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A multi-dimensional switched system or multi-mode multi-dimensional (M3D) system extends the
classic switched system by allowing different subsystem dimensions. The stability problem of the M3D
system, whose state transitions at switching instants can be discontinuous due to the dimension-
varying feature, is studied. The discontinuous state transition is formulated by an affine map that
captures both the dimension variations and the state impulses, with no extra constraint imposed. In the

Keywords: presence of unstable subsystems, the general criteria featuring a series of Lyapunov-like conditions for
Mull)tll—dlmensmnal switched systems the practical and asymptotic stability properties of the M>D system are provided under the proposed
Stability

slow/fast transition-dependent average dwell time framework. Then, by considering linear subsystems,
we propose a class of parametric multiple Lyapunov functions to verify the obtained Lyapunov-
like stability conditions and explicitly reveal a connection between the practical/asymptotic stability
property and the non-vanishing/vanishing property of the impulsive effects in the state transition
process. Further, the obtained stability results for the M>D system are applied to the consensus problem
of the open multi-agent system (MAS), whose network topology can be switching and size-varying
due to the migrations of agents. It shows that through a proper transformation, the seeking of the
(practical) consensus performance of the open MAS with disconnected digraphs boils down to that of
the (practical) stability property of an M3D system with unstable subsystems.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction state-space structure, which enables one to analyze the state

evolution of the switched system in a similar fashion to tradi-

As an important branch of hybrid systems, switched sys-
tems (Liberzon, 2003) have received much attention over the last
few decades for their simplicity and effectiveness in modeling
systems with both continuous and discontinuous dynamics, see
e.g., Branicky (1998), Hespanha (2004), Hespanha and Morse
(1999), Morse (1995), Shorten, Wirth, Mason, Wulff, and King
(2007) and Zhai, Hu, Yasuda, and Michel (2000), and some recent
works (Kundu, Chatterjee, & Liberzon, 2016; Ren & Xiong, 2019;
Xiang & Xiao, 2014; Yang & Liberzon, 2018; Zhang, Zhuang, &
Shi, 2015; Zhao, Shi, Yin and Nguang, 2017; Zhao, Zhang, Shi, &
Liu, 2012). In most of these existing works on switched systems,
a common and conventional setting is that all the subsystems
(switching modes) share the same state dimension. Such a set-
ting renders the switched system an invariant and individual

* The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Rong Su
under the direction of Editor Christos G. Cassandras.

* Corresponding authors.

E-mail addresses: x_starter@hotmail.com (M. Xue), tangtany@gmail.com
(Y. Tang), ren@ece.ucr.edu (W. Ren), fgian@ecust.edu.cn (F. Qian).

https://doi.org/10.1016/j.automatica.2022.110644
0005-1098/© 2022 Elsevier Ltd. All rights reserved.

tional non-switched systems. Despite providing such a decent
property, the setting of the same state dimension is somehow
ideal as it may not precisely reflect the true picture of a practical
system which works in different modes. For example, a fixed-
wing aircraft can undergo several transitions between the cruise
and the glide phases during multiple flights. Considering these
transitions instantaneous, the aircraft can then be deemed a
switched system with two switching modes (corresponding to
the airborne dynamics in the cruise and the ground dynamics
in the glide phases, respectively). Meanwhile, the aircraft can
exhibit different degrees of freedom (DOF) when airborne (e.g., 6
DOF Cook, 2012) and on the ground (e.g., 5 DOF with the oleo
strut applied to the landing gear (Kriiger et al., 1997)). If one tries
to completely but not redundantly describe the motions of the
aircraft in these two different phases using state-space models,
then the required numbers of state variables would be different
accordingly. This clearly does not satisfy the same-dimension
setting and instead leads to a non-canonical switched system
that has multiple different subsystem dimensions. Formally, one
can call such a kind of switched systems the multi-dimensional
switched system.


https://doi.org/10.1016/j.automatica.2022.110644
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2022.110644&domain=pdf
mailto:x_starter@hotmail.com
mailto:tangtany@gmail.com
mailto:ren@ece.ucr.edu
mailto:fqian@ecust.edu.cn
https://doi.org/10.1016/j.automatica.2022.110644

M. Xue, Y. Tang, W. Ren et al.

Summary of Main Acronyms

M3D Multi-Mode Multi-Dimensional

MAS Multi-Agent System

ADT Average Dwell Time

MDADT Mode-Dependent Average Dwell Time

TDADT Transition-Dependent Average Dwell
Time

MLF Multiple Lyapunov Function

GUPS Global Uniform Practical Stability

GUAS Global Uniform Asymptotic Stability

To date, the studies on multi-dimensional switched systems
remain in a minority. One of the pioneering explorations was
made in Verriest (2006), where “multi-mode multi-dimensional
(M3D) system” (the term “M3D system” will also be used to
denote “multi-dimensional switched system” in this work) was
first used to indicate switched systems with different subsystem
dimensions. The authors later introduced the concept of pseudo-
continuity in Verriest (2013, Definition 1) to the M3D system,
such that its state trajectory can be meaningfully studied. How-
ever, such a property prohibits the situation where transitions
start from a higher dimensional subsystem to a lower one and
then back to a higher one, in order to avoid a possible loss
of state information (Verriest, 2013). This consequently makes
the pseudo-continuous M3D model less universal. The authors
in Mayo-Maldonado, Rapisarda, and Rocha (2014) studied the
stability of a set of switched linear systems which may share
different state spaces. By letting the state trajectories be concate-
nated via the so-called gluing conditions, stability conditions in
terms of linear matrix inequalities were obtained. Note that the
proposed gluing conditions exclude the case where the state im-
pulses do not vanish, which enables the seeking of the asymptotic
stability but cannot fully cover the state transition situations at
switching instants of an M3D system. In Song and Lin (2017),
the time-variant frequency response function was employed to
characterize hybrid systems with unknown complex structure
that potentially implies different subsystem dimensions, and an
estimation algorithm for the function was proposed based on the
input and output information. Generally speaking, these works
have sparked the studies on the M3D system and yielded some
enlightening results, though, the system models involved still lack
some universality, especially for the state transitions at switching
instants. Moreover, how to seek the stability of M3D systems by
time-dependent switchings, especially in the presence of unstable
subsystems, also deserves to be further investigated. It is notable
that there have been some endeavors on the stability problems
of switched systems with unstable subsystems during the recent
few years, e.g., Shi, Fei, Sun, and Yang (2018), Xiang and Xiao
(2014), Yang, Jiang, Cocquempot, and Zhang (2011), Zhai et al.
(2000) and Zhao, Shi et al. (2017). Among them, the method
of using stable dynamics to compensate the unstable dynam-
ics (Yang et al., 2011; Zhai et al., 2000; Zhao, Shi et al., 2017)
and the techniques featuring the use of the Lyapunov functions
with time-dependent parameters (e.g., the discretized Lyapunov
function (Xiang & Xiao, 2014), and the quasi-time-dependent
function (Shi et al., 2018)) are commonly employed to ensure
the stability of the whole switched system. However, these ap-
proaches for classic switched systems may not be directly applied
to the M3D system due to its more complicated dimension-
varying structure. Considering that the number of relevant results
is also limited, this thus motivates the corresponding part of this
work.
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On the other hand, the switched system has long been linked
with the multi-agent system (MAS) owing to a series of early
discussions on switching networks (topologies) (Jadbabaie, Lin, &
Morse, 2003; Olfati-Saber & Murray, 2004; Ren & Beard, 2008).
In general, the commonly considered switching topology exhibits
instantaneous variations in network connections, whereas the
network scale is usually considered to be fixed, see e.g., Dong
and Hu (2016), Liu and Huang (2018), Meng, Yang, Dimarogonas,
and Johansson (2015), Olfati-Saber and Murray (2004), Ren and
Beard (2008) and Saboori and Khorasani (2014). However, such
a setting could not hold for the MAS networks whose nodes
(agents) show dynamic flowing (or migration, e.g., arrivals or
departures of agents) behaviors. For example, some agents may
go offline at certain instants due to faults and go back online after
certain periods with faults fixed. This will cause the scale of the
network to intermittently vary. The MAS with such variations in
the network scale (potentially in connections) is termed the open
MAS (Demazeau & Costa, 1996; Hendrickx & Martin, 2016).

