
Received: 30 July 2021 Accepted: 4 January 2022 Published online: 26 February 2022

DOI: 10.1002/agj2.21007

S PEC IAL SECT ION : B IG DATA PROMISES AND OBSTACLES :
AGR ICULTURAL DATA OWNERSH I P AND PR IVACY

Agriculture data sharing: Conceptual tools in the technical
toolbox and implementation in the Open Ag Data Alliance
framework

Aaron Ault Servio Palacios John Evans

Purdue University, School of Electrical and

Computer Engineering and School of

Agricultural and Biological Engineering,

West Lafayette, IN, USA

Correspondence
AaronAult, PurdueUniversity, School of

Electrical andComputer Engineering and

School ofAgricultural andBiological Engi-

neering,West Lafayette, IN,USA.

Email: ault@purdue.edu

Assigned toAssociateEditorDavidClay.

Abstract
Data privacy has become a critical issue within the agriculture and food industry. The

real-time conversion of data to information has been shown to be incredibly valuable

to the industry but often requires sharing data with software, platforms, customers,

and regulators outside the data owner’s control. While much work in this area has

focused on legal protections for data privacy, less has been devoted to technical archi-

tectures to support different sharing models. This paper defines some “tools in the

toolbox” for designing such systems that are accessible to both technical and non-

technical audiences as well as several “sharing design patterns” using the Open Ag

Data Alliance (OADA) framework. These tools and patterns are helpful in classify-

ing and understanding both existing and future data flows in agriculture and their

privacy implications.

1 INTRODUCTION

Data privacy is an issue that affects us all. From banking infor-

mation to healthcare, how our data are shared and secured is

a continual concern in the modern world. The convergence

of cloud computing, high-speed cellular coverage, and con-

nected agricultural machinery has brought the issue of data

privacy to the forefront in the agriculture and food industry as

well. While much focus has been given to technical privacy

concepts, generally, and legal questions of agriculture data

privacy, specifically (Carbonell, 2016; Ferris, 2017; Nielsen,

2019; Sykuta, 2016), this work focuses on technical privacy

concepts specifically in the agriculture and food industry.

Abbreviations: API, application programming interface; DMZ,

demilitarized zone; OADA, Open Ag Data Alliance; OSC, oblivious smart

contract; PAC, private automated certification; REST, representational state

transfer; URL, uniform resource locator.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2022 The Authors. Agronomy Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy.

Questions on data privacy and sharing in agriculture often

revolve around legal user agreements. Addressing this, the

American Farm Bureau Federation and an associated group

of agriculture technology providers set forth the “Privacy and

Security Principles for Farm Data” (American Farm Bureau

Federation, 2016). AgGateway also maintains a list of con-

cepts (AgGateway, 2017) that they recommend be included

in data contract generation. The Ag Data Transparency eval-

uator (https://www.agdatatransparent.com/) grew out of such

efforts as an organization which reads and evaluates existing

legal data agreements in agriculture. Such efforts share a com-

mon theme of increasing transparency between the farmer and

agriculture technology companies.

There is a fundamental limit on the privacy guarantees that

can be made by technological solutions alone. The only real

limit to what a data recipient can do with data to which they

have read-access is a legally based or trust-based limit. A data

owner may inherently trust a data recipient to act in their best

Agronomy Journal. 2022;114:2681–2692. wileyonlinelibrary.com/journal/agj2 2681

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://orcid.org/0000-0001-7060-6559
mailto:ault@purdue.edu
http://creativecommons.org/licenses/by/4.0/
https://www.agdatatransparent.com/
https://wileyonlinelibrary.com/journal/agj2


2682 AULT ET AL.

interest with their data, or they can trust a legal agreement

to govern allowable uses of their data, but there are no fool-

proof, technology-based limitations to what a recipient can

do with data they can see. This paper describes some exciting

new technical tools (see the Advanced Sharing Design Pat-

terns section) that are better equipped to handle access control

management in these “released into the wild” situations than

most existing options.

