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Abstract— In this paper, the distributed time-varying op-
timization problem is addressed for networked Lagrangian
systems with parametric uncertainties. Usually, in the literature,
to address some distributed control problems for nonlinear
systems, a networked virtual system is constructed, and a
tracking algorithm is designed such that the agents’ physical
states tracks the virtual states. It is worth pointing out that
such an idea requires the exchange of the virtual states
and hence necessitates communication among the group. In
addition, due to the complexities of the Lagrangian dynamics
and the distributed time-varying optimization problem, there
exist significant challenges. This paper proposes a distributed
time-varying optimization algorithm achieving zero optimum-
tracking error for the networked Lagrangian agents without
the communication requirement. The main idea behind the
proposed algorithm is to construct a dynamic system for
each agent to generate a reference velocity using absolute
and relative physical state measurements with no exchange of
virtual states needed, and to design adaptive controllers for
Lagrangian systems such that the physical states are able to
track the reference velocities and hence the optimal trajectory.
The algorithm introduces mutual feedback between reference
systems and local controllers via physical states/measurements
and is amenable to implementation via local onboard sensing
in a communication unfriendly environment.

I. INTRODUCTION

In distributed optimization of networked systems, each

member has a local cost function, and the goal is to cooper-

atively minimize the sum of the all the local cost functions.

A number of distributed optimization algorithms have been

presented in the literature. See [1] and the references therein

for instance. These results (e.g., [1] and the references

therein) usually assume fixed local cost functions for the

agents. However, the local cost functions are time varying

in many practical applications, which reflects the fact that

the optimal point might be changing over time and forms an

optimal trajectory. Hence, it is meaningful to investigate the

distributed time-varying optimization problem.

In the literature, there are extensive distributed discrete-

time algorithms that solve the time-varying optimization

problem. See [2]–[5] for examples. There usually exist

bounded convergence errors to the optimal trajectory by

using the discrete-time algorithms. There is another body
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of literature on distributed continuous-time optimization al-

gorithms with time-varying cost functions. These distributed

continuous-time optimization algorithms have various appli-

cations in practice. One application lies in the coordination of

a team of robots, where each robot’s dynamics are described

by differential equations and the team objective is to track

an optimal trajectory defined by all the team members’ cost

functions. For instance, by constructing a quadratic objective

function for each agent, the distributed time-varying opti-

mization algorithms can be applied to solve the distributed

average tracking of multi-agent systems, where each agent

aims to track the average of all the reference signals. A

few distributed time-varying optimization algorithms are

established for single-integrator agents [6], [7] and double-

integrator agents [8]. In reality, a broad class of robots

can be modeled by Lagrangian systems, for example, the

planar elbow manipulator and autonomous vehicles [9]. The

Lagrangian systems are nonlinear and more complicated than

single- and double-integrator systems, which are the focus

of this paper. The complexity of the nonlinear Lagrangian

dynamics creates more challenges to solve the distributed

time-varying optimization problem.

Some results addressing distributed time-invariant coor-

dination problems (e.g., consensus) for agents with non-

linear dynamics introduce distributed observers or virtual

systems at a higher level, where the agents communicate

their observer states (virtual states independent of the agents’

physical states/measurements) with neighbors to achieve con-

sensus. Then control algorithms are designed for the agents

to track the virtual states (serving as reference trajectories).

However, due to the lack of physical states/feedback (e.g.,

agent positions) in the observers, the reference trajectories

generated by such an approach do not explicitly take into

account the physical agents’ interaction with the environment

and their capability. Also, such an approach cannot be

implemented based on local measurements via onboard sen-

sors without communication in a communication unfriendly

environment.

In this paper, we propose a communication-free dis-

tributed time-varying optimization algorithm for networked

Lagrangian agents with parametric uncertainties. The main

idea of the proposed algorithm is constructing a dynamic

system for each agent, which is driven by the physical states

instead of virtual states between neighbors and generates a

reference velocity, and then designing adaptive controllers

such that the agents’ physical states track their reference

velocities, and hence the optimal trajectory. The algorithm

introduces mutual influence/feedback between reference sys-
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tems and local controllers via physical states/measurements

and is amenable to implementation via local onboard sensing

in a communication unfriendly environment. Due to the

coupling and mutual influence of the constructed dynamic

systems and the agents’ dynamics, there are significant

new challenges in the convergence analysis. In particular,

the constructed dynamic system is rewritten as a coupled

and perturbed networked second-order system by taking

the tracking errors between agents’ velocity and their own

reference states as disturbances. Due to the use of the signum

function in the construction of the constructed dynamic

systems, the coupled and perturbed networked system has

disturbances inside and outside the signum function, and

the general input-to-state stability analysis might not be

directly applicable. This requires novel rigorous analysis

on the impact of disturbance on the optimum-tracking per-

formance of the perturbed system. To this end, this paper

carefully examines the perturbed system, and obtains that the

optimum-tracking error remains bounded if the disturbances

are bounded in a certain sense and converges to zero if the

disturbances converge to zero (See Proposition 2 for details).

