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Distributed Continuous-Time Optimization for Networked Lagrangian
Systems with Time-Varying Cost Functions Under Fixed Graphs
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Abstract—1In this paper, the distributed time-varying op-
timization problem is addressed for networked Lagrangian
systems with parametric uncertainties. Usually, in the literature,
to address some distributed control problems for nonlinear
systems, a networked virtual system is constructed, and a
tracking algorithm is designed such that the agents’ physical
states tracks the virtual states. It is worth pointing out that
such an idea requires the exchange of the virtual states
and hence necessitates communication among the group. In
addition, due to the complexities of the Lagrangian dynamics
and the distributed time-varying optimization problem, there
exist significant challenges. This paper proposes a distributed
time-varying optimization algorithm achieving zero optimum-
tracking error for the networked Lagrangian agents without
the communication requirement. The main idea behind the
proposed algorithm is to construct a dynamic system for
each agent to generate a reference velocity using absolute
and relative physical state measurements with no exchange of
virtual states needed, and to design adaptive controllers for
Lagrangian systems such that the physical states are able to
track the reference velocities and hence the optimal trajectory.
The algorithm introduces mutual feedback between reference
systems and local controllers via physical states/measurements
and is amenable to implementation via local onboard sensing
in a communication unfriendly environment.

I. INTRODUCTION

In distributed optimization of networked systems, each
member has a local cost function, and the goal is to cooper-
atively minimize the sum of the all the local cost functions.
A number of distributed optimization algorithms have been
presented in the literature. See [1] and the references therein
for instance. These results (e.g., [1] and the references
therein) usually assume fixed local cost functions for the
agents. However, the local cost functions are time varying
in many practical applications, which reflects the fact that
the optimal point might be changing over time and forms an
optimal trajectory. Hence, it is meaningful to investigate the
distributed time-varying optimization problem.

In the literature, there are extensive distributed discrete-
time algorithms that solve the time-varying optimization
problem. See [2]-[5] for examples. There usually exist
bounded convergence errors to the optimal trajectory by
using the discrete-time algorithms. There is another body
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of literature on distributed continuous-time optimization al-
gorithms with time-varying cost functions. These distributed
continuous-time optimization algorithms have various appli-
cations in practice. One application lies in the coordination of
a team of robots, where each robot’s dynamics are described
by differential equations and the team objective is to track
an optimal trajectory defined by all the team members’ cost
functions. For instance, by constructing a quadratic objective
function for each agent, the distributed time-varying opti-
mization algorithms can be applied to solve the distributed
average tracking of multi-agent systems, where each agent
aims to track the average of all the reference signals. A
few distributed time-varying optimization algorithms are
established for single-integrator agents [6], [7] and double-
integrator agents [8]. In reality, a broad class of robots
can be modeled by Lagrangian systems, for example, the
planar elbow manipulator and autonomous vehicles [9]. The
Lagrangian systems are nonlinear and more complicated than
single- and double-integrator systems, which are the focus
of this paper. The complexity of the nonlinear Lagrangian
dynamics creates more challenges to solve the distributed
time-varying optimization problem.

Some results addressing distributed time-invariant coor-
dination problems (e.g., consensus) for agents with non-
linear dynamics introduce distributed observers or virtual
systems at a higher level, where the agents communicate
their observer states (virtual states independent of the agents’
physical states/measurements) with neighbors to achieve con-
sensus. Then control algorithms are designed for the agents
to track the virtual states (serving as reference trajectories).
However, due to the lack of physical states/feedback (e.g.,
agent positions) in the observers, the reference trajectories
generated by such an approach do not explicitly take into
account the physical agents’ interaction with the environment
and their capability. Also, such an approach cannot be
implemented based on local measurements via onboard sen-
sors without communication in a communication unfriendly
environment.