In contrast to its early popularity in the computer commu-
nity (Demazeau & Costa, 1996), the open MAS has not received
much attention until recently in the control community. An initial
effort on the open MAS was made by Hendrickx and Martin
(2016), in which the authors studied the consensus problem un-
der the gossip algorithm that randomly selects a pair of agents at
a certain time instant and then calculates their averages to update
their states. To deal with the scale variations of the network,
the “scale-independent” quantities were considered therein as
the metrics for consensus errors. The agent migration behaviors
were considered to be deterministic, which was also assumed
in Abdelrahim, Hendrickx, and Heemels (2017) for the max con-
sensus problem. The result in Hendrickx and Martin (2016) was
then extended by Hendrickx and Martin (2017) from the de-
terministic migration case to the random case. Note that all
the aforementioned works had established their results on an
implicit assumption of a completely connected communication
graph, which indicates each pair of agents remain connected.
Further, the proportional dynamic consensus problem is studied
for the open MAS by Franceschelli and Frasca (2018), in which
the authors introduced an open distance function to illustrate the
consensus error and proposed a formal stability definition for the
error trajectories. However, the results were also based on the
assumption that the considered directed graph is strongly con-
nected every time. In general, from the aforementioned results
on the open MAS, it can be seen that they were obtained either
by minimizing the impact of the size-varying property of the
topology (Hendrickx & Martin, 2016, 2017) or by specifying some
strong graph connectivity conditions (Abdelrahim et al., 2017;
Franceschelli & Frasca, 2018). Results on consensus problems of
the open MAS that take the size-varying topology into account
while rely on more relaxed graph connectivity settings are still
lacking. On the other hand, the naturally switching and size-
varying feature of the open MAS network has shown a close
relation to the feature of the M3D system under discussion. In
light of the well-known applications of conventional switched
systems to the MASs with switching topologies, it is then of
interest to seek for a possible application of the M3D system to
the open MAS.

Motivated by the above, this work will focus on the M3D
system as well as its application to the open MAS. The main
contributions are highlighted as follows:

(1) The M3D system, which extends classic switched systems
by allowing different subsystem dimensions, is studied.
The state transition at each switching instant is formulated
by an affine map to characterize the potential dimension
variation and non-vanishing impulse. Compared with other
existing works like Verriest (2013), no extra constraint
needs to be imposed on the state transition process.
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(2) In the presence of unstable subsystems and potential non-
vanishing impulses in the state transition process, the cri-
teria for the practical stability of the M3D system, which
feature new dwell-time concepts and Lyapunov-like condi-
tions that extend some existing results as in Zhao, Shi et al.
(2017) and Zhao et al. (2012), are provided. For the linear
subsystem case, these stability criteria are verified by a new
class of parametric multiple Lyapunov functions.

(3) The M3D system is applied to address the consensus prob-
lem of the open MAS, whose network structure is switching
and size-varying due to the agent migration behaviors.
Compared with existing works like Abdelrahim et al. (2017)
and Hendrickx and Martin (2016) that entail strong as-
sumptions on graphs, we allow for open MASs with discon-
nected digraphs. By revealing the correspondence between
the connectivity of the size-varying switching digraph and
the stability of the subsystem, the consensus conditions for
the open MAS with disconnected digraphs are established
based on the stability result obtained for the M3D system
with unstable subsystems.

The rest of the paper is organized as follows: Section 2 pro-
vides the system formulation and preliminaries; Section 3
presents the results on the stability of M>D systems; an applica-
tion of the M3D system to the open MAS is presented in Section 4,
where a simulation result is also included; Section 5 gives the
conclusion and some prospects.

The notations used in this work are summarized as follows:
1, denotes an n x 1 vector that is fully composed of ones; N
and N denote the sets of positive and non-negative integers,
respectively; R and Rx( denote the sets of real and non-negative
real numbers, respectively; B™*" denotes the set of m x n 0-1
matrices; R" and R™" denote the sets of n x 1 real vectors and
m x n real matrices, respectively; C" and C™*" denote the sets of
n x 1 complex vectors and m x n complex matrices, respectively;
the n x n identity matrix is denoted by I,;; the Kronecker product
of matrices A and B is denoted by A®B; A(R) denotes the spectrum
of a square matrix R € C"" and A;(R) denotes the ith eigenvalue
of R,i € {1,...,n}; |S| denotes the cardinality of a set S; ||...||
denotes the induced 2-norm of a matrix or the 2-norm of a
vector; Re(...) denotes the real part of a complex number; P >
0 denotes a real positive definite matrix; for a real symmetric
matrix P, Amax(P) and Anpin(P) denote its maximum and minimum
eigenvalues, respectively.

2. System formulation and preliminaries

In this section, we will give the mathematical description of
the considered system. Meanwhile, some related concepts will
also be provided as preliminaries.

2.1. System dynamics

Given a Zeno-free (finite number of discontinuities in any
finite time interval) switching signal o(t), o : Ry — P,
where P = {1, 2, ..., s} is the index-set of all s subsystems, an
M?3D system with general nonlinear subsystem dynamics or the
nonlinear M>D system is formulated as:

Xo(0)(t) = foo(Xo(ey (1)), (1

where Xo(1)(t) = [Xo(0).1(8), Xo(0)2(E), - - - s Xo(0)nyq ()] € R™O s
the state vector, X,(;)i(t) € R is the ith component of x,((t),
ie{l,...,nen} withng < oo forany ¢ € P, fy : R — R™
is locally Lipschitz w.r.t. x4(t) and f4(0) = O for each ¢ € P.
The stability of a subsystem ¢ is defined about its equilibrium O.
The switching signal o(t) is a right-continuous piecewise constant
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function, i.e., o(ty) = o(t,f), where t;, k € N denotes the kth
discontinuous (switching) instant of o (t). Besides, other functions
of t in this work are also assumed to be right continuous. For
(1), denote by P the set of indices of all the subsystems with
asymptotically stable equilibria, and denote by P, the set of
indices of all the subsystems with unstable or marginally stable
equilibria. One then has that P,(\Ps = @ and P, JPs =
. Particularly, the M>D system with general linear subsystem
dynamics or briefly the linear M>D system can be formulated as
the following closed-loop model with a state feedback control:

Xo(0)(t) = (A(t) + Bo(t)Ko(t)Xo(o)(£), (2)

where Ag(;) € R"®O*M0®, B,y € RWOXT Ky € RO, ris a
certain positive integer. It can be seen from (1) that the system
state can exhibit different dimensions with the evolution of the
switching signal o(t), which implies a dimension-varying prop-
erty of the M>D system. This thus makes the M>D system contain
the classic switched system as a special case (by setting nq
constant for all t). Note that by R™(®, we do not mean that the
state space itself actually evolves with time, but that the system
state evolves through state spaces with different structures under
the evolution of o (t).

Remark 1. The M3D systems extend classic switched systems
by allowing different subsystem dimensions. Meanwhile, the
dimension-varying property also potentially complicates the cor-
responding analysis. Given this, one may prefer to circumvent a
direct analysis of an M3D system by converting it into a clas-
sic switched system. Intuitively, two methods are adoptable to
implement such a conversion. The first is to apply the model
reduction technique to the M3D system, such that the reduced
subsystem models have the same dimension (an opposite sit-
uation where the model reduction technique converts classic
switched systems into M3D systems was also suggested in Ver-
riest (2006)). However, this method may come at the cost of
losing part of the state information. The second is to insert extra
components into each subsystem state such that the resultant
subsystems have the equal dimension (Wang & Hadaegh, 2008).
Compared with the first one, the second method does not inflict
a loss of information, though, the introduced components would
potentially cause an unnecessary increase of the computation
burden. Besides, the second method is also ineffective in the case
where the highest allowed dimension is unknown or unfixed.
Thus, it is always meaningful for one to consider a direct analysis
of the M3D system.

The Eq. (1) characterizes the dynamics of an M3D system
in each non-switching period. However, it alone is insufficient
to determine a complete system behavior. One still needs the
switching-time behaviors to bridge all these non-switching dy-
namics together. This thus leads to the following subsection.

2.2. State transitions at switching instants

It is well understood that a typical switched system as studied
in Liberzon (2003) always admits a piecewise differentiable state
trajectory with a continuous state transition at each switching
instant, i.e., x(tk*) = X(t, ), k € N. However, this is in general not
the case for an M3D system, since the dimension variation that
takes place at any switching instant will surely render the system
a discontinuous state transition in the meantime. Moreover, a
discontinuous state transition process can also be brought by
the traditional state jump/impulse as considered for impulsive
systems (Ren & Xiong, 2019). Taking both the aforementioned
factors into account, we can thus formulate the state transition of



M. Xue, Y. Tang, W. Ren et al.

Automatica 146 (2022) 110644

tetyty) tE [ty tp) te [ty t3) tE [t3,1y)
————— ~ e e (. ) ] ’f___-_
| [ | I ! ]
Yot |, | Feleh)a R{CIEN 1| Kot Xo(t3)1 |1 1| Xo(t)
(="M I I ! : { —
I Xo(t7).2 :' t=1t H Xo(t$)2 Xaie2 |1 t =1y : Xo(t$)2 Xg(t7)2 : t=1t3 :l Xo(td),2 :
XotD)3 |1 1| Xo(tf)3 Xet5)3 |1 W Xo(e)z |, | *os |1 H Xo(ch)3
{____|'_ 1 [ _“,____, I: -1 LR
I Zotho)= 1 1 So(th)e(tz) = | 190(t3)0(5)=
I Yo [, 00 0 1.0 0] y|Xo(ch)a Xo(e)a [1f1 0 0 O] | X5(e4)q
| I I00100]: :010I o109,
Xo(ir 0000t |gg(1)' 'ogo1l
o(t1).5 # "
1 ¢ =[000] | o, ! ®;y= !
1 | e 1 1 7 1
1 . [pod,;0] 0@s200] i
Xo(t1) 7 \Eo(eh) Xo(t7) 4 NGy Xo@3),’! * Fot3)
o(tg o(t] o(t; o(ts