This paper focuses on the technical tools (e.g., software

code and system architectures) that can be used to model data

privacy and sharing issues in the agriculture and food industry

rather than the traditional legal (e.g., rights, promises, con-

tracts) topics. We provide an overview of some “technical

tools in the toolbox” to design such systems, intended to be

accessible to audiences of both technical and nontechnical

backgrounds in an effort to broaden participation in creating

real-world systems for agriculture and the food supply chain

that can give proper consideration to privacy and sharing.

We also provide several sharing design patterns using these

concepts through the open-source Open Ag Data Alliance

(OADA) framework (https://github.com/OADA).

1.1 Technical data privacy conceptual tools

Since there is no one-size-fits-all “correct” privacy model

(Wilgenbusch et al., 2020), it is important for the designers of

data systems in agriculture and the food supply chain to have

a full understanding of the available tools in the technical pri-

vacy toolbox. It is also important for agricultural practition-

ers to understand the ramifications of various sharing models

in order to better understand what happens to their data. We

present the following list of concepts followed by some shar-

ing design patterns using the OADA data framework.

1.1.1 Concept 1: Access types

Data privacy can be considered as rules for three types of

access to digital data: read access (view and understand bits of

data),write access (change bits of data), and admin access (set
the read-write-admin access to bits of data). Note that some-

one that can see encrypted data, and therefore cannot prop-

erly interpret its meaning, is not generally considered to have

read access, although decryptable data does have risk of key

compromise that would allow it to be decrypted by malicious

actors.

1.1.2 Concept 2: Users or accounts and
permissions

Users are the core of setting permissions and performing

actions on a platform. They typically refer to a conceptual

Core Ideas
∙ There are several composable, reusable concepts

for designing privacy-focused systems in agricul-

ture.

∙ Data privacy concepts can be deployed via the

OADA framework

∙ Clear privacy design patterns exist for various

types of use cases in agriculture.

∙ Standardization of privacy components across sys-

tems provides useful advanced patterns.

entity within one system that does not cross system bound-

aries. For example, the same person may have used both

Google Drive and Dropbox cloud storage services, but that

person is considered as two distinct users—one in each plat-

form. Users have permissions to specific resources on a plat-

form.

1.1.3 Concept 3: Scopes and tokens

A token is basically an app-specific password that exter-

nal systems send when they make a data request. Typi-

cal software-level requests for data are self-contained—the

request is allowed to proceed if the token provided on the

request is valid regardless of other requests that may have

taken place earlier or later. Tokens are generally handed out by

users, with a “scope” defining what the application or service

is allowed to do on their behalf. Scope can restrict a token to

particular types of data (harvest, planting, etc.) or to data that

has certain properties (harvest data from only this field). Note

that scopes are different than permissions: users are limited

by permissions, and tokens are limited by both scope and the

user’s permissions who handed out the token. The user typi-

cally cannot grant privileges to a token beyond what the user

is allowed to do themself. The time when a user authorizes a

token represents the end of technical privacy protection and

the start of legal protection, hence, it is a good time to make

privacy statements available to users as done in the OADA

framework. For example, when a user sees the screen “Do you

want to allow Application ABC to read your harvest data,” on

that same screen is a link to the platform’s privacy and use

statement.

1.1.4 Concept 4: Shares

Local users on a platform can share data with other users.

Sharing is initiated by a user with admin access to particular

data and typically does not involve explicit consent on the part

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/OADA


AULT ET AL. 2683

of the recipient. From the recipient’s perspective, they have

a set of incoming ‘shares’ from other users. An odd conse-

quence of this concept is that the shares list belongs to the data

recipient, but they cannot restrict other users from adding to

their shares list.

1.1.5 Concept 5: Data organization

Most people are familiar with organizing their data in hierar-

chical graphs, that is, files and folders in common parlance.

These structures have immense ramifications in a person’s

ability to understand sharing rules—sharing a folder means

sharing everything in that folder. An alternative to sharing

hierarchically is property-based sharing, that is, share data

based on a property like a time range or geospatial area.

Many real-world sharing scenarios require both. For exam-

ple, a farmer that wants to share this year’s harvest maps for a

particular field, which means that their total as-harvested data

must be restricted to only the points that fall inside that field’s

boundary and were harvested in this year.