In this paper, we propose a communication-free dis-
tributed time-varying optimization algorithm for networked
Lagrangian agents with parametric uncertainties. The main
idea of the proposed algorithm is constructing a dynamic
system for each agent, which is driven by the physical states
instead of virtual states between neighbors and generates a
reference velocity, and then designing adaptive controllers
such that the agents’ physical states track their reference
velocities, and hence the optimal trajectory. The algorithm
introduces mutual influence/feedback between reference sys-
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tems and local controllers via physical states/measurements
and is amenable to implementation via local onboard sensing
in a communication unfriendly environment. Due to the
coupling and mutual influence of the constructed dynamic
systems and the agents’ dynamics, there are significant
new challenges in the convergence analysis. In particular,
the constructed dynamic system is rewritten as a coupled
and perturbed networked second-order system by taking
the tracking errors between agents’ velocity and their own
reference states as disturbances. Due to the use of the signum
function in the construction of the constructed dynamic
systems, the coupled and perturbed networked system has
disturbances inside and outside the signum function, and
the general input-to-state stability analysis might not be
directly applicable. This requires novel rigorous analysis
on the impact of disturbance on the optimum-tracking per-
formance of the perturbed system. To this end, this paper
carefully examines the perturbed system, and obtains that the
optimum-tracking error remains bounded if the disturbances
are bounded in a certain sense and converges to zero if the
disturbances converge to zero (See Proposition 2 for details).
These intermediate results facilitate the convergence analysis
of the proposed algorithm for the networked Lagrangian
agents.

Comparison with Related Works. The works [10]-[12]
focus on solving the distributed time-invariant optimization
problem for networked Lagrangian agents. They follow the
aforementioned distributed observer idea which rely on the
exchange of virtual states between neighbors. The work [10]
also considers the case of time-invariant cost functions with
additive uncertainties modeled by time-dependent functions,
and nonzero bounded optimum-tracking errors are achieved.
In contrast, the proposed algorithm in this paper solves
the optimization problem with time-varying cost functions,
which is not addressed in [11], [12]. Compared with [10], the
problem considered in this paper is more general and can be
solved with zero optimum-tracking error. More importantly,
the proposed algorithm in this paper relies purely on physical
states without the need for exchange of virtual states and can
be implemented in a communication unfriendly application.
In contrast, the communication of virtual states between
neighbors is necessary in [10]-[12]. The structure of the
proposed algorithm is inspired by [13], where the consen-
sus and leader-following tracking of networked Lagrangian
systems are addressed. However, the problem considered in
this paper is more complex and challenging, and includes the
consensus and leader-following tracking of networked agents
as special cases. While the construction of the dynamic
system is partially inspired by [8], the results there cannot
be directly applied to solve the problem considered in this
paper due to the complexity of the Lagrangian dynamics.

II. PRELIMINARIES
A. Notations

Throughout this paper, let R, R>o and R denote the
sets of all real numbers, all nonnegative real numbers and
all positive real numbers, respectively. For a set S, |S]|

denotes the cardinality of S, and for a real number = €
R, |x| denotes the absolute value of x. The transpose of
matrix A is denoted by AT. For a given vector x =
[z1,.. zp]" € RP, define [z, = X7, |zil, l|lzll, =
V02 + - +zp? and ||z|| = max;—1,., |z;|. For a
symmetric matrix A € RP*P, let \;(A4) < --- < X\,(4)
denote its eigenvalues. The Kronecker product of matrices
A and B is denoted by A ® B. For a vector x € RP,
define sgn(x) = [sgn(z1),...,sgn(z,)]” where sgn(z;) =1
if ®; > 0, sgn(x;) = 0 if 2; = 0, and sgn(z;) = —1
if ©; < 0. Let Opyxne € R™*™ and 1,,x, € R™*"
denote the m x m dimensional zero and all-ones matrix,
respectively, and for simplicity, let 0,, = 0,,x1 and let
1, = 1l,x1- I, € R™™ denotes the identity matrix.

Define L8 = {

z:Ryo = RP | SUPser., [|2(t)[l o < 00

and L8 = {x R0 = R? | 4/ [ uT (tu(t)dt < oo}. For

a time-varying function f : R? x R>y — R, its gradient,
denoted by V f(g,t) € R? with ¢ € RP and ¢t € R, is the
partial derivative of f(q,t) with respect to ¢, and its Hessian,
denoted by H(q,t) € RP*P, is the partial derivative of the
gradient V f(g,t) with respect to q.

B. Graph Theory

For a multi-agent system consisting of N agents, the
interaction topology can be modeled by an undirected graph
G={V,E}, where V ={1,...,N} and £ CV x V denote
the node set and edge set, respectively. An edge denoted by
(i,4) € £, means that agent ¢ and j can obtain information
from each other. In an undirected graph, the edges (i, )
and (j,4) are equivalent. It is assumed that (i,i) ¢ &£. The
neighbor set of node 7 is denoted by NV; = {5 € V| (j,7) €
E}. The adjacency matrix A = [a;;] € RY*N of the graph
G is defined such that a;; = 1 if (j,i) € £ and a;; = 0
otherwise. For an undirected graph, a;; = a;;. The Laplacian
matrix L = [L;;] € RV*N associated with the adjacency
matrix A is defined as L;; = Zje/\/i Q5 and Lij = —Qjj for
i # j. By arbitrarily assigning an orientation for every edge
in G, let B = [By;] € RY *I€l denote the incidence matrix
associated with graph G, where B;; = —1 if edge ¢; leaves
node i, B;; = 1 if it enters node 4, and B;; = 0 otherwise.
It holds that L = BBT.