Fig. 1. Illustration of the state transitions at switching instants t;, t,, t3 of an M>D system. The smaller colored dashed box enclosing a state component (in a blue
solid box) denotes that the component is under dimension reduction (red) or dimension expansion (green) or state impulse (purple). The transition at t; features pure

dimension reductions on Xo(t7).2 and Xoe )40 while other components of Xo(e0)

remain unchanged in value; the transition at t, features a pure dimension expansion
between X5(6)2 and Xo(65)30 in which the newly added component Xo(ch)3 is assigned the value of @, 3 while all the components of x

5(t;) Temain unchanged in

value; the transition at t; does not exhibit any change in dimension but it features a pure state impulse brought by @3, to Xoi)2 that yields Xo(i)2 with a different
value, while other components of Xo(3) remain unchanged in value. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

the M3D system (1) at each switching instant t, k € N as follows:

+y _ = —
%o (8 ) = B i) o6 o) (e ) + P 3)
= M) o) Toh) = .
Where.ug(t,j),g(r,;) €B T anq Dy € R W By o) IS
a special 0-1 matrix indicating the dimension variation (e.g., re-
duction or expansion) of xa([f)(t,;) at ty, which is obtained by
K

removing certain rows from (dimension reduction) or by in-

serting zero rows into (dimension expansion) certain positions

of an identity matrix I, " On the other hand, & is a real
o

k
vector indicating the impulse occurring to the transformed state
Ea(t;)‘g(tf)xg(t;)(t,:) at ty, and satisfies || @[l < @, where @ > 0
is a certain constant. An illustration of the state transition process
(3) characterized by Ea(t,j)’a(t,:) and @; of the M3D system (1) is
provided in Fig. 1 (see the caption for detailed descriptions).

Remark 2. The state transition process (3) is pivotal to deter-
mine a complete evolution of the M3D system (1) as it defines
how the system behaves at each switching instant. The above
parameter settings for the affine expression of (3) do not cause
any loss of generality, since given any pair of vectors x”(t;r)(tk+ ) e

n n_,—
R °% and Xo(t; ) € R 7%, each type of dimension variations
between them can be fulfilled by a unique 0-1 matrix Eotih) o)
k.’ K

and any value jump that is not the result of dimension variations
can be captured by &,. Note that the formulation (3) does not
impose any extra constraint on the state transition process com-
pared with the “pseudo-continuity” required in Verriest (2013).
Specifically, the case of potential “loss of information” when
the dimension decreases and then increases that was disallowed
by the “pseudo-continuity”, can now be interpreted as the self-
impulse of the state brought by the offset term &,. Moreover, it is
clear that the case of Eoit) and @, = 0 indicates a

o) = In,

trivial continuous state transition at tk.<The case of Ea(r,j) o

In o) and &, # 0 indicates a pure impulse between states with
7k . .

the same dimension.

t)

2.3. Two types of state impulses

The discontinuity of (3) is brought by the dimension variation
indicated by Eoeho) and/or the state impulse indicated by &y.

In particular, it is notable that for a pure dimensional transfor-
mation at t, i.e., xo([;)(t,j) ’:U([,:r)ﬂ([,;)xo([,;)(t’:)' the value of
xo(t;)(t,j) always linearly depends on that of the state xa(@(tk’)
through Eo([r),o([’:). We thus call xa(t+)(t,:r) state-dependent under
such a pure dimensional transformation. It can also be concluded
that a pure dimensional transformation always yields a state-
dependent "a(t,j)(t/j ). However, when one takes the state impulse
brought by & into account, then the previously defined state
dependency might not necessarily hold for xa(rl:r)(tk+ ) since its
value will also depend on that of &,. Given this, we consider to
classify @y into the following two types:

(a) State-independent ®y: The value of @, relies solely on the
switching instant t; or k, i.e., there is no explicit relation between
@y and xa(tk-)(tk_ ). This indicates xa(t;)(t,:r) does not linearly rely

on the state x,,-(t,) as the pure dimensional transformation
k

case. Note that in this case, @, # 0 and can be deemed unknown
except the upper bound @ of its norm.

(b) State-dependent ®;: The value of &, relies on that of
xo([p(tk’ ). Specifically, we have the following explicit formulation
for state-dependent &y:

= X

(4)

Pie = Fo (100 %ot (b s
A n_4.xn_ . _
in which &) ;) € R 7% % is a given matrix. As a resul,
the state transition (3) with state-dependent &, in (4) can be
rewritten as:

(5)

o= -
Xa(r,j)(tk )= ua(r,j).a(r,;)xa(r,;)(tk )s

)>

where Z ) (o) = Fotit) o) T Eoif o)

Remark 3. The above two types of the impulse & reflect two
evolution properties it could have. For the state-independent
@y, its evolution does not rely on any variable except k, which
means that it will never spontaneously converge to zero regard-
less of the evolution of the state xa([f)(t,j). We thus say that the
state-independent @ has a non—vaniéhing property. For the state-
dependent @y that satisfies (4), its evolutiAon linearly depends on
the state xa(rl:)(t,j) through the matrix Fo o)y which indi-
cates that it would potentially converge to zero with a convergent

xo([;)(tk‘ ). Accordingly, we say that the state-dependent & has a
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vanishing property. Note that such non-vanishing and vanishing
properties considered for the state impulses are similar to the
non-vanishing and vanishing perturbations featured in perturbed
systems (see e.g., Khalil (2002, Chapter 9)). As we shall see later,
these two types of &, can result in different stabilities for the
M3D system.

2.4. Related concepts

Before proceeding, some definitions will be presented. Note
in this work we consider the switching signal o(t) and any
dynamical system on a general time interval [to, tr], where to > 0
and t; € (tp, +00) denote the initial and final times of interest,
respectively. Moreover, let N(to, t;) denote the total number of
switchings on [ty, & ].

Definition 1. The M>3D system (1) is said to be globally uniformly
practically stable (GUPS), if there exist a class KX£ function 8 and a
scalar € > 0 such that for any initial state X,(t,)(to) and admissible
a(t),

%) (O = BUIXo(o)(to)ll, t — o) + €, VE = to, (6)

where € is called the ultimate bound of x,(;)(t) as t — +oo.
Particularly, if one has ¢ = 0, then (1) is said to be globally
uniformly asymptotically stable (GUAS).

The global uniform practical stability (GUPS) defined for the
M?3D system (1) is an extension of those defined for classic
switched systems (see e.g., Zhai and Michel (2002, Definition 1)).
The global uniform asymptotic stability (GUAS) can be deemed a
special case of the GUPS when € = 0.

The next definition is given for a switching signal o(t).

Definition 2. Consider a switching signal o(t) on the interval
[to, tr]. For any [t tf] < [to,tr], k € {0,...,N(to, tr)}, and
t € [t, tr], denote the number of switchings (transmons) from
(}) € Pto¢ € P on [t,t] by N, (tk, ) and denote the total
active periods of ¢ pertammg to these switchings by (L, ©).

Then, for the constant N 55 =0 the scalar T s (;)(tk, t) satlsfying

T¢,[b(tka t)

N, ot t) <N, 3 + = ,
pdlle O=Nos® 2 L0t

(7)
is called the (slow) piecewise transition-dependent average dwell
time (TDADT) of the switching signal o(t), and in particular
T, (o, t)is called the (slow) TDADT of o (t). Correspondingly, for

the constant N 53 =0 the scalar Ty g;,(tk, t) satisfying

T¢,[b(tka t)

N )
Z¢,g,(tk, t)

ol )= Ny 5+ (8)
is called the fast piecewise TDADT of o(t), and in particular
lq),[b(to’ t) is called the fast TDADT of o (t).