1.1.6 Concept 6: Synchronization and
caching

Most data sharing from users to applications involves an appli-

cation making a copy of a user’s data from one platform into

their account on another platform. How the integrity of this

cached copy is maintained over time is a crucial part of the

user’s data sharing experience. Possible questions that arise

include the following: Do they have to manually import and

export things between platforms? Does a platform have to

wait some interval before it can ask if new data is available?

Can data be pushed in real-time? Systems requiring import–

export semantics may, for all practical purposes, be incapable

of achieving data privacy and sharing goals for many users

because of the user time required just to move the data. This

occurs frequently in production agriculture where a farmer

may prefer to limit a service provider’s access to data from

only a few fields, but due to lack of time to import and re-

export data, the farmer simply gives the data card from their

combine with their entire season’s recorded data to their ser-

vice provider and hope they only take the data they really

need.

1.1.7 Concept 7: Obfuscation

This is often the de facto method in agriculture by which a

company prevents other companies from accessing data in

their systems. This typically happens when a company makes

up their own file formats for their data and then does not pub-

lish descriptions of those formats for other software devel-

opers. In layman’s terms, imagine a farmer sharing a spread-

sheet to their agronomist that the farmer created themselves,

full of cryptic abbreviations that only the farmer understands,

and then the agronomist would be expected to reverse engi-

neer the meanings in order to try to do their job. It achieves

some effective level of privacy but sacrifices reusability and

portability.

In addition to simply file formats, critical to practical data

sharing is enabling platforms to agree on how to authorize,

find data, read and write data, request updates, negotiate

formatting, alter permissions, among other actions. If these

methods also are obfuscated from software developers in the

industry, then privacy is still achieved by the fact that no other

software can figure out how to use it.

Relying on obfuscation can result in overconfidence with

your data privacy because often it only reliably works when

a malicious attacker is not interested in your data in the first

place. If data has real value, interested adversaries can often

reverse engineer the obfuscation. Primarily, however, if data

sharing is a goal, obfuscation is a very poor tool because it

largely prevents sharing in the first place.

1.1.8 Concept 8: Cryptography

Cryptography uses mathematical techniques to provide data

integrity and confidentiality. Integrity ensures that a recipient

can tell if data has been tampered with, often through hash-

ing functions (described later). Confidentiality ensures that an

adversary cannot derive information from an encrypted mes-

sage. As a corollary to confidentiality, key-based semantics

can also provide identity, in other words, you cannot produce

the correct encrypted text from a clear text if you do not know

the password (private key).

1.2 Implementation in the OADA
framework

While a full exposition of the OADA application program-

ming interface (API) framework is beyond the scope of this

paper, we here describe a few features that will help us demon-

strate some of the sharing tools as real-world examples. While

the sharing patterns and tools described in this paper can

generically be applied in a wide variety of circumstances, the

concepts and language to understand and implement sharing

that we have developed within OADA are extremely useful to

a cohesive treatment of this topic. Therefore, we present here

a minimal overview of the necessary terms and concepts that

we will use in this paper.

The OADA framework defines a standard for how software

code interacts with data on any OADA-conformant system.

Digital systems exchange data primarily through APIs. In the

most common type of API, a representational state transfer

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



2684 AULT ET AL.

F IGURE 1 Simplified example bookmarks tree representing a

standardized structure for where to place as-harvested data relative to

other data for a farmer in an application programming interface. The

highlighted path would be specified as

/bookmarks/harvest/as-harvested/year-index/2020

(REST) API, data access generally takes the form of a series

of uniform resource locators (URLs) where software may

find, read, write, and delete digital resources. Such APIs are

widely accepted and well known as the standard form of data

exchange between most agriculture data providers today. The

OADA codifies existing best practice in REST API design,

providing standard requirements that any API must meet to be

considered OADA-conformant. Existing APIs can be adapted

to become OADA-conformant, or new APIs can be developed

using OADA principles from the start. Understanding some

of these requirements and concepts will help to understand

how API-driven platforms can share data, which is the pri-

mary focus of this paper.

