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ABSTRACT | Deep learning (DL) has demonstrated great
performance in various applications on powerful computers
and servers. Recently, with the advancement of more pow-
erful mobile devices (e.g., smartphones and touch pads),
researchers are seeking DL solutions that could be deployed
on mobile devices. Compared to traditional DL solutions using
cloud servers, deploying DL on mobile devices have unique
advantages in data privacy, communication overhead, and
system cost. This article provides a comprehensive survey
for the current studies of adopting and deploying DL on
mobile devices. Specifically, we summarize and compare the
state-of-the-art DL techniques on mobile devices in various
application domains involving vision, speech/speaker recogni-
tion, human activity recognition, transportation mode detec-
tion, and security. We generalize an optimization pipeline
for bringing DL to mobile devices, including model-oriented
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optimization mechanisms (e.g., pruning and quantization) and
nonmodel-oriented optimization mechanisms (e.g., software
accelerator and hardware design). Moreover, we summarize
popular DL libraries regarding their support to state-of-the-
art models (software) and processors (hardware). Based on
our summarization, we further provide insights into potential
research opportunities for developing DL for mobile devices.

KEYWORDS | Deep learning (DL); hardware and software accel-
erator design; mobile security; mobile sensing; optimization.

. INTRODUCTION

Recent developments of deep learning (DL) have made
huge leaps in various mobile applications, such as image
recognition [1]-[7], speech recognition [8]-[11], and
human activity recognition [12]-[17]. In general, DL could
provide much higher inference accuracy than traditional
machine learning methods. However, DL usually involves
complicated neural network models and possibly millions
of parameters that require high computational power
and large memories, which are not available on mobile
devices. As a result, many mobile applications choose to
use cloud computing technology to offload all or partial
computational tasks of DL from resource-constrained
mobile devices. While the cloud-based approaches are
common and have initial success in many applications,
people have privacy concerns because sensitive data
need to be uploaded to cloud servers. Besides, the
latency of cloud-based approaches is highly affected by
network conditions and the interfaces (e.g., long-term
evolution (LTE) and Wi-Fi) [18]. In addition, due to high
maintenance costs, cloud computing services are primarily
provided by a limited number of large companies that have
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the resources to support large systems [19]. Therefore,
cloud-based approaches can no longer satisfy the emerging
artificial intelligence (AI) and augmented reality (AR)
mobile applications, and new technologies aiming at
enabling DL on mobile hardware are much demanded.

Many research works have been conducted to develop
DL-based approaches that are optimized for mobile
devices. Topics of them span over a broad range, includ-
ing miniature DL model design, DL model optimization,
software accelerator, and hardware accelerator. A couple
of earlier studies of DL have been conducted for mobile
device applications. Nan et al. [57] explored typical DL
compression methods and compared their practical per-
formances using various metrics. Based on their perfor-
mances, they discussed the advantages and bottlenecks
of those compression methods. Solutions to reduce the
computational cost of DL with respect to algorithmic
design, computational optimization, and hardware revo-
lution have been explored in a more recent survey [58].
Moreover, some survey papers [59], [60] compare various
attributes (e.g., latency, energy efficiency, costs, and scal-
ability) of different mobile devices using DL and propose
several evaluation criteria to choose appropriate develop-
ment frameworks. In addition, Zhang et al. [61] presented
a survey of mobile and wireless networking research based
on DL. They reviewed recent DL applications to mobile
and wireless networking and discussed how to tailor DL
models for those problems. Chen and Ran [62] summa-
rized DL in edge computing with optimization methods
for fast inference on resource-constrained edge devices.
Deng et al. [63] provided more optimal solutions to key
problems in edge computing with the help of DL technolo-
gies and study how to carry out the entire process of build-
ing DL models on the edge. Chen and Ran [62] provided
an accessible introduction to various aspects on the recent
advancements of DL on mobile devices, including mobile
hardware architectures, optimization approaches, existing
resources, mobile sensing applications, and challenges.
While these works have looked into various aspects in
DL optimized for edge and mobile devices, they either
mainly discuss the DL optimization (e.g., model paral-
lelism) on edge devices for applications such as mobile
and wireless networks or provide the introduction-level
survey that is dedicated for quickly grasping the concepts.
However, a comprehensive study of the technologies that
could enable DL on various types of mobile hardware is
still missing. We propose an optimization pipeline that is
designed to adaptively support DL deployment on various
kinds of mobile devices for different application domains.
This will provide in-depth guidance for the researchers to
customize their DL-based applications’ deployment.

This article extensively studies the state-of-the-art
literature that focuses on DL optimization for mobile appli-
cations and devices. We summarize DL-based approaches
in different mobile applications in terms of evalua-
tion platforms, adopted models, and optimization meth-
ods. In addition, we present the challenges of applying
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DL on mobile devices and introduce an optimization
pipeline for guiding the optimization of DL targeting
mobile devices and applications. Specifically, we divide the
optimization pipeline into two parts, i.e., model-oriented
and nonmodel-oriented, which cover typical optimization
approaches with respect to both hardware and software.
Moreover, we summarize software and libraries used in DL
in terms of software and hardware optimization support,
which could help us choose appropriate software and
hardware combinations for their application development.
We also point out the current trend and potential direction
of research on DL optimization for various mobile applica-
tions and resource-constrained mobile devices. It is worth
noting that the mobile devices mentioned in this survey
include a wide range of devices from resource-constrained
Internet of Things (IoT) devices to high-end smartphones.

The remaining of this article is organized as follows.
Section II summarizes DL in different mobile applica-
tions. Section III discusses the challenges of applying
DL on mobile devices and summarizes the optimization
approaches. Section IV compares the state-of-the-art DL
libraries. Section V discusses the on-device optimization in
federated learning (FL). Section VI points out the poten-
tial research in different mobile applications. Section VII
concludes this article.

II. DL-ENABLED MOBILE
APPLICATIONS

Many mobile applications adopt DL-based approaches
due to their better performance than traditional machine
learning-based approaches. In this section, we review the
DL approaches developed for several popular application
domains, including image classification and object detec-
tion, speech and speaker recognition, activity recognition,
and mobile security. Our summary mainly focuses on
the following aspects: the adopted evaluation platform,
the adopted DL model, and the adopted performance
improvement method.

A. DL in Image Classification and Object
Detection

In the past few years, decent performance has been
achieved in image classification and object detection
using DL approaches on mobile platforms (e.g., smart-
phones [1]-[7]; embedded systems including NVIDIA

Jetson TK1, Intel Edison platform, and Raspberry
pi [6], [39]-[41], [43], [67]-[69]; and the mobile
development kit such as Snapdragon 820 and

Snapdragon 845 [43]-[45]). We summarize the popular
DL models for image classification and object detection
in Table 1. In particular, VGG, MobileNet V1 and V2,
AlexNet, LeNet, SqueezNet, GoogleNet, and ShuffleNet
are usually trained with popular database (e.g., ImageNet
2012 [1], [3]-[6], [40], [44], [70], [71] and MNIST [39],
[40], [70]). For object detection, popular DL models, such
as SSD300, SSD512, YOLOv2, YOLOv3, YOLOv3-Tiny,
SSD+4MobileNet, and SSDlite4MobileNet v2, are trained
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Table 1 Image Classification and Speech Recognition Applications on Mobile Devices

Applicati Image Classification/Object Detection Speech/Speaker Recognition
Pptication Facial expression recognition, Road damage/Crack detection, etc. Speech enhancement, Voice activity/Noise detection, etc.
(11171, [201-[45] [8]-{11], [46]-{56]
Types Complexity (architecture/layers) Types Complexity (architecture/layers)
GoogLeNet [20], [24], [34]; ResNet30 [22], SqueezNet V1.1 [36], TrimNet [Z];
CNN [32], [36]; MobileNet V1, V2 [36]; DarkNet- CNN CNN 2 [56], 3 [56], 5 [46], 8 [47],
Adopted Model (Image Classification) llzcE;'illon\;C;C}Dlglégf] AlexNet [20], [38]; 15 [52], 21 [51] layers
CNN 5 [26], 7 [25], 8 [30], 9 [27], 12 [28]
layers
DNN 3 [55], 5491, 6 [55], 8 [9]
YOLO v2 [23], [29], [37];
CNN SSD [26], [33]; NIN [24]; RNN(LSTM) | 3 [54], 5 [53], 8 [10], 17 [11]
(Object Detection) Fast-RCNN [21], [29]; AlexNet [24];
InceptionV3 [22]; VGG 19 [22] AE 5 [48]
Caffe [3]. [4], [20], [24], [30], [31], [38], [40]
Tensorflow [2], [33], [35] Tensorflow [46], [47], [50]
Adopted DL | Keras [32] Keras [51]
Library Theano [25], [39] Theano [49]
Torch [41]
Compression (pruming) [1], [3], [39], [40] Compression(lower rank matrices) [10], [53], [54]
Adopted Optimizati mﬁaﬁi [4[]5.1[4[[;]]. [lf;]] Quantization [9], [11]
1 + 71, j -
Programminggstrategies 4] Programmming strategics [9]

with the databases, such as COCO [5], [6], [45], VOC [6],
[43], [45], and Cifar [2], [39]. DL approaches have also
been adopted in a range of special applications, such as
computed tomography (CT) image processing [72] and
water ecosystem images captured by the IoT devices [73].
Among all these models, some DL models (e.g., MobileNet
in Fig. 1 and SSD) are the most popular and usually
adopted as the baseline for performance comparison with
the newly proposed models (e.g., PeeletNet, Enet, and
ThunderNet) [2], [4]-[6], [41], [42], [44], [45], [68],
[71].