Remark 4. Definition 2 extends the existing dwell-time concepts
in three aspects. First, the proposed TDADT extends the exist-
ing mode-dependent average dwell time (MDADT) (Zhao et al,,
2012) and average dwell time (ADT) (Hespanha & Morse, 1999)
by allowing the same subsystem to have different ADTs w.r.t.
different predecessors. This means a TDADT is actually defined
w.r.t. the switching (transition) between a subsystem and its
predecessor (hence the name “transition-dependent”). Such a
transition-dependent feature also makes the TDADT more flexible
in characterizing the switching of an M3D system, given that its
state transition processes between a subsystem and different pre-
decessors can be different due to the dimension-varying property.
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Second, the concept of the fast TDADT is accordingly an extension
of the fast MDADT proposed in Zhao, Shi et al. (2017, Eq. (4)).
Opposite to the slow MDADT (Zhao, Shi et al.,, 2017, Eq. (3)), the
fast MDADT imposes an upper bound instead of a lower one on
the average active period of a subsystem. As was pointed out
in Zhao, Shi et al. (2017), such “fast-switching” property usually
applies to the unstable subsystems whose active periods need to
be short enough to have their destabilizing dynamics properly
neutralized. Third, the piecewise TDADT is a further extension of
the TDADT concept, which more detailedly defines the TDADT of
a subsystem ¢ with the predecessor ¢ on each subinterval [ty, t],
k € {0, ..., N(to, t)} of an interval [ty, t] of interest. As we will see
later, this concept is linked with the GUPS property of the M3D
system. Note that the piecewise property as stated in Definition 2
can also be introduced to the ADT or MDADT analogously. Also
note that the piecewise TDADT brings no more conservativeness
than the classic (fixed) dwell time (Morse, 1995). This is because
the (fixed) dwell time requires all the active periods [t, tx,1) in
[to, tr], k =0, ..., N(to, tf) — 1 to have a same bound, while the
piecewise TDADT only requires the average active period of the
subsystem ¢ with the predecessor ¢ on each subinterval [ty, tf] €
[to, tr], k € {0, ..., N(to, ty)} to have a same bound, which means
the latter contains the former as a special case.

3. Stability analysis of M3D systems

In this section, we are going to present one of the main results
of this work concerning the stability of the M3D systems (1) and
(2) with the state transition process (3). In the following, assign
¢ = a(tk ), ¢ = o(t, ) for a switching instant t; € [to, tf] and
denote the number of switchings on [t;, t] by N(t, t), t € [t, t],
k eN.

3.1. Stability criteria for general nonlinear M>D system

The following theorem gives the stability criteria for the gen-
eral nonlinear M3D system (1).

Theorem 1. Consider the M3D system (1) with the switching signal

o(t)on [to, tf], 0 < ty < ty < 4oo. If for any ¢, ¢ € P, there exist
class Ko functions k, &, constants 75, $2,; > 0, ® > 0, and a
non-negative function Vy(t, x4(t)) : Rso X RY — R, such that
vt € [to, tf],

k(lIxs(O)I) < Vi(t, x4(6)) < BlIxs(O1]), 9)
Vi (t, x4(0)) < TpVi(t, X4(D)), (10)
Vot Xp(6)) < 824 3V3 (6 %5(6)) + O, (11)

where yp > 0,0 < £2,5 < 1L, Vo € Py Yy <0, 82,, > 1,
V¢ € Ps, and that o(t) satisfies

_ ll‘l.Q(I)aj .
Tyollintr) = ———=—, j=0,...,N(to, ty), (12)
Ve
forany ¢ € Ps, ¢ € P, and
ln9¢¢ ]
Ty 4is tr) < = % . j=0,....N(to. ty), (13)

for any db € Pu,qAb € P, then (1) is GUPS with € = k~(), where
~ Oce

€= G5 T =My iep G G = Ty 1T+ IN R 5,

Vje{l,. N(to,g)} r¢¢_t¢¢foranyq>e7>s,r¢¢_ ¢for
In$2

any ¢ € P, ¢ = eXvoicrNoi"%i N = manJZV¢¢e7’g;¢N¢¢

Particularly, if @ = 0, then (1) is GUAS with (12), (13) satisfied for
j=0.




M. Xue, Y. Tang, W. Ren et al.

Proof of Theorem 1. Throughout this proof, we use V,(t) to
denote Vo, (t, X,(r)(t)) for brevity. It can be obtained from (10)
and (11) that Vt e [ty, tyr1), k=0, ..., N(to, t7),

Vo()(t)
Vo (E—tk) Vot (tk—tk—1)
oty ) (t_¢)
<e 7k (‘Qa(t;),a(tk_)e =1

X Vot )(tk*1)+é)

tk— 1

Voot (E—tk)
oty )
<e U (QG([;)’G([;)Q

oty ol y)

)7,,@;_1 y(Be—tk—1 )e?“([lj——z (te—1=tk—2)

+
x € ot (62)

370([4- )(fk*fk—l) ~ ~
+ 'Qa(r,:f),a(rk‘)e k=1 O +06

k=1 Iy Lt s
er:1 (ln Qa(r,:ij).u( )era(tltj)(tkﬂJr] tk—)))

In Qa(t;)yd(tk—)+Va(tk+)(f*fk)eya([0+)(f1 —to)

< fe=j

+
X e % ([ar)(to )

(o
k—1
Y
+ Ze
v=0
)/a(t;r)(f*fk) ~

6. (14)

(l" Qa(r,j'_jH ),(r(tk__j_H)+yrr(tlj'_j)([k*j+1 4,(,]))

X e

In (14), grouping the terms of the same ¢, <2> together, Vo, <2> e P,
¢ # ¢, and applying respectively (7) and (8)to ¢ € Psand ¢ € Py
for k = 0, one has:

Y Q

(}/¢+ .[¢ (}([(’J'[) )T¢’&(f0,t)+N¢,$ In .Q¢,(;

>
Vae(t) <& ¥4

X v{,(q)(t;)Jr A, (15)

\;\I/]félere Tyt = Tod for any ¢ € P, Too = Tod for any ¢ € Py,

N, o (te_isqot)
k ST (s ¢.p KTt
~ ZVQ&,&EP (V¢T¢V¢([k_1+1,[)+ln Q(b,{b )
Ap = E e

j=1

(16)

Note that in this work we always rule out the trivial case of
finite number of switchings in infinite time interval. This implies
k — +o0 ast — 400 in (16), which consequently makes Ay
a non-negative infinite series as t — +-o0. Further, denoting

g;?,& = )7¢r¢,$(tj, t)+ In .Q¢q$, it follows from (12) and (13) that

J . <0, Vp,d e P je{l,...,N(to, t)). Then, by respectively
applying (7) and (8) to ¢ € P; and ¢ € P, in (16), one can obtain
that

N TN, ot 1.0, 5)
Ay <de Vo.peP Sp.p - 0.p kTN G
j=1
k B
< Z Ee?N([k—j-H’[)_N
=1
k ~ - <k
- =iip_f ceT(1—es)
SZcéU DN - (17)
1—eS
=1
- . j ~_ZVA7,I(IAanA:_
where ¢ = maxwd)ep_jg;,&, C = e~%oeP 04 " “0b N =

Mminy; deﬂ)ep g;’(?)lcld)‘d;. It then follows from (17) that limy_ ;o

Ay < ie:el; which along with (15) implies that lim;_, 4o Vo (r)(t) <

€, where € = % > 0, and the first addend of (15) becomes
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a class K£ function of Va(q)(tgr), t. By (9) and Definition 1, one

further concludes that lim;_, ;o [|[Xs(t)(t)l < x~1(€), and the M3D
system (1) is GUPS with € = «~'(€). In particular, if ® = 0, then
it follows from (15) that with (12) and (13) satisfied for j = 0,
lim¢_, 400 Vo(r)(£) = 0. By (9), this indicates lim;_, ;o [|[Xoc)(E)ll =
0, which implies that (1) is GUAS. ®

Remark 5. Theorem 1 provides the stability criteria in terms of a
Lyapunov-like or multiple Lyapunov function (MLF) V, for the
M?3D system (1) under TDADT switchings. The conditions (12)
and (13) impose constraints on o(t) in the sense of slow and
fast switchings, respectively. That (12) and (13) are satisfied for
j > 0 implies that the system should perform piecewise TDADT
switchings for the GUPS property (note that a tightest € among
different choices of N, ; can be obtained by setting Ny o = 0,

Vq&,q@ € P, ie, € = ](jf?); that (12) and (13) are satisfied for
j = 0 implies that only TDADT switchings need to be performed
for the GUAS property. On the other hand, (9), (10), (11) are the
Lyapunov-like conditions that serve the similar purposes to those
in existing works that used MLFs in stability analysis of switched
systems (see e.g., (3.8), (3.9), (3.6) of Liberzon (2003), (2), (3),
(5) of Xiang and Xiao (2014), (13)-(15) of Zhao et al. (2012)).
Note that here (11) further relaxes the existing related conditions
(e.g., (15) of Zhao et al. (2012)) by adding the offset term & > 0.
This allows a more general case where non-vanishing positive
jumps exist at some switching instants for V() (which leads to
the GUPS of (1)). Setting @ = 0, then (11) will reduce to a similar
form to, e.g., (15) of Zhao et al. (2012).