The first central feature of an OADA-conformant platform

is that the data platform has users—distinct entities capable

of logging in. Each user has a set of resources organized in

published hierarchical structures formed when resources link

to each other. These hierarchical structures are known as a

“directed graph” or just “graph,” and resemble a folder hierar-

chy on a normal computer system. A user’s software tools use

the graph structures that it knows about to find the data needed

on a user’s platform to accomplish tasks for them. The root

of each user’s graph is called their “bookmarks.” Most real-

world graphs tend to grow downward and have few cycles (i.e.,

lower folders do not point back up to higher folders); therefore,

we often refer to bookmarks as a “tree” structure. See Figure 1

for a visual example.

A good analogy for this concept is to envision if every

farmer and agronomist used Google Drive to store their data,

and they all used the same folder names and file names to

organize their data. Their software could then accomplish

many data-centric tasks for them by knowing how to connect

to Google Drive and interacting with those standard struc-

tures. Sharing data would then largely mean moving data

between those user accounts.

A bookmarks tree is arranged according to specified graph

schemas typically with higher-level nodes representing a

semantic organization (i.e., segregating types of data) and

lower-level nodes representing an index-based organization

(i.e., splitting large data sets of the same type of data into

smaller consumable chunks). For example, consider the high-

lighted graph path of Figure 1, represented by the URL path

/bookmarks/harvest/as-harvested/year-index/2020.
This has the higher-level semantic organization of “harvest”

and “as-harvested,” indicating as-harvested data is to be

found here as opposed to spraying data or planting data.

The lower-level “year-index” of 2020 means that only the

as-harvested data from the year 2020 is expected to be found

at that level. Any software looking for as-harvested data

would look on a user’s data platform according to this API

path when discovering if the user has as-harvested data for

2020.

The concept of the semantic structure of a bookmarks tree

is recursively reusable throughout any system. For example,

a user may have many customers who are other users on the

same platform. In this case, it is useful to first organize their

list of customers, and then, for each customer, store a link to

that customer’s bookmarks tree. Since the hard work of mod-

eling the data space for a particular use case was already done

once, reusing this tree structure where applicable both pro-

motes interoperability and improves code efficiency.

Users share resources with other users by assign-

ing permissions on a resource. Any resources reach-

able downward in the graph inherit the permissions of

the shared resource. For example, if a user has access

to /bookmarks/harvest, then they also have access to

/bookmarks/harvest/as-harvested. In addition to a

bookmarks tree, each user has a shares resource, that is, a list

of links to all resources that are shared with them from other

users.

Applications obtain a client identifier through dynamic

client registration, allowing systems that have never before

known about each other to be connected by the user, putting

the user in control of their data. The software statement pro-

vided by the application during registration includes a link

to their privacy and use statements that is shown to the user

when they attempt to authorize access to their data. Users

authorize tokens for registered clients using scopes that can

be content-type based (i.e., all harvest data) and graph-based

(only harvest data from 2020). As described above in Concept

3, a token is basically a unique password that applications send

along with their requests to a platform. The application acts

on behalf of the user that granted the token to their data, and

the scope associated with that token specifies restrictions as

to what the user will allow that token to do on their behalf.

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



AULT ET AL. 2685

Applications can register a “watch” on any resource or sub-

tree of resources for real-time change feeds, that is, a real-

time stream of data representing all the changes that happen

to a resource. When any application writes to a resource, an

idempotent merge document is created, which is a document

representing data to “upsert” into parts of a given resource.

Upsert is a contraction of “update” and “insert,” meaning that

any specified parts of the resource will be replaced if they

already exist or created if they do not. The change document

is idempotent because it can be merged into the resource mul-

tiple times and the end state of the resource will be the same

regardless of how often that merge was applied since it will

just keep replacing the same parts of the resource with the

same data each time.

OADA defines the ordered set of idempotent merge docu-

ments as the changes necessary to transform a resource from

one version into any subsequent version. Any external ser-

vice can use them to do things like synchronizing between

platforms, transforming into different formats, and maintain-

ing filtered subtrees for sharing purposes, to name a few of

many examples. In fact, any two OADA-conformant plat-

forms can inherently synchronize any subtree automatically

by using OADA’s built