These intermediate results facilitate the convergence analysis

of the proposed algorithm for the networked Lagrangian

agents.

Comparison with Related Works. The works [10]–[12]

focus on solving the distributed time-invariant optimization

problem for networked Lagrangian agents. They follow the

aforementioned distributed observer idea which rely on the

exchange of virtual states between neighbors. The work [10]

also considers the case of time-invariant cost functions with

additive uncertainties modeled by time-dependent functions,

and nonzero bounded optimum-tracking errors are achieved.

In contrast, the proposed algorithm in this paper solves

the optimization problem with time-varying cost functions,

which is not addressed in [11], [12]. Compared with [10], the

problem considered in this paper is more general and can be

solved with zero optimum-tracking error. More importantly,

the proposed algorithm in this paper relies purely on physical

states without the need for exchange of virtual states and can

be implemented in a communication unfriendly application.

In contrast, the communication of virtual states between

neighbors is necessary in [10]–[12]. The structure of the

proposed algorithm is inspired by [13], where the consen-

sus and leader-following tracking of networked Lagrangian

systems are addressed. However, the problem considered in

this paper is more complex and challenging, and includes the

consensus and leader-following tracking of networked agents

as special cases. While the construction of the dynamic

system is partially inspired by [8], the results there cannot

be directly applied to solve the problem considered in this

paper due to the complexity of the Lagrangian dynamics.

II. PRELIMINARIES

A. Notations

Throughout this paper, let R, R≥0 and R+ denote the

sets of all real numbers, all nonnegative real numbers and

all positive real numbers, respectively. For a set S , |S|

denotes the cardinality of S , and for a real number x ∈
R, |x| denotes the absolute value of x. The transpose of

matrix A is denoted by AT . For a given vector x =
[x1, . . . , xp]

T ∈ R
p, define ‖x‖1 =

∑p
i=1 |xi|, ‖x‖2 =

√

|x1|2 + · · ·+ |xp|2, and ‖x‖∞ = maxi=1,...,p |xi|. For a

symmetric matrix A ∈ R
p×p, let λ1(A) ≤ · · · ≤ λp(A)

denote its eigenvalues. The Kronecker product of matrices

A and B is denoted by A ⊗ B. For a vector x ∈ R
p,

define sgn(x) = [sgn(x1), . . . , sgn(xp)]
T where sgn(xi) = 1

if xi > 0, sgn(xi) = 0 if xi = 0, and sgn(xi) = −1
if xi < 0. Let 0m×n ∈ R

m×n and 1m×n ∈ R
m×n

denote the m × n dimensional zero and all-ones matrix,

respectively, and for simplicity, let 0m = 0m×1 and let

1m = 1m×1. In ∈ R
n×n denotes the identity matrix.

Define Lp
∞ =

{

x : R≥0 → R
p
∣

∣ supt∈R≥0
‖x(t)‖∞ <∞

}

and Lp
2 =

{

x : R≥0 → R
p
∣

∣

√

∫∞
0
uT (t)u(t)dt <∞

}

. For

a time-varying function f : Rp × R≥0 → R, its gradient,

denoted by ∇f(q, t) ∈ R
p with q ∈ R

p and t ∈ R≥0, is the

partial derivative of f(q, t) with respect to q, and its Hessian,

denoted by H(q, t) ∈ R
p×p, is the partial derivative of the

gradient ∇f(q, t) with respect to q.

B. Graph Theory

For a multi-agent system consisting of N agents, the

interaction topology can be modeled by an undirected graph

G = {V, E}, where V = {1, . . . , N} and E ⊆ V × V denote

the node set and edge set, respectively. An edge denoted by

(i, j) ∈ E , means that agent i and j can obtain information

from each other. In an undirected graph, the edges (i, j)
and (j, i) are equivalent. It is assumed that (i, i) /∈ E . The

neighbor set of node i is denoted by Ni = {j ∈ V | (j, i) ∈
E}. The adjacency matrix A = [aij ] ∈ R

N×N of the graph

G is defined such that aij = 1 if (j, i) ∈ E and aij = 0
otherwise. For an undirected graph, aij = aji. The Laplacian

matrix L = [Lij ] ∈ R
N×N associated with the adjacency

matrix A is defined as Lii =
∑

j∈Ni
aij and Lij = −aij for

i 6= j. By arbitrarily assigning an orientation for every edge

in G, let B = [Bij ] ∈ R
N×|E| denote the incidence matrix

associated with graph G, where Bij = −1 if edge ej leaves

node i, Bij = 1 if it enters node i, and Bij = 0 otherwise.