Recently, new DL models are becoming faster, smaller,
and more power-efficient. For example, Mnasnet [5]
adopted an automated mobile neural architecture search
(MNAS) approach to achieve 1.8 times faster than

MobileNetV2, PeleeNet [6] was 1.8 times faster than
MobileNetV2 by using a dynamic number of chan-
nels in bottleneck layers, and Shufflenet [71] achieved
13 times faster than AlexNet by utilizing two new
operations, pointwise group convolution and channel
shuffle, to greatly reduce computation cost. Moreover,
Mobiface [42] adopted two design strategies, bottleneck
residual block with expansion layers and fast downsam-
pling, to have its model size ten times smaller than
MobilenetV1. However, most existing DL models still have
big sizes and complicated structures, making it hard to
perform real-time image classification and object detection
on resource-constrained mobile devices. To this end, com-
pression and quantization methods have been adopted to
reduce the complexity and improve the inference speed

- I—“P;; Depthwise separable convolution
4x224%3
Cl: DW2: PW2: F15: layer
2@112x112 32@112x112 64@112x 112 1024
PW3: PW13: PW14: —  Output
128@56 x 56 1024@7 % 7 1024@7 x 7 classes
I Ej 3 1024
3128
— bl Global average
: - epthwise separable 2
) Depthwise Pointwise Depthwise separable conmobtlon pooling Pl
Convolution convolution  convolution ool e
connections

Fig. 1.

Structure of MobileNet is based on depthwise separable filters for image classification [64]. MobileNet is a streamlined architecture

that uses depthwise separable convolutions to construct lightweight deep CNNs and provides an efficient model for mobile and embedded
vision applications. The model is composed of standard convolution layer (C), depthwise convolution layers (DW), pointwise convolution

layers (PW), and full connection layers (F). The model also adopts a novel structure called depthwise separable convolution layer, which is a

depthwise convolution layer followed by a pointwise convolution layer. Such a design could significantly reduce the model’s parameters

compared to the models composed of regular convolutions with the same depth, making MobileNet nearly as accurate as VGG16 [65] but
32 times smaller sized and 27 times less compute-intensive. Moreover, MobileNet can achieve 4% better accuracy than AlexNet [66] with a

45 times smaller size and 9.4 times less computation.
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Table 2 Activity Recognition and Mobile Security Applications on Mobile Devices

Activity Recognition Mobile Securi
Applicstion Human Activity Recogniton [g]—[w], [741-[94] Malware Detection [101]-[107] X
Transportation Mode Detection [95]-[100] Traffic Classification [108]
Types Complexity (layers) Types Complexity (layers)
CNN 476], 5 [90], 6 [74], [79], 811, 7 881, B [75], | CNN 411021, 7 [103], [104], [108]
10 [77, 13 [96], [97]. 16 [85]
Adopted Model DNN 5 [99], 10 [98] DNN 3 99]
MLP 5 [83], 10 [84] MLP T [108], 3 [101]
SAE 4078 SAE 5 (108
DBN 4076 ANN 3 [106
RNN(LSTM) 6, 7 [80] RNN(LSTM) | 5 [108
Tensorfiow [75], [79], [89], (96], [97], [100]
Keras [77], [84]
Adopted DL rﬂﬁ"[;?l (78], [85], [86] Tensorflow [102], [104], [108]
Library Pylearn [89]
H20 (R) [92]
Adopted Optimiza. | Compression [109] Quantization [104]
dinik Quantization [13]

of DL models. In particular, AutoML [1] can reduce the
model size of MobileNet by 34% from leveraging reinforce-
ment learning to provide the model compression policy.
DeepRebirth [3] achieved more than 3 times faster speed
and 2.5 times run-time memory saving on GoogLeNet by
the compression technique containing two operations (i.e.,
streamline slimming and branch slimming). DeeploT [39]
compressed neural network structures into smaller dense
matrices by finding the minimum number of nonredundant
hidden elements. It is able to reduce the model size of
VGGNet by 97.6%, running time by 94.5%, and energy
consumption by 95.6%. Deep compression [40] pruned
unimportant connections, quantized the network using
weight sharing, and then applied the Huffman coding on
AlexNet, VGG-16, and LeNet to reduce their weight storage
by 35, 49, and 39 times, respectively. Along this line, model
scaling methods are adopted by some works [5], [7],
[44], which use the depth multiplier to change the width
of channel of each layer and reduce the inference time.
Moreover, advanced programming strategies [e.g., fused
tile partitioning (FTP)] were adopted by Zhao et al. [110]
to reduce the memory footprint of YOLOv2 by more than
68% without sacrificing accuracy.

Although these methods can improve DL performance
on mobile devices, some works, such as GoogLeNet and
Thunder [45], still cannot provide real-time performance
on mobile devices. The compressed GooglLeNet model has
been shown good accuracy on low-end mobile devices
(e.g., Moto E) [3], [4], but they can only process video
streams at 10 frames/s. Thunder with SNet535 targeted at
achieving high accuracy but can only process 5.8 frames/s,
which is not fast enough in real time. Therefore, achieving
both high accuracy and near real-time inference using
DL models on mobile devices is still a challenging
research problem.

B. DL in Speech and Speaker Recognition

In the speech/speaker recognition area, most existing
works [51], [53]-[56], [111] claim that their proposed
systems have the potential for mobile devices due to
their less resource consumption. However, only a few of

them [8]-[11] have demonstrated their practicality in
mobile applications. We summarize the models, software
platform, and optimization methods of the existing work
in speech and speaker recognition, as shown in Table 1.

In the speech/speaker recognition area, recurrent neural
network (RNN) architectures are commonly used because
they allow extracting past and future dependencies at a
given point of the audio. Some works [9], [11], [51], [52],
[55] propose simple lightweight neural networks (e.g.,
around five-layer convolutional neural network (CNN),
deep neural networks (DNN), and RNN) as shown in Fig. 2
and compare with classic baseline models. For example,
He et al. [11] proposed a compact end-to-end (E2E) speech
recognizer, which improved the word error rate by more
than 20% over a conventional connectionist temporal clas-
sification (CTC)-based baseline system; Deep KWS [55]
achieved 45% relative improvement in false reject rate
with respect to a competitive baseline hidden Markov
model (HMM). These initial results reveal the advantages
and potential of developing novel DL models for speech
and speaker recognition. In addition, we observe that most
of the existing studies in speech recognition are evalu-
ated against baseline models, comprised of some classical
machine learning models. In the future, DL models can be
used as baseline standards.

Several methods have been adopted to improve the
performance in speech/speaker recognition, including
compression (e.g., lower rank matrices) [10], [53], [54],
quantization (e.g., floating point to 8 bit) [9], [11], light-
weight neural network models (e.g., around five-layer
CNN, DNN, and RNN) [9], [10], [52]-[56], and program-
ming strategies (i.e., multithreads and frame skipping) [9].
After adopting those methods, the proposed DL model size
is reduced several times compared with the original model,
and the inference time is also reduced significantly. For
example, the model size reduces to 1/3 times [9], [53]
or 1/4 times [11], [54] of the original size, the inference
time is claimed to be many times faster than the original
model [10], [53], [55], [56], and the power consumption
is reduced to an acceptable level [111]. However, since
most of these DL models have not been deployed in

Vol. 110, No. 3, March 2022 | PROCEEDINGS OF THE IEEE 337

Authonzed licensed use limited to: Temple University. Downloaded on January 28,2023 at 17:38:46 UTC from |EEE Xplore. Restrictions apply.



Zhao et al.: Survey of Deep Learning on Mobile Devices

Input feature Input Layer Feature

. r\ maps
, B
Convalution |
+
155 Bias
LPS Wy
Relu

wscI e

Fig. 2.

r\ Feature r\

Convolution
(stride by factor 3)

Output

£

jm]
maps
P Flatten DN Regression

+ .
. 1024 155
"

Bias

‘ G
Relu = o
] !
- av

Fully Connected Layer 1

CNN-based speech/speaker recognition DL model example [47]. The architecture has three hidden layers, two convolutional layers,

and one fully connected layer. The audio input is represented as short-time Fourier transform (STFT) spectrograms and is fed as an input to

the CNN for audio classification tasks.

mobile platforms and their performance improvements are
only compared with the original DL models, it is hard
to guarantee that these models are suitable for mobile
devices. Therefore, future research studies are needed
to fully optimize the DL models to satisfy the hardware
resource constraint and real-time application nature in
speech or speaker recognition on mobile devices.

C. DL in Activity Recognition

Activity recognition is another active research
area in mobile computing, which could facilitate
many emerging applications, including AI and
AR/virtual reality (VR) on mobile devices. Existing
researchers have adopted DL in activity recognition
applications (e.g., human activity recognition and
transportation mode detection) on smartphones
[12]-[17], and embedded devices (e.g., Raspberry PI
and MinnowBoard Turbot Dual-Core Board) [93], [94],
[109]. We reviewed the recent literature on activity
recognition and summarize them in Table 2 based on their
complexity, software platform, and optimization methods.

Unlike the image classification area that always adopts
complex DL models, the activity recognition domain
usually adopts customized lightweight DL models,
as shown in Fig. 3. For example, some of them adopt
CNN, DNN, long short-term memory (LSTM), and so on
with less than ten layers, as shown in Table 2. Although
these models achieve good performance, their model
structures and databases are mostly not publicly available,
and thus, it is hard to compare the performance among
these approaches. Therefore, open-sourced DL models and
datasets are highly demanded.

We also observe that the majority of DL-based activity
recognition systems are developed and evaluated based
on personal computers without considering the limited
resources in mobile devices. Only a few researchers have
explored to improve the performance of DL models on
mobile devices. As shown in Table 2, Zebin et al. [13]
used quantization in their method, and Stardust [109]
compressed the structure of DL models to fit them into
mobile devices. Some works [12]-[14], [93] adopted light-
weight DL models (e.g., three-, four-, and eight-layer CNNs
and two-layer LSTM) to satisfy the requirements of their

338 ProceeDINGs OF THE IEEE | Vol 110, No. 3, March 2022

proposed applications. Since some lightweight DL mod-
els already achieved good performances (e.g., over 95%
accuracy in five-class activity recognition [13]), further
optimization is not vital to them. However, for com-
plex activity recognition applications, DL models usually
have complicated and huge-sized structures that cannot
be miniaturized by using a simple method. Thus, new
research on how to use the combination of multiple
optimization methods (e.g., factorization and pruning) to
reduce the size of such complex DL models while achieving
high accuracy is essential for deploying complex DL models
on mobile devices.

D. DL in Mobile Security

With the ever-increasing use of mobile and IoT devices,
security is becoming more important these days. There-

-
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Fig. 3. CNN-based activity recognition DL model example [90]. The
network consists of three types of layers, including convolutional
layer, pooling layer, and fully connected layer. The input data are a
vector containing data collected from accelerometer (acc),
magnetometer (mag), gyroscope (gyro), and barometer (baro).
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Fig. 4. Security DL model example [102]. The model contains a convolution layer followed by a global max pool layer and then connects to
a fully connected layer. In addition to dropout used to prevent overfitting, they also utilize batch normalization to improve the results.

fore, DL models for mobile security are also evolving
quickly with recent development [101], [102], [104] for
different resource constraints. Some of them are simulated
using the field-programmable gate array (FPGA) emula-
tor (e.g., Xilinx Zyng-7000) [106] and Android emula-
tor [105]. The existing works on DL models for mobile
security are summarized in Table 2. The lightweight DL
models are often deployed on mobile devices, as shown
in Fig. 4. For example, Yuan et al [101] designed a
lightweight on-device Android malware detector that is a
three-layer multilayer perceptron (MLP) neural network
mainly using one-shot computation for model training.
Hence, it can be fully or incrementally trained directly on
mobile devices (e.g., Samsung Galaxy S9). MalDozer [102]
detected Android malware by using a four-layer CNN that
is not only deployed on servers but also on the IoT devices
(e.g., Raspberry Pi 2). Different from the aforementioned
existing works that need the hand-engineered malware
features, McLaughlin et al. [103] developed a five-layer
CNN-based Android malware detection system that is
capable of simultaneously learning to perform feature
extraction and malware classification. Even though those
models provide decent accuracy on mobile devices, they
are not generally applicable to various mobile security
applications since they are only trained and tested on
a few malware datasets (e.g., VirusShare and Contagio,
Malgenome and Drebin, and Android malware repository
from McAfee Labs are adopted in [101]-[103], respec-
tively). Also, the proposed models are mostly not available.
Considering the varying nature of malware in real scenar-
ios, public malware datasets and open-sourced DL models
are desirable in mobile security.

In addition, DL is applied as a viable strategy for
network traffic monitoring and analysis applications,
e.g., traffic classification and prediction [112]-[116],
because a large portion of malware is spreading through
the network traffic and hiding activities using various

encryption protocols. However, the current state of
research on mobile traffic classification has not reached
a similar level of DL in other fields [108]. Research about
mobile networking and traffic monitoring has mostly been
studied independently. Recently, only a few crossover
studies [107], [108] between the two research areas have
emerged. Aceto et al. [108] presented a review for mobile
traffic classification works that use DL techniques. They
reproduced several DL classifiers, e.g., MLE LSTM, CNN,
and SAE, from the traffic classification literature and also
made a detailed evaluation to compare the accuracy of
these classifiers. Moreover, they found that the key issues
of DL in traffic classification are the lack of advanced
hybrid DL architectures and the lack of up-to-date human-
generated public datasets. This problem is further wors-
ened in mobile scenarios because the possibility of sharing
large and up-to-date datasets is restricted by both higher
privacy concerns and the fast-paced evolution of mobile
traffic mix.

Because a timely response to malicious attacks could
help prevent users’ loss, mobile security applications are
susceptible to inference time. Usually, it requires reducing
the model size and computational cost of DL models to
achieve real-time detection. However, we find that the
majority of existing works mainly focused on improving
inference accuracy using offline computing. While high
accuracy has been achieved, not much work has been
done to reduce the model size and computational cost
of DL models in mobile security. To achieve the real-time
nature of the security applications on various mobile
devices with different resource constraints, researchers
will need to adaptively consider some typical performance
improvement methods (e.g., quantization and pruning) in
their research. Especially, when more generally applicable
models with deeper architecture are adopted, more opti-
mization methods would be needed to achieve real time
on the mobile devices.
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I TOWARD ENABLING DL ON
MOBILE DEVICES
A. Current Status and Issues

Currently, most of the popular DL-based mobile applica-
tions collect sensor data from mobile devices and perform
inferences using DL on powerful cloud servers. This is
mainly because state-of-the-art DL models usually have
complex and bulky structures, which contain hundreds,
even thousands of nodes, and potentially millions of para-
meters that cannot be deployed on resource-limited mobile
devices. We have reviewed a broad range of literature
about enabling DL on mobile devices and summarize cur-
rent status and issues in this area as follows.

1) How to Select/Design a Suitable Model for Heteroge-
neous Mobile Devices and Applications Is Not Systernatically
Studied?: We have seen that many application domains
adopt various DL models [1]-[17] on server or desktop;
however, there are no general models designed specifi-
cally for different domains on mobile devices. As the first
step toward enabling DL on mobile devices, the current
mobile computing domain needs the capability to select
and design DL models suitable for various mobile devices
and applications.

2) What Kind of DL Optirnization Approaches That Could
Enable Existing DL Models on Various Mobile Devices Is Still
Lacking Cormnprehensive Analysis and Research?: While many
researchers have been working on DL optimization in
recent years, most of them focus on reducing the model
size on a desktop or server that usually has sufficient
hardware resources to run various compressed models
smoothly. Differently, due to various hardware resource
limitations [117]-[120] on a range of mobile devices,
deploying DL models on mobile devices need to consider
more aspects (e.g., storage space, inferencing speed, power
consumption, and real-time memory usage). No single
optimization approach (e.g., weight pruning [121]) can
easily meet the requirements for all those aspects. It is
critical to find an optimization pipeline that adaptively
adopts various exiting optimization approaches for DL
deployment on mobile devices considering different appli-
cation domains.

3) How to Utilize the Full Power of Existing Mobile Device
Hardware and Design New Dedicated Hardware for DL Are
Still to Be Explored?: Current off-the-shelf mobile devices
usually already have the strong computing capability at a
low-end laptop. In addition, most of them have integrated
various processors that are designed for different purposes,
such as CPU, GPU, and DSP. While incorporating dedicated
hardware for DL acceleration depends largely on hardware
manufacture, it is more practical to have software acceler-
ators on mobile devices to take full advantage of available
hardware resources by using hardware and software code-
sign.

Another way to enable DL on mobile devices is
to employ new hardware (e.g., mobile GPU [122],
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FPGA [123], [124], and application-specific integrated
circuit (ASIC) [125]-[128]) dedicated to DL on mobile
devices. So far, those designs require special manufactur-
ing processes. Also, not many new hardware designs have
been done for efficient DL-based applications.

To facilitate the analysis of DL optimization for mobile
devices and applications, we propose a DL optimization
pipeline, as shown in Fig. 5. In particular, we identify four
major mobile applications that have the most extensive use
of DL as the focus of this survey, namely image classifica-
tion/object detection, speech/speaker recognition, activity
recognition, and mobile security. While DL has already
been adopted in a variety of applications to improve their
performance, these applications cover the state-of-the-art
DL design and optimization research. Overall, we catego-
rize research on DL optimization for mobile devices and
applications into two types: model-oriented optimization
mechanisms and nonmodel-oriented optimization mech-
anisms. For most mobile applications, the first type can
reduce DL models’ size and inference time. These mech-
anisms include the optimum DL model selection, which
explores DL models that are most suitable for a particular
type of mobile application, and the DL model optimization,
which develops compressing or pruning technologies to
reduce the complexity of DL models for mobile deploy-
ment. In addition to the first type of optimization, the
second type could further boost the performance of DL
on mobile devices. Given a particular hardware environ-
ment, researchers have developed mobile DL software
accelerators to decompose a DL model and deploy the
decomposed components on the most suitable mobile
processing hardware (e.g., CPU, GPU, and DSP). Except
for software-oriented optimization approaches, there are
research works focusing on mobile hardware designs
for DL, which proposes special computer architectures
enabling highly efficient DL training and inference with
low energy consumption. Next, we introduce our findings
in each component of the pipeline.

B. Model-Oriented Optimization Mechanisms for
Mobile Devices and Applications

1) Optimum DL Model Selection: With the emerging use
of mobile devices in Al or VR applications, research in the
computer vision domain has led to the trend of using DL
on mobile devices. DL models that are specially designed
for mobile devices have shown the initial success in image
classification and object detection whose performance
is comparable to that of the state-of-the-art DL models
(e.g., VGG [65] and AlexNet [66]) on personal computers.

a) DL Model Selection for Irage Classification: Specif-
ically, MobileNets [64] and SqueezeNet [129] have
already shown their effectiveness on mobile devices with
power constraints for image classification. In MobileNets,
by using the width and resolution multipliers, researchers
can trade off a reasonable amount of accuracy and model
size to build smaller and faster versions. In particular,
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Fig. 5. DL optimization pipeline for mobile applications.

We identify four major mobile applications that have the most
extensive use of DL as the focus of this survey. Overall,

we categorize research on DL optimization for mobile devices and
applications into two types. The first one is model-oriented

tion mech which includes the optimum DL model

selection and DL model optimization. The second one is
nonmodel-oriented optimization mechanisms, which further boosts
the performance of DL via software accelerators using mobile device
hardware and mobile hardware designs for DL.

MobileNet is nearly as accurate as VGG16 but 32 times
smaller and 27 times less compute-intensive. Moreover,
it is 4% better than AlexNet, yet 45 times smaller and
9.4 times less compute than AlexNet, while SqueezeNet
achieves a model size less than 0.5 MB with 50 times
fewer parameters than AlexNet, but with the same level
of accuracy. It can be entirely deployed in the FPGA and
eliminate the need for off-chip memory accesses to load
model parameters.

b) DL Model Selection for Object Detection: As for
object detection, a fast single-shot object detector,
SSD [130], has been built on MobileNet, which can be
deployed on the mobile and edge devices [131]. In partic-
ular, the prototype SSD could significantly outperform the
state-of-the-art object detector counterparts (e.g., Faster
R-CNN [132] and YOLOv1 [133]) in terms of both accu-
racy and speed. For example, the SSD512 (i.e., SSD with
512 x 512 input) model has 10% higher accuracy and
three times faster than the Faster R-CNN. The SSD300 (i.e.,
SSD with 300 x 300 input) model could perform object
detection at 59 frames/s, which is about three times faster
than the current real-time YOLOv1 model and producing
a superior detection accuracy of 74.3% on the Pascal
VOC2007 dataset. Moreover, YOLOvV2 [134] was devel-
oped as an enhanced version of YOLOv1 whose inference
speed could be twice that of SSD. In particular, YOLOvV2
added the batch normalization on all convolutional layers
and adopted anchor boxes as SSD and Faster R-CNN do.
It could also be run at a variety of image sizes to provide
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a smooth tradeoff between speed and accuracy, which
has been widely tested on mobile devices for achieving
real-time processing.

¢) DL Model Selection for Activity Recognition and
Security: While the DL models mentioned above are spe-
cially designed for computer vision-based applications,
they could be adopted in other domains, such as activity
recognition and security. There are two basic steps for
adoption. First, according to different data types, it is
necessary to change the input format for certain datasets
(e.g., the activity data collected from accelerometer and
gyroscope sensors in the UCI HAR [135] and WISDM
datasets [136] and network traffic data collected from the
UNSW-NB15 [137] and CIDDS-001 [138] datasets in secu-
rity area). Second, base model’s hyperparameters (e.g.,
number of neurons, convolution kernel width, and learn-
ing rate) should be tuned based on both accuracy and
inference time requirement of different applications and
the constraint of adopted mobile hardware. In particular,
there are several benefits of using those state-of-the-art DL
models in the vision field. First, those models have been
publicly available for usage. Therefore, they only need to
slightly change the input format. Second, adopting those
models could provide a general evaluation framework
among research work. Third, those models should be able
to support real-time applications on mobile devices.

The next optimization option is to apply the general
DL optimization mechanisms. In particular, DL. model opti-
mization aims at reducing the model size so as to fit into
resource-constrained mobile devices. Such methods can be
roughly divided into two categories: with changing model
architecture and without changing model architecture,
as shown in Table 3. The former reduces the model size by
shrinking the original model architecture, while the latter
shrinks the model weight size retaining the original model
architecture.

2) DL Model Optimization With Changing Model Archi-
tecture: Several DL optimization methods in with chang-
ing model architecture have been proposed to change
model architectures by either introducing new layers by
factorization [139]-[141], pruning connections between
neurons [1], [3], [39], [40], or even generating totally
new architecture based on original models [144]-[146].

a) Factorization: Factorization [149] changes the
underlying architecture by adding new layers. Specifically,
it compresses the weight matrix W of an original DL
model into two lower rank weight matrix W, and W,
via singular value decomposition (SVD). As long as the
summed parameters in two factorized matrices W, and W}
are less than the original matrix W, the model size will be
compressed. Furthermore, this technique can uniformly be
applied to convolutional layers and fully connected layers.
For example, DXTK [139] showed that the DNN model
after factorization can run 9.7 times faster than its unmod-
ified version. The latest work [150] showed that factoriza-
tion could reduce the model size up to approximately 75%
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Table 3 Classification of With-Changing-Model-Architecture and Without-Changing-Model-Architecture DL Model Optimization Methods

With-Changing-Model-Architecture

Without-Changing-Model-Architecture

Factorization [139]-[142];

Pruning [1], [3], [39], [40], [142], [143];
Generating new architecture [144]-[146];
Knowledge Distillation (KD) [144], [146];

Quantization [40], [142], [143], [147], [148];

without decreasing the accuracy. However, factorization is
computationally expensive and not suitable for large deep
models since the computation cost increases exponentially
as the layer increases.

b) Pruning: In addition to factorization, pruning
could compress DL models by removing small-weight con-
nections below a threshold. For example, Shi et al. [151]
showed that the DNN model after pruning could achieve
up to 25.6 times reduction on transmission workload,
6 times acceleration on total computation, and 4.81 times
reduction on end-to-end latency compared to the original
DNN model without pruning. DeeploT [39] presented the
performance of adopting pruning on DL structures for
sensing applications, including fully connected network,
CNN, and RNN, as well as their combinations. It reduced
the size of deep neural networks by 90% to 98.9%, the
execution time by 71.4% to 94.5%, and energy con-
sumption by 72.2% to 95.7% without loss of accuracy.
The results show the potential of pruning for deploying
deep neural networks on resource-constrained embedded
devices. Currently, Tensorflow and Pytorch support weight
pruning for both convolution layers and fully connected
layers. However, pruning increases training time and also
generates a sparse matrix that requires some dedicated
hardware.

¢) Knowledge Distillation: Different from pruning and
factorization, a knowledge distillation (KD) method [144]
trains a small model (i.e., student model) based on large
original models or whole ensemble of models (i.e., teacher
model), This is also called a teacher—student network.
Knowledge is the distribution of class probabilities pre-
dicted by the teacher model based on the softmax layer
output. In particular, knowledge is transferred to the dis-
tilled model (i.e., compressed model) by training it to
match each class probability in the output of softmax layer
of teacher model. For example, Hinton et al. [144] showed
that they could significantly improve the model of a heavily
used commercial system by distilling the knowledge in an
ensemble of models into a single model. In particular, more
than 80% of the improvement in classification accuracy
achieved by using an ensemble of ten DNN models in
automatic speech recognition (ASR) was transferred to
the distilled model. Ashok et al. [146] showed that KD
could be combined with pruning to improve the compres-
sion rate of about two times than using pruning alone
while also maintaining the accuracy of the teacher model.
However, KD heavily relies on the softmax layer and has
a strict assumption about the size and structure of the
teacher—student network. As a result, this method is more
suitable for small- and middle-size models instead of large
models.
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3) DL Model Optimization Without Changing Model Archi-
tecture: The DL optimization methods listed above can
reduce the model size and retain the decent accuracy
with changes in model architecture. Instead, the model
optimization of without changing model architecture can
reduce the model size without changing the original model
architecture and have little degradation in model accuracy.

a) Quantization: It can use quantization to opti-
mize the model by replacing the full-precision weight
(i.e., 32 bit) into n-bit precision weight (e.g., binary quan-
tization having 1-bit weight) and reducing the memory
by a factor of 32/n. Moreover, quantization can speed up
inference since the costly multiplication and addition oper-
ations are replaced by cheap XNOR and bit-count opera-
tions of two quantized vectors with relatively lower energy
requirements. For example, the system [147] showed that
quantizing 16- or 32-bit weight to 4-10 bits could achieve
energy reductions of up to 30 times without sacrificing
algorithm performance. However, retraining is required
after quantization and different layers may have different
sensitivities to quantization resolution [148]. In addition,
computer hardware (e.g., CPU and GPU) does not sup-
port all the quantization resolutions. For instance, Nvidia
TensorRT only supports integer quantization and Floatl6
quantization. Currently, popular DL libraries (e.g., Tensor-
flow and Pytorch) support only integer quantization and
Float16 quantization. A special kind of quantization model
is binarized neural networks (BNNs) [152]-[154] that
perform the pure-logical computation by utilizing 1-bit
weights and activations. Due to the fewer memory access,
it significantly speeds up inference time and reduces
energy consumption in resource-constrained devices. For
example, Ding et al. [154] used 1-bit weights and acti-
vations to compute the distribution loss for regulariz-
ing the activation flow and develop a framework to
systematically formulate the loss. In addition, the pro-
posed approach is robust to select the hyperparameters
(i.e., learning rate and optimizer) to train the state-of-
the-art networks (i.e., AlexNet) on the ImageNet dataset
with high accuracy. The evaluation results demonstrate
that the proposed BNN approach can realize efficient
inference on resource-limited mobile devices with lower
inference latency and energy consumption. Lin et al. [153]
introduced two innovative optimization approaches to
training BNNs at run time. The approach used a linear
combination of multiple binary weight bases to approx-
imate full-precision weights and employ multiple binary
activations to migmatite information loss. The experimen-
tal result shows that the proposed approach significantly
reduces the memory cost while maintaining high accuracy.
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Thus, the BNN approach is a potential option to enable the
network to deploy on resource-constrained mobile devices.

4) Combining DL Model Optirnization With and Without
Changing Model Architecture: Although the quantization
technique can compress the network complexity by using
limited numerical precision or clustering parameters, the
compression ratio of quantization is usually less than the
optimization methods with changing architecture such as
pruning method. Since those two categories of methods are
not conflicting with each other, some research [40], [142],
[143] combined both of them for better performance. Deep
compression [40] adopted both pruning and quantization
to reduce the storage requirement of neural networks
by 35-49 times without affecting their accuracy. It also
achieved 3-4 times layerwise speedup and 3-7 times
better energy efficiency. This allowed fitting the model
into on-chip SRAM cache rather than off-chip DRAM
memory, which facilitated the use of complex neural
networks in mobile applications with limited memory
size and download bandwidth. CLIP-Q [143] combined
network pruning and weight quantization in a single
learning framework to perform pruning and quantization
jointly. It obtained the state-of-the-art compression rates
of 51 times of AlexNet, 10 times of GoogleNet, and
15 times of ResNet-50. Shi et al. [142] presented a
compression approach based on the combination of
low-rank matrix factorization and quantization training to
reduce complexity for neural networks. For a three-layer
LSTM network, the original model size could be reduced to
1% with negligible loss of accuracy. Moreover, factorization
and KD can be further applied for reducing redundant
computations and achieving faster inference.

In addition to the DL model optimization methods
for reducing the model size, many existing works
also focus on generic optimization methods. These
optimization methods optimize the training algorithms,
such as stochastic gradient descent (SGD), adaptive
gradient methods, and distribution methods, to reduce the
computational cost, energy consumption, and speed up the
training process. They aim to solve the issues of gradient
explosion, vanishing, and the undesirable spectrum during
the training process meanwhile keeping high accuracy.
For example, Le et al. [155] demonstrated that more
sophisticated optimization methods (e.g., limited memory
BFGS (L-BFGS) and conjugate gradient (CG) with line
search) could significantly simplify and speed up the
process of training algorithms compared to the relatively
simple optimization methods (e.g., SGD). MENNDL [156]
developed a genetic algorithm to automate network selec-
tion on computational clusters through hyperparameter
optimization. It simplifies the process of applying deep net-
works to new applications and domains compared to the
manual selection for the hyperparameter. To summarize,
such generic optimization methods reducing the training
iterations result in computational cost, memory accesses,
and energy consumption reduction. Researchers could
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adopt these generic optimization methods combined with
other optimization methods to enable the efficient training
of the models on resource-constrained mobile devices.

C. Nonmodel-Oriented Optimization Mechanisms

In addition to the model-oriented optimization mecha-
nisms, there are some nonmodel-oriented ones that could
further boost the performance of DL on mobile devices.

1) Mobile DL Software Accelerators: It is a service
to adopt pretrained DL models on mobile devices.
It decomposes a deep model across a mix of heteroge-
neous processors (e.g., CPU, GPU, and DSP) to maximize
energy efficiency and execution time, with limited mobile
resources, such as computation power and memory size.
It has several advantages. First, it removes the barri-
ers preventing existing pretrained DL models from being
adopted by current mobile and wearable devices. More-
over, it allows complex DL models to run on commodity
mobile devices with acceptable resource consumption lev-
els and low latency. There are several software accelerators
to optimize the DL for mobile devices.

DeepX [19] took an important step toward adopting
DL models to mobile and wearable devices. This software
accelerator significantly lowered the device resources (i.e.,
memory, computation, and energy) required by DL that
currently acts as a severe bottleneck to mobile adoption.
Specifically, a pair of resource control algorithms were
proposed for the inference stage of DL. First, DeepX
decomposed monolithic deep model network architectures
into various unit blocks, which were then executed by
heterogeneous local device processors (e.g., GPUs and
CPUs). Second, it performed principled resource scaling
that adjusted the architecture of deep models to reduce
the overhead that each unit block introduces. Experi-
ments showed that across various model and processor
combinations, the mean energy benefit of DeepX was
7.12 times (Snapdragon) and 26.7 times (Tegra) under the
time requirement.

Another accelerator CNNdroid [157] was a
GPU-accelerated library for execution of trained deep
CNNs on Android-based mobile devices. It was compatible
with CNN models trained by common libraries, such as
Caffe, Torch, and Theano. Empirical evaluations showed
that CNNdroid achieved up to 60 times faster speed
and 130 times energy saving on current mobile devices.
Moreover, the source code, documentation, and sample
projects were publicly available (https://github.com/
ENCP/CNNdroid).

Although DeepX and CNNdroid could use computing
resources on mobile devices to accelerate DL models,
there are some limitations. These frameworks require some
dedicated hardware (e.g., GPU), which are not available
for some mobile devices. In addition, they have not been
integrated well with popular DL frameworks and thus need
external tools to run models trained with existing libraries
such as TensorFlow. Different from the above two methods,
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Table 4 Summary of Software Accelerators

GPUs to accelerate deep CNN p on

current mobile devices.

ktop/server libraries; (2) Easy to

and i into any Android app.

Accelerators Design Principle Ad 2 Disad B

DeepX [19] {1} Leverage a mix of heterogeneous processors | Decompose a deep model across available pro- | DeepX is not applicable to those deep leamning
(e.g., GPUs, LPUs); (2) Offer two resource | cessors o maximize energy-efficiency and exe- | networks with temporal information.
control and optimization algorithms. cution time.

CNNdroid [157] Use parallel processing capabilities of mobile | (1) Compatible with CNN models trained by | Do not consider the underlying hardware archi-

tecture to thoroughly make use of the hardware
specifics.

RSTensorFlow [15]

Modify the kernels of TensorFlow operations to

Utilize the powe} of available computation

puting framework on Android devices.

com-

T while running models trained with
TensorFlow without requiring external tools.

Optimizing the energy costs of running on CPU
vs GPU are potential future research directions.

DNN inference execution performance in the

modern mobile architectures.

DeepMon [18] (1) Develop optimizations for processing convo- | Allow large DNNs to run on commodity mobile | Only extract features from video frames and need
Iutional layers; (2) Apply system-level optimiza- | devices at a low latency. to be integrated with a complete cloud-enabled
tions to accelerate the matrix calculation solution.

CADNN [36] L ge model ¢ to improve the | Propose three major optimizations targeting | Focus on the acceleration of existing DNN

models designed for mobile applications.

mobile environment.

RenderScript [15] was proposed as an extension to Ten-
sorFlow. By integrating the acceleration framework tightly
into TensorFlow, researchers could easily take advantage
of the heterogeneous computing resources (CPU and GPU)
on mobile devices without the need for other external
tools. DL models could run three times faster by using
RenderScript.

Another approach, DeepMon [18], allowed large DNNs
to run on commercial mobile devices at low latency. Prior
work, such as DeepX, has focused on smaller DNNs and
more powerful noncommodity mobile devices such as the
Tegra K1. DeepMon could complement DeepX by support-
ing various mobile GPUs (e.g., Adreno 420, Adreno 430,
and Mali T 880) on the market. Moreover, DeepMon pro-
posed to reduce the latency of convolutional layers. In par-
ticular, by devising a suite of optimization techniques,
including the convolutional layer caching, decomposition,
and matrix multiplication optimizations, DeepMon is two
times faster than DeepX.

Furthermore, Niu et al. [36] found that most of
the existing accelerators, such as DeepMon and DeepX,
did not explore possible optimization opportunities in
computation and memory footprint reductions offered
by model compression, including weight pruning and
weight quantization. Therefore, a significant performance
gap still remained between the peak performance that
could be potentially offered by mobile devices and what
the existing systems actually achieved. Based on that,
Niu et al. [36] proposed CADNN, a programming frame-
work, to efficiently execute DNN inference on mobile
devices with the compression (i.e., pruning) and a set of
architecture-aware optimizations (e.g., computation pat-
tern transformation, redundant memory load elimination,
smart selection of memory, and computation optimization
parameters). Based on evaluation studies, CADNN is about
8.8 times and 6.4 times faster than TensorFlow Lite and
TVM, respectively, two popular and highly optimized dense
DNN execution frameworks.

As shown in Table 4, software accelerators can ben-
efit from the deployments of pretrained DL models
on mobile devices based on various design principles.
If the researchers would like to deploy their DL mod-
els on some resource-constrained mobile devices (e.g.,
10T) and improve the energy efficiency and lower the
memory and computation requirements of the DL, some
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common accelerators with resource control strategies and
optimization approaches (e.g., DeepX and CADNN) might
be considered. If the pretrained DL model is devel-
oped with some specific libraries (e.g., TensorFlow) or is
deployed on some specific devices (e.g., Android devices),
some accelerators, such as RendorScript and CNNdroid,
would benefit the researchers a lot since they aimed at
specific platforms or frameworks. If the researchers would
like to adopt some large-scale DNN models, DeepMon is a
better choice since it helps adopt large DNN models with
low latency on various mobile devices in the market.

2) Mobile Hardware Designs for DL: Advances in DL are
mainly due to powerful computer systems. Compared to
such systems, mobile devices have limited computational
power and battery lives, making them not suitable for
DL deployment. In existing research, the most common
computing processors used for DL on mobile devices are
CPUs, GPUs, FPGA, and ASIC. We compare the power
efficiency, time/cost budget, and compatibility of these
processors in Fig. 6. CPU and mobile GPU are widely
used in the embedded platform and mobile devices due to
their high availability and compatibility. They can be sup-
ported by multiple DL frameworks and various program-
ming languages. Furthermore, some GPU-based execution
frameworks [158], [159] can be utilized to provide low
latency, high throughput, and efficient on-chip resource
utilization. It is a good choice for the researchers to start
with CPUs and GPUs to explore the feasibility of deploy-
ing DL models on mobile devices. However, as shown
in Fig. 6, CPUs and GPUs have the lowest power effi-
ciency, which is not really mobile-friendly. To enable DL
on power-constrained mobile devices, ASIC is the most
power-efficient architecture suitable for processing DL on
mobile devices. Compared to ASIC, FPGA is a balanced
choice considering the power efficiency, compatibility, and
developing budget. FPGA is also more flexible in devel-
opment since it can be (re)programmed by firmware and
supported by open-sourced libraries (e.g., Caffe).

Recent studies have shown that highly efficient DL
training and inference with low energy consumption could
be achieved using processors with specially designed
architecture. ASIC [125]-[128], [160], [161] and
FPGA [123], [124], [162]) have offered a good starting
point for developing DL processors for mobile devices.
We summarized these works in Table 5. For instance,

Authonzed licensed use limited to: Temple University. Downloaded on January 28,2023 at 17:38:46 UTC from |EEE Xplore. Restrictions apply.



Table 5 Summary of Hardware Designs

Zhao et al.: Survey of Deep Learning on Mobile Devices

Accelerators Categories Advantages Disadvantages
The maximum matrix that one synaptic core can
TrueNorth [125] ASIC-based | Have associated software to aid in development. handle is 256 x 256, and it supports only a
simplified leaky—integrate-and-fire neuron model.
It can be deployed onboard a drone and used to The execution time per inference using one chip
VPU [126] ASIC-based | perform inference on drone imagery, without is 4x slower compared to a reference CPU/GPU
significantly taxing system resources. implementation.
Operating directly on compressed networks
EIE [127] ASIC-based enables the large ne_ura] nelmk models to fit in Not scalable due to alljlo-all processing element
on-chip SRAM, which results in 120 better energy broadcasts and a BW link of one element per cycle.
savings compared to accessing from external DRAM.
; The accelerator achieves high throughput in a The scalability and efficiency are severely limited
DianNao;[128] ASIC-hased small area, power and energy foorplginf. by the bandwidth constraints of the memory system.
Successfully deploy the deeper VGGNet into an ) 13"5 app_roach L models:. ]
Zhung et al. [123] | FPGA-based | erbedded FPGA platform, with several optimization | 2) Not flexible encugh to match cach layer's distinct
* - ! features and result in underutilization of hardware
techniques.
TESOUrces.
- Linider € msuajm.s of f:omputation ISSOMILS The accelerator design was only applied to several
FPGAI15 [124] FPGA-based | and memory bandw_ldth, it exp](_)res all poglblt CONV layers rather than the fall CNN.
solutions in the design space using a roofline model.

TrueNorth [125] proposed a real-time neurosynaptic
processor for mobile devices based on ASIC, which
achieved an extremely low typical power consumption of
65 mW. Besides, TrueNorth was fully configurable in terms
of connectivity and neural parameters to allow custom
configurations for a wide range of applications. The
authors also introduced an asynchronous-synchronous
tool that may facilitate general ASIC design. An ASIC-
based VPU [126] has been used to enable low-power DL
computation. This article showed that VPU, as a highly
parallel vector coprocessor with low power consumption,
could reduce the thermal design power (TDP) up to eight
times compared to their CPU and GPU implementations.
Han et al. [127] proposed an optimized energy-
efficient engine (EIE) to operate on compressed deep
neural networks. By leveraging sparsity in both the
activations and weights and integrating weight sharing
and quantization techniques, this engine outperformed
CPU, GPU, and mobile GPU by the factors of 189x, 13x,
and 307x and consumed 24 000x, 3400x, and 2700x
less energy than CPU, GPU, and mobile GPU, respectively.
Chen et al. [128] proposed an ASIC accelerator, DianNao,
for the fast and low-energy execution of the inference of
large CNNs and DNNs in a small form factor. This work had

¥l
%_%j

Compatibility

Fig. 6. Metrics of different computation components. There are
three metrics we distinguish on various hardware devices, including
power efficiency, compatibility, and time/cost budget.

a special emphasis on the impact of memory on accelerator
design, performance, and energy. This accelerator had high
throughput, capable of performing 452 GOP/s in a small
footprint of 3.02 mm and 485 mW. It achieved a speedup
of 117.87x and an energy reduction of 21.08x over a
128-bit 2-GHz single instruction multiple data (SIMD)
core with a normal cache hierarchy.

Qiu et al. [123] went with an FPGA-based approach
for accelerating the large-scale image classification using
a CNN. A state-of-the-art CNN, VGG16-SVD, was imple-
mented on an FPGA platform. Experimental results showed
that GPU consumed 26 times more power consumption
than the proposed FPGA hardware. Zhang et al. [124]
proposed a roofline-model-based FPGA accelerator. In this
method, they first optimized CNN’s computation and mem-
ory access. Then, they modeled all possible designs in the
roofline model to find the best design for each layer. They
realized an implementation on the Xilinx VC707 board and
achieved a 4.8 x speedup over CPU.

Based on the proposed DL optimization pipeline for
mobile applications, when deploying DL models on com-
mon mobile and embedded devices, researchers could
apply different optimization mechanisms to improve the
performance of mobile applications. The model-oriented
optimization approaches, such as pruning, could be lever-
aged to reduce the memory and storage requirements
and speed up the inference time. The nonmodel-oriented
optimization mechanisms, such as software accelerators,
could further improve the efficiency of executing DL oper-
ations without modifying models. While the improvement
of software accelerators may be limited by various software
environments such as operating systems and drivers, hard-
ware accelerators based on special computer architecture
(e.g., ASIC or FPGA) could be designed to improve the
efficiency of DL operations on mobile devices significantly
when time and money budget is sufficient.

IV. SOFTWARE LIBRARIES

This section summarizes software libraries regarding
their support for software optimization and hardware
optimization, as shown in Fig. 7. For software optimiza-
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Table 6 Software Optimization Support

General DL Optimization Methods Software Accelerators

pruning quantization factorization KD

. . Integer quantization®, DeepX, RenderScript,
#®

L REEIEREE float16 quantization* i o DeepMon
Caffe2 N/A Integer quantization* v v DeepX, CNNdroid

. . Integer quantization®,
&

Keras weight pruning o8 v v DeepX
Pytorch weight pruning Integer quantization* v v DeepX, CNNdroid
MXNET N/A Integer quantization*® v N/A N/A

DL4j N/A N/A N/A N/A DeepX

tion, we discuss popular model architectures and general
DL optimization approaches (e.g., quantization and prun-
ing) as well as software accelerators. For hardware opti-
mization, we summarize the popular libraries for various
types of hardware such as mobile and powerful embedded
devices and microcontroller (i.e., the IoT devices). Besides,
we also consider the related designs such as ASIC and
FPGA.

A. Software Optimization Support

Popular DL libraries, such as Tensorflow, Pytorch, Keras,
Caffe2, and Deeplearning4j (DL4j), support most of the
state-of-the-art model architectures in various application
domains, as shown in Tables 1 and 2. In particular, some
pretrained models for image, text, and video applications,
such as Mobilenet, Resnet, Inception, Convnet, and VGG,
are available [163]-[165] and fine-tuning in user-specific
applications for downloading.

Besides supporting model architectures, those libraries
also provide general optimization procedures. As shown in
Table 6, Tensorflow, Pytorch, and Keras currently support
common optimization algorithms via both quantization
and pruning [166]. In particular, Tensorflow officially
provides full integer quantization, float16 quantization,

( Software Optimization Support

% Popular Model Architecture Support
% General DL Optimization Methods
+ Software Accelerators

. /

(" Hardware Optimization Support )

+ Officially Compatible Hardware
% Support for Special Hardware
| J

o e e e
5 .
2
[
L ————

Fig. 7. Library optimization support. We summarize software
libraries regarding their support for software optimization and
hardware optimization. In software optimization, we discuss popular
model architectures and general DL optimization methods as well as
software accelerators. In hardware optimization, we summarize the
popular libraries for various types of hardware. Besides, we also
consider special designs, such as ASIC and FPGA.
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and magnitude-based weight pruning. For example, it can
reduce the model size fourfold and increase the compu-
tational speed threefold on CPU, edge tensor processing
unit (TPU), and microcontrollers via full integer quan-
tization [167]. Moreover, its supported floatl6é quanti-
zation can reduce the model size twofold on CPU with
potential GPU acceleration [167]. In addition, Tensorflow
achieves model sparsity by supporting magnitude-based
weight pruning [168]. Since Keras can adopt Tensor-
flow as backend, it can carry those optimization func-
tionalities provided by Tensorflow. In contrast, PyTorch
supports only integer quantization allowing a four-time
reduction in the model size and memory bandwidth
requirements [169]. Also, it provides pruning capability
via the third part package (e.g., Intel Al Lab proposes
Distiller [170], an open-source Python package for neural
network compression research). Caffe2 and MXNet cur-
rently support only integer quantization via the official API
[171] and Apache/MXNet toolkit, respectively. Optimiza-
tion techniques, such as factorization and KD, can also
be adopted when using those libraries. In addition, some
existing software accelerators (e.g., DeepX, RenderScript,
DeepMon, and CNNdroid) can also be adopted to further
enhance computational performance by leveraging various
mobile hardware components, such as GPU and LPU.
Table 6 summarizes the accelerators and related libraries.

B. Hardware Optimization Support

Different hardware can support various DL frameworks
and libraries, which made it convenient for researchers
to deploy DL on their devices. Mobile phones and pow-
erful embedded devices are the most common authorized
and supported mobile hardware to deploy DL. Specif-
ically, Android and iOS mobile phones are supported
by most of the popular libraries, as shown in Table 7.
In addition, TensorFlow, Caffe2, PyTorch, MXNet, and
so on are available in the embedded device, such as
Raspberry Pi, NVIDIA Tegra, and Nvidia Jetson TX2.
Some libraries have been adopted for resource-constrained
mobile devices such as microcontrollers (IoT). For exam-
ple, TensorFlow Lite, a lightweight version of Tensor-
Flow (https://www.tensoflow.org/lite/microcontrollers),
supports the processors based on the Arm Cortex-M Series
and ESP32 architecture (e.g., Arduino Nano 33 BLE Sense
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Official Supported Hardware Special Hardware
Mobile & powerful embedded device Microcontroller support (IoT) Design
TensorFlow Lite for Microcontrollers
. (processors based on the Arm Cortex-M
TensorFlow z;;“:;“; Te“s‘”iiﬂl‘;‘:s ]L"e b Series and ESP32 architecture, e.g., ASIC support
phone an poerry P1) Arduino Nano 33 BLE Sense,
SparkFun Edge)
Caffe2 i0S, Android,Tegra, CMSIS-NN optimized libraries for N/A
and Raspberry Pi platforms Arm Cortex-M processor cores
Keras mobile and embedded devices N/A N/A
PyTorch i0S, Android, and Raspberry Pi N/A ASIC support
108, Android, Raspb Pi,
MXNet ind NVIDIA Tetoum Tx N/A ASIC support
DLA4j Android, i0S N/A N/A

and SparkFun Edge). Caffe2 facilitates certain microcon-
troller (e.g., Arm Cortex-M processor cores) by using the
CMSIS-NN optimized libraries. Furthermore, researchers
also design customized hardware (e.g., ASIC and FPGA)
to implement libraries, such as TensorFlow, Python, and
MXNet.

C. Model Conversion Tools

There are many available libraries and each of them
has its advantages and use cases. To make the best
use of different features provided by these libraries and
allow researchers to take full advantage of the libraries
based on their situation, model conversion tools are
developed. Then, users can smoothly convert DL models
from one library to another library without reprogram-
ming. For example, MMdnn [172] is a comprehensive and
cross-framework tool to convert, visualize, and diagnose
DL models. It is a universal converter to convert DL mod-
els among a number of existing frameworks, making a
trained model of one framework be easily deployed on
another framework for inference and prediction. Open
neural network exchange (ONNX) [173] is an open stan-
dard format for representing machine learning models. It is
facilitated by a community of partners for implementations
in many frameworks, such as PyTorch, MXNet, Caffe2, and
TensorFlow.

V. FL ON MOBILE DEVICES

Training DL network on mobile device is another chal-
lenging issue. FL is a way of enabling DL training by
leveraging many client devices (e.g., mobile devices and
the IoT devices) in a network. This solves the issue that
a single resource-constrained device may never support
training a DL model due to its limited hardware resources.
In particular, all mobile devices need to devote their
storage and computing resources for their data training.
However, this requirement is not always satisfied. When
FL deploys identical neural network models to heteroge-
neous devices, the ones with weak computational capac-
ities may significantly delay the synchronous parameter
aggregation [174]. Besides, a large amount of memory
and power are needed for the training of advanced DL

models and the storage of model parameters [175]. Thus,
many aspects still need to be carefully considered, includ-
ing memory limitation, energy budget, communication,
synchronization, resource distribution, and privacy. In this
work, we focus on the on-device optimization in the FL
domain and mainly discuss how to save memory usage and
energy consumption using the proposed DL optimization
pipeline. Other aspects are out of the scope of discussion
of this article.

A. Model-Oriented Optimization Mechanisms
in FL

1) DL Model Selection for FL: Since the FL runs on
multiple heterogeneous devices, which vary in computing
ability and memory size, it is critical to first select the
suitable models that are smoothly executed on various
devices. Specifically, due to the limited memory and com-
puting resources of some resource-constrained FL clients,
the large size of CNN models (i.e., VGG and ResNet) is
hardly adopted on them. Researchers have been exploring
lightweight and sparse DL architecture for more general
applicability. For instance, a novel trilayer FL scheme [176]
is proposed to consume less amount of resources to accom-
plish a target convergence. A variant of the LSTM recurrent
neural network called the coupled input and forget gate
(CIFG) [177] is adopted for mobile keyboard predication
with FL. The CIFG architecture is advantageous for the
mobile device environment because the number of com-
putations and the parameter set size are reduced with no
impact on model performance. Moreover, a personalized
FL framework (e.g., three-layer CNN) [178] is advocated
to cope with the heterogeneity issues in FL environments.

2) DL Model Optimization for FL: Since some FL
clients may not have enough memory size and energy
budget to meet the system requirements for training,
the researchers have been exploring how to reduce the
memory cost and save the energy cost in FL training and
prolong battery-power life duration. To address these
issues, some researchers have adopted the with-changing-
model-architecture model optimization approaches.
For example, PruneFL [179] proposes an adaptive and
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distributed parameter pruning approach, which adapts
the model size during FL to reduce both communication
and computation overhead and minimize the overall
training time while maintaining a similar accuracy as the
original model. To reduce the memory requirement for
training, Helios [174] devises a soft-training method to
dynamically compress the original training model into
the expected size through a rotating neuron training
approach. FedPARL [176] reduces the model size by
performing sample-based pruning, which is demonstrated
useful for resource-constrained IoT devices. Moreover,
without-changing-model-architecture model optimization
approaches have also been adopted. For instance,
Wu et al. [180] proposed a quantization framework
that constrains all layers to low-bit width integers in
both training and inference. This approach can reduce
the energy of about five times compared to 32-bit
floating-point operations (FLOPs). In addition, dynamic
computation approaches are explored to optimize the
model during the training and inference phases. The basic
idea of those approaches is to only activate the partial
neural network to process the input. For example, dynamic
channel pruning techniques [181], [182] are adopted
to identify channels in the deep neural network that are
considered as unimportant and skip their computations.
Some researchers [182], [183] apply dynamic layer
skipping techniques on ResNet models and RNN models
with skip connections.