An undirected path between node ¢; and i is a sequence
of edges of the form (iy,42), (i2,%3), ..., (ik—1,%x), Where
i, € V. A connected graph means that there exists an
undirected path between any pair of nodes in V.

Assumption 1: The graph G is connected.

C. Agents’ Dynamics

In this paper, we consider /N Lagrangian systems, and the
interaction topology among these agents is characterized as
the graph G. The equations of motion of the i-th Lagrangian
system can be described by [9]

M;(qi)ds + Ci(qi, 4:)Gi + 9i(q;) = T )

where g; € R? is the generalized position (or configuration),
M;(q;) € RP*P is the inertia matrix, C;(g;,¢;) € RP*P
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is the Coriolis and centrifugal matrix, g;(¢;) € R? is the
gravitational torque, and 7, € RP is the exerted control
torque. Three well-known properties associated with the
dynamics (1) are listed as follows [9], [14].

Property 1: The inertial matrix M;(q;) is symmetric and
uniformly positive definite, and there exist positive con-
stants ks and kg such that ||C;(qs, ¢i)ll, < ke /¢l and
lgi(ai)ll, < kg. Vi € V.

Property 2: The Coriolis and centrifugal matrix C;(g;, ¢;)
can be suitably chosen such that the matrix Mi(qi) —
2C(¢;, ¢;) is skew-symmetric.

Property 3: The dynamics (1) depend linearly on an un-
known constant parameter vector 1¥; € R™, that is, for any
z,y € RP, it holds that

Mi(qi)z + Ci(qi, 4i)y + 9i(qi) = Yi(ai, ¢i, y, )i, (2)
where Y;(qi, ¢i, y, x) is the regressor matrix.

III. PROBLEM STATEMENT

In the distributed time-varying optimization problem, each
Lagrangian agent aims to cooperatively track the optimal
trajectory determined by the group cost function. Let ¢*(t) €
RP denote the optimal trajectory, which is defined as

N
¢*(t) =argminy _ fila:(t), 1], st

i=1

qi(t) = q;(t) Vi # j,
where f;[g;(t),t] : R? x R>¢ — R is the local cost function
associated with agent ¢ € V. In the rest of the paper, it
is assumed that ¢* € LZ_. This assumption is satisfied in
most applications in practice. It is assumed that f;[q(¢),]
is known only to agent 7. The goal is to design 7; for the
system (1) such that all agents cooperatively optimize the
group cost function Zfil filgi(t),t]. That is, design 7; for
each agent ¢ such that ¢;(t) is capable of tracking ¢*(¢), i.e.,
limy 00 [q: (£) — ¢*(t)] = 0y, Vi € V. We make the following
assumptions on the objective functions.

Assumption 2: Each cost function f;(g;,t), ¢ € V, is
twice continuously differentiable both in ¢; € R? and ¢, and
strongly convex in ¢; and uniformly in ¢. That is, H;(g;,t)
is always positive definite and bounded below by m for
all ¢ € RP and uniformly in ¢, ie., |[Hi(g,t)|, > m
Vi € V. In addition, each H;(g;,t) is upper-bounded, i.e.,
| Hilgi. 1)}, < m Vi € V.

Assumption 3: The Hessian matrices satisfy H;(q;,t) =
Hj(q]',t) VZ,j € V

Assumption 4: For each agent i € V, 3 t2 v filaqi, t),
DB—;V fi(gi,t) and 55— ta -V fi exist. In addition, if agent

i’s position ¢;, i € V is bounded then Vfi(ql, t),

at2 Vfl(qz, t), 8q2Vfl(qz, t) and 8t8 -V f; are all bounded.
In Assumption 2, the uniform strong convexity of the
objective functions guarantees that the optimal trajectory ¢*
is unique for all ¢ > 0, and it also ensures that H;(g;,t)
Vi € V is invertible for all ¢. The upper-boundedness of
the Hessian matrix is equivalent to the Lipschitz continuity
of the gradient V f;(g;,t). In Assumption 4, one sufficient
condition for the existence of 3 V filgi, t), 8:2 V fi(gi,t),

%V fi(gs,t) and 5 taaq V f;, can be that each cost function
fi(gi, t), 1 € V, is at least three times continuously differen-
tiable in g; and t. Assumptions 2-4 are some similar/same
assumptions that are used in prior related works [5], [8], [15].