Despite that Theorem 1 provides essential stability criteria for
the M>D system (1), it has claimed in advance the existence of
the function V,, satisfying the Lyapunov-like conditions (9), (10),
and (11) for each ¢ € P without providing a method to explicitly
find such a function. Besides, the conditions such as (10) and (11)
have not shown sufficient inherent connections with the sub-
system dynamics (1) of the M>D system and its state transition
process (3), which leaves these conditions unverified. These have
consequently made Theorem 1 restricted in application. To this
end, next we will give some further discussions on the stability of
the M3D system. Note that in the following the linear subsystem
model (2) will be considered instead of the nonlinear one (1),
such that more detailed structural information can be exploited
in analysis.

3.2. Parametric MLFs

Following the method for the stability analysis of conven-
tional switched linear systems (Lin & Antsaklis, 2009), a potential
explicit candidate of V() for the M3D system (2) can be con-
structed into a piecewise quadratic form, i.e., Vo()(t, X;(n)(t)) =
XL (O)Po(eXo(r)(t) With a positive definite matrix Py € R
for each ¢ € P. Based on it, a series of linear matrix inequal-
ities of P, (such as (23) and (24) of Zhao et al. (2012)) can be
established via the Lyapunov-like conditions as (9)-(11). Then,
the existence of the candidate function V() boils down to the
existence of Py, i.e., the feasibility of the associated linear matrix
inequalities. However, such feasibility is usually assumed (instead
of verified) to be true in advance, which essentially makes the
related stability result for the linear model a special case of that
for the nonlinear model (see e.g., Zhao, Shi et al. (2017, Theo-
rem2)). Given this, and to further verify the stability conditions in
Theorem 1, we will introduce to (2) a new class of MLFs, called the
parametric MLFs, as an explicit candidate of V) in Theorem 1.
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3.2.1. Construction of parametric MLFs
Specifically, for any t € [ty, tr], a candidate of parametric MLFs
for the M>D system (2) can be constructed as

Vo) (£ Xo(0)(£)) = n(OX] (1 (OPo(Xo0)(1), (18)

where the time-varying parameter n(t) is a bounded right-
continuous piecewise constant function of t, i.e.,, Vt € [ty, tkr1),
n(t) = n € [n, 7] in which 7, > 0 is constant for each k € Nx, 1
and 7 are certain positive constants; for each ¢ € P, P, € R <79
is a positive definite matrix. Then, it follows from (3) that for any
tho 1% (6 (6P < 2018 o) 1% (61 + 211 @il1?, which
implies

+ + — — 5
Vot Xoe) () =200 (60 Vot (b oG ) + O, (19)
in which,

R 2ngrmax(Py) n
-Q¢ o — maXVkeF¢¢( M I)me(P )T)’ \Vld), ¢ eP, (a) (20)

O =7, (b)

where I’ 5 = {klo(ti-1) = ¢, o(ty) = ¢}; T = max(1, maxy, ;.
I1E,4I7) O = 27maxvsep Amax(Py)l| @[> for the state-
independent &;; T = max(1, MaXy, 4cp ||§'¢’&||2), % = 0 for the
state-dependent @, that satisfies (4). It can then be seen that (19)
is consistent in form with (11) of Theorem 1, but the value range
of 244 for each ¢, 43 € P cannot be ensured from (20)(a) without
knowing the evolution of 7(t). Hence, we propose the following
procedure for the update of n(t) at each t € [to, tf]. Note that in

2xmax(Po (g,))
mr, Vk e {1,...,N(to, ff)}.

the following, Ay 2
Procedure 1 (Update of n(ty) = ni, to < tx < t5).
Step 1: k < 0; initialize o > 0, x,, 5 € (0, 1), Vo € P, ¥ € Py;
Step 2: k < k+ 1, g < k-1 lfk > N(to, tr), then go to Step 6;
Step 3: If o(ty) € Py and A, > 1 (A, < 1), then go to Step 4 (Step
2);ifo(ty) € Ps and o(ty—1) € Py and k > 1, then go to Step 5, else
go to Step 2; ~
Step 4: Mk <= Xo(t).o(te_1)1k/ Dk 80 to Step 2;
Step 5: my < —XA=1__ o0 to Step 2;

Xo(tg_1).0(tg_2)
Step 6: Exit.

Note that in Procedure 1 we suppose the switching signal o (t)
of (2) to satisfy that for any t, Vk € N, if o(ty_1) € Py, then
o(ty) € Ps. Formally, the switching signal with this property is
called “quasi-alternative” (Zhao, Kao, Niu and Wu, 2017), and we
denote the set of quasi-alternative switching signals by ¥,. A
quasi-alternative switching signal ensures the destabilizing effect
of an unstable subsystem can immediately be compensated by
the stabilizing effect of the stable subsystem that follows. Such a
compensation method has been commonly employed for dealing
with the stability problems of switched systems in the presence
of both stable and unstable subsystems, see e.g., Zhai et al. (2000),
Zhao, Shi et al. (2017). Also note that the employment of the
quasi-alternative switching signal indeed brings some restric-
tions, as it prevents the switching between unstable subsystems
which further rules out the case where all the subsystems are
unstable (Xiang & Xiao, 2014; Yang et al,, 2011). We allow such
conservativeness for a trade-off purpose considering the potential
extra complexity it could bring by studying the stability problem
of the M3D system with all unstable subsystems. For this issue,
some more endeavors need to be further made since the com-
pensation method would be less effective in the absence of stable
subsystems. This will be one of our main focuses in future works.
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3.2.2. Behaviors of the time-varying parameter n(t)

The parametric MLFs feature a time-varying parameter n(t)
subject to Procedure 1. It can be readily seen that if n(t) = 1,
the parametric MLFs will reduce to the classic quadratic form.
Note that since Ay > 1and 0 < Xo(g)o(_ ) < 1 for any
k € N, o(ty) € Py, then Step 4 of Procedure 1 actually indicates
a decrease update of n; for the switching from ¢ € P, to ¢ €
P, which implies the condition 0 < R4 <1 for (11) can
always be satisfied. However, constant executions of such pure
decease updates would potentially drive n; to 0 as k — o0,
which makes the parametric MLFs trivial to use. To avoid this, the
switching signal here for (2) is thus required to satisfy o(t) € ¥,
i.e., an unstable subsystem must be followed by a stable one. In
this case, once a decrease update of n(t) (Step 4) is made at a
switching instant, an increase update (Step 5) which is identical
in magnitude to the decrease update will be made immediately
at the next switching instant. Such an update procedure can thus
confine the value of n(t) to a bounded range of [n, 1], where
n = 1o min,, der Xo, ¢/ 2Tmaxv¢ deP )‘max(Pd))/}‘mm( ) =
no. Note that ﬁere MaXy, 4 bep )\max(Pqﬁ)/)me( A) > 1 and T > 1.
Moreover, for each ¢ € Py, d) € Ps, Xp.p is a given positive scalar
that affects the range of n(t).

With the proposed parametric MLFs, we are going to present
the stability result for the linear M3D system (2).

3.3. Stability of linear M3D system via parametric MLFs

The following theorem provides the stability conditions for (2)
based on the proposed parametric MLFs.

Theorem 2. Consider the switched system (2) with the state
transition (3) at ty, k € N. Given g > 0, Xpp € 0,1), ¢ € Py,

35 € P, o(t) € W,, and state-independent ®y, if conditions (12)
and (13) hold, where %,& satisfies (20)(a) under Procedure 1, and
)7¢ = 2)/¢ with

maxy; Re(xj(A¢))5 Ye <0, Vo € Ps, (a) (21)
0 < maxy; Re(A{(Ap)) < ¥4, Yo € Py, (b)
in which Ay = Ay + BsKy, V¢ € P, then (2) is GUPS with
€= \/€Q*1 maxvger(1/Amin(Pg)), where € is given as in Theorem 1
with @ satisfying (20)(b), n
)Lmax(P¢ )/)\min(P

A;P¢ + P¢A¢ - 2)/¢P¢ = —In¢. (22)

= 1o min, ep X, ¢/(2 MaXy, 3.p
5)), and Py, V¢ eP satls es

Particularly, if (12) and (13) are satisfied for j = 0 and state-
dependent @y, then (2) is GUAS.