B. Nonmodel-Oriented Optimization Mechanisms
in FL

1) Mobile DI Software Accelerators for FL: Several
possible solutions should be considered to facilitate
on-device DL learning for FL systems. One direction is to
improve DL hardware usage on mobile devices via the
mobile DL software accelerators [15], [18], [19], [36],
[157] as we discussed in Section III. Since these DL soft-
ware accelerators can decompose a deep model across
a mix of heterogeneous processors (e.g., CPU, GPU, and
DSP) to maximize energy efficiency and execution time,
with limited mobile resources (e.g., computation power
and memory size), it removes the barriers preventing exist-
ing pretrained DL models from being adopted by current
mobile devices in FL systems. For example, DeepX [19]
significantly lowers the device resources (i.e., memory,
computation, and energy) required by DL that currently
acts as a severe bottleneck to mobile adoption through a
pair of resource control algorithms, designed for the infer-
ence stage of DL. Experiments demonstrate its superior
performance in terms of low execution time and energy
consumption in DL running compared to cloud offloading-
based approaches. This research is promising and likely
to facilitate the development of sensor processing and
mobile DL inference, which would enable on-device FL
implementation at scale.
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2) Mobile Hardware Designs for FL: Another direction
is mobile hardware designs for FL. In recent years, few
hardware designs are emerging to solve some specific
problems in the FL area. For example, the complicated
operations and large operands of privacy-preserving mech-
anisms (e.g., homomorphic encryption) impose significant
overhead on FL. Maintaining accuracy and security more
efficiently has been a key problem of FL. Yang et al. [184]
proposed a hardware solution to accelerate the training
phase in FL by designing an FPGA-based homomorphic
encryption framework. Experiments show that the pro-
posed accelerator achieves a near-optimal execution clock
cycle, with a better digital signal processing efficiency,
and reduces the encryption time by up to 71% than the
existing designs. Another work [122] proposes HAFLO,
a GPU-based solution to improve the performance of FL by
reducing the significant computational overhead of homo-
morphic encryption. The core idea of HAFLO is to summa-
rize a set of performance-critical homomorphic operators
used by federated logistic regression and accelerate the
execution of these operators through joint optimization of
storage, 10, and computation. Experimental results show
that the proposed method achieves a 49.9 x speedup accel-
eration on a popular FL framework. Furthermore, as we
discussed in Section III, some studies have demonstrated
that highly efficient DL training and inference with low
energy consumption could be achieved using specially
designed processors. Some ASICs [125]-[128], [160],
[161] and FPGAs [123], [124], [162] have offered a good
starting point for developing DL processors to mitigate
the constraints of hardware, memory, and power resources
of mobile devices. These works are promising and likely
to further enable on-device FL implementation at scale.
Exploring how these works execute in FL systems might
help tailor these solutions to solve the existing issues in FL.

C. Cooperative DNN Inference in FL

A fast enough DNN inference with acceptable resource
consumption is also an essential consideration in FL due
to the latency requirements of many applications and
the resource constraints of a single device. The existing
researchers have been taking advantage of the aggregated
computational power of a cluster of mobile devices, coor-
dinating them for faster DNN inference. For example,
DeepThings [110] proposes an FTP method for divid-
ing convolutional layers into independently distributable
tasks and parallelizing them on multiple devices. It pro-
vides scalable CNN inference speedups of 1.7x-3.5x
on 2-6 edge devices. MoDNN [185] partitions trained
DNN models on several mobile devices, assigning more
workload to the more powerful devices for DNN infer-
ence acceleration. It can accelerate the DNN computation
by 2.17x—4.28x when the number of devices increases
from 2 to 4. Hadidi et al. [186] adopted both data paral-
lelism and model parallelism to accelerate DNN inference
using several robots. CoEdge [187] dynamically partitions
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the DNN inference workload based on the computing capa-
bilities of devices and network conditions. It achieves up to
4.49x-7.21x latency speedup over the local approach and
25.5%-66.9% energy reduction for four widely adopted
CNN models. These works demonstrate that cooperative
DNN inference in FL could significantly speed up model
inference and reduce resource consumption on every
mobile device.

VL POTENTIAL RESEARCH
OPPORTUNITIES IN MOBILE
APPLICATIONS

In this section, we provide some potential research oppor-
tunities for mobile applications in the areas of database
and model, inference time, power consumption, hardware
design, and optimization tradeoff on different hardware.

A. Database and Model

As discussed in Section II, the existing DL work in non-
vision fields usually adopts various lightweight DL models.
There is also a lack of baseline models in the nonvision
field based on which to compare with each other’s perfor-
mance. Therefore, it is desirable to select general DL mod-
els as the basis for performance evaluation. In addition,
given the fact that various types of mobile devices could
be used, a public repository of benchmark performance in
various types of hardware could be of great benefit to the
research community. Moreover, the nonvision fields still
lack comprehensive, diverse, and high-quality datasets for
DL model training and evaluation. There are two reasons
for such inadequacy. First, service providers prefer to keep
their data confidential and rarely publish their datasets.
Second, due to limitations of hardware resource and
network conditions, data collected from mobile devices
usually come with loss, redundancy, mislabeling, and class
imbalance. To promote adopting DL on mobile devices for
various application domains in both academic and industry
communities, researchers and companies are encouraged
to collect and publish more high-quality datasets.

B. Inference Time

As discussed in Section II, the existing work using DL
in nonvision fields (e.g., activity recognition and mobile
security) focuses much more on accuracy than inference
time. However, those applications require certain speed
for inference in reality. For example, human daily activi-
ties recognition requires the inferencing time (about 0.3-
3 s5) to achieve real-time nature. In the security area,
a detecting time with a delay of 2s is usually considered
as acceptable for detecting attacks [188], [189]. There-
fore, researchers should also evaluate inference time for
those nonvision applications in the future. Besides, since
different mobile hardware have different computational
power, researchers may consider an alternative way (e.g.,
FLOPs widely used in the vision field) to fairly evaluate
the potential inference speed of their systems. In addition,
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improving the inference speed is also critical for mobile
devices. In particular, developing and adopting various
compression techniques to reduce the inference time on
mobile devices still need exploration.

C. Power Consumption

With the aid of highly effective computation components
(e.g., GPU and ASIC) in mobile devices, DL models can be
easily deployed with decent performances [190]. However,
since DL is computationally intensive, energy and capabil-
ity constraints should be considered when we deploy DL
models on mobile devices because of their limited battery
capacities. As a result, reducing the energy consumption of
mobile devices with respect to data collection (e.g., from
motion sensors and GPS) in motion sensor-based applica-
tions might be an open research area. Another interesting
research direction is to optimize energy consumption when
deploying DL models on mobile devices. Although design-
ing some specific hardware chips (e.g., FPGAs and ASICs)
can achieve this purpose in Section III, the generality of
these special hardware design, as well as their interoper-
ability and compatibility with existing hardware platforms,
remains as challenges.

D. Hardware Design

DL on mobile devices is facilitated by mobile GPUs
but is usually limited within several layers, as discussed
in Section II, due to the constraint of computation and
memory resources. Thus, the performance of some mobile
applications is usually not satisfactory. In future research,
in order to execute more complex models with better
performance, mobile GPU with more CUDA cores and large
graphic memories needs to be developed. In addition to
powerful hardware components, some algorithms, such
as the Toeplitz matrix, and Winograd and Strassen algo-
rithms, can be explored to improve the computing perfor-
mance by taking advantage of the low-latency temporary
storage architecture of GPU [191].

Compared with powerful mobile devices, such as smart-
phones, the resource bottleneck in microcontrollers is more
serious. Specifically, smartphones can now equip with sev-
eral gigabytes of RAM, but microcontrollers, such as the
ARM Cortex series, are limited to just hundreds of kilo-
bytes. Some techniques, such as binary deep architectures,
have the potential to fill this gap [192]. Such architec-
tures could not only build extremely small models but
also remove the requirements for expensive multiplication
operations. Besides, the limited on-chip memory capacity
often causes massive off-chip memory access and leads to
very high energy consumption. Some frameworks, such
as retention-aware neural acceleration (RANA) [193],
can be explored to save the energy consumption of
microcontrollers.

Furthermore, FPGAs and ASICs are also promising for
DL. However, they currently lack adequate software sup-
port to fully achieve their potential in DL. Since FPGAs and
ASICs are built with spatial architectures with low-energy
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on-chip memory, in future research, reusable dataflow
algorithms can provide solutions to reduce data move-
ments. Moreover, a promising field called neuromor-
phic computing enables information processing at meager
energy cost on electronic devices via emulating the elec-
trical behaviors of biological neural networks in human
brains. Based on this technique, some companies are
trying to develop ASIC chips, such as TrueNorth from
IBM. Since neuromorphic architectures are more suitable
for brain-like computations and achieve decent power
efficiency, as discussed in Section III, they would be an
attractive topic for future research.

E. Optimization Tradeoff on Different Hardware

In DL, larger and deeper models usually produce higher
accuracy. However, they may also lead to larger infer-
ence time and more energy consumption. Building DL
models on mobile devices with an accurate scheme, fast
inference time, and without mass power consumption and
huge memory usage should be a good research direc-
tion. Besides, even with various existing optimization
approaches for DL on mobile platforms, it is still challeng-
ing to adapt DL models to various types of device hard-
ware, while conventional optimization methods always
ignore different hardware architectures and optimize all
the DL models in a uniform way. Recent work [194] has
highlighted that pruning and quantization methodologies
relied on formulations are hardware-unaware, and they
do not necessarily result in optimal configurations in
terms of hardware efficiency. In order to solve the above
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