ c̃

1−eς
); that (12) and (13) are satisfied for

j = 0 implies that only TDADT switchings need to be performed

for the GUAS property. On the other hand, (9), (10), (11) are the

Lyapunov-like conditions that serve the similar purposes to those

in existing works that used MLFs in stability analysis of switched

systems (see e.g., (3.8), (3.9), (3.6) of Liberzon (2003), (2), (3),

(5) of Xiang and Xiao (2014), (13)-(15) of Zhao et al. (2012)).

Note that here (11) further relaxes the existing related conditions

(e.g., (15) of Zhao et al. (2012)) by adding the offset term Θ̃ ≥ 0.

This allows a more general case where non-vanishing positive

jumps exist at some switching instants for Vσ (t) (which leads to

the GUPS of (1)). Setting Θ̃ = 0, then (11) will reduce to a similar

form to, e.g., (15) of Zhao et al. (2012).

Despite that Theorem 1 provides essential stability criteria for

the M3D system (1), it has claimed in advance the existence of

the function Vφ satisfying the Lyapunov-like conditions (9), (10),

and (11) for each φ ∈ P without providing a method to explicitly

find such a function. Besides, the conditions such as (10) and (11)

have not shown sufficient inherent connections with the sub-

system dynamics (1) of the M3D system and its state transition

process (3), which leaves these conditions unverified. These have

consequently made Theorem 1 restricted in application. To this

end, next we will give some further discussions on the stability of

the M3D system. Note that in the following the linear subsystem

model (2) will be considered instead of the nonlinear one (1),

such that more detailed structural information can be exploited

in analysis.

3.2. Parametric MLFs

Following the method for the stability analysis of conven-

tional switched linear systems (Lin & Antsaklis, 2009), a potential

explicit candidate of Vσ (t) for the M3D system (2) can be con-

structed into a piecewise quadratic form, i.e., Vσ (t)(t, xσ (t)(t)) =
xTσ (t)(t)Pσ (t)xσ (t)(t) with a positive definite matrix Pφ ∈ R

nφ×nφ

for each φ ∈ P . Based on it, a series of linear matrix inequal-

ities of Pφ (such as (23) and (24) of Zhao et al. (2012)) can be

established via the Lyapunov-like conditions as (9)–(11). Then,

the existence of the candidate function Vσ (t) boils down to the

existence of Pφ , i.e., the feasibility of the associated linear matrix

inequalities. However, such feasibility is usually assumed (instead

of verified) to be true in advance, which essentially makes the

related stability result for the linear model a special case of that

for the nonlinear model (see e.g., Zhao, Shi et al. (2017, Theo-

rem2)). Given this, and to further verify the stability conditions in

Theorem 1, we will introduce to (2) a new class of MLFs, called the

parametric MLFs, as an explicit candidate of Vσ (t) in Theorem 1.

6
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3.2.1. Construction of parametric MLFs

Specifically, for any t ∈ [t0, tf ], a candidate of parametric MLFs

for the M3D system (2) can be constructed as

Vσ (t)(t, xσ (t)(t)) = η(t)xTσ (t)(t)Pσ (t)xσ (t)(t), (18)

where the time-varying parameter η(t) is a bounded right-

continuous piecewise constant function of t , i.e., ∀t ∈ [tk, tk+1),

η(t) = ηk ∈ [η, η̄] in which ηk > 0 is constant for each k ∈ N≥0, η

and η̄ are certain positive constants; for each φ ∈ P , Pφ ∈ R
nφ×nφ

is a positive definite matrix. Then, it follows from (3) that for any

tk, ∥xσ (t+
k
)(t
+
k )∥2 ≤ 2∥Ξσ (t+

k
),σ (t−

k
)∥

2∥xσ (t−
k
)(t
−
k )∥2 + 2∥Φk∥

2, which

implies

Vσ (t+
k
)(t
+
k , xσ (t+

k
)(t
+
k )) ≤Ωσ (t+

k
),σ (t−

k
)Vσ (t−

k
)(t
−
k , xσ (t−

k
)(t
−
k ))+ Θ̃, (19)

in which,
{

Ωφ,φ̂ = max∀k∈Γ
φ,φ̂

(
2ηkλmax(Pφ )

ηk−1λmin(Pφ̂
)
Υ ), ∀φ, φ̂ ∈ P, (a)

Θ̃ = ϑ̃, (b)
(20)

where Γφ,φ̂ = {k|σ (tk−1) = φ̂, σ (tk) = φ}; Υ = max(1,max∀φ,φ̂∈P

∥Ξφ,φ̂∥
2), ϑ̃ = 2η̄max∀φ∈P λmax(Pφ)∥Φ̄∥

2 for the state-

independent Φk; Υ = max(1,max∀φ,φ̂∈P ∥Ξ̌φ,φ̂∥
2), ϑ̃ = 0 for the

state-dependent Φk that satisfies (4). It can then be seen that (19)

is consistent in form with (11) of Theorem 1, but the value range

of Ωφ,φ̂ for each φ, φ̂ ∈ P cannot be ensured from (20)(a) without

knowing the evolution of η(t). Hence, we propose the following

procedure for the update of η(t) at each tk ∈ [t0, tf ]. Note that in

the following, ∆̃k ≜
2λmax(Pσ (tk)

)

λmin(Pσ (tk−1)
)
Υ , ∀k ∈ {1, . . . ,N(t0, tf )}.

Procedure 1 (Update of η(tk) = ηk, t0 ≤ tk ≤ tf ).