It holds that L = BBT .

An undirected path between node i1 and ik is a sequence

of edges of the form (i1, i2), (i2, i3), . . . , (ik−1, ik), where

ik ∈ V . A connected graph means that there exists an

undirected path between any pair of nodes in V .

Assumption 1: The graph G is connected.

C. Agents’ Dynamics

In this paper, we consider N Lagrangian systems, and the

interaction topology among these agents is characterized as

the graph G. The equations of motion of the i-th Lagrangian

system can be described by [9]

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi (1)

where qi ∈ R
p is the generalized position (or configuration),

Mi(qi) ∈ R
p×p is the inertia matrix, Ci(qi, q̇i) ∈ R

p×p
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is the Coriolis and centrifugal matrix, gi(qi) ∈ R
p is the

gravitational torque, and τi ∈ R
p is the exerted control

torque. Three well-known properties associated with the

dynamics (1) are listed as follows [9], [14].

Property 1: The inertial matrix Mi(qi) is symmetric and

uniformly positive definite, and there exist positive con-

stants kC̄ and kḡ such that ‖Ci(qi, q̇i)‖2 ≤ kC̄ ‖q̇i‖2 and

‖gi(qi)‖2 ≤ kḡ , ∀i ∈ V .

Property 2: The Coriolis and centrifugal matrix Ci(qi, q̇i)
can be suitably chosen such that the matrix Ṁi(qi) −
2Ci(qi, q̇i) is skew-symmetric.

Property 3: The dynamics (1) depend linearly on an un-

known constant parameter vector ϑi ∈ R
m, that is, for any

x, y ∈ R
p, it holds that

Mi(qi)x+ Ci(qi, q̇i)y + gi(qi) = Yi(qi, q̇i, y, x)ϑi, (2)

where Yi(qi, q̇i, y, x) is the regressor matrix.

III. PROBLEM STATEMENT

In the distributed time-varying optimization problem, each

Lagrangian agent aims to cooperatively track the optimal

trajectory determined by the group cost function. Let q∗(t) ∈
R

p denote the optimal trajectory, which is defined as

q∗(t) = argmin
N
∑

i=1

fi[qi(t), t], s.t. qi(t) = qj(t) ∀i 6= j,

where fi[qi(t), t] : R
p ×R≥0 → R is the local cost function

associated with agent i ∈ V . In the rest of the paper, it

is assumed that q∗ ∈ Lp
∞. This assumption is satisfied in

most applications in practice. It is assumed that fi[q(t), t]
is known only to agent i. The goal is to design τi for the

system (1) such that all agents cooperatively optimize the

group cost function
∑N

i=1 fi[qi(t), t]. That is, design τi for

each agent i such that qi(t) is capable of tracking q∗(t), i.e.,

limt→∞[qi(t)−q∗(t)] = 0p, ∀i ∈ V . We make the following

assumptions on the objective functions.

Assumption 2: Each cost function fi(qi, t), i ∈ V , is

twice continuously differentiable both in qi ∈ R
p and t, and

strongly convex in qi and uniformly in t. That is, Hi(qi, t)
is always positive definite and bounded below by m for

all qi ∈ R
p and uniformly in t, i.e., ‖Hi(qi, t)‖2 ≥ m

∀i ∈ V . In addition, each Hi(qi, t) is upper-bounded, i.e.,

‖Hi(qi, t)‖2 ≤ m̄ ∀i ∈ V .

Assumption 3: The Hessian matrices satisfy Hi(qi, t) =
Hj(qj , t) ∀i, j ∈ V .

Assumption 4: For each agent i ∈ V , ∂2

∂ t2
∇fi(qi, t),

∂2

∂ q2
i

∇fi(qi, t) and ∂2

∂ t∂ qi
∇fi exist. In addition, if agent

i’s position qi, i ∈ V , is bounded, then ∂
∂ t
∇fi(qi, t),

∂2

∂ t2
∇fi(qi, t), ∂2

∂ q2
i

∇fi(qi, t) and ∂2

∂ t∂ qi
∇fi are all bounded.