Lemma 1: [16] Let f(z) : R? — R be a continuously
differentiable convex function with respect to z. The function
f(z) is minimized at z* if and only if Vf(z*) = 0,.

IV. DISTRIBUTED TIME-VARYING OPTIMIZATION FOR
NETWORKED LAGRANGIAN AGENTS
For each agent ¢ € V), define a differentiable vector v; €
R?P by a dynamic system
0 =— Z [o(ai — q;) + Bldi — d5)]
JEN;

— Z sgn|a

JEN;

(¢ — @j) + B(@ — @) + i, B)

where « and 8 are some positive constants to be determined,
and ; is defined by

¢i = —Fi(qi,t) — Hi(q:, )V fi(g, 1), 4)

with

_ 0]

Fy(gi,t) = H; '(qi, t) avfi(qz',t) +Viilgi, t)| . (©)
Note that Assumptions 2 and 4 guarrantee the existence of
i, © € V. Define

5; = G; — v;. (6)

The adaptive controller for the Lagrangian system (1) is
given by

7 = —Kisi + Yi(qi, 4i, vi, 03) Vi, (7)

¥ = =TI} Y (q“q”%v )Sn 3
where K; and I'; are symmetric positive definite matrices,
and 191- is the estimate of 1J;. In the algorithm (7)-(8), the
signal v; can be regarded as the desired reference velocity
for each agent ¢, and the adaptive controller (7)-(8) is used
to drive each agent’s velocity ¢; to track its local v;, and in
the meantime, ¢; to track the optimal trajectory.

Remark 1: 1t is worth emphasizing that the algorithm (3)-
(8) does not rely on exchange of virtual variables between
neighbors. Especially, the dynamic system (3) is driven by
agents’ physical state information, i.e., g;, ¢;, ¢; — g; and
g; — ¢;. Such design excludes the usage of communication
channels, and can be implemented by onboard sensors. This
feature distinguishes this algorithm from existing results on
distributed optimization of networked Lagrangian systems,
e.g., [10]-[12], where inter-agent communication is required.
In addition, the algorithm (7)-(8) with ¥; defined in (3)
addresses the distributed time-varying optimization problem
with zero optimum-tracking error, while the works [11], [12]
are limited to distributed time-invariant optimization, and the
work [10] only addresses a special case of time-varying cost
functions with nonzero bounded optimum-tracking errors.
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Assumption 5: For any 4,7 € V), there exist positive
constants ¢; and ¢ such that |[¢; — ¢;||, < ei1(llgi — g5, +
ldi — djll,) + 2.

Remark 2: Assumptions 2-5 can be satisfied in many
situations in practice. If the cost function are constructed as
filgi, t) = ||lqi(t) — rl(t)||§ where ¢;(t) € RP and r;(t) € R?
are agent ¢’s position and local reference signal, respectively,
the distributed time-varying optimization algorithms can be
applied to address the distributed average tracking of net-
worked agents, which has found applications in region fol-
lowing formation control [17] and coordinated path planning
[18]. Note that Assumption 2 holds trivially from the above
construction of f;(g;,t). Also, the boundedness assumptions
of r;, 7; and 7; are commonly placed when dealing with
the distributed average tracking of networked agents [19],
and such boundedness assumptions implies that Assumptions
4 and 5 hold. In addition, when the cost functions have a
slightly more general form as f;(¢;,t) = ||pg; +gi(t)\|§,
where p € R, and g;(¢) is a time-varying function, which
is a commonly used cost function for energy minimization
[15], [19], Assumptions 4 and 5 are satisfied under the
boundedness assumption of g;(t), ¢;(t) and §;(¢). It is also
worth pointing out that under Assumption 3, the value of
the constants c¢; and cp in Assumption 5 depend mostly on
the structure of the cost functions and their state-independent
parts.

Using the definition of s; in (6), the dynamic system (3)
can be rewritten as

G = v + 8 &)
== |a + B(vi — v + s — 55)] + i
JEN;
- Z sgn[a(q; — q;) + B(vi —v; + 5, — s5)]. (10)

JEN;

Proposition 1: Consider a group of N agents, and their
interaction is described by the graph G. Each agent’s dy-
namics are given by (9)-(10). Suppose that Assumptions 1-5
hold. Let « and 3 be chosen such that o > /\ZZ(kL) and 8 >

3k+2\/k[a>\2(L)+2k]+4a>\2(L)—ka with k = eipin (L)(N —

Tax, (L) —Fk
1)%|&|, and v be chosen such that y > co(N —1)2|€|. Then,

the following two statements hold.
D) If s; € £, N LY Vi € V, it holds that ¢; — ¢* € LE
Vie.
2) If s; € L2 N LY and s;(t) — 0, Vi € V as t — oo, it
holds that ¢;(t) — ¢*(t) Vi € V as t — co.
Proof: The proof of statements is divided into two steps:
the coordination step and the optimum-tracking step. In the
coordination step, it is proved that the coordination errors,

First, consider the coordination step. Let ¢, v, s and ¢ be
the column stack vectors of ¢;, v;, s; and (;, respectively.
Define x = (M ® I,)q and y = (M ® Ip,)v, where M =
In — —lN 1T Then it holds that

t=y+(M®I,)s (11)
—(L®@Ip)(az+ By + Bs) + (M @ Ip)p

—(B® L)sen[(B" @ I)(ax + By + )] (12)

Define the function V = 1[z7yT|P[z” yT]T with P =

2a6L aly . . .

[ T ® Ip,. Note that the function V' is posi-

tive definite if 35 < 2Ay(L). Taking the derivative along
the solution of (11)-(12) yields V = U, + U, where
Up = —a?2T(L @ L))z — yT[(BPL — aly) ® L)y +
2027 (L @ I,)s — B2y (L ® I,)s + ay? (M ® I,)s and
Uz = (aa” + By")(M @ L)y — y(az™ + By")(B ®
I)sgn| (BT @ 1) (a + By + Bs)].

Consider the term U;. For notational simplicity, let z =
axr + Py and £ = [zT yT]T. It holds that

Uy < —a®Xo(L) 2] = [82Xa(L) — a] |lyll2
— B2yT (L@ I)s + 20827 (L ® I)s + ay” (M ® I,)s
< —XTQX + earv/2Np [€lly |18l »

where X = [[lz,, lyll,]", Q1 = diag{a?2(L), B°Xa(L) —
o}, and ¢ = max {2a8An (L)/Np, B2An(L)v/Np+a}.

Consider the term Us. Let z; = ax;+By;, P = {1,...,p},
and z;; and s;; be the k-th entry in vector z; and s;.
It holds that —vz"(B @ I,)sgn [(BT ®@ I,,) (z + Bs)] =
— ZkeP Z(i,j)es Aﬁj, where Af,j = (2 k—2jk)SgN[2 k—

zjk + B(six — sjx))- For any k € P, define & =
{G,5) € & | zix — zix + Blsixg — sjx) =
0}. Note that A, = 0 if (i,j) € &j. Then, it

holds that —vz (B ® I,)sgn [(BT @ 1I,) (z—l—ﬂs)} =
=Y Dkep 2o i.j)ee\ek A} ;. For any (i, ) € £\ &, it holds

that
Y N ¥ 2jk)? + Bzik = 2k) (Sik = Sjk)
! |zik — 2k + B(Sik — Sjk)]
< —A|lzik — 2kl = Blsik — sjkl| +vBlsix —

Define 5_’ﬁ = {(z j)eé& ’ |2k — 25| > B|szk—s]k\} and
gk = { i,7) € € | |Zie — 2j6] < Blsik — sjk\} Then, it
holds that Wz(w)eg\gk A’i] < 72 (i) €€ |zi 1 —
2~ Z(m)eg |si K — sj,;j. Hence,

—vz"(B® I,)sgn [(BT ® 1) (= + Bs)]

< BT L)z, + 28 |(BT @ L) s, -

N-1) <N
( 2 )Zi:1 Ejef\fi 2 — 2]l =

13)

Note that |z]|;, <

g — %Y ¢ and v; — £ vj, are bounded and (N — 1)[|(BT@1,)z[,, and it follows from
convergent to zero if s; Vi € V are bounded and convergent Assumption 5 that (M ® I, 30|| < [(IMeI)e|, <

to zero, respectively. In the optimum-tracking step, it is (N — [cl H(B ®1I )a:Hl c1 H(BT® )yHl +
proved that Z;\le Vfilg;,t) € L2 if sj € L5 Vi €V, and (BT @ L,)s||, + c2l€]]. Then, 2" (M ® L))y <
Zj-v:l Vfi(g,t) = 0past — 0ifs; € L5and s; — 0, |zl [(M@L)ell, + XTQ2X + kall€lly sl +
Vi € V. Hence, the statements follow by combining these 7 ||(BT ® I)z|,, where Qs = kla, 8]T17,
two steps. ky = IElpPAN(L), ko = NIEp*An (L),
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ks =  VIEANL)(a2+8%), ks = a(V -
1)2Npks HBT®IH . k= aki(N — 1)% and
7 = ca(N — 1)2|€|. From (13), it follows that
U < =(y = m)V (L) [l + 278k [Isl o
+ X7 QX + ka [l€ly 15l
Hence,

V < —XTQX + (earv/2Np + ka) 1€l sl
— (v =m) V(L) [[2]ly + 278k |5l

where Q = @1 — Q2. Note that () is positive definite

o> A2(,c and B > 3k+2\/k[a):lQ()f/[\/;aQ)k]Zéla)\g(L)fk

Then, —XTQX < —Am | XI5, where A, is the smallest
eigenvalue of (), i.e., )\m = /\1(Q) It then holds that V <
2
~An (L= 20) [[€]l3 — (v = ™)/ A2 (L) 1zl = 2Amn €115 +
(CM\/QN + ka) ||5H2|| 8lloe + 278k2 sl , Where 1 €
(0,3). Note that the term —2\an €12 + (emv2Np +

ks) T, s 8lloe + 278Kz ||s]|, is nonnegative if [|£[|, >
max {dy ||s|| . ,d2+/]s]l }, where dy = CMV{MH“ and
dy = % Note that p(r) = max {dyr, da\/7} is a class

K function [22, p. 144]. It holds that
V < A1 - 20) |I€]13
— (v =mvAAL) Izl V€N, = p(ls]lo)-

It then follows from [22, Theorem 4.19] and the property
of the input-to-state stability [22, p. 175] that x € £YP and
y € LYP if s € £IP, and that z(t) — Oy, and y(t) — Op,
as t — oo if s(t) — Oy, as t — oco. Then, the coordination
step is concluded from the definitions of x and y.

Consider the optimum-tracking step. Let x =
Yl Vi) and v = ST [y o+ Filag0)-
Define the Lyapunov function candidate W
% xTx + %wTv,/J. Taking the derivative of W ylelds
that W = —xTx + XT[Z§V:1 Hj(qj,t)s;]. Note that

T Hilagt)s;| < I + 222 500 s 3 10
follows that W < 77\|XH2 + MZ 1 Hsj||2 Then,
it holds that 2W + [x|2 < Nm?2 ZNJ Hsj||2 Hence,
fo Is;l2dT < oo Vi € V Vt > 0. Note that W( ) >
¥t > 0. It then holds that 2W () + [i [x[3dT < oo
Vt > 0, which implies that W (t) € /Jl and X € Lb. Hence,
X € L%, and ¢ € L& . Since ¢; — Z _, 45 € LE, then
g —q € LP Vie).

Recall that x € £ and ¢ € L2 .. Since s; € L2 Vi €
V, it holds that x € LZ_. It then follows from Barbalat’s
Lemma [23, p. 125] that E;VZI Vfi(gj,t) = 0, as t — oo.
It follows from the coordination step that x; — x; and v; —
v; V1,5 € V as t — oo. Then, it follows from Lemma 1 that
qi(t) = ¢*(t) Vi € V as t — 0. [ |

Proposition 2: Suppose that Assumptions 1-5 hold. For
the system (9)-(10), if s; € £LP, N LY Vi € V, then all p; €

LP Vie V.
Proof: The proof follows from Proposition 1 and Assump-
tions 2 and 4. ]

Theorem 1: Suppose that Assumptions 1-5 hold, «
and B be chosen such that a > 2k and 8 >

A2 (L)
3k+2\/k[a);2(i§2)a2)k]:404)\2(L)—ka with k = eipin (L)(N —

1)%|&|, and v be chosen such that v > co(N —1)2|€|. Using
the controller (7)-(8) with v; defined in (3) for the networked
Lagrangian system (1) yields that ¢;(t) — ¢*(t) Vi € V as
t — o0.

Proof: For any i € V, define Lyapunov function candidate
W, = 1 sTM;(gi)si + 1A19TI‘ TAY; with AY; = 9; — 9.
By usmg Property 2, it holds that WW; —sT'K;s; < 0.
Hence, it holds that s; € ££, N £} and 191- €Ly Vie.

Since s; € LB N LY Vi € V, it follows the analysis of
Proposition 2 that ¢; € L2, ¢; € L2 and v; € LE_ Vi € V.
From (9), it then holds that ¢; € £Z_ Vi € V. From (10), it
holds that v; € LE Vi € V.

Substituting (7) into (1) and using Property 3 yield that
M;(qi)$: + Ci(qi,Gi)si = —Kisi + Yi(ai, G, vi, 03)AV;.
Then by using Property 1, it follows that $, € LB Vi €
V. It can thus be shown that s; Vi € ) are uniformly
continuous. Using Barbalat’s lemma [23, p. 125], we obtain
that s,(t) — 0, as ¢t — oo for any ¢ in V. Then, it follows
from Proposition 1 that ¢;(t) — ¢*(t) Vi € V as t — co. B

Remark 3: The construction of v; in (3) is inspired by
the work [8]. However, this work focuses on the networked
Lagrangian systems, whose dynamics are more complex
compared with single- and double-integrators considered
in [8]. In the convergence analysis, it is proved that the
optimum-tracking errors are input-to-state stable with respect
to the disturbances s;, ¢ € V), for the networked system
(9)-(10), where there are disturbances inside the system,
and hence it is different from the disturbance-free double-
integrator model considered in [8], and there are significant
technical challenges.

Remark 4: The structure of the algorithm (7)-(8) with v;
defined in (3) for networked Lagrangian agents are par-
tially inspired by [13], where the consensus and/or leader-
following tracking of networked Lagrangian systems are
investigated. In this paper, the distributed time-varying op-
timization problem is addressed, which is more complex
and challenging and includes the consensus and leader-
following tracking as special cases. Moreover, while dealing
with the distributed time-varying optimization for networked
Lagrangian agents, the analysis is quite different from the
work [13]. The signum function is used to constructing
v;, which forms a perturbed closed-loop networked double-
integrator systems with s; as disturbance in the model and
inside the nonlinear function (see (9)-(10) for an example).
This paper provide rigorous analysis on the performance of
the perturbed systems under bounded and convergent distur-
bances. In addition, during the convergence analysis of the
distributed time-varying optimization algorithm, additional
analysis steps are required, see the optimum-tracking steps
in the proof of Proposition 1 for instance.

Remark 5: As shown in Theorem 1, the lower bound of
the design parameters «, [ and v depend on information
of the cost functions and the graph. It is worth mentioning
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that these design parameters are constants, and they can
be determined off-line. Once chosen, one can embed them
into each agent and implement the proposed algorithm using
relative and absolute physical state measurements, which
implies that the proposed algorithm can be implemented in
a distributed way. In addition, one can use some existing
algorithms [24], [25] to estimate the relative values about
the cost functions and the graph, and then choose appropriate
parameters based on the estimated values. One can also be
conservative and select large enough values for v and «, and
then large enough value for 8 compared with the chosen
value of a.

V. ILLUSTRATIVE EXAMPLES

In this section, we provide an example to illustrate the
results in this paper. We consider a group of ten two-link
rovolute joint arms [9, pp. 259-262] (N = 10) modeled by
(1), which are labeled as 1, ..., 10, and let each agent 7 have
a local cost function f;(q;,t) = [q;, — isin(t)]? + [qi, —
icos(t)]?, where ¢; = [qi,,q:,]7, @ € V. The interaction

[5]

[6]

[7]

[8]

[9]

among these ten agents are described by a ring topology. For (10]
the distributed optimization algorithm (7)-(8) with v; defined
in (3), we let I'; = 3015 and K; = 30l for any 7 € V, [l1]
a = 35, 8 =100, and v = 1500. Let ¢* = [¢}, ¢3]T denote
the optimal trajectory that minimize the sum of all the local  [17;
cost functions f;(g;,t). The simulation results are presented
in Fig. 1, and they show that all the agents track the optimal
trajectory, i.e., ¢;, — ¢ and ¢;, — g5 Vi € V. [13]
[14]
[15]
16
Time(s) 16l
i ‘ ‘ — [17]
i ] [18]
’ ’ Time(s) b " [19J
Fig. 1. The black lines are the optimal trajectories for each dimension,
and the rest are the trajectories of g;; and g;,, ¢ =1,...,10. [20]
VI. CONCLUSION (211
In this paper, a distributed algorithm has been proposed to  [22]
solve the time-varying optimization problem for networked 23]
Lagrangian systems. The proposed algorithm does not need  [24]
the exchange of any virtual variables and achieves zero-error
tracking to .thf? optimal trajectory, which show its advantages [25]
over the existing related works.
REFERENCES
[1] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K. H. Johansson, “A survey of distributed optimization,”
Annual Reviews in Control, vol. 47, pp. 278-305, 2019.
2784

X.Yi, X. Li, L. Xie, and K. H. Johansson, “Distributed online convex
optimization with time-varying coupled inequality constraints,” IEEE
Transactions on Signal Processing, vol. 68, pp. 731-746, 2020.

Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through
the alternating direction method of multipliers,” IEEE Transactions on
Signal Processing, vol. 62, no. 5, pp. 1185-1197, 2014.

A. Bernstein, E. Dall’Anese, and A. Simonetto, “Online primal-
dual methods with measurement feedback for time-varying convex
optimization,” IEEE Transactions on Signal Processing, vol. 67, no. 8,
pp. 1978-1991, 2019.

A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A
class of prediction-correction methods for time-varying convex opti-
mization,” IEEE Transactions on Signal Processing, vol. 64, no. 17,
pp. 45764591, 2016.

C. Sun, M. Ye, and G. Hu, “Distributed time-varying quadratic
optimization for multiple agents under undirected graphs,” IEEE
Transactions on Automatic Control, vol. 62, no. 7, pp. 3687-3694,
2017.

A. Cherukuri and J. Cortes, “Initialization-free distributed coordination
for economic dispatch under varying loads and generator commit-
ment,” Automatica, vol. 74, pp. 183-193, 2016.

S. Rahili and W. Ren, “Distributed continuous-time convex opti-
mization with time-varying cost functions,” IEEE Transactions on
Automatic Control, vol. 62, no. 4, pp. 1590-1605, 2017.

M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. New Jersey: Wiley, 2006.

Y. Zhang, Z. Deng, and Y. Hong, “Distributed optimal coordination
for multiple heterogeneous euler—lagrangian systems,” Automatica,
vol. 79, pp. 207-213, 2017.

Y. Zou, Z. Meng, and Y. Hong, “Adaptive distributed optimization
algorithms for Euler-Lagrange systems,” Automatica, vol. 119, p.
109060, 2020.

Y. Zou, B. Huang, and Z. Meng, “Distributed continuous-time al-
gorithm for constrained optimization of networked Euler-Lagrange
systems,” IEEE Transactions on Control of Network Systems, vol. 8,
no. 2, pp. 1034-1042, 2021.

H. Wang, W. Ren, and C. C. Cheah, “A differential-cascaded paradigm
for control of nonlinear systems,” arXiv preprint arXiv:2012.14251,
2020.

S. Ghapani, J. Mei, W. Ren, and Y. Song, “Fully distributed flocking
with a moving leader for lagrange networks with parametric uncer-
tainties,” Automatica, vol. 67, pp. 67-76, 2016.

B. Huang, Y. Zou, Z. Meng, and W. Ren, “Distributed time-varying
convex optimization for a class of nonlinear multiagent systems,” IEEE
Transactions on Automatic Control, vol. 65, no. 2, pp. 801-808, 2020.
S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

C. C. Cheah, S. P. Hou, and J. J. E. Slotine, “Region-based shape
control for a swarm of robots,” Automatica, vol. 45, no. 10, pp. 2406—
2411, 2009.

P. Svestka and M. H. Overmars, “Coordinated path planning for
multiple robots,” Robotics and Autonomous Systems, vol. 23, no. 3,
pp. 125-152, 1998.

S. Ghapani, W. Ren, F. Chen, and Y. Song, “Distributed average
tracking for double-integrator multi-agent systems with reduced re-
quirement on velocity measurements,” Automatica, vol. 81, pp. 1-7,
2017.

A. F. Filippov, Differential equations with discontinuous righthand
sides: control systems. Springer Science & Business Media, 2013,
vol. 18.

J. Cortes, “Discontinuous dynamical systems,” IEEE Control systems
magazine, vol. 28, no. 3, pp. 36-73, 2008.

H. K. Khalil, Nonlinear systems. New Jersey: Prentice Hall, 2002.
J.-J. E. Slotine and W. Li, Applied nonlinear control. New Jersey:
Prentice Hall, 1991.

D. Varagnolo, G. Pillonetto, and L. Schenato, “Distributed cardinality
estimation in anonymous networks,” IEEE Transactions on Automatic
Control, vol. 59, no. 3, pp. 645-659, 2013.

S. Giannini, A. Petitti, D. Di Paola, and A. Rizzo, “Asynchronous
max-consensus protocol with time delays: Convergence results and
applications,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 63, no. 2, pp. 256-264, 2016.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 28,2023 at 01:35:59 UTC from IEEE Xplore. Restrictions apply.



