Received: 30 July 2021 Accepted: 4 January 2022

Published online: 26 February 2022

DOI: 10.1002/agj2.21007

SPECIAL SECTION: BIG DATA PROMISES AND OBSTACLES:

Agronomy Journal

AGRICULTURAL DATA OWNERSHIP AND PRIVACY

Agriculture data sharing: Conceptual tools in the technical
toolbox and implementation in the Open Ag Data Alliance

framework
Aaron Ault | Servio Palacios | John Evans
Purdue University, School of Electrical and

Abstract

Computer Engineering and School of
Agricultural and Biological Engineering,
West Lafayette, IN, USA

Correspondence

Aaron Ault, Purdue University, School of
Electrical and Computer Engineering and
School of Agricultural and Biological Engi-
neering, West Lafayette, IN, USA.

Email: ault@purdue.edu

Assigned to Associate Editor David Clay.

1 | INTRODUCTION

Data privacy is an issue that affects us all. From banking infor-
mation to healthcare, how our data are shared and secured is
a continual concern in the modern world. The convergence
of cloud computing, high-speed cellular coverage, and con-
nected agricultural machinery has brought the issue of data
privacy to the forefront in the agriculture and food industry as
well. While much focus has been given to technical privacy
concepts, generally, and legal questions of agriculture data
privacy, specifically (Carbonell, 2016; Ferris, 2017; Nielsen,
2019; Sykuta, 2016), this work focuses on technical privacy
concepts specifically in the agriculture and food industry.

Abbreviations: API, application programming interface; DMZ,
demilitarized zone; OADA, Open Ag Data Alliance; OSC, oblivious smart
contract; PAC, private automated certification; REST, representational state
transfer; URL, uniform resource locator.

privacy implications.

Data privacy has become a critical issue within the agriculture and food industry. The
real-time conversion of data to information has been shown to be incredibly valuable
to the industry but often requires sharing data with software, platforms, customers,
and regulators outside the data owner’s control. While much work in this area has
focused on legal protections for data privacy, less has been devoted to technical archi-
tectures to support different sharing models. This paper defines some “tools in the
toolbox” for designing such systems that are accessible to both technical and non-
technical audiences as well as several “sharing design patterns” using the Open Ag
Data Alliance (OADA) framework. These tools and patterns are helpful in classify-
ing and understanding both existing and future data flows in agriculture and their

Questions on data privacy and sharing in agriculture often
revolve around legal user agreements. Addressing this, the
American Farm Bureau Federation and an associated group
of agriculture technology providers set forth the “Privacy and
Security Principles for Farm Data” (American Farm Bureau
Federation, 2016). AgGateway also maintains a list of con-
cepts (AgGateway, 2017) that they recommend be included
in data contract generation. The Ag Data Transparency eval-
uator (https://www.agdatatransparent.com/) grew out of such
efforts as an organization which reads and evaluates existing
legal data agreements in agriculture. Such efforts share a com-
mon theme of increasing transparency between the farmer and
agriculture technology companies.

There is a fundamental limit on the privacy guarantees that
can be made by technological solutions alone. The only real
limit to what a data recipient can do with data to which they
have read-access is a legally based or trust-based limit. A data
owner may inherently trust a data recipient to act in their best

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2022 The Authors. Agronomy Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy.

Agronomy Journal. 2022;114:2681-2692.

wileyonlinelibrary.com/journal/agj2 2681

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

https://orcid.org/0000-0001-7060-6559
mailto:ault@purdue.edu
http://creativecommons.org/licenses/by/4.0/
https://www.agdatatransparent.com/
https://wileyonlinelibrary.com/journal/agj2

2682 Agronomy Journal

AULT ET AL.

interest with their data, or they can trust a legal agreement
to govern allowable uses of their data, but there are no fool-
proof, technology-based limitations to what a recipient can
do with data they can see. This paper describes some exciting
new technical tools (see the Advanced Sharing Design Pat-
terns section) that are better equipped to handle access control
management in these “released into the wild” situations than
most existing options.

This paper focuses on the technical tools (e.g., software
code and system architectures) that can be used to model data
privacy and sharing issues in the agriculture and food industry
rather than the traditional legal (e.g., rights, promises, con-
tracts) topics. We provide an overview of some ‘“technical
tools in the toolbox” to design such systems, intended to be
accessible to audiences of both technical and nontechnical
backgrounds in an effort to broaden participation in creating
real-world systems for agriculture and the food supply chain
that can give proper consideration to privacy and sharing.
We also provide several sharing design patterns using these
concepts through the open-source Open Ag Data Alliance
(OADA) framework (https://github.com/OADA).

1.1 | Technical data privacy conceptual tools

Since there is no one-size-fits-all “correct” privacy model
(Wilgenbusch et al., 2020), it is important for the designers of
data systems in agriculture and the food supply chain to have
a full understanding of the available tools in the technical pri-
vacy toolbox. It is also important for agricultural practition-
ers to understand the ramifications of various sharing models
in order to better understand what happens to their data. We
present the following list of concepts followed by some shar-
ing design patterns using the OADA data framework.

1.1.1 | Concept 1: Access types

Data privacy can be considered as rules for three types of
access to digital data: read access (view and understand bits of
data), write access (change bits of data), and admin access (set
the read-write-admin access to bits of data). Note that some-
one that can see encrypted data, and therefore cannot prop-
erly interpret its meaning, is not generally considered to have
read access, although decryptable data does have risk of key
compromise that would allow it to be decrypted by malicious
actors.

1.1.2 | Concept 2: Users or accounts and
permissions

Users are the core of setting permissions and performing
actions on a platform. They typically refer to a conceptual

Core Ideas

* There are several composable, reusable concepts
for designing privacy-focused systems in agricul-
ture.

* Data privacy concepts can be deployed via the
OADA framework

* Clear privacy design patterns exist for various
types of use cases in agriculture.

* Standardization of privacy components across sys-
tems provides useful advanced patterns.

entity within one system that does not cross system bound-
aries. For example, the same person may have used both
Google Drive and Dropbox cloud storage services, but that
person is considered as two distinct users—one in each plat-
form. Users have permissions to specific resources on a plat-
form.