Step 1: k← 0; initialize η0 > 0, χφ,φ̂ ∈ (0, 1), ∀φ ∈ Pu, ∀φ̂ ∈ Ps;

Step 2: k← k+ 1, ηk ← ηk−1; if k ≥ N(t0, tf ), then go to Step 6;

Step 3: If σ (tk) ∈ Pu and ∆̃k ≥ 1 (∆̃k < 1), then go to Step 4 (Step

2); if σ (tk) ∈ Ps and σ (tk−1) ∈ Pu and k > 1, then go to Step 5, else

go to Step 2;

Step 4: ηk ← χσ (tk),σ (tk−1)ηk/∆̃k, go to Step 2;

Step 5: ηk ←
ηk∆̃k−1

χσ (tk−1),σ (tk−2)
, go to Step 2;

Step 6: Exit.

Note that in Procedure 1 we suppose the switching signal σ (t)

of (2) to satisfy that for any tk, ∀k ∈ N, if σ (tk−1) ∈ Pu, then

σ (tk) ∈ Ps. Formally, the switching signal with this property is

called ‘‘quasi-alternative’’ (Zhao, Kao, Niu and Wu, 2017), and we

denote the set of quasi-alternative switching signals by Ψ̃σ . A

quasi-alternative switching signal ensures the destabilizing effect

of an unstable subsystem can immediately be compensated by

the stabilizing effect of the stable subsystem that follows. Such a

compensation method has been commonly employed for dealing

with the stability problems of switched systems in the presence

of both stable and unstable subsystems, see e.g., Zhai et al. (2000),

Zhao, Shi et al. (2017). Also note that the employment of the

quasi-alternative switching signal indeed brings some restric-

tions, as it prevents the switching between unstable subsystems

which further rules out the case where all the subsystems are

unstable (Xiang & Xiao, 2014; Yang et al., 2011). We allow such

conservativeness for a trade-off purpose considering the potential

extra complexity it could bring by studying the stability problem

of the M3D system with all unstable subsystems. For this issue,

some more endeavors need to be further made since the com-

pensation method would be less effective in the absence of stable

subsystems. This will be one of our main focuses in future works.

3.2.2. Behaviors of the time-varying parameter η(t)
The parametric MLFs feature a time-varying parameter η(t)

subject to Procedure 1. It can be readily seen that if η(t) ≡ 1,

the parametric MLFs will reduce to the classic quadratic form.

Note that since ∆̃k ≥ 1 and 0 < χσ (tk),σ (tk−1) < 1 for any

k ∈ N, σ (tk) ∈ Pu, then Step 4 of Procedure 1 actually indicates

a decrease update of ηk for the switching from φ ∈ Pu to φ̂ ∈
P , which implies the condition 0 < Ωφ,φ̂ < 1 for (11) can

always be satisfied. However, constant executions of such pure

decease updates would potentially drive ηk to 0 as k → +∞,

which makes the parametric MLFs trivial to use. To avoid this, the

switching signal here for (2) is thus required to satisfy σ (t) ∈ Ψ̃σ ,

i.e., an unstable subsystem must be followed by a stable one. In

this case, once a decrease update of η(t) (Step 4) is made at a

switching instant, an increase update (Step 5) which is identical

in magnitude to the decrease update will be made immediately

at the next switching instant. Such an update procedure can thus

confine the value of η(t) to a bounded range of [η, η], where

η = η0 min∀φ,φ̂∈P χφ,φ̂/(2Υmax∀φ,φ̂∈P λmax(Pφ)/λmin(Pφ̂)), η̄ =
η0. Note that here max∀φ,φ̂∈P λmax(Pφ)/λmin(Pφ̂) > 1 and Υ ≥ 1.

Moreover, for each φ ∈ Pu, φ̂ ∈ Ps, χφ,φ̂ is a given positive scalar

that affects the range of η(t).
With the proposed parametric MLFs, we are going to present

the stability result for the linear M3D system (2).

3.3. Stability of linear M3D system via parametric MLFs

The following theorem provides the stability conditions for (2)

based on the proposed parametric MLFs.

Theorem 2. Consider the switched system (2) with the state

transition (3) at tk, k ∈ N. Given η0 > 0, χφ,φ̂ ∈ (0, 1), φ ∈ Pu,

φ̂ ∈ P , σ (t) ∈ Ψ̃σ , and state-independent Φk, if conditions (12)

and (13) hold, where Ωφ,φ̂ satisfies (20)(a) under Procedure 1, and

γ̃φ = 2γφ with
{

max∀j Re(λj(Ãφ)) < γφ < 0, ∀φ ∈ Ps, (a)

0 ≤ max∀j Re(λj(Ãφ)) < γφ, ∀φ ∈ Pu, (b)
(21)

in which Ãφ = Aφ + BφKφ , ∀φ ∈ P , then (2) is GUPS with

ϵ =
√

ϵ̃η−1 max∀φ∈P (1/λmin(Pφ)), where ϵ̃ is given as in Theorem 1

with Θ̃ satisfying (20)(b), η = η0 min∀φ,φ̂∈P χφ,φ̂/(2max∀φ,φ̂∈P
λmax(Pφ)/λmin(Pφ̂)), and Pφ , ∀φ ∈ P satisfies

ÃT
φPφ + Pφ Ãφ − 2γφPφ = −Inφ

. (22)

Particularly, if (12) and (13) are satisfied for j = 0 and state-

dependent Φk, then (2) is GUAS.

Proof of Theorem 2. For σ (t) ∈ Ψ̃σ and any t ∈ [tk, tk+1),
k = 0, 1, . . . ,N(t0, tf ), construct a parametric MLFs candidate

for (2) as in (18), where Pφ satisfies Eq. (22) for each φ ∈ P .

Clearly, for γφ , φ ∈ P satisfying (21)(a) and (b), (22) becomes

a Lyapunov equation which implies that Pφ is a positive definite

solution for each φ ∈ P . It can thus be derived from (18) and Pro-

cedure 1 that ηmin∀φ∈P λmin(Pφ)∥xσ (t)(t)∥
2 ≤ Vσ (t)(t, xσ (t)(t)) ≤

ηmax∀φ∈P λmax(Pφ)∥xσ (t)(t)∥
2, which means (9) is verified. Then,

by (18), (21)(a), (b), (22), one gets for any φ ∈ P ,

V̇φ(t, xφ(t)) ≤ γ̃φVφ(t, xφ(t)), (23)

where γ̃φ = 2γφ , which verifies (10). Moreover, by (3) and (18),

one has that (19) holds at any switching instant tk with Ωφ,φ̂ and

Θ̃ satisfying (20)(a) and (b), respectively, which implies that for

φ = σ (t+k ) ∈ P , φ̂ = σ (t−k ) ∈ P:

Vφ(t
+
k , xφ(t

+
k )) ≤ Ωφ,φ̂Vφ̂(t

−
k , xφ̂(t

−
k ))+ Θ̃. (24)

7
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Here, note that the update of ηk by Procedure 1 always guarantees

the condition 0 < Ωφ,φ̂ < 1 for any φ ∈ Pu, φ̂ ∈ Ps. Meanwhile,

(20)(a)and Procedure 1 indicate that: when φ ∈ Ps and φ̂ ∈ Pu,

there holds Ωφ,φ̂ ≤ Ω̄φ,φ̂ =
4λmax(Pφ )λmax(Pφ̂

)

χ min∀φ∈P (λmin(Pφ ))λmin(Pφ̂
)
Υ 2 with

χ = min∀φ,φ̂∈P χφ,φ̂ , which implies Ω̄φ,φ̂ > 1, for any φ ∈

Ps, φ̂ ∈ Pu; when φ, φ̂ ∈ Ps, there holds Ωφ,φ̂ ≤ Ω̄φ,φ̂ =

F̃ (
2λmax(Pφ )

λmin(Pφ̂
)
Υ ,max∀φ,φ̂∈P

2λmax(Pφ )

λmin(Pφ̂
)
Υ ), F̃ (a, b) : R×R→ R satisfies

that if a > 1, then F̃ (a, b) = a, else F̃ (a, b) = b, which ensures

Ω̄φ,φ̂ > 1 for any φ ∈ Ps, φ̂ ∈ Ps. This means the value of

Ωφ,φ̂ in (24) whenever φ ∈ Ps and φ̂ ∈ P can be replaced

by Ω̄φ,φ̂ , which guarantees Ωφ,φ̂ > 1 for any φ ∈ Ps and

φ̂ ∈ P , and further verifies (11). Then, for state-independent Φk,
one concludes from Theorem 1 that with (12) and (13) satisfied,
there holds limt→+∞ Vσ (t)(t) ≤ ϵ̃, with ϵ̃ given as in Theorem 1.

Moreover, by Procedure 1 one has that 0 < η−1k ≤ η−1, which
along with (9) and (18) further denotes that limt→+∞ ∥xσ (t)(t)∥ ≤

ϵ, ϵ =
√

ϵ̃η−1 max∀φ∈P (1/λmin(Pφ)). This implies (2) is GUPS.

Particularly, for state-dependent Φk satisfying (4), it follows from
(20) that Θ̃ = 0, then with (12) and (13) satisfied for j = 0, one
concludes from Theorem 1 that limt→+∞ Vσ (t)(t) = 0. This along
with (9) and (18) indicates that limt→+∞ ∥xσ (t)(t)∥ = 0, i.e., (2) is
GUAS. ■

Remark 6. Compared with Theorems 1 and 2 further reveals
the connections between the two stability properties of the M3D
system and the two types of the impulse Φk introduced in Sec-
tion 2.3. Specifically, for the state-independent impulse Φk, due
to its non-vanishing property that potentially impedes an asymp-
totic convergence of the state, the GUPS of (2) is sought in
Theorem 2, which corresponds to the general case of Θ̃ ≥ 0
in Theorem 1. For state-dependent Φk, owing to its vanishing
property, the GUAS of (2) can be ensured, which corresponding to
the special case of Θ̃ = 0 in Theorem 1. Moreover, Theorem 2 also
verifies the Lyapunov-like conditions (9), (10), (11) in Theorem 1.
As is shown in the proof of Theorem 2, all these Lyapunov-like
conditions are derived from the subsystem dynamics of (2) and
the state transition process (3) under the constructed parametric
MLFs (18), which means they are naturally satisfied for the linear
M3D system (2). In this case, one only needs to ensure for (2)
the TDADT conditions (12) and (13) of Theorem 1 which reflect
typical time-dependent switching methods that are usually easy
to realize in practice (Xie & Wang, 2009; Zhao, Shi et al., 2017).

It is notable that the stability of the classic switched systems
has been widely used in applications such as the cooperative
control of MASs with switching features (Dong & Hu, 2016; Ren
& Beard, 2008; Saboori & Khorasani, 2014). In these applications,
the time-dependent switching methods have been commonly
adopted (e.g., the dwell-time method used in Dong and Hu (2016)
and Ren and Beard (2008); the ADT method used in Saboori and
Khorasani (2014)). Given these facts, it is then of interest to seek a
potential application of the results obtained for the M3D system.

4. Application to consensus of open MASs

In this section, we are going to indicate a potential application
of the stability results for M3D systems to consensus of open
MASs. Open MASs can cover a wide range of emerging real-world
networked systems with a varying size and node number, such
as the vehicle platoons with lane change maneuvers (Rajamani,
Tan, Law, & Zhang, 2000), and the social networks (Proskurnikov
& Tempo, 2018). Note that for brevity and consistency, some
notations for switching properties (e.g., σ (t), P) in the previous
sections will be reused for the open MAS.

4.1. System formulation and preliminaries

The considered interaction topology is characterized by a di-

graph Gσ (t) = {Vσ (t), Eσ (t)} under the switching signal σ (t), σ :
R≥0 → P = {1, 2, . . . , s}, where s is a finite positive integer,

Vσ (t) = {1, 2, . . . ,Nσ (t)} denotes the label set of vertices of Gσ (t),

Eσ (t) ⊆ Vσ (t) × Vσ (t) denotes the edge set of Gσ (t). Denote by

Aσ (t) = [aij(σ (t))] ∈ R
Nσ (t)×Nσ (t) , ∀i, j ∈ Vσ (t) the adjacency

matrix of Gσ (t), in which aij(σ (t)) = 0 if (j, i) /∈ Eσ (t), i.e., there

is no directed edge from j to i, otherwise aij(σ (t)) = 1, and

suppose that aii(σ (t)) = 0 for any t and i ∈ Vσ (t), i.e., no self-

loops. The corresponding Laplacian matrix of Gσ (t) is denoted by

Lσ (t) = [lij(σ (t))] ∈ R
Nσ (t)×Nσ (t) , lij(σ (t)) = −aij(σ (t)), lii(σ (t)) =

∑Nσ (t)

j=1 aij(σ (t)), ∀i ̸= j, i, j ∈ Vσ (t).

Under the above topology setting, consider the open MAS

with linear agent dynamics and a distributed linear consensus

controller for each i ∈ Vσ (t):

ξ̇σ (t),i(t) =Sξσ (t),i(t)− ϱ

Nσ (t)
∑

j=1

aij(σ (t))(ξσ (t),i(t)− ξσ (t),j(t)), (25)

where ϱ > 0 is a given scalar; the state of the agent labeled i

is denoted by ξσ (t),i(t) = [ξ
1
σ (t),i(t), . . . , ξ

p

σ (t),i(t)]
T ∈ R

p, where

ξ
j

σ (t),i(t) ∈ R is the jth component of ξσ (t),i(t); S ∈ R
p×p with

min∀j Re(λj(S)) ≥ 0. A compact form of (25) can be given by:

˙̃
ξσ (t)(t) = (INσ (t)

⊗ S − ϱLσ (t) ⊗ Ip)ξ̃σ (t)(t), (26)

where ξ̃σ (t)(t) = [ξ
T
σ (t),1(t), . . . , ξ

T
σ (t),Nσ (t)

(t)]T ∈ R
pNσ (t) .

The similar agent dynamics to (25) can also be found in,

e.g., Almeida, Silvestre, and Pascoal (2017). Note that although

there is no concrete practical background specified for the con-

sidered open MAS, the linear models like (25), (26) can still

effectively approximate various practical MASs, such as the co-

operative unmanned vehicles (Hu, Wang, Yan, & Chen, 2016; Li

et al., 2017; Ren & Beard, 2008; Saboori & Khorasani, 2014). Be-

sides, the linear consensus controller as in (25) is also considered

convenient for hardware implementations in practice (Li et al.,

2017).

The agent migration behavior of the considered open MAS (26)

at each switching instant tk of σ (t) is captured as the following

state transition process of ξ̃σ (t)(t):

ξ̃σ (t+
k
)(t
+
k ) = ¯̃Ξσ (t+

k
),σ (t−

k
)ξ̃σ (t−

k
)(t
−
k )+ ¯̃Φk, (27)

where
¯̃
Ξσ (t+

k
),σ (t−

k
) ∈ B

pN
σ (t
+
k

)
×pN

σ (t
−
k

) and
¯̃
Φk ∈ R

pN
σ (t
+
k

) . In partic-

ular, we have the following summary of specific agent migration

behaviors reflected by (27), which is in most part consistent

with Hendrickx and Martin (2017) and links with Section 2.2:

(1) Arrival: There are new agents joining the original group,

i.e., |Vσ (t−
k
)| < |Vσ (t+

k
)|, Nσ (t−

k
) < Nσ (t+

k
). The joined agents

can instantly establish new connections with other existing

agents. For a pure arrival behavior of an agent, the matrix
¯̃
Ξσ (t+

k
),σ (t−

k
) is obtained by inserting a p×pNσ (t−

k
) zero matrix

between specific rows, say, the hth row and the h + 1-th

row of IpN
σ (t
−
k

)
, where h is a given non-negative multiple of

p; correspondingly, the vector
¯̃
Φk is obtained by inserting

a p×1 vector denoting the state values of the joined agent

between the hth and the h + 1-th entries of a pNσ (t−
k
) × 1

zero vector.

(2) Departure: There are agents leaving the original group,

i.e., |Vσ (t−
k
)| > |Vσ (t+

k
)|, Nσ (t−

k
) > Nσ (t+

k
). Once an agent

has left the group, any connections originally associated

with it will lose. For a pure departure behavior of an agent,

8
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¯̃
Ξσ (t+

k
),σ (t−

k
) is derived by removing a p×pNσ (t−

k
) matrix from

the specific position of IpN
σ (t
−
k

)
. Clearly, there holds

¯̃
Φk ≡ 0

for this case if no self impulse of the agent state exists.

(3) Replacement: There are agents instantly replaced by new
agents. A replacement behavior can also be deemed a si-
multaneous occurrence of the arrival and departure behav-
iors. A pure replacement behavior does not change the size
of the network topology, i.e., |Vσ (t+

k
)| = |Vσ (t−

k
)|, Nσ (t−

k
) =

Nσ (t+
k
), which implies

¯̃
Ξσ (t+

k
),σ (t−

k
) ≡ IpN

σ (t
−
k

)
. The instanta-

neous state variation of the replaced agent is brought solely

by
¯̃
Φk.

Since the vector
¯̃
Φk of (27) also indicates the impulsive effect

of the agent state, one can thus specify its state-independent or
state-dependent property as in Section 2.3. Particularly, similar

to (4), define state-dependent
¯̃
Φk as

¯̃
Φk =

¯̂
Ξσ (t+

k
),σ (t−

k
)ξ̃σ (t−

k
)(t
−
k ),

where,
¯̂
Ξσ (t+

k
),σ (t−

k
) =
˜̂
Ξσ (t+

k
),σ (t−

k
)Υ̃σ (t−

k
)−
¯̃
Ξσ (t+

k
),σ (t−

k
),
˜̂
Ξσ (t+

k
),σ (t−

k
) ∈

R
pN

σ (t
+
k

)
×p(N

σ (t
−
k

)
−1)

is a given matrix, Υ̃σ (t) = [INσ (t)−1,−1Nσ (t)−1]⊗
Ip.

Remark 7. The agent migration behaviors depicted above indi-
cate that the interaction topology of the open MAS (26), repre-
sented by Gσ (t), is inherently switching and size-varying. Mean-
while, they can also well reflect some practical situations, such
as the lane change maneuvers in vehicle platoons, which cause
the vehicles to join/leave a platoon (Rajamani et al., 2000). Note
that for the vertex (label) set Vσ (t), we always keep a continuous
labeling of agents starting from 1, while also allow the same label
to indicate different agents at different times such that no loss
of generality will be caused. Also note that it is possible to use
a fixed-size switching graph to describe an open MAS network,
given that its maximum capacity, i.e., the total number of nodes
allowed by the network, is fixed and known. For this case, the
agent who leaves/joins the group can be regarded as a fixed node
that loses/regains connections with others. However, in practice
it is usually unnecessary to determine an upper bound of the
node number, especially when the network scale is unpredictably
increasing. Besides, when the singleton nodes largely outnumber
the connected nodes, it would be less efficient to consider the
dynamics of all these singleton nodes in computation since they
contribute little to the evolution of the whole open MAS. This
thus necessitates the use of the size-varying graph to describe
the open MAS network.

For the considered open MAS (26), we are interested in the
following two types of consensus performances:

Definition 3. For the open MAS (26), it is said to achieve practical
consensus if there exists ε ≥ 0 such that

lim
t→+∞

∥ξσ (t),i(t)− ξσ (t),j(t)∥ ≤ ε, ∀i, j ∈ Vσ (t). (28)

Particularly, if (28) holds for ε = 0, then (26) is said to achieve
(asymptotic) consensus.

Similar definitions for the practical consensus can also be
found in Back and Kim (2017) and Ding and Zheng (2017).

The following lemmas are for the upcoming analysis.

Lemma 1 (Saboori & Khorasani, 2014). For any ξ1, . . . , ξN ∈ R
p

and the Laplacian matrix L = [lij] of a digraph G, there holds:
∑N

j=1 lijξj −
∑N

j=1 lNjξj =
∑N−1

j=1 zij(ξj − ξN ), where zij = lij − lNj
for i, j = 1, . . . ,N − 1. Denoting Z = [zij], then the real parts of all
the eigenvalues of Z are non-negative. Moreover, their real parts are
all positive provided that G contains a directed spanning tree.

Note that hereunder we will slightly abuse the notations by

letting Ps = {φ|Gφ contains a directed spanning tree}, Pu =
{φ|Gφ contains no directed spanning tree}.

Lemma 2 (Brewer, 1978). For given matrices A ∈ C
n×n and B ∈

C
r×r , if Y = A⊗ Ir + In ⊗ B, then λ(Y ) = {λA + λB|λA ∈ λ(A), λB ∈

λ(B)}.

Detailed proofs for the above two lemmas can be found in Sa-

boori and Khorasani (2014) (and the references therein) and Bern-

stein (2005) and Brewer (1978), respectively.

4.2. An M3D system interpretation of open MAS

In this subsection, we will provide an interpretation of the

open MAS (26) based on the M3D system (2).

Denote zij(σ (t)) = lij(σ (t))− lNσ (t)j(σ (t)) for i, j = 1, . . . ,Nσ (t)−
1 and Zσ (t) = [zij(σ (t))]. Then, one can transform (25) into

the following consensus error system by defining δσ (t),i(t) ≜

ξσ (t),i(t)− ξσ (t),Nσ (t)
(t) for i = 1, . . . ,Nσ (t) − 1:

δ̇σ (t),i(t) = Sδσ (t),i(t)− ϱ

Nσ (t)−1
∑

j=1

zij(σ (t))δσ (t),j(t). (29)

Further, (29) can be rewritten in a compact form:

˙̃
δσ (t)(t) = (INσ (t)−1 ⊗ S − ϱZσ (t) ⊗ Ip)δ̃σ (t)(t), (30)

where δ̃σ (t)(t) = [δ
T
σ (t),1(t), . . . , δ

T
σ (t),Nσ (t)−1

(t)]T ∈ R
p(Nσ (t)−1) is the

error state. It then follows from (27) that

δ̃σ (t+
k
)(t
+
k ) = Ξ̃σ (t+

k
),σ (t−

k
)δ̃σ (t−

k
)(t
−
k )+ Φ̃k, (31)

where, Ξ̃σ (t+
k
),σ (t−

k
) ∈ B

p(N
σ (t
+
k

)
−1)×p(N

σ (t
−
k

)
−1)

is obtained by re-

moving the last p rows and the last p columns from
¯̃
Ξσ (t+

k
),σ (t−

k
);

Φ̃k = Φ̌k + Φ̂k with Φ̃k, Φ̌k, Φ̂k ∈ R
p(N

σ (t
+
k

)
−1)

, Φ̌k = Υ̃σ (t+
k
)

¯̃
Ξσ (t+

k
),σ (t−

k
)ξ̃σ (t−

k
)(t
−
k )− Ξ̃σ (t+

k
),σ (t−

k
)δ̃σ (t−

k
)(t
−
k ), Φ̂k = Υ̃σ (t+

k
)
¯̃
Φk. Note

that Φ̃k carries two types of impulses: the impulse Φ̌k whose

value depends on those of both ξ̃σ (t−
k
)(t
−
k ) and δ̃σ (t−

k
)(t
−
k ); the

impulse Φ̂k whose state dependency is consistent with that of
¯̃
Φk. In addition, assume that for any state-independent

¯̃
Φk and

any k, ∥Φ̃k∥ ≤ Φ̄ . For state-dependent
¯̃
Φk, we have Φ̃k =

(Υ̃σ (t+
k
)
˜̂
Ξσ (t+

k
),σ (t−

k
)−Ξ̃σ (t+

k
),σ (t−

k
))δ̃σ (t−

k
)(t
−
k ), which means Φ̃k is also

state-dependent, and (31) becomes

δ̃σ (t+
k
)(t
+
k ) = ˇ̃Ξσ (t+

k
),σ (t−

k
)δ̃σ (t−

k
)(t
−
k ), (32)

where
ˇ̃
Ξσ (t+

k
),σ (t−

k
) = Υ̃σ (t+

k
)
˜̂
Ξσ (t+

k
),σ (t−

k
). Note that (32) is consis-

tent in form with (5). Then, comparing (30) and (31) with (1) and

(3), one readily concludes that the consensus error system (30) is

an M3D system with the state transition at the switching instant

tk given by (31).

Next, we will resort to both Lemmas 1 and 2 to explore the

relations between the connectivity of the digraph Gφ of the open

MAS (26) and the stability of the subsystem φ of the M3D system

(30). Such relations are summarized by the following proposition.

Proposition 1. For given matrices S, min∀i Re(λi(S)) ≥ 0, and Zφ ,

φ ∈ P derived by Lemma 1, if φ ∈ Ps, then there exists a constant

ϱ > 0, such that the matrix INφ−1⊗ S− ϱZφ ⊗ Ip of (30) is Hurwitz.

Under the same constant ϱ, if φ ∈ Pu, then INφ−1 ⊗ S − ϱZφ ⊗ Ip is

non-Hurwitz.

9
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Proof of Proposition 1. For φ ∈ Ps, one concludes from Lemma 1

that all the eigenvalues of Zφ have positive real parts. Recalling

that min∀i Re(λi(S)) ≥ 0 and applying Lemma 2, it is straight-

forward to derive that max∀i Re(λi(INφ−1 ⊗ S − ϱZφ ⊗ Ip)) =
max∀i,j Re(λi(S)−ϱλj(Zφ)). Obviously, one can always find a large

enough ϱ > 0, such that max∀i,j Re(λi(S) − ϱλj(Zφ)) < 0,

i.e., INφ−1 ⊗ S − ϱZφ ⊗ Ip is Hurwitz. Moreover, under the same

constant ϱ, for φ ∈ Pu one can derive from Lemma 1 that at

least one eigenvalue of Zφ has a zero real part. By Lemma 2 and

min∀i Re(λi(S)) ≥ 0, it further implies that at least one eigenvalue

of INφ−1⊗S−ϱZφ⊗ Ip has a non-negative real part, i.e., the matrix

is non-Hurwitz. ■

Remark 8. Proposition 1 reveals that under a proper ϱ > 0,

the connected/disconnected property of the topology Gφ of the

open MAS (26) corresponds to the stable/unstable property of

the subsystem φ of the M3D system (30). Such a correspondence

enables one to seek a further relation between the consensus of

open MASs with disconnected digraphs and the stability of M3D

systems with unstable subsystems. This leads to the result that

follows.

4.3. Consensus of the open MAS via M3D system stability

The following theorem summarizes the conditions for the

open MAS (26) to reach the consensus performances in Defini-

tion 3 via the stability results for the M3D system.

Theorem 3. The open MAS (26) with a size-varying switching di-

graph Gσ (t) can reach practical consensus, if the consensus error sys-

tem (30) is GUPS. The corresponding ultimate bound is given by ε =

2
√

ϵ̃η−1 max∀φ∈P (1/λmin(Pφ)), where ϵ̃ and η are respectively given

as in Theorems 1 and 2 with Υ = max(1,max∀φ,φ̂∈P ∥Ξ̃φ,φ̂∥
2), Pφ

satisfies (22) with Ãφ = INφ−1 ⊗ S − ϱZφ ⊗ Ip, ∀φ ∈ P . Particularly,

(26) can reach (asymptotic) consensus if (30) is GUAS.

Proof of Theorem 3. Since (30) and (31) are respectively the

special cases of (2) and (3) with Aσ (t) ≜ INσ (t)−1 ⊗ S, Bσ (t)Kσ (t) ≜

−ϱZσ (t) ⊗ Ip, Ξσ (t+
k
),σ (t−

k
) ≜ Ξ̃σ (t+

k
),σ (t−

k
), Φk ≜ Φ̃k, Ξ̌σ (t+

k
),σ (t−

k
) ≜

ˇ̃
Ξσ (t+

k
),σ (t−

k
), then by Definition 1, that (30) is GUPS (under state

independent Φ̃k) implies limt→+∞ ∥δ̃σ (t)(t)∥ ≤ ϵ for some non-

negative constant ϵ. It then follows that for any i ∈ {1, . . . ,Nσ (t)−
1}, limt→+∞ ∥δσ (t),i(t)∥ ≤ ϵ, which, by δσ (t),i(t) ≜ ξσ (t),i(t) −
ξσ (t),Nσ (t)

(t), leads to limt→+∞ ∥ξσ (t),i(t) − ξσ (t),j(t)∥ ≤ ε with

ε = 2ϵ, ∀i, j ∈ Vσ (t), i.e., (28) holds. This, by Definition 3,

indicates that the open MAS (26) reaches the practical consensus.

Moreover, by Theorem 2, (30) and (31), as well as the above

result, the ultimate bound of the consensus error of the open

MAS (26) is then calculated by ε = 2
√

ϵ̃η−1 max∀φ∈P (1/λmin(Pφ)),

where ϵ̃ and η are respectively given as in Theorems 1 and 2

with Υ = max(1,max∀φ,φ̂∈P ∥Ξ̃φ,φ̂∥
2), and Pφ satisfies (22) with

Ãφ = INφ−1 ⊗ S − ϱZφ ⊗ Ip for any φ ∈ P . On the other hand,

given that (30) is GUAS (under state-dependent Φ̃k satisfying (32),

which implies Υ = max(1,max∀φ,φ̂∈P ∥
ˇ̃
Ξφ,φ̂∥

2)), then similarly

by Definition 1 we have limt→+∞ ∥δ̃σ (t)(t)∥ = 0, and for any

i ∈ {1, . . . ,Nσ (t) − 1}, limt→+∞ ∥δσ (t),i(t)∥ = 0, which indicates

limt→+∞ ∥ξσ (t),i(t)−ξσ (t),j(t)∥ = 0, ∀i, j ∈ Vσ (t), i.e., the asymptotic

consensus is reached for (26). ■

Remark 9. Theorem 3 indicates that the consensus problem of

the open MAS (26) boils down to the stability problem of the

corresponding M3D system (30) which can be readily handled

with the aid of Theorem 2. Note that the M3D system model (30)

is in fact a special case of the linear M3D system (2). Moreover, it

is notable that for the considered open MAS (26) to reach desired

consensus performances, the TDADT conditions (12) and (13) are

required to be satisfied for (30). However, the calculations of

both the lower and upper bounds of the TDADT in this case will

require the eigenvalues of INφ−1 ⊗ S − ϱZφ ⊗ Ip, φ ∈ P , which

are typical global information due to the presence of Zφ . Similar

cases also arise in other related works on switching topologies,

see e.g., Dong and Hu (2016, Eq. (33)) and Saboori and Khorasani

(2014, Eq. (12)). Nevertheless, this does not indicate the proposed

method cannot be implemented in a distributed way. In fact, for

implementation one does not need to know the exact dwell-time

bounds but only needs to make sure that these bounds are not

violated. This means one can be more conservative when speci-

fying a switching signal just to ensure the corresponding bounds

are satisfied by a certain margin. Note also that the controller of

each agent in (25) is still distributed (albeit not fully distributed).

4.4. Simulation example

In this section, a simulation example will be presented to

illustrate the above application.

Consider the open MAS (26) with the following parameters:

ϱ = 3.75, S = [0.1 0.05; 0 0.15], L1 = [1 0 0 − 1; 0 0 0 0; 0 −
1 1 0; 0 0 − 1 1], L2 = [0 0 0; 0 0 0; 0 − 1 1], L3 =
[0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 − 1; 0 0 0 0 0; 0 0 0 0 0],
L4 = [1 − 1 0;−1 1 0; 0 0 0]. The topologies are depicted in

Fig. 2, where one can see that G1, G4 contain a directed spanning

tree while G2, G3 do not. Then, by Lemma 1, one derives for

(30) that Z1 = [1 0 1; 0 0 1; 0 0 0], Z2 = [0 1; 0 1], Z3 =
[0 0 0 0; 0 0 0 0; 0 0 1 0; 0 0 0 0], Z4 = [1 − 1;−1 1]. With

Proposition 1, one readily concludes that INφ−1 ⊗ S − ϱZφ ⊗ Ip is

Hurwitz for φ = 1, 4 and non-Hurwitz for φ = 2, 3. Further, given

η0 = 1, χ1,2 = 0.410, χ1,3 = 0.560, χ2,1 = 0.550, χ3,1 = 0.637,

χ3,4 = 0.642, χ4,2 = 0.580, and applying Procedure 1 to (30),

then the corresponding lower and upper bounds (denoted by τ̃i,j)

of the (piecewise) TDADT τi,j(tk, tf ), k ∈ {0, . . . ,N(t0, tf )}, t0 = 0,

tf = 12 are derived as τ̃1,2 = 2.053, τ̃1,3 = 1.901, τ̃2,1 = 0.429,

τ̃3,1 = 0.323, τ̃3,4 = 0.317, τ̃4,2 = 1.522.

Given the above parameter settings for the open MAS (26),

we first consider a case where the switching signal σ (t) does not

satisfy (12) and (13) when Φ̃k is state-dependent. The switching

signal is plotted in Fig. 3 by a solid line and the evolution of

the agent number is shown by a dash line. In this case, one can

see from Fig. 4 that despite under a state-dependent Φ̃k, the

consensus errors δσ (t),i(t), i = 1, 2, . . . ,Nσ (t)−1 still diverge with

time, which implies that the considered open MAS cannot reach

consensus under the switching signal given in Fig. 3.

In contrast, we consider the same open MAS model with the

switching signal σ (t) depicted in Fig. 5, where the signal wave-

form is shown as a solid line and the evolution of the number of

agents Nσ (t) is shown as a dash line. It can be readily seen from

Fig. 5 that the given switching signal satisfies σ (t) ∈ Ψ̃σ as well

as the TDADT conditions (12) and (13) with the bounds derived

above. First, consider state-independent Φ̃k. For simplicity, it is

assumed in this example that the state impulse of Φ̃k is only

brought by the arrival of agents. The state values of the new

arrived agents are randomly generated. The resultant trajectories

of agent states ξσ (t),i(t), i = 1, 2, . . . ,Nσ (t) and the consensus

errors δσ (t),i(t), i = 1, 2, . . . ,Nσ (t) − 1 are depicted in Fig. 6.

It can be observed that with the non-vanishing property of the

impulse Φ̃k at each tk, the consensus errors of the open MAS are

ultimately bounded instead of asymptotically converging to zero,

which indicates that the practical consensus is achieved. Note

that the two zoomed-in windows of Fig. 6 depicts the two typical

10



M. Xue, Y. Tang, W. Ren et al. Automatica 146 (2022) 110644

Fig. 2. Digraphs of the open MAS network considered in Section 4.4. The labeled circles denote the nodes (agents) and the solid arrows denote the directed edges

(connections among agents). It is assumed in Section 4.4 that only the agent with a larger label departs from the group; newly incoming agents are labeled in

sequence after the existing largest label. Note that G1 , G4 contain a directed spanning tree while G2 , G3 do not.

Fig. 3. Switching signal σ (t) (solid line) not satisfying (12) and (13); evolution of the agent number Nσ (t) (dash line).

Fig. 4. Consensus errors δσ (t),i(t) = ξσ (t),i(t)− ξσ (t),Nσ (t)
(t), i = 1, . . . ,Nσ (t) − 1 under σ (t) of Fig. 3.

Fig. 5. Switching signal σ (t) ∈ Ψ̃σ (solid line) satisfying (12) and (13); evolution of the agent number Nσ (t) (dash line).

agent migration behaviors of arrival and departure, respectively.

On the other hand, consider state-dependent
¯̃
Φk, which by (32)

indicates that Φ̃k is also state-dependent, and randomly generate
˜̂
Ξφ,φ̂ for φ, φ̂ ∈ {1, . . . , 6}. The resultant trajectories of agent

states and consensus errors are depicted in Fig. 7. It can be seen

that under the switching signal in Fig. 5 and state-dependent Φ̃k

which brings only vanishing impulses, the consensus errors ap-
proach zero as t goes on. This indicates the asymptotic consensus
is achieved.

5. Conclusion

We have studied the stability of the M3D system with differ-
ent subsystem dimensions. The state transition of the system at

11
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Fig. 6. Agent states ξσ (t),i(t), i = 1, . . . ,Nσ (t) under σ (t) of Fig. 5 and state-independent Φ̃k . The lower left subfigure depicts the corresponding consensus errors

δσ (t),i(t) = ξσ (t),i(t)− ξσ (t),Nσ (t)
(t), i = 1, . . . ,Nσ (t) − 1. The black dash circles indicate two typical migration behaviors.

Fig. 7. Agent states ξσ (t),i(t), i = 1, . . . ,Nσ (t) under σ (t) of Fig. 5 and state-dependent Φ̃k satisfying (32). The subfigure depicts the corresponding consensus errors

δσ (t),i(t) = ξσ (t),i(t)− ξσ (t),Nσ (t)
(t), i = 1, . . . ,Nσ (t) − 1.

each switching instant has been formulated as an affine map to
incorporate both the dimension varying and the state impulsive
effects. In the presence of unstable subsystems and non-vanishing
impulses, we show that the GUPS/GUAS of the M3D system can
be ensured under the proposed (slow and fast) piecewise TDADT
switchings, given that a series of Lyapunov-like conditions are
satisfied. The stability conditions have then been verified for the
linear subsystem case by the proposed parametric MLFs. Further,
we have applied the result on the M3D system stability to the
open MAS which features a size-varying switching topology, and
show that the practical (asymptotic) consensus of the open MAS
with disconnected digraphs boils down to the GUPS (GUAS) of
the corresponding M3D system with unstable subsystems. Future
endeavors can be made on further reducing the restrictiveness
of the results obtained for the M3D system, such that they can

apply to and be verified in more general cases (e.g., fully unsta-

ble/nonlinear subsystem dynamics). Meanwhile, the future focus

can also be put on real-world open MASs, such as the vehi-

cle platoons with lane change maneuvers. Besides, experimental

validations can also be considered in the place of simulations.
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