In Assumption 2, the uniform strong convexity of the

objective functions guarantees that the optimal trajectory q∗

is unique for all t ≥ 0, and it also ensures that Hi(qi, t)
∀i ∈ V is invertible for all t. The upper-boundedness of

the Hessian matrix is equivalent to the Lipschitz continuity

of the gradient ∇fi(qi, t). In Assumption 4, one sufficient

condition for the existence of ∂
∂ t
∇fi(qi, t), ∂2

∂ t2
∇fi(qi, t),

∂2

∂ q2
i

∇fi(qi, t) and ∂2

∂ t∂ qi
∇fi, can be that each cost function

fi(qi, t), i ∈ V , is at least three times continuously differen-

tiable in qi and t. Assumptions 2-4 are some similar/same

assumptions that are used in prior related works [5], [8], [15].

Lemma 1: [16] Let f(x) : Rp → R be a continuously

differentiable convex function with respect to x. The function

f(x) is minimized at x∗ if and only if ∇f(x∗) = 0p.

IV. DISTRIBUTED TIME-VARYING OPTIMIZATION FOR

NETWORKED LAGRANGIAN AGENTS

For each agent i ∈ V , define a differentiable vector vi ∈
R

p by a dynamic system

v̇i = −
∑

j∈Ni

[

α(qi − qj) + β(q̇i − q̇j)
]

− γ
∑

j∈Ni

sgn
[

α(qi − qj) + β(q̇i − q̇j)
]

+ ϕi, (3)

where α and β are some positive constants to be determined,

and ϕi is defined by

ϕi = −Ḟi(qi, t)−Hi(qi, t)∇fi(qi, t), (4)

with

Fi(qi, t) = H−1
i (qi, t)

[

∂

∂ t
∇fi(qi, t) +∇fi(qi, t)

]

. (5)

Note that Assumptions 2 and 4 guarrantee the existence of

ϕi, i ∈ V . Define

si = q̇i − vi. (6)

The adaptive controller for the Lagrangian system (1) is

given by

τi = −Kisi + Yi(qi, q̇i, vi, v̇i)ϑ̂i, (7)

˙̂
ϑi = −ΓiY

T
i (qi, q̇i, vi, v̇i)si, (8)

where Ki and Γi are symmetric positive definite matrices,

and ϑ̂i is the estimate of ϑi. In the algorithm (7)-(8), the

signal vi can be regarded as the desired reference velocity

for each agent i, and the adaptive controller (7)-(8) is used

to drive each agent’s velocity q̇i to track its local vi, and in

the meantime, qi to track the optimal trajectory.

Remark 1: It is worth emphasizing that the algorithm (3)-

(8) does not rely on exchange of virtual variables between

neighbors. Especially, the dynamic system (3) is driven by

agents’ physical state information, i.e., qi, q̇i, qi − qj and

q̇i − q̇j . Such design excludes the usage of communication

channels, and can be implemented by onboard sensors. This

feature distinguishes this algorithm from existing results on

distributed optimization of networked Lagrangian systems,

e.g., [10]–[12], where inter-agent communication is required.

In addition, the algorithm (7)-(8) with v̇i defined in (3)

addresses the distributed time-varying optimization problem

with zero optimum-tracking error, while the works [11], [12]

are limited to distributed time-invariant optimization, and the

work [10] only addresses a special case of time-varying cost

functions with nonzero bounded optimum-tracking errors.
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Assumption 5: For any i, j ∈ V , there exist positive

constants c1 and c2 such that ‖ϕi − ϕj‖1 ≤ c1(‖qi − qj‖1+
‖q̇i − q̇j‖1) + c2.

Remark 2: Assumptions 2-5 can be satisfied in many

situations in practice. If the cost function are constructed as

fi(qi, t) = ‖qi(t)− ri(t)‖22 where qi(t) ∈ R
p and ri(t) ∈ R

p

are agent i’s position and local reference signal, respectively,

the distributed time-varying optimization algorithms can be

applied to address the distributed average tracking of net-

worked agents, which has found applications in region fol-

lowing formation control [17] and coordinated path planning

[18]. Note that Assumption 2 holds trivially from the above

construction of fi(qi, t). Also, the boundedness assumptions

of ri, ṙi and r̈i are commonly placed when dealing with

the distributed average tracking of networked agents [19],

and such boundedness assumptions implies that Assumptions

4 and 5 hold. In addition, when the cost functions have a

slightly more general form as fi(qi, t) = ‖ρqi + gi(t)‖22,

where ρ ∈ R+ and gi(t) is a time-varying function, which

is a commonly used cost function for energy minimization

[15], [19], Assumptions 4 and 5 are satisfied under the

boundedness assumption of gi(t), ġi(t) and g̈i(t). It is also

worth pointing out that under Assumption 3, the value of

the constants c1 and c2 in Assumption 5 depend mostly on

the structure of the cost functions and their state-independent

parts.