1.1.3 | Concept 3: Scopes and tokens

A token is basically an app-specific password that exter-
nal systems send when they make a data request. Typi-
cal software-level requests for data are self-contained—the
request is allowed to proceed if the token provided on the
request is valid regardless of other requests that may have
taken place earlier or later. Tokens are generally handed out by
users, with a “scope” defining what the application or service
is allowed to do on their behalf. Scope can restrict a token to
particular types of data (harvest, planting, etc.) or to data that
has certain properties (harvest data from only this field). Note
that scopes are different than permissions: users are limited
by permissions, and tokens are limited by both scope and the
user’s permissions who handed out the token. The user typi-
cally cannot grant privileges to a token beyond what the user
is allowed to do themself. The time when a user authorizes a
token represents the end of technical privacy protection and
the start of legal protection, hence, it is a good time to make
privacy statements available to users as done in the OADA
framework. For example, when a user sees the screen “Do you
want to allow Application ABC to read your harvest data,” on
that same screen is a link to the platform’s privacy and use
statement.

1.14 | Concept 4: Shares

Local users on a platform can share data with other users.
Sharing is initiated by a user with admin access to particular
data and typically does not involve explicit consent on the part

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

https://github.com/OADA

AULT ET AL.

Agronomy Journal 2683

of the recipient. From the recipient’s perspective, they have
a set of incoming ‘shares’ from other users. An odd conse-
quence of this concept is that the shares list belongs to the data
recipient, but they cannot restrict other users from adding to
their shares list.

1.1.5 | Concept 5: Data organization

Most people are familiar with organizing their data in hierar-
chical graphs, that is, files and folders in common parlance.
These structures have immense ramifications in a person’s
ability to understand sharing rules—sharing a folder means
sharing everything in that folder. An alternative to sharing
hierarchically is property-based sharing, that is, share data
based on a property like a time range or geospatial area.
Many real-world sharing scenarios require both. For exam-
ple, a farmer that wants to share this year’s harvest maps for a
particular field, which means that their total as-harvested data
must be restricted to only the points that fall inside that field’s
boundary and were harvested in this year.

1.1.6 |
caching

Concept 6: Synchronization and

Most data sharing from users to applications involves an appli-
cation making a copy of a user’s data from one platform into
their account on another platform. How the integrity of this
cached copy is maintained over time is a crucial part of the
user’s data sharing experience. Possible questions that arise
include the following: Do they have to manually import and
export things between platforms? Does a platform have to
wait some interval before it can ask if new data is available?
Can data be pushed in real-time? Systems requiring import—
export semantics may, for all practical purposes, be incapable
of achieving data privacy and sharing goals for many users
because of the user time required just to move the data. This
occurs frequently in production agriculture where a farmer
may prefer to limit a service provider’s access to data from
only a few fields, but due to lack of time to import and re-
export data, the farmer simply gives the data card from their
combine with their entire season’s recorded data to their ser-
vice provider and hope they only take the data they really
need.

1.1.7 | Concept 7: Obfuscation

This is often the de facto method in agriculture by which a
company prevents other companies from accessing data in
their systems. This typically happens when a company makes
up their own file formats for their data and then does not pub-
lish descriptions of those formats for other software devel-

opers. In layman’s terms, imagine a farmer sharing a spread-
sheet to their agronomist that the farmer created themselves,
full of cryptic abbreviations that only the farmer understands,
and then the agronomist would be expected to reverse engi-
neer the meanings in order to try to do their job. It achieves
some effective level of privacy but sacrifices reusability and
portability.

In addition to simply file formats, critical to practical data
sharing is enabling platforms to agree on how to authorize,
find data, read and write data, request updates, negotiate
formatting, alter permissions, among other actions. If these
methods also are obfuscated from software developers in the
industry, then privacy is still achieved by the fact that no other
software can figure out how to use it.

Relying on obfuscation can result in overconfidence with
your data privacy because often it only reliably works when
a malicious attacker is not interested in your data in the first
place. If data has real value, interested adversaries can often
reverse engineer the obfuscation. Primarily, however, if data
sharing is a goal, obfuscation is a very poor tool because it
largely prevents sharing in the first place.

1.1.8 | Concept 8: Cryptography

Cryptography uses mathematical techniques to provide data
integrity and confidentiality. Integrity ensures that a recipient
can tell if data has been tampered with, often through hash-
ing functions (described later). Confidentiality ensures that an
adversary cannot derive information from an encrypted mes-
sage. As a corollary to confidentiality, key-based semantics
can also provide identity, in other words, you cannot produce
the correct encrypted text from a clear text if you do not know
the password (private key).

1.2 | Implementation in the OADA
framework

While a full exposition of the OADA application program-
ming interface (API) framework is beyond the scope of this
paper, we here describe a few features that will help us demon-
strate some of the sharing tools as real-world examples. While
the sharing patterns and tools described in this paper can
generically be applied in a wide variety of circumstances, the
concepts and language to understand and implement sharing
that we have developed within OADA are extremely useful to
a cohesive treatment of this topic. Therefore, we present here
a minimal overview of the necessary terms and concepts that
we will use in this paper.

The OADA framework defines a standard for how software
code interacts with data on any OADA-conformant system.
Digital systems exchange data primarily through APIs. In the
most common type of API, a representational state transfer

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

2684 Agronomy Journal

AULT ET AL.

PLATFORM A

Alice’s User

/bookmarks

—— /customers

—— /fields

— /harvest

L— /as-harvested

L— /year-index

/2019

/2020

/2021
—— /taxes

L— /spraying
burndown
preemergence

FIGURE 1
standardized structure for where to place as-harvested data relative to

Simplified example bookmarks tree representing a

other data for a farmer in an application programming interface. The
highlighted path would be specified as
/bookmarks/harvest/as-harvested/year-index/2020

(REST) API, data access generally takes the form of a series
of uniform resource locators (URLs) where software may
find, read, write, and delete digital resources. Such APIs are
widely accepted and well known as the standard form of data
exchange between most agriculture data providers today. The
OADA codifies existing best practice in REST API design,
providing standard requirements that any API must meet to be
considered OADA-conformant. Existing APIs can be adapted
to become OADA -conformant, or new APIs can be developed
using OADA principles from the start. Understanding some
of these requirements and concepts will help to understand
how API-driven platforms can share data, which is the pri-
mary focus of this paper.