Proof of Theorem 2. For o(t) € ¥, and any t € [t tig1),
k = 0,1,...,N(to, t;), construct a parametric MLFs candidate
for (2) as in (18), where Py satisfies Eq. (22) for each ¢ € P.
Clearly, for yy, ¢ € P satisfying (21)(a) and (b), (22) becomes
a Lyapunov equation which implies that Py is a positive definite
solution for each ¢ € P. It can thus be derived from (18) and Pro-
cedure 1 that n minygep Amin(Py)1Xo()()I1> < Veo)(t, Xo(o(t)) <
7 MaXvgep AmaX(P¢)||xg([)(t)||2, which means (9) is verified. Then,
by (18), (21)(a), (b), (22), one gets for any ¢ € P,

Vi(t, xp(1)) < 7o V(L. X4(1)), (23)
where ¥, = 2y, which verifies (10). Moreover, by (3) and (18),
one has that (19) holds at any switching instant t;, with 2,5 and
O satisfying (202(a) and (b), respectively, which implies that for
p=o(t)eP ¢=0(t)ecP:

Vot %(67)) < 24 3Vt . X3(6) + 6. (24)
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Here, note that the update of n by Procedure 1 always guarantees
the condition 0 < 244 <1 for any ¢ € Py, ¢ € Ps. Meanwhile,

(20)(a)and Procedure 1 indicate that: when ¢ € Ps and (2) € Py,

= 4)»max(P¢ ))Lmax(P¢
there holds .(2 < .(2 iy a7 Verin )T with

X = mquj dep X¢ Py Wthh implies .(2¢¢ > 1, for any ¢> €
Ps, q) € Py; when ¢, ¢ € P, there holds 44 = Q =

(2;"‘,‘”;5,’?’)) 2;"‘,‘”;5,1?’)) L Fa,b) :RxR —> R satlsfles
min ¢ min ¢

that if a > 1, then F(a, b) = g, else I:“(a, b) = b, which ensures
24 > 1 for any ¢ € P, ¢ € Ps. This means the value of
Q¢¢ in (24) whenever ¢ € 7Ps and &5 € P can be replaced
by 244 which guarantees 2,5 > 1 for any ¢ € Ps and
¢ € P, and further verifies (11). Then, for state-independent @y,
one concludes from Theorem 1 that with (12) and (13) satisfied,
there holds lim;_, o Vo (r)(t) < €, with € given as in Theorem 1.
Moreover, by Procedure 1 one has that 0 < nk’l < 1!, which
along with (9) and (18) further denotes that lim;_, 4 [[X5(1)(t)]l <
ngl maxvger(1/Amin(Py)). This implies (2) is GUPS.
Particularly, for state-dependent @y satisfying (4), it follows from
(20) that ® = 0, then with (12) and (13) satisfied for j = 0, one
concludes from Theorem 1 that lim;_, 1o Vy(n)(t) = 0. This along
with (9) and (18) indicates that lim;_, 1o [|Xs(r)(£)]| = O, i.e., (2) is
GUAS. m

T, maXy, 5cp

€, € =

Remark 6. Compared with Theorems 1 and 2 further reveals
the connections between the two stability properties of the M>D
system and the two types of the impulse &, introduced in Sec-
tion 2.3. Specifically, for the state-independent impulse &y, due
to its non-vanishing property that potentially impedes an asymp-
totic convergence of the state, the GUPS of (2) is sought in
Theorem 2, which corresponds to the general case of ® > 0
in Theorem 1. For state-dependent &y, owing to its vanishing
property, the GUAS of (2) can be ensured, which corresponding to
the special case of ® = 0 in Theorem 1. Moreover, Theorem 2 also
verifies the Lyapunov-like conditions (9), (10), (11) in Theorem 1.
As is shown in the proof of Theorem 2, all these Lyapunov-like
conditions are derived from the subsystem dynamics of (2) and
the state transition process (3) under the constructed parametric
MLFs (18), which means they are naturally satisfied for the linear
M3D system (2). In this case, one only needs to ensure for (2)
the TDADT conditions (12) and (13) of Theorem 1 which reflect
typical time-dependent switching methods that are usually easy
to realize in practice (Xie & Wang, 2009; Zhao, Shi et al., 2017).

It is notable that the stability of the classic switched systems
has been widely used in applications such as the cooperative
control of MASs with switching features (Dong & Hu, 2016; Ren
& Beard, 2008; Saboori & Khorasani, 2014). In these applications,
the time-dependent switching methods have been commonly
adopted (e.g., the dwell-time method used in Dong and Hu (2016)
and Ren and Beard (2008); the ADT method used in Saboori and
Khorasani (2014)). Given these facts, it is then of interest to seek a
potential application of the results obtained for the M>D system.

4. Application to consensus of open MASs

In this section, we are going to indicate a potential application
of the stability results for M>D systems to consensus of open
MASs. Open MASs can cover a wide range of emerging real-world
networked systems with a varying size and node number, such
as the vehicle platoons with lane change maneuvers (Rajamani,
Tan, Law, & Zhang, 2000), and the social networks (Proskurnikov
& Tempo, 2018). Note that for brevity and consistency, some
notations for switching properties (e.g., o(t), P) in the previous
sections will be reused for the open MAS.
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4.1. System formulation and preliminaries
The considered interaction topology is characterized by a di-

graph G,y = {Vo(t)» Eo(ry} under the switching signal o(t), o :
Rso — P = {1,2,...,s}, where s is a finite positive integer,

Vot) = {1, 2, ..., Ny(r)} denotes the label set of vertices of Gy ()
Eoty S Vour) X V(, denotes the edge set of G,(;). Denote by
Asry = lag(o(t))] e RNo@>No() Vi, j € V() the adjacency

matrix of Gs(), in which a;(o(t)) = 0 if (j, i) ¢ Es(), 1.€., there
is no directed edge from j to i, otherwise g;(o(t)) = 1, and
suppose that g;i(o(t)) = 0 for any t and i € V,(, i.e., no self-
loops. The corresponding Laplacian matrix of G, is denoted by
Loy = (o (t))] € RN Moo, lg(a(t)) = —aj(o(t)), li(o(t)) =
Yo ay(o (D), Vi £, i, € Vo

Under the above topology settmg, consider the open MAS
with linear agent dynamics and a distributed linear consensus
controller for each i € Vy(s):

Ne(t)
—0 ) ajo ()X
j=1

where o > 0 is a given scalar; the state of the agent labeled i
is denoted by &) i(t) = [£))(t), .-, ég([)ﬁi(t)]T € RP, where
G(t),(t) € R is the jth component of & ;(t); S € RP*P with
miny; Re(A;(S)) > 0. A compact form of (25) can be given by:

éa(t)(t) = (ING([) ®S— QLa(t) ® Ip)éa(t)(tL (26)

where &,(1(t) = [SZ([),l(t), e Sg(t).Na(r)(t)]T € RPNo(1)

The similar agent dynamics to (25) can also be found in,
e.g., Almeida, Silvestre, and Pascoal (2017). Note that although
there is no concrete practical background specified for the con-
sidered open MAS, the linear models like (25), (26) can still
effectively approximate various practical MASs, such as the co-
operative unmanned vehicles (Hu, Wang, Yan, & Chen, 2016; Li
et al.,, 2017; Ren & Beard, 2008; Saboori & Khorasani, 2014). Be-
sides, the linear consensus controller as in (25) is also considered
convenient for hardware implementations in practice (Li et al,,
2017).

The agent migration behavior of the considered open MAS (26)
at each switching instant ty of o(t) is captured as the following
state transition process of &, ((t):

oot o (b ) + & (27)

Eoe).i(t) =SEx(o)i(t) s0i(t) = & (1)), (25)

[x]zl

gg‘(t+)(tlj—) =

where £ o ol) € B P00 and dy ¢ B, In partic-
ular, we have the following summary of specific agent migration
behaviors reflected by (27), which is in most part consistent
with Hendrickx and Martin (2017) and links with Section 2.2:

(1) Arrival: There are new agents joining the original group,
ie, |Vg(t <1, (t+)| N, ) < N, wH The joined agents
can mstantly establlsh new connections with other existing
agents. For a pure arrival behavior of an agent, the matrix

Ea(t;r) o(ty) ) is obtained by inserting a pxpN,; -, zero matrix

between specific rows, say, the hth row ancf the h + 1-th
row of Ipy ) where h is a given non-negative multiple of
o\

p; correspondingly, the vector @; is obtained by inserting
a p x 1 vector denoting the state values of the joined agent
between the hth and the h + 1-th entries of a pNU(t’:) x 1
Zero vector.
(2) Departure: There are agents leaving the original group,
ie, |V, (6 =1, (t+)| Na(t > N (e Once an agent
has left the group, any connectlons origmally associated
with it will lose. For a pure departure behavior of an agent,
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u

(¢~ Is derived by removing a px pN,, .-, matrix from

U(t
. Clearly, there holds <Dk =0

for this case if no self 1mpulse of the agent state exists.

(3) Replacement: There are agents instantly replaced by new
agents. A replacement behavior can also be deemed a si-
multaneous occurrence of the arrival and departure behav-
iors. A pure replacement behavior does not change the size
of the network topology, ie, |V, t+)| = |V o (£7) )l N, oity) =

c(t,:r),o
the specific position of I,y -

N (el which implies = (o) = = Ipv  _ . The instanta-

d(t, )
neous state variation of the replaced agent is brought solely

by ¢'k-

Since the vector @, of (27) also indicates the impulsive effect
of the agent state, one can thus specify its state-independent or
state-dependent property as in Section 2.3. Particularly, similar

to (4), defme state-dependent @, as @, = G(t )G(tk )g () )t ),
where, 5, 1) oy = Eoety o) Tote) = Eotehrotir 1 Eotchot) €

a(ﬁ XP(NU([k) 1) is a o .o _
given matrix, T()‘(t) = [IN,,([)—I, _IN(,(t)—l] ®

I,.

Remark 7. The agent migration behaviors depicted above indi-
cate that the interaction topology of the open MAS (26), repre-
sented by G,(1), is inherently switching and size-varying. Mean-
while, they can also well reflect some practical situations, such
as the lane change maneuvers in vehicle platoons, which cause
the vehicles to join/leave a platoon (Rajamani et al., 2000). Note
that for the vertex (label) set V,(;), we always keep a continuous
labeling of agents starting from 1, while also allow the same label
to indicate different agents at different times such that no loss
of generality will be caused. Also note that it is possible to use
a fixed-size switching graph to describe an open MAS network,
given that its maximum capacity, i.e., the total number of nodes
allowed by the network, is fixed and known. For this case, the
agent who leaves/joins the group can be regarded as a fixed node
that loses/regains connections with others. However, in practice
it is usually unnecessary to determine an upper bound of the
node number, especially when the network scale is unpredictably
increasing. Besides, when the singleton nodes largely outnumber
the connected nodes, it would be less efficient to consider the
dynamics of all these singleton nodes in computation since they
contribute little to the evolution of the whole open MAS. This
thus necessitates the use of the size-varying graph to describe
the open MAS network.

For the considered open MAS (26), we are interested in the
following two types of consensus performances:

Definition 3. For the open MAS (26), it is said to achieve practical
consensus if there exists ¢ > 0 such that
)i(t) = & (Ol < &, Vi,j € Vo(p)- (28)

Particularly, if (28) holds for ¢ = 0, then (26) is said to achieve
(asymptotic) consensus.

lim
Jim 1

Similar definitions for the practical consensus can also be
found in Back and Kim (2017) and Ding and Zheng (2017).
The following lemmas are for the upcoming analysis.

Lemma 1 (Saboori & Khorasani, 2014). For any &1, ...,y € RP
and the Laplacian matrix L = [lj] of a digraph g, there holds:
Zj 111151 - Zj 1 I = ZN1 zij(§ — &n), where zj = I — ly;
fori,j=1,...,N—1. Denotmg Z = [z;], then the real parts of all
the ezgenvalues of Z are non-negative. Moreover, their real parts are
all positive provided that G contains a directed spanning tree.
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Note that hereunder we will slightly abuse the notations by
letting P = {¢|Gy contains a directed spanning tree}, P, =
{¢]Gy contains no directed spanning tree}.

Lemma 2 (Brewer, 1978). For given matrices A € C"™" and B €
C™"ifY =AQI + 1, ®B, then A(Y) = {Aa + Aglia € A(A), Ag €
A(B)}.

Detailed proofs for the above two lemmas can be found in Sa-
boori and Khorasani (2014) (and the references therein) and Bern-
stein (2005) and Brewer (1978), respectively.

4.2. An M>3D system interpretation of open MAS

In this subsection, we will provide an interpretation of the
open MAS (26) based on the M>D system (2).

Denote zjj(o(t)) = l,-j(cr(t))—lNa(t),-(o(t)) fori,j=1,...
1 and Z,) = I[zj(o(t))]. Then, one can transform (25) into
the following consensus error system by defining 8, i(t) =

Ea(0),i(t) = Eo() Ny (t) for i=1,..., Nory — 1:

s No(ty—

No(t)—1

-0 ZZU

Further, (29) can be rewritten in a compact form:

So(0,i(t) = S8t £))80(t)j(t)- (29)

So(r)(t) = (INyi=1 ® S — 0Zs(r) ® 1p)8 8or)(L), (30)
where 8, (t) = [8],,4(t). ... 8], Nyt 0" e RPNy~ s the
error state. It then follows from (27) that

‘Sa(r,jr)(t;r) (r(t )o(ty )‘S o(t;) () + by, (31

~ p(N_ 4+ \—=1)xp(N_ —.—1) .
where, 5, i), € B " ) s obtained by re-

moving the last p rows and the last p columns from a(m o)’
. p(N_

<1>,< = &, + &, with cpk, Sy, Py € R o) q>,< = TU([;)

Eoet Lol )E ) )t ) — Eo(th) oty )’S ) )t ) P = Tn(t+)¢k Note

that @ carries two types of impulses: the impulse &, whose
value depends on those of both Ea(fk )t ) and § U(fk (6 ); the

impulse &, whose state dependency is consistent with that of
&y. In addition, assume that for any state-independent &, and

any k, ~||d5k|| < . For state-dependent &;, we have ¢, =
(Ta(tk Vo)) ™ ooty ))80([’:)(%‘), which means @y is also
state-dependent, and (31) becomes

~ oy é ~ B

Ba(t;r)(tk )= ‘-'n(t,j),n(t,j)‘sa(t,j)(tk )s (32)
where ._,U(mg(t T‘T(fk 1o oty ) Note that (32) is consis-

tent in form w1tl1) . Then, comparmg (30) and (31) with (1) and
(3), one readily concludes that the consensus error system (30) is
an M3D system with the state transition at the switching instant
t, given by (31).

Next, we will resort to both Lemmas 1 and 2 to explore the
relations between the connectivity of the digraph G4 of the open
MAS (26) and the stability of the subsystem ¢ of the M>D system
(30). Such relations are summarized by the following proposition.

Proposition 1.  For given matrices S, miny; Re(A;(S)) > 0, and Zy,
¢ € P derived by Lemma 1, if ¢ € Ps, then there exists a constant
0 > 0, such that the matrix In,—1 ® S — 0Zy ® I, of (30) is Hurwitz.
Under the same constant g, if ¢ € Py, then Ing-1®5—0ZsQIpis
non-Hurwitz.
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Proof of Proposition 1. For ¢ € P;, one concludes from Lemma 1
that all the eigenvalues of Z, have positive real parts. Recalling
that miny; Re(A;(S)) > 0 and applying Lemma 2, it is straight-
forward to derive that maxv Re(Ai(ln,—-1 ® S — 0Zy ® Ip)) =
maxy; j Re(Ai(S) — 01j(Zy)). Obviously, one can always find a large
enough ¢ > 0, such that maxv;;Re(A;(S) — 0Ai(Zy)) < O,
ie, In,—1 ®S — 0Zy ® I, is Hurwitz. Moreover, under the same
constant o, for ¢ € P, one can derive from Lemma 1 that at
least one eigenvalue of Z, has a zero real part. By Lemma 2 and
miny; Re(A;(S)) > 0, it further implies that at least one eigenvalue
of Iy,—1®S —0Zs ® I, has a non-negative real part, i.e,, the matrix
is non-Hurwitz. =

Remark 8. Proposition 1 reveals that under a proper ¢ > 0,
the connected/disconnected property of the topology G, of the
open MAS (26) corresponds to the stable/unstable property of
the subsystem ¢ of the M3D system (30). Such a correspondence
enables one to seek a further relation between the consensus of
open MASs with disconnected digraphs and the stability of M3D
systems with unstable subsystems. This leads to the result that
follows.

4.3. Consensus of the open MAS via M>D system stability

The following theorem summarizes the conditions for the
open MAS (26) to reach the consensus performances in Defini-
tion 3 via the stability results for the M>D system.

Theorem 3. The open MAS (26) with a size-varying switching di-
graph G,y can reach practical consensus, if the consensus error sys-
tem (30) is GUPS. The corresponding ultimate bound is given by ¢ =

2 \/ é Qﬂ maxygep(1/Amin(Py)), where € and n are respectively given

as in Theorems 1 and 2 with T = max(1, MaXy, 3. ||._:’?¢'3,||2), Py
satisfies (22) with /7\4, =1In,-1®S —0Zy ® Iy, V¢ € P. Particularly,
(26) can reach (asymptotic) consensus if (30) is GUAS.

Proof of Theorem 3. Since (30) and (31) are respectively the
special cases of (2) and (3) with As() £ IN,-1 ® S, BotyKo ()

>l

—0Zs(t) ® Ip, Ea(r,j),a(r,;) = E«(r,j),(r(r,j)' Py = Py, Ea(r,j),a(r,j)

<

ot )0 ) then by Definition 1, that (30) is GUPS (under state

independent @) implies lim;_, . [|8,()(t)| < € for some non-
negative constant e. It then follows that foranyi € {1, ..., Ny)—
1}, limes oo [18o(r)i(E)l < €, which, by 86(0)i(t) £ &o()ilt) —
Ea(t)No( () leads to lime, 400 165(0),i(t) — So(n,j()l = & with
e = 2¢ Vi,j € Vyp, i.e, (28) holds. This, by Definition 3,
indicates that the open MAS (26) reaches the practical consensus.
Moreover, by Theorem 2, (30) and (31), as well as the above
result, the ultimate bound of the consensus error of the open
MAS (26) is then calculated by ¢ = 2\/577_1 maxvger(1/Amin(Pg)),
where € and 7 are respectively given as in Theorems 1 and 2
\ivith T = max(1, MaXy, 5cp ||.§'¢’$||2), and P, satisfies (22) with
Ap = Iny-1®S — 0Zy ® I for any ¢ € P. On the other hand,
given that (30) is GUAS (under state-dependent &y satisfying (32),
which implies ¥ = max(1, MaXy, 4p ||._5J¢’$||2)), then similarly
by Definition 1 we have lim;_, 1o |85¢(t) = 0O, and for any
ie{l,..., Ny — 1}, limy 400 185(r),i(E)l = O, which indicates
im0 [1E5(0),i(E)—=E5(0),j(E)Il = 0, Vi, j € Vo(e), 1.€., the asymptotic
consensus is reached for (26). ®

Remark 9. Theorem 3 indicates that the consensus problem of
the open MAS (26) boils down to the stability problem of the
corresponding M3D system (30) which can be readily handled

10
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with the aid of Theorem 2. Note that the M>D system model (30)
is in fact a special case of the linear M3D system (2). Moreover, it
is notable that for the considered open MAS (26) to reach desired
consensus performances, the TDADT conditions (12) and (13) are
required to be satisfied for (30). However, the calculations of
both the lower and upper bounds of the TDADT in this case will
require the eigenvalues of Ing-1®S —0Zy ® I, $ € P, which
are typical global information due to the presence of Zy. Similar
cases also arise in other related works on switching topologies,
see e.g., Dong and Hu (2016, Eq. (33)) and Saboori and Khorasani
(2014, Eq. (12)). Nevertheless, this does not indicate the proposed
method cannot be implemented in a distributed way. In fact, for
implementation one does not need to know the exact dwell-time
bounds but only needs to make sure that these bounds are not
violated. This means one can be more conservative when speci-
fying a switching signal just to ensure the corresponding bounds
are satisfied by a certain margin. Note also that the controller of
each agent in (25) is still distributed (albeit not fully distributed).

4.4. Simulation example

In this section, a simulation example will be presented to
illustrate the above application.

Consider the open MAS (26) with the following parameters:
0 =3.75,S=1[0.10.05;00.15],L; =[100 —1;0000;0 —
11000 —11] L [000;0000 —11]1Ls
[00000;000000010 —1;00000;0000 0],
Ly =[1 —10;—110;0 0 0]. The topologies are depicted in
Fig. 2, where one can see that Gy, G4 contain a directed spanning
tree while G,, G3 do not. Then, by Lemma 1, one derives for
(30) that Zy = [101;001,000],Z = [01;01],Z; =
[0000;0000;0010;0000],Zy =[1 — 1;—1 1]. With
Proposition 1, one readily concludes that Iy,—1 ® S — 0Zy ® I is
Hurwitz for ¢ = 1, 4 and non-Hurwitz for ¢ = 2, 3. Further, given
No = 1, X1,2 = 0410, X1,3 = 0560, X2.1 = 0550Y X3.1 = 0637,
x3.4 = 0.642, x4, = 0.580, and applying Procedure 1 to (30),
then the corresponding lower and upper bounds (denoted by 7; ;)
of the (piecewise) TDADT t;(t, tr), k € {0, ..., N(to, t7)}, to = 0,
tr = 12 are derived as 7;, = 2.053, 713 = 1.901, 5 ; = 0.429,
731 =0.323, 734 = 0.317, 74, = 1.522.

Given the above parameter settings for the open MAS (26),
we first consider a case where the switching signal o(t) does not
satisfy (12) and (13) when &y is state-dependent. The switching
signal is plotted in Fig. 3 by a solid line and the evolution of
the agent number is shown by a dash line. In this case, one can
see from Fig. 4 that despite under a state-dependent &y, the
CONSENSUSs errors §q(1),i(t), i = 1,2, ..., Nyr)— 1 still diverge with
time, which implies that the considered open MAS cannot reach
consensus under the switching signal given in Fig. 3.

In contrast, we consider the same open MAS model with the
switching signal o (t) depicted in Fig. 5, where the signal wave-
form is shown as a solid line and the evolution of the number of
agents N, is shown as a dash line. It can be readily seen from
Fig. 5 that the given switching signal satisfies o(t) € ¥, as well
as the TDADT conditions (12) and (13) with the bounds derived
above. First, consider state-independent @y. For simplicity, it is
assumed in this example that the state impulse of &, is only
brought by the arrival of agents. The state values of the new
arrived agents are randomly generated. The resultant trajectories
of agent states &;(1)i(t), i = 1,2,..., Ny and the consensus
erTors 8q(r)i(t), i = 1,2,..., Ny — 1 are depicted in Fig. 6.
It can be observed that with the non-vanishing property of the
impulse @ at each t, the consensus errors of the open MAS are
ultimately bounded instead of asymptotically converging to zero,
which indicates that the practical consensus is achieved. Note
that the two zoomed-in windows of Fig. 6 depicts the two typical



M. Xue, Y. Tang, W. Ren et al.

00 @gz
s

Automatica 146 (2022) 110644
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Fig. 2. Digraphs of the open MAS network considered in Section 4.4. The labeled circles denote the nodes (agents) and the solid arrows denote the directed edges
(connections among agents). It is assumed in Section 4.4 that only the agent with a larger label departs from the group; newly incoming agents are labeled in
sequence after the existing largest label. Note that G;, G4 contain a directed spanning tree while G,, g3 do not.

O -=-NWPHrOIO

Q
—
~
N
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12

Fig. 3. Switching signal o(t) (solid line) not satisfying (12) and (13); evolution of the agent number Ny (dash line).
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_gé(t)vi(t) - gi(t).,N,,(ﬁ) (t)
—&0 0 = &Con,, ()
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_6 1 1 1 1 1
0 2 4 6 8 10 12
t
Fig. 4. Consensus errors 8,(;),i(t) = &o(r),i(t) — Sa(t)'Ndm(t), i=1,...,Nyq) — 1 under o(t) of Fig. 3.
6 T T T T T
5 No() |7
4 o(t)
3 5 -
ot 4
: 1
0 L L L L L
0 2 4 6 8 10 12
t

Fig. 5. Switching signal o(t) € ¥, (solid line) satisfying (12) and (13); evolution of the agent number Ny (1) (dash line).

agent migration behaviors of arrival and departure, respectively.
On the other hand, consider state-dependent &, which by (32)

indicates that &, is also state-dependent, and randomly generate
é‘q),& for ¢,qA§ € {1,...,6}. The resultant trajectories of agent

states and consensus errors are depicted in Fig. 7. It can be seen

that under the switching signal in Fig. 5 and state-dependent &,

11

which brings only vanishing impulses, the consensus errors ap-
proach zero as t goes on. This indicates the asymptotic consensus
is achieved.

5. Conclusion

We have studied the stability of the M>D system with differ-
ent subsystem dimensions. The state transition of the system at
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Fig. 6. Agent states &) (t), i = 1,..., No() under o(t) of Fig. 5 and state-independent . The lower left subfigure depicts the corresponding consensus errors
8o(6).i() = Eo(0),i(t) = Eo(e)Nyy (£), i =1, ..., No(ry — 1. The black dash circles indicate two typical migration behaviors.

Consensus errors

| | _IE;(I),i(t)
SOIE
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o
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Oo(t)i(t),

121

-14 '

Fig. 7. Agent states &, (t), i = 1,..., Ny under o(t) of Fig. 5 and state-dependent &, satisfying (32). The subfigure depicts the corresponding consensus errors

3o0),i(t) = Ex),i(t) — Eooy Ny () i= 1, ..., Nory — 1.

each switching instant has been formulated as an affine map to
incorporate both the dimension varying and the state impulsive
effects. In the presence of unstable subsystems and non-vanishing
impulses, we show that the GUPS/GUAS of the M3D system can
be ensured under the proposed (slow and fast) piecewise TDADT
switchings, given that a series of Lyapunov-like conditions are
satisfied. The stability conditions have then been verified for the
linear subsystem case by the proposed parametric MLFs. Further,
we have applied the result on the M3D system stability to the
open MAS which features a size-varying switching topology, and
show that the practical (asymptotic) consensus of the open MAS
with disconnected digraphs boils down to the GUPS (GUAS) of
the corresponding M>3D system with unstable subsystems. Future
endeavors can be made on further reducing the restrictiveness
of the results obtained for the M3D system, such that they can

12

apply to and be verified in more general cases (e.g., fully unsta-
ble/nonlinear subsystem dynamics). Meanwhile, the future focus
can also be put on real-world open MASs, such as the vehi-
cle platoons with lane change maneuvers. Besides, experimental
validations can also be considered in the place of simulations.
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