Using the definition of si in (6), the dynamic system (3)

can be rewritten as

q̇i = vi + si (9)

v̇i = −
∑

j∈Ni

[

α(qi − qj) + β(vi − vj + si − sj)
]

+ ϕi

− γ
∑

j∈Ni

sgn
[

α(qi − qj) + β(vi − vj + si − sj)
]

. (10)

Proposition 1: Consider a group of N agents, and their

interaction is described by the graph G. Each agent’s dy-

namics are given by (9)-(10). Suppose that Assumptions 1-5

hold. Let α and β be chosen such that α > 2k
λ2(L) and β >

3k+2
√

k[αλ2(L)+2k]+4αλ2(L)−k

4αλ2(L)−k
α with k = c1pλN (L)(N −

1)2|E|, and γ be chosen such that γ > c2(N − 1)2|E|. Then,

the following two statements hold.

1) If si ∈ Lp
∞ ∩ Lp

2 ∀i ∈ V , it holds that qi − q∗ ∈ Lp
∞

∀i ∈ V .

2) If si ∈ Lp
∞ ∩ Lp

2 and si(t) → 0p ∀i ∈ V as t → ∞, it

holds that qi(t) → q∗(t) ∀i ∈ V as t→ ∞.

Proof: The proof of statements is divided into two steps:

the coordination step and the optimum-tracking step. In the

coordination step, it is proved that the coordination errors,

qi − 1
N

∑N
j=1 qj and vi − 1

N

∑N
j=1 vj , are bounded and

convergent to zero if si ∀i ∈ V are bounded and convergent

to zero, respectively. In the optimum-tracking step, it is

proved that
∑N

j=1 ∇fj(qj , t) ∈ Lp
∞ if sj ∈ Lp

2 ∀i ∈ V , and
∑N

j=1 ∇fj(qj , t) → 0p as t → 0 if sj ∈ Lp
2 and si → 0p

∀i ∈ V . Hence, the statements follow by combining these

two steps.

First, consider the coordination step. Let q, v, s and ϕ be

the column stack vectors of qi, vi, si and ϕi, respectively.

Define x = (M ⊗ Ip)q and y = (M ⊗ Ip)v, where M =
IN − 1

N
1N1

T
N . Then it holds that

ẋ = y + (M ⊗ Ip)s (11)

ẏ = −(L⊗ Ip)(αx+ βy + βs) + (M ⊗ Ip)ϕ

− γ(B ⊗ Ip)sgn[(BT ⊗ Ip)(αx+ βy + βs)]. (12)

Define the function V = 1
2 [x

T yT ]P [xT yT ]T with P =
[

2αβL αIN
αIN βIN

]

⊗ Ip. Note that the function V is posi-

tive definite if α
β2 < 2λ2(L). Taking the derivative along

the solution of (11)-(12) yields V̇ = U1 + U2 where

U1 = −α2xT (L ⊗ Ip)x − yT [(β2L − αIN ) ⊗ Ip]y +
2αβxT (L ⊗ Ip)s − β2yT (L ⊗ Ip)s + αyT (M ⊗ Ip)s and

U2 = (αxT + βyT )(M ⊗ Ip)ϕ − γ(αxT + βyT )(B ⊗
Ip)sgn

[ (

BT ⊗ Ip
)

(αx+ βy + βs)
]

.

Consider the term U1. For notational simplicity, let z =

αx+ βy and ξ =
[

xT , yT
]T

. It holds that

U1 ≤ −α2λ2(L) ‖x‖22 −
[

β2λ2(L)− α
]

‖y‖22
− β2yT (L⊗ Ip)s+ 2αβxT (L⊗ Ip)s+ αyT (M ⊗ Ip)s

≤ −XTQ1X + cM
√

2Np ‖ξ‖2 ‖s‖∞ ,

where X = [‖x‖2 , ‖y‖2]T , Q1 = diag{α2λ2(L), β
2λ2(L)−

α}, and cM = max
{

2αβλN (L)
√
Np, β2λN (L)

√
Np+α

}

.

Consider the term U2. Let zi = αxi+βyi, P = {1, . . . , p},

and zi,k and si,k be the k-th entry in vector zi and si.
It holds that −γzT (B ⊗ Ip)sgn

[(

BT ⊗ Ip
)

(z + βs)
]

=
−γ∑k∈P

∑

(i,j)∈E Λ
k
i,j , where Λk

i,j = (zi,k−zj,k)sgn[zi,k−
zj,k + β(si,k − sj,k)]. For any k ∈ P , define Ek

0 =
{

(i, j) ∈ E
∣

∣ zi,k − zj,k + β(si,k − sj,k) =
0
}

. Note that Λk
i,j = 0 if (i, j) ∈ Ek

0 . Then, it

holds that −γzT (B ⊗ Ip)sgn
[(

BT ⊗ Ip
)

(z + βs)
]

=
−γ∑k∈P

∑

(i,j)∈E\Ek

0

Λk
i,j . For any (i, j) ∈ E \Ek

0 , it holds

that

−γΛk
i,j = −γ (zi,k − zj,k)

2 + β(zi,k − zj,k)(si,k − sj,k)

|zi,k − zj,k + β(si,k − sj,k)|
≤ −γ

∣

∣|zi,k − zj,k| − β|si,k − sj,k|
∣

∣+ γβ|si,k − sj,k|.
Define Ek

+ =
{

(i, j) ∈ E
∣

∣ |zi,k − zj,k| ≥ β|si,k − sj,k|
}

and

Ek
− =

{

(i, j) ∈ E
∣

∣ |zi,k − zj,k| < β|si,k − sj,k|
}

. Then, it

holds that −γ∑(i,j)∈E\Ek

0

Λk
i,j ≤ −γ∑(i,j)∈E |zi,k−zj,k|+

2γβ
∑

(i,j)∈E |si,k − sj,k|. Hence,

− γzT (B ⊗ Ip)sgn
[(

BT ⊗ Ip
)

(z + βs)
]

≤ −γ
∥

∥

(

BT ⊗ Ip
)

z
∥

∥

1
+ 2γβ

∥

∥

(

BT ⊗ Ip
)

s
∥

∥

1
. (13)

Note that ‖z‖1 ≤ (N−1)
2

∑N
i=1

∑

j∈Ni
‖zi − zj‖1 =

(N − 1)
∥

∥

(

BT ⊗ Ip
)

z
∥

∥

1
, and it follows from

Assumption 5 that ‖(M ⊗ Ip)ϕ‖∞ ≤ ‖(M ⊗ Ip)ϕ‖1 ≤
(N − 1)

[

c1
∥

∥

(

BT ⊗ Ip
)

x
∥

∥

1
+ c1

∥

∥

(

BT ⊗ Ip
)

y
∥

∥

1
+

c1
∥

∥

(

BT ⊗ Ip
)

s
∥

∥

1
+ c2|E|

]

. Then, zT (M ⊗ Ip)ϕ ≤
‖z‖1 ‖(M ⊗ Ip)ϕ‖∞ + XTQ2X + k4 ‖ξ‖2 ‖s‖∞ +
π
∥

∥

(

BT ⊗ Ip
)

z
∥

∥

1
, where Q2 = k[α, β]T1T

2 ,

k1 =
√

|E|pλN (L), k2 =
√

N |E|p2λN (L),
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k3 =
√

|E|pλN (L)(α2 + β2), k4 = c1(N −
1)2Npk3

∥

∥BT ⊗ Ip
∥

∥

∞, k = c1k
2
1(N − 1)2, and

π = c2(N − 1)2|E|. From (13), it follows that

U2 ≤ −(γ − π)
√

λ2(L) ‖z‖2 + 2γβk2 ‖s‖∞
+XTQ2X + k4 ‖ξ‖2 ‖s‖∞ .

Hence,

V̇ ≤ −XTQX +
(

cM
√

2Np+ k4
)

‖ξ‖2 ‖s‖∞
− (γ − π)

√

λ2(L) ‖z‖2 + 2γβk2 ‖s‖∞ ,

where Q = Q1 − Q2. Note that Q is positive definite

if α > 2k
λ2(L) and β >

3k+2
√

k[αλ2(L)+2k]+4αλ2(L)−k

4αλ2(L)−k
α.

Then, −XTQX ≤ −λm ‖X‖22, where λm is the smallest

eigenvalue of Q, i.e., λm = λ1(Q). It then holds that V̇ ≤
−λm(1 − 2η) ‖ξ‖22 − (γ − π)

√

λ2(L) ‖z‖2 − 2λmη ‖ξ‖22 +
(

cM
√
2Np + k4

)

‖ξ‖2 ‖s‖∞ + 2γβk2 ‖s‖∞ , where η ∈
(

0, 12
)

. Note that the term −2λmη ‖ξ‖22 +
(

cM
√
2Np +

k4
)

‖ξ‖2 ‖s‖∞ + 2γβk2 ‖s‖∞ is nonnegative if ‖ξ‖2 ≥
max

{

d1 ‖s‖∞ , d2
√

‖s‖∞
}

, where d1 = cM
√
2Np+k4

λmη
and

d2 =
√

2γβk2

λmη
. Note that ρ(r) = max

{

d1r, d2
√
r
}

is a class

K function [22, p. 144]. It holds that

V̇ ≤ −λm(1− 2η) ‖ξ‖22
− (γ − π)

√

λ2(L) ‖z‖2 ∀ ‖ξ‖2 ≥ ρ(‖s‖∞).

It then follows from [22, Theorem 4.19] and the property

of the input-to-state stability [22, p. 175] that x ∈ LNp
∞ and

y ∈ LNp
∞ if s ∈ LNp

∞ , and that x(t) → 0Np and y(t) → 0Np

as t→ ∞ if s(t) → 0Np as t→ ∞. Then, the coordination

step is concluded from the definitions of x and y.

Consider the optimum-tracking step. Let χ =
∑N

j=1 ∇fj(qj , t) and ψ =
∑N

j=1

[

vj + Fj(qj , t)
]

.

Define the Lyapunov function candidate W =
1
2χ

Tχ + 1
2ψ

Tψ. Taking the derivative of W yields

that Ẇ = −χTχ + χT
[
∑N

j=1Hj(qj , t)sj
]

. Note that

χT
[

∑N
j=1Hj(qj , t)sj

]

≤ 1
2 ‖χ‖

2
2 + Nm̄2

2

∑N
j=1 ‖sj‖

2
2. It

follows that Ẇ ≤ − 1
2 ‖χ‖

2
2 + Nm̄2

2

∑N
j=1 ‖sj‖

2
2. Then,

it holds that 2Ẇ + ‖χ‖22 ≤ Nm̄2
∑N

j=1 ‖sj‖
2
2 . Hence,

∫ t

0
‖sj‖22 dτ < ∞ ∀i ∈ V ∀t ≥ 0. Note that W (t) ≥ 0

∀t ≥ 0. It then holds that 2W (t) +
∫ t

0
‖χ‖22 dτ < ∞

∀t ≥ 0, which implies that W (t) ∈ L1
∞ and χ ∈ Lp

2. Hence,

χ ∈ Lp
∞ and ψ ∈ Lp

∞. Since qi − 1
N

∑N
j=1 qj ∈ Lp

∞, then

qi − q∗ ∈ Lp
∞ ∀i ∈ V .

Recall that χ ∈ Lp
2 and ψ ∈ Lp

∞. Since sj ∈ Lp
∞ ∀i ∈

V , it holds that χ̇ ∈ Lp
∞. It then follows from Barbalat’s

Lemma [23, p. 125] that
∑N

j=1 ∇fj(qj , t) → 0p as t→ ∞.

It follows from the coordination step that xi → xj and vi →
vj ∀i, j ∈ V as t→ ∞. Then, it follows from Lemma 1 that

qi(t) → q∗(t) ∀i ∈ V as t→ ∞. �

Proposition 2: Suppose that Assumptions 1-5 hold. For

the system (9)-(10), if si ∈ Lp
∞ ∩ Lp

2 ∀i ∈ V , then all ϕi ∈
Lp
∞ ∀i ∈ V .

Proof: The proof follows from Proposition 1 and Assump-

tions 2 and 4. �

Theorem 1: Suppose that Assumptions 1-5 hold, α
and β be chosen such that α > 2k

λ2(L) and β >

3k+2
√

k[αλ2(L)+2k]+4αλ2(L)−k

4αλ2(L)−k
α with k = c1pλN (L)(N −

1)2|E|, and γ be chosen such that γ > c2(N −1)2|E|. Using

the controller (7)-(8) with v̇i defined in (3) for the networked

Lagrangian system (1) yields that qi(t) → q∗(t) ∀i ∈ V as

t→ ∞.

Proof: For any i ∈ V , define Lyapunov function candidate

Wi =
1
2s

T
i Mi(qi)si +

1
2∆ϑ

T
i Γ

−1
i ∆ϑi with ∆ϑi = ϑ̂i − ϑi.

By using Property 2, it holds that Ẇi = −sTi Kisi ≤ 0.

Hence, it holds that si ∈ Lp
∞ ∩ Lp

2 and ϑ̂i ∈ Lp
∞ ∀i ∈ V .

Since si ∈ Lp
∞ ∩ Lp

2 ∀i ∈ V , it follows the analysis of

Proposition 2 that ϕi ∈ Lp
∞, qi ∈ Lp

∞ and vi ∈ Lp
∞ ∀i ∈ V .

From (9), it then holds that q̇i ∈ Lp
∞ ∀i ∈ V . From (10), it

holds that v̇i ∈ Lp
∞ ∀i ∈ V .

Substituting (7) into (1) and using Property 3 yield that

Mi(qi)ṡi + Ci(qi, q̇i)si = −Kisi + Yi(qi, q̇i, vi, v̇i)∆ϑi.
Then by using Property 1, it follows that ṡi ∈ Lp

∞ ∀i ∈
V . It can thus be shown that si ∀i ∈ V are uniformly

continuous. Using Barbalat’s lemma [23, p. 125], we obtain

that si(t) → 0p as t → ∞ for any i in V . Then, it follows

from Proposition 1 that qi(t) → q∗(t) ∀i ∈ V as t→ ∞. �

Remark 3: The construction of v̇i in (3) is inspired by

the work [8]. However, this work focuses on the networked

Lagrangian systems, whose dynamics are more complex

compared with single- and double-integrators considered

in [8]. In the convergence analysis, it is proved that the

optimum-tracking errors are input-to-state stable with respect

to the disturbances si, i ∈ V , for the networked system

(9)-(10), where there are disturbances inside the system,

and hence it is different from the disturbance-free double-

integrator model considered in [8], and there are significant

technical challenges.

Remark 4: The structure of the algorithm (7)-(8) with v̇i
defined in (3) for networked Lagrangian agents are par-

tially inspired by [13], where the consensus and/or leader-

following tracking of networked Lagrangian systems are

investigated. In this paper, the distributed time-varying op-

timization problem is addressed, which is more complex

and challenging and includes the consensus and leader-

following tracking as special cases. Moreover, while dealing

with the distributed time-varying optimization for networked

Lagrangian agents, the analysis is quite different from the

work [13]. The signum function is used to constructing

v̇i, which forms a perturbed closed-loop networked double-

integrator systems with si as disturbance in the model and

inside the nonlinear function (see (9)-(10) for an example).

This paper provide rigorous analysis on the performance of

the perturbed systems under bounded and convergent distur-

bances. In addition, during the convergence analysis of the

distributed time-varying optimization algorithm, additional

analysis steps are required, see the optimum-tracking steps

in the proof of Proposition 1 for instance.

Remark 5: As shown in Theorem 1, the lower bound of

the design parameters α, β and γ depend on information

of the cost functions and the graph. It is worth mentioning

2783

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 28,2023 at 01:35:59 UTC from IEEE Xplore.  Restrictions apply. 



that these design parameters are constants, and they can

be determined off-line. Once chosen, one can embed them

into each agent and implement the proposed algorithm using

relative and absolute physical state measurements, which

implies that the proposed algorithm can be implemented in

a distributed way. In addition, one can use some existing

algorithms [24], [25] to estimate the relative values about

the cost functions and the graph, and then choose appropriate

parameters based on the estimated values. One can also be

conservative and select large enough values for γ and α, and

then large enough value for β compared with the chosen

value of α.

V. ILLUSTRATIVE EXAMPLES

In this section, we provide an example to illustrate the

results in this paper. We consider a group of ten two-link

rovolute joint arms [9, pp. 259-262] (N = 10) modeled by

(1), which are labeled as 1, . . . , 10, and let each agent i have

a local cost function fi(qi, t) = [qi1 − i sin(t)]2 + [qi2 −
i cos(t)]2, where qi = [qi1 , qi2 ]

T , i ∈ V . The interaction

among these ten agents are described by a ring topology. For

the distributed optimization algorithm (7)-(8) with v̇i defined

in (3), we let Γi = 30I5 and Ki = 30I2 for any i ∈ V ,

α = 35, β = 100, and γ = 1500. Let q∗ = [q∗1 , q
∗
2 ]

T denote

the optimal trajectory that minimize the sum of all the local

cost functions fi(qi, t). The simulation results are presented

in Fig. 1, and they show that all the agents track the optimal

trajectory, i.e., qi1 → q∗1 and qi2 → q∗2 ∀i ∈ V .

0 5 10 15

-6

-4

-2

0

2

4

6

0 5 10 15

-6

-4

-2

0

2

4

Fig. 1. The black lines are the optimal trajectories for each dimension,
and the rest are the trajectories of qi1 and qi2 , i = 1, . . . , 10.

VI. CONCLUSION

In this paper, a distributed algorithm has been proposed to

solve the time-varying optimization problem for networked

Lagrangian systems. The proposed algorithm does not need

the exchange of any virtual variables and achieves zero-error

tracking to the optimal trajectory, which show its advantages

over the existing related works.
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