The first central feature of an OADA-conformant platform
is that the data platform has users—distinct entities capable
of logging in. Each user has a set of resources organized in
published hierarchical structures formed when resources link
to each other. These hierarchical structures are known as a
“directed graph” or just “graph,” and resemble a folder hierar-
chy on a normal computer system. A user’s software tools use
the graph structures that it knows about to find the data needed
on a user’s platform to accomplish tasks for them. The root
of each user’s graph is called their “bookmarks.” Most real-
world graphs tend to grow downward and have few cycles (i.e.,
lower folders do not point back up to higher folders); therefore,
we often refer to bookmarks as a “tree” structure. See Figure |
for a visual example.

A good analogy for this concept is to envision if every
farmer and agronomist used Google Drive to store their data,
and they all used the same folder names and file names to
organize their data. Their software could then accomplish
many data-centric tasks for them by knowing how to connect

to Google Drive and interacting with those standard struc-
tures. Sharing data would then largely mean moving data
between those user accounts.

A bookmarks tree is arranged according to specified graph
schemas typically with higher-level nodes representing a
semantic organization (i.e., segregating types of data) and
lower-level nodes representing an index-based organization
(i.e., splitting large data sets of the same type of data into
smaller consumable chunks). For example, consider the high-
lighted graph path of Figure 1, represented by the URL path
/bookmarks/harvest/as-harvested/year-index/2020.
This has the higher-level semantic organization of “harvest”
and “as-harvested,” indicating as-harvested data is to be
found here as opposed to spraying data or planting data.
The lower-level “year-index” of 2020 means that only the
as-harvested data from the year 2020 is expected to be found
at that level. Any software looking for as-harvested data
would look on a user’s data platform according to this API
path when discovering if the user has as-harvested data for
2020.

The concept of the semantic structure of a bookmarks tree
is recursively reusable throughout any system. For example,
a user may have many customers who are other users on the
same platform. In this case, it is useful to first organize their
list of customers, and then, for each customer, store a link to
that customer’s bookmarks tree. Since the hard work of mod-
eling the data space for a particular use case was already done
once, reusing this tree structure where applicable both pro-
motes interoperability and improves code efficiency.

Users share resources with other users by assign-
ing permissions on a resource. Any resources reach-
able downward in the graph inherit the permissions of
the shared resource. For example, if a user has access
to /bookmarks/harvest, then they also have access to
/bookmarks/harvest/as-harvested. In addition to a
bookmarks tree, each user has a shares resource, that is, a list
of links to all resources that are shared with them from other
users.

Applications obtain a client identifier through dynamic
client registration, allowing systems that have never before
known about each other to be connected by the user, putting
the user in control of their data. The software statement pro-
vided by the application during registration includes a link
to their privacy and use statements that is shown to the user
when they attempt to authorize access to their data. Users
authorize tokens for registered clients using scopes that can
be content-type based (i.e., all harvest data) and graph-based
(only harvest data from 2020). As described above in Concept
3, atoken is basically a unique password that applications send
along with their requests to a platform. The application acts
on behalf of the user that granted the token to their data, and
the scope associated with that token specifies restrictions as
to what the user will allow that token to do on their behalf.

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

AULT ET AL.

Agronomy Journal 2685

Applications can register a “watch” on any resource or sub-
tree of resources for real-time change feeds, that is, a real-
time stream of data representing all the changes that happen
to a resource. When any application writes to a resource, an
idempotent merge document is created, which is a document
representing data to “upsert” into parts of a given resource.
Upsert is a contraction of “update” and “insert,” meaning that
any specified parts of the resource will be replaced if they
already exist or created if they do not. The change document
is idempotent because it can be merged into the resource mul-
tiple times and the end state of the resource will be the same
regardless of how often that merge was applied since it will
just keep replacing the same parts of the resource with the
same data each time.

OADA defines the ordered set of idempotent merge docu-
ments as the changes necessary to transform a resource from
one version into any subsequent version. Any external ser-
vice can use them to do things like synchronizing between
platforms, transforming into different formats, and maintain-
ing filtered subtrees for sharing purposes, to name a few of
many examples. In fact, any two OADA-conformant plat-
forms can inherently synchronize any subtree automatically
by using OADA’s built-in ability to replay change feeds on
a remote platform. In other words, since OADA defines pre-
cisely how writes occur in an OADA-conformant API, one
OADA-conformant platform inherently knows exactly how to
write to a destination OADA-conformant platform to make
the destination platform’s copy of a resource look the same as
its own copy. It can simply “replay” the original change at the
destination.

And finally, the Trellis framework (https://github.com/
trellisfw) project is a parallel brand of the OADA framework
that focuses the OADA framework’s capabilities specifically
for supply chains such as those found in fresh produce. Trellis
adds to OADA the ability to apply digital signatures to docu-
ments to verify authenticity as they are exchanged with trading
partners as well as supporting several of the advanced sharing
use cases that we will describe in later sections.

2 | SHARING DESIGN PATTERNS

Design patterns can prove useful when designing data sharing
systems. We present several patterns that have proven use-
ful in real-world industry cases presented in the context of
OADA. The patterns are summarized in Table 1.

2.1 | Pattern 1: Shared bookmarks

Each user’s bookmarks resource is the same actual resource
(Figure 2). This model is good for small groups of people who
all trust each other, and all have similar permissions; they sim-

PLATFORM A
Alice’s User Bob’s User
{bookmarks {bookmarks

— /customers

—— /taxes

— /fields

— /harvest

/as—harvested
/year—index

/2019
/2020
/2021

L— /spraying
burndown
preemergence

FIGURE 2
platform use the same bookmarks tree. Alice’s apps and Bob’s apps see

Shared bookmarks pattern. Both users on the same

the same resources at all endpoints: easy to stay in synchronized, but no

Cross-user privacy

ply need to have the exact same data served to all their appli-
cations such as a manager and all their employees on a small
farm. This model avoids any potential data inconsistencies in
that all users are updating the same actual resources, but no
single user can act in their own bookmarks separately from
the group. It is nearly equivalent to all employees on a farm
using the same user account but has the advantage of know-
ing which users made which changes, and users can have their
access revoked entirely as needed such as in the case of an
employee no longer working on that farm. This pattern can be
succinctly represented by stating that the path /bookmarks
for every user is the same underlying resource.

2.2 | Pattern 2: Shared nodes

Each user has a different top-level bookmarks resource, but
the parts of their bookmarks tree, which should be shared
among other users are linked as the same actual resources
(Figure 3). For example, a farm manager and his accountant
may have a common /bookmarks/taxes resource, but the
farm employees’ bookmarks trees do not share that endpoint.
An employee could use an application that creates their own
/bookmarks/taxes resource and still function properly, but
they would not be able to see the farm manager’s resource.
This model requires that graph paths perfectly match privacy
goals of the data owner since they do not limit access to the
graph’s contents below the shared node.

2.3 | Pattern 3: Service users

Many services often cooperate to achieve overall goals. It can
be a convenient means of service isolation and tracking to

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

https://github.com/trellisfw
https://github.com/trellisfw

2686 Agronomy Journal

AULT ET AL.

TABLE 1 Summary of sharing design patterns

No. Pattern and description Advantage

1 Shared bookmarks: Each user’s

Disadvantage Examples

bookmark is the same
resource

Shared nodes: Only some parts
of data are the same
resources between users

Service users: Create a
special-purpose user for each
intended service

Single-authority filtered graph:
Use a service to maintain a
filtered copy of all shared
resources

Multi-authority filtered graph:
Use a service to synchronize
data to and from multiple
platforms

Mirror user: Create specialized

Trivial synchronization: all users
see same data

Trivial to keep shared data
synchronized with additional
setup

Isolates services and makes them
easy to track

High control over permissions;
easy to merge data from
multiple platforms

High control over permissions;
changes replicated across
platforms

Easy to know what is shared and to

Nothing private between users

Some data can be private, but
others easily shared

Same as no. 2

Data only flows one direction

Data conflicts between
platforms; prone to infinite
cycles

Requires many users and using

Employees on a small farm
sharing all data

Employees on a small farm with
limited access to some data

Microservices that operate on
user’s data

As-applied fertilizer maps from
service providers

Field boundaries shared across
multiple applications and
tractors on a farm

Agronomist with multiple

users to hold all data shared
with each outside source

whom at all times; easy to
synchronize

7 Single-token shares: One user
shares data to another user as token to perform sharing
a “suggestion” and the other

user accepts
8 Domain admin with in-and-out

demilitarized zones: Create
specialized users for all

Clearest and cleanest sharing
model for large numbers of

sharing partners and maintain
independent copies of data
everything coming and going

from and to that partner

create individual users (that are prohibited from logging in)
for each service and then setting the bookmarks tree for that
user to be the same resource as the primary tree it was sup-
posed to operate on without this model. Applying the shared
nodes pattern above tends to create the best blend between
efficiency and access granularity, for example, the service
user has access to fields but not taxes. The service administra-
tor then simply needs to communicate a token to the service
tied to that service user. In this way, the actions of this partic-
ular service can be isolated, permissioned, and tracked easily
just as if it were a farm employee.

24 |
graph

Pattern 4: Single-authority filtered

Each user has their own bookmarks resource, but a copy of
parts of a master bookmarks tree is maintained across users
rather than sharing resources directly (Figure 4). This model
is more complex than Patterns 1 and 2 because it requires

Only requires one low-privilege

customers or vendors; enables
approval process for incoming

services to maintain sharing farmer clients who all use

to those users apps to see recommendations

Recipient must appropriately Farmer-to-farmer sharing on the

handle incoming shares same platform

Enterprise sharing of food safety
documents; co-ops with many

High level of complexity and
maintenance required for

approvals and sharing farmer customers sharing data

in-and-out

an actively running service with permissioned tokens capa-
ble of writing to all involved users. This service must main-
tain synchronization in real time between copies. It sets a
watch on the nodes in the master tree and replays changes in
the copied resources that are linked in the downstream user’s
trees. Because the master copy is considered authoritative, it
only maintains a one-way synchronization. This means if the
downstream users write to their copies, this data stays in their
own tree and does not migrate up to the master copy. If the
master copy overlaps with data in the copies, the data in the
copy is overwritten when changed in the master.

This allows granular control of sharing by a user to any
other users according to whatever rules drive the filter-plus-
sharing service. This model can perform property-based shar-
ing, that is, sharing only some data points within the same
resource based on their value and not others. For example,
only sharing as-harvested data points that fall within a par-
ticular field boundary. If data points in the harvest resource
lie outside a given boundary, they could be excluded from
sharing.

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

AULT ET AL.

PLATFORM A
Alice’s User Bob’s User
/bookmarks /bookmarks
— /taxes — /taxes
— /fields
— /harvest

L— /as-harvested
/year—index

/2019
/2020
/2021

L— /spraying
burndown
preemergence
FIGURE 3 Shared nodes pattern. Alice’s apps and Bob’s apps

see the same resources under /bookmarks/fields and

/bookmarks/harvest but not others such as /bookmarks/taxes.

Alice’s “tax” apps interact with her “taxes” endpoint and not Bob’s, but
changes to her “fields” endpoint will be reflected in Bob’s apps as well

PLATFORM A PLATFORM B (or A)
Alice’s User Bob’s User
/bookmarks /bookmarks
/taxes /taxes
/fields /fields
/yield-map /yield-map
¢ —{
data: { [1 data: {
a: { LcopyJ > a: {
lat: -40.123, lat: -40.123,
lon: 86.123, lon: 86.123,
time: 163985, time: 163985,
+ }
b: { }
lat: -20.111,
lon: 20.123,
time: 163985,
}
}
FIGURE 4 Single-authority filtered nodes pattern. Alice’s user

on Platform A is the authoritative source for data point “a” within the
resource at /bookmarks/yield-map. A separate service maintains a
copy of Alice’s point “a” under Bob’s user on his own platform, but
Alice’s point “b” remains only on her platform. If Bob changes point
“a” on his platform, Alice’s user does not see his change

Since the service performs its task using the OADA API,
and any OADA-conformant platform speaks that API, then
this is the first of the sharing design patterns that does not
care if the two users are on the same platform or different
platforms. In other words, this model allows a user to share
data just as easily across platforms as across users on the same
platform.

As a corollary, consider a person with users at multiple
platforms where data is created. They are each authoritative
over the data in their platform. The user would like to collect
all the data together into a single user on a single platform.
For example, a farmer that uses multiple service providers to
spread their fertilizer. Each provider would have as-applied

Agronomy Journal 2687

PLATFORM A PLATFORM B (or A)
Alice’s User Bob’s User
/bookmarks /bookmarks
/taxes /taxes
/fields /fields
ield-ma ield-ma
(pietamer (pietamer
data: { [1 data: {
a: { < copy > a: {
lat: -40.12, L J lat: -40.12,
lon: 86.12, lon: 86.12,
time: 16398, time: 16398,
+ }
b: { +
lat: -20.111,
lon: 20.123,
time: 163985,
}
}
FIGURE 5 Multi-authority filtered nodes pattern. Both Alice and

“,

Bob have a copy of data point “a,” but a change to either side is
replayed at the other. The only difference from the single-authority
model above is the bidirectional arrow on the copy service

fertilizer data for the farmer on their own platform. The farmer
would like to get all of their as-applied fertilizer data into one
place, so the farmer has a user account at their preferred cloud
provider to collect the data from the farmer’s users on the var-
ious service provider platforms.

For the sake of simplicity, assume all the plat-
as-applied fertilizer at the
/bookmarks/fertilizer/as-applied. The
preferred platform can configure the resource at each outside
platform to replay their changes under the farmer’s user at the
preferred platform. If the keys that identify the underlying
data points in the /bookmarks/fertilizer/as-applied
tree are randomly generated strings, then the net result at the
preferred platform after merging will be a subtree with the
same structure but containing all the merged data from all
sites. In effect, using random string keys allow resources to
be merged together without conflict because the data points
never overlap (i.e., conflict) at the destination.

In this way, each platform can be the authoritative copy for
the data they generate. Counterintuitively, despite the grower
thinking of their primary platform as the definitive place
where they store all their fertilizer data, it is actually not the
authoritative copy in this case since it simply accepted the data
generated at other places.

forms store location

farmer’s

25 |
graph

Pattern 5: Multi-authority filtered

Each user has their own bookmarks and their own copies of
all shared resources, but either user may write to their copy
and expect it to be reflected in the other copy. In other words,
neither copy is authoritative (Figure 5). This is the most com-
monly used case for real-world users, but it is also the most

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

AULT ET AL.

2688 Agronomy Journal

PLATFORM A
Bob's User

Alice’s User
/bookmarks

/fields
/harvest
/trading-partners

L— /Bob
L— /bookmarks
/fields
/harvest

FIGURE 6
Alice’s platform and links Bob’s bookmarks under her own tree. Alice’s

Mirror user. Alice’s user creates a user for Bob on

apps can interact with Bob’s bookmarks as Bob. Alice still has her own
fields and harvest data

complex. If the exact same data paths are not written on
either side, conflicts do not overwrite. In many situations, sim-
ply placing data at a key that is a randomly generated string
ensures no conflicts, although this can suffer from duplicate
data if the same data is written on both sides and then syn-
chronized. The vast majority of cases where conflicts may
occur can be reasonably solved with a last-write-wins con-
flict resolution model, but this should be considered carefully
when dealing with such situations. For example, if a user’s
field boundaries contain a field named “Smith30,” and one
employee changes the name to “Smith29” in a tractor while
another employee changes it to “Smith31” on their phone,
whichever change is written last would be considered the “cor-
rect” name. Care must be taken here to avoid infinite cycles,
that is, Platform A writes Smith30 while Platform B writes
Smith29, then Platform A replays the Smith30 write to Plat-
form B, but Platform B is also simultaneously replaying the
Smith29 write to Platform A, which Platform A then replays
back to B, and so on, and so on.

As with the single-authority sharing design pattern, a sepa-
rate synchronization service is needed if filtering is to be per-
formed, and the users involved need not be on the same plat-
form.

2.6 | Pattern 6: Mirror user
When a user wants to share data with a remote platform—or
even another user—they create a separate user whose book-
marks tree represents the full set of data to be synchronized
and optionally link that new user’s bookmarks tree into their
own. (Figure 6). By storing an exact bookmarks tree of every-
thing destined for a different user or outside platform, it is very
simple to audit and debug synchronization. It allows the pri-
mary user to use an application as if they were the other user
to ensure the shared user’s experience is appropriate.

This effectively splits the task of synchronization into two
phases: first, make the mirror tree look like you want, then
make sure the remote looks just like the mirror. If a user ever

PLATFORM A
Bob's User
/shares

Alice’s User
/bookmarks

I: /harvest
/fields
L— /FieldA

FIGURE 7
Field A with Bob’s user, but Bob must “accept” the share by deciding

Single-token shares pattern. Alice’s user can share

what to do with that field for his own bookmarks tree. Alice only needs
a token with permission to her own user accomplish this pattern

wants to ask a question like “Exactly what data did I share
to company X?” this model works very well. Because the
synchronization is logically split from the sharing, the built-
in OADA synchronization can tackle keeping the mirror tree
synchronized with the remote, vastly simplifying the task of
the sharing application. Conveniently, this model also does
not require the sharing application (which only writes to the
mirror tree) to have a token authorized for the remote user.
Only the synchronization of the mirror to the remote needs
such a token.

2.7 | Pattern 7: Single-token shares

A user can choose a particular subtree of their bookmarks to
share with another local user and grant that user permission
to that subtree (Figure 7). This granting of permission causes
the shared node to appear in the list of shares for the other
local user. This action does not link the shared resource into
the appropriate place in the other local user’s bookmarks tree,
leaving that task up to another application or service. This pat-
tern has the advantage of not requiring the original user to
have permissions to the other local user’s data.

This model has merits for a clean separation of
permission—the original user is essentially just sug-
gesting to the other local user that they accept this data.
However, it suffers from added dependency that it requires
a different piece of software to identify the newly shared
subtree and decide what to do with it (i.e., where to put it
in the other local user’s bookmarks tree). For example, an
agronomist that shares a planting prescription with a farmer
might prefer that their map just show up in the planter tractor
for the farmer rather than requiring action on the part of their
customer.

2.8 | Pattern 8: Domain admin with
in-and-out demilitarized zones

Each user is separate and has their own bookmarks tree, but a
top-level domain admin user created all the other users in their

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

Agronomy Journal 2689

shared-in DMZ bookmarks tree, the approved copy of the
shared-in DMZ bookmarks tree, and the shared-out DMZ
bookmarks tree. Since the partner user needs access to both
the shared-in DMZ tree (to send data to the domain admin)
and the shared-out tree (to receive data from the domain
admin), it is convenient to link the shared-out DMZ tree under
the shared-in DMZ tree so that the same partner user can
access both. Care must be taken to remember that the direc-
tions of in and out are relative to the user in question, that is,
“in” to the domain admin is “out” to the partner user and vice

AULT ET AL.
PLATFORM A
Don’s User Pat’s User
/bookmarks
t: /fields -———————————- copy < copy-on-share >
/trading-partners
L— /pat
/bookmarks < Pat & Don can access >
}— /shared-in
| L__ L /fields 4 < copy of fields from Don —> Pat >
{fields < un-approved fields Pat —> Don >
< copy-on-approval >
/approved ! < Pat cannot access >
L— /fields] < approved fields Pat —> Don
versa.
FIGURE 8 Domain admin with in-and-out demilitarized zones

pattern. Don, the domain admin, created a user for Pat, the trading
partner. Pat sends Don fields at /bookmarks/fields, which Don
accesses at /bookmarks/trading-partners/Pat/bookmarks/
fields. Don sends fields to Pat in /bookmarks/trading-partners/
Pat/bookmarks/shared-in/fields, which Pat’s apps access at
/bookmarks/shared-in/fields

domain and linked their bookmarks trees under the domain
admin’s bookmarks tree (Figure 8). For the purpose of this
discussion, the domain admin user is the authoritative user
implementing this scheme, and the partner users are the mirror
users that the domain admin created on their platform to facil-
itate sharing. Each partner user’s tree acts like a mirror user
described in Pattern 5 above, that is, its bookmarks tree can
be directly synchronized out to another platform controlled
by the partner user. This model works quite well in enterprise
scenarios where an enterprise wants to provide a user on their
platform to each of their vendors or customers.

Sharing can be bidirectional (both domain admin to partner
and partner to domain admin), but each direction carries its
own unique considerations from the standpoint of the domain
admin. For data shared out (from domain admin to the part-
ner), it is typically desirable to share copies of data rather than
originals to the partner. This way, the partner user’s copy is
completely isolated, and the partner user cannot gain write
access to original internal company documents. This treats
the partner user’s bookmarks as a sort of “demilitarized zone”
(DMZ) separate from the core data of the company.

This DMZ concept becomes even more effective when con-
sidering data shared in (partner to domain admin). Treat-
ing the partner user’s bookmarks as untrustworthy means an
approval process must occur before a document from a partner
is accepted by the domain admin. To accomplish this, another
bookmarks tree is maintained by the domain admin that rep-
resents the approved tree for that partner, but it does not grant
the partner user direct access to it. Writes that occur to the
DMZ bookmarks tree by the partner can then be promoted to
the approved tree through rule-based automated processes, a
manual approval process, or some combination of both.

Therefore, a full implementation of this model involves
maintaining three bookmarks trees for each partner: the

The primary simplification here is that a token with only
permission to the domain admin’s bookmarks tree is inher-
ently capable of caring for the underlying customer users.
Combining this pattern with the previous patterns allows for
a single master bookmarks resource to be maintained for an
entire enterprise but still relegate particular users in the com-
pany to perform specific roles through their own bookmarks
trees while still able to have permission to care for customer
needs.

Most important about this model is that almost all other
sharing models can be represented using this model since the
partner user could exist on another platform as simply a mirror
of the one on the domain admin’s platform. It does not matter
where the user resides; what matters is the model that there
is a shared bookmarks structure defining the API and a clear
understanding of which data goes where when sharing in and
out.

3 | ADVANCED SHARING DESIGN
PATTERNS

Having a standardized API framework enables some excit-
ing privacy paradigms that are difficult to conceive other-
wise. This section discusses two advanced cases that enable
data owners to have greater control over their data sovereignty
while supporting regulatory and reporting needs. First, it is
important to introduce two background concepts relevant to
more advanced data sharing in food and agriculture: hashes
and digital signatures.

3.1 | Cryptography: Hashes and digital
signatures

There are two basic concepts in cryptography relevant to
these privacy design concepts: hashes and digital signatures.
A “hash” is the result of running an arbitrarily long stream
of data through a function that produces a deterministic yet
hard-to-predict fixed-length piece of data (known as a hash
of the input data). A good hashing function has the property
that it is considered computationally infeasible to construct

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

2690 Agronomy Journal

an input data stream that produces a particular desired output
hash, and it is considered infeasible to invert the function to
learn the original input data using only the hash. Because of
this property, if you have the hash of some piece of informa-
tion and someone gives you what they claim was the original
information at a later time, you can easily check their claim
by computing the hash of what they give you and see if it is
the same as the hash you have.

The second useful concept in cryptography is a digital sig-
nature. A digital signature is similar to a hash in that it is gen-
erally produced by taking a piece of input data and comput-
ing an output. The input data for a digital signature is often
a hash of the document being signed. The signature function
also takes a password (known as a “private key”) as input and
produces an encrypted (but decryptable) output. Also like the
hash, it is considered computationally infeasible to construct
an input that produces a desired output or to take an output
and reconstruct the input or private key that produced it.

Critically, the private key has a corresponding public key
with the special property that a message encrypted with the
private key can only be decrypted with the public key. It is
computationally infeasible to figure out the private key given
only the public key. Digital signatures use this property such
that the trusted signer keeps their private key secret and puts
their public key on a list of trusted public keys. When a digi-
tal signature and corresponding document are to be validated,
one can check that a trusted private key did indeed create the
signature for the document by decrypting the signature with
the trusted public key and comparing the decrypted hash with
the hash of the received document.

3.2 | Advanced sharing design patterns

3.2.1 | Pattern 9: Mask and link

An extremely common occurrence in many areas of life is the
need to provide certification to a downstream customer or reg-
ulator that you have a piece of information, but you do not
want to share it unless absolutely necessary. Most businesses
would like such processes to be automated to ensure that data
shared outside their firewall adheres to company-wide privacy
policies and to avoid polluting the daily logistical tasks of
employees with tedious regulatory burdens that fall outside
their core business. The combination of mask and link tool
with the domain admin with in-and-out demilitarized zones
pattern, as illustrated in Figure 9, results in a very powerful
and flexible privacy solution.

The basic idea behind mask and link is that a masked copy
of aresource in OADA can be created that obscures some data
in the resource (but not necessarily all) by replacing the sen-
sitive parts of the resource with a hash of the original and a
URL (i.e., a link). In the event of a later audit, the hash can

AULT ET AL.
PLATFORM A
Don's User Pat’s User
/bookmarks
/fields ——————- mask
L— /FieldA
L
name: “Back 40",
cashrent: {
value: "500.00",
currency: "USD",
+
/trading-partners
/Pat
L— /bookmarks
/shared-in
L— /fields -———-- < masked copy Don —> Pat >
L— /FieldA
—{
name: “Back 40",
cashrent: {
trellis-mask: {
hash: { ... }
url: “https://..."
}
}
}

FIGURE 9 Domain admin with mask and link pattern. Using the
domain admin sharing model, Don shares his fields with Pat’s user.
However, Don does not want to share his cash rent amounts for each
field with Pat, so his mask and link service automatically masks it away
before sharing a masked copy to Pat

be used to prove that the original data has not been changed
since it was originally shared, and anyone with permission
to the OADA platform where the original lives can access it
directly to verify. This allows the sharer to completely control
who is allowed to see their sensitive information even after the
masked version is shared outside of their control because the
downstream recipient of the masked document must access
the sharer’s platform to retrieve the actual data. A digital sig-
nature is also applied to the document after masking that can
be used to verify if a trusted party performed the masking
process.

This feature is available open source as part of the Trellis
framework (https://github.com/trellisfw) including a library
for masking and signing any JavaScript object notation
(JSON) document, a microservice to automatically mask doc-
uments as they arrive at an OADA platform, and a web appli-
cation to verify masks and signatures for authorized parties.

If a company is forced to publish some piece of data to an
outside platform for purposes of certification or traceability,
they can use mask and link to achieve fine-grain control of
what they approve for release outside their company and what
they choose to keep internal.

3.2.2 | Pattern 10: AGAPECert

Going one step further than mask and link, which merely
obscures data, AGAPECert (https://github.com/agapecert) is
a new solution that enables trusted claims about data to be
produced and shared instead of sharing data or masks This

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

https://github.com/trellisfw
https://github.com/agapecert

AULT ET AL.

Agronomy Journal 2691

model is useful in a wide variety of scenarios: a produce ship-
per wants to certify that they have all the necessary records
to trace where their products came from but doesn’t want to
leak to all their downstream customers about exactly who they
buy from; a livestock producer who wants to certify they have
met environmental regulations for manure application without
needing to share the actual GPS paths of their manure spread-
ing equipment: or a fishing vessel would like to prove they
caught fish within the boundaries of allowable waters without
divulging their exact fishing grounds.

AGAPECert does this by providing an auditable, gen-
eralized, privacy-enabling certification framework (Interi-
ano, 2020). AGAPECert, like OADA and the Trellis frame-
works, is an open-source project of the Open Ag Technol-
ogy and Systems Center at Purdue University. Published at the
AGAPECert code repository (AGAPECert, 2020) are several
libraries, services, and applications that can be used to imple-
ment private automated certifications (PACs) for any indus-
try. A PAC is basically an attested claim about private data
that can be shared in lieu of sharing the actual data.

It is beyond the scope of this paper to fully describe
AGAPECert’s functionality, but at a basic level AGAPECert
allows a privacy-conscious data owner to run preapproved and
certified software code in their own environment on their pri-
vate data to produce a certification (a PAC) about that pri-
vate data (Interiano, 2020). That certification can then contain
proof of correct code execution that can be reasonably trusted
by recipients of the certification and is still able to be audited
in the future. The software code producing the certification
is called an oblivious smart contract (OSC), which can auto-
matically produce certifications about the underlying private
data, hence the “automated” part of the PAC name.

A regulator can approve a given OSC for use in automating
certifications in an industry, and a data owner can also approve
or have their trusted agent approve the OSC prior to running
it themselves on their own data, that is, the data owner could
look to an industry organization’s approval that a particular set
of code adheres to proper privacy and will faithfully produce
appropriate certifications. This model allows for a company
not only to obscure data released to another platform like mask
and link, but it also allows for the outside platform to achieve
some particular guarantees about the data transformation and
processing as well.

4 | CONCLUSION

Data privacy continues to be a serious issue in the agri-
culture and food industry, and it will only become more
important in the next several years. A survey of concepts in
the technical toolbox to achieve various privacy and sharing
goals was presented as well as examples of how to apply
those in various design patterns using the OADA frame-

work. The concepts presented in this paper provide a com-
prehensive framework and language by which to understand
and compare various data sharing models and their privacy
implications. Importantly, two newly enabled advanced shar-
ing models are described: mask and link and AGAPECert.
The advanced cases provide significantly improved data
sovereignty paradigms over existing options and have been
implemented using the OADA framework.

ACKNOWLEDGMENTS

Sponsorship for this work was provided by Foundation
for Food and Agriculture Research (FFAR) under award
534662 through the Open Agriculture Technology and Sys-
tems (OATS) Center at Purdue University.

AUTHOR CONTRIBUTIONS

Aaron Ault: Conceptualization; Data curation; Formal analy-
sis; Funding acquisition; Investigation; Methodology; Project
administration; Resources; Software; Supervision; Valida-
tion; Visualization; Writing — original draft; Writing —
review & editing. Servio Palacios: Conceptualization; For-
mal analysis; Investigation; Methodology; Project adminis-
tration; Resources; Software; Supervision; Validation; Visu-
alization; Writing — original draft; Writing — review & edit-
ing. John Evans: Conceptualization; Formal analysis; Inves-
tigation; Methodology; Software; Validation; Visualization;
Writing — original draft; Writing — review & editing.

CONFLICT OF INTEREST

As of the time of this writing, Aaron Ault is the Chief Technol-
ogy Officer of, and Servio Palacios is currently employed by,
The Qlever Company, LLC, a software consulting company
whose work includes helping companies include the OADA
and Trellis open source projects in their products and infras-
tructure. Dr. John Evans has no conflicts of interest.

ORCID
Aaron Ault © https://orcid.org/0000-0001-7060-6559
REFERENCES

AgGateway. (2017). Data privacy and use white paper: Version
1.2 updated. https://www.aggateway.org/eConnectivity Activities/
Committees/DataPrivacySecurity.aspx

American Farm Bureau Federation. (2016). Privacy and security princi-
ples for farm data.

Carbonell, I. M. (2016). The ethics of big data in big agriculture. Internet
Policy Review, 5. https://doi.org/10.14763/2016.1.405

Ferris, J. L. (2017). Data privacy and protection in the agriculture indus-
try: Is federal regulation necessary? Minnesota Journal of Law, Sci-
ence & Technology, 18, 309.

Interiano, S. E. P. (2020). Auditable computations on (un)encrypted
graph-structured data (M.S. thesis Purdue University Gradu-
ate School, West Lafayette, IN). https://doi.org/10.25394/PGS.
12721169.v1

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

https://orcid.org/0000-0001-7060-6559
https://orcid.org/0000-0001-7060-6559
https://www.aggateway.org/eConnectivityActivities/Committees/DataPrivacySecurity.aspx
https://www.aggateway.org/eConnectivityActivities/Committees/DataPrivacySecurity.aspx
https://doi.org/10.14763/2016.1.405
https://doi.org/10.25394/PGS.12721169.v1
https://doi.org/10.25394/PGS.12721169.v1

AULT ET AL.

2692 Agronomy Journal

Nielsen, K. (2019). Big data and sensitive data. In A. Emrouznejad &
V. Charles (Eds.), Big data for the greater good (pp. 183-204). https:
//doi.org/10.1007/978-3-319-93061-9_9

Sykuta, M. E. (2016). Big data in agriculture: Property rights, privacy
and competition in ag data services. International Food and Agribusi-
ness Management Review, 19, 57-74. http://doi.org/10.22004/ag.
econ.240696

Wilgenbusch, J., Lynch, B., Hospodarsky, N., & Pardey, P. (2020). Deal-
ing with data privacy and security to support agricultural R&D:
Technical practices and operating procedures for responsible agroin-

formatics data management. CGIAR Big Data Platform. https://hdl.

handle.net/10568/108095

How to cite this article: Ault, A., Palacios, S., &
Evans, J. (2022). Agriculture data sharing: Conceptual
tools in the technical toolbox and implementation in
the Open Ag Data Alliance framework. Agronomy
Journal, 114, 2681-2692.
https://doi.org/10.1002/agj2.21007

ASUDDIT SUOWWO)) dANeL) d[qeorjdde oYy Aq pauIaA0S a1e s3[OIE Y (38N JO SN 10] AIRIQIT dUIUQ) A[IAN UO (SUONIPUOD-PUEB-SULId) /W00 A3[1M " KIRIqI[aul[uo//:sd)y) suonIpuo)) pue sud |, 3y 39S *[£70z/10/87] uo Areiqry autjuQ A[IA ‘L0012 2IBe/2001°01/10p/wod KoM A1e1qIjauljuo-ssasoe//:sdny woiy papeojumod ‘S ‘7207 ‘SH90SEh1

https://doi.org/10.1007/978-3-319-93061-9_9
https://doi.org/10.1007/978-3-319-93061-9_9
http://doi.org/10.22004/ag.econ.240696
http://doi.org/10.22004/ag.econ.240696
https://hdl.handle.net/10568/108095
https://hdl.handle.net/10568/108095
https://doi.org/10.1002/agj2.21007

	Agriculture data sharing: Conceptual tools in the technical toolbox and implementation in the Open Ag Data Alliance framework
	Abstract
	1 | INTRODUCTION
	1.1 | Technical data privacy conceptual tools
	1.1.1 | Concept 1: Access types
	1.1.2 | Concept 2: Users or accounts and permissions
	1.1.3 | Concept 3: Scopes and tokens
	1.1.4 | Concept 4: Shares
	1.1.5 | Concept 5: Data organization
	1.1.6 | Concept 6: Synchronization and caching
	1.1.7 | Concept 7: Obfuscation
	1.1.8 | Concept 8: Cryptography

	1.2 | Implementation in the OADA framework

	2 | SHARING DESIGN PATTERNS
	2.1 | Pattern 1: Shared bookmarks
	2.2 | Pattern 2: Shared nodes
	2.3 | Pattern 3: Service users
	2.4 | Pattern 4: Single-authority filtered graph
	2.5 | Pattern 5: Multi-authority filtered graph
	2.6 | Pattern 6: Mirror user
	2.7 | Pattern 7: Single-token shares
	2.8 | Pattern 8: Domain admin with in-and-out demilitarized zones

	3 | ADVANCED SHARING DESIGN PATTERNS
	3.1 | Cryptography: Hashes and digital signatures
	3.2 | Advanced sharing design patterns
	3.2.1 | Pattern 9: Mask and link
	3.2.2 | Pattern 10: AGAPECert

	4 | CONCLUSION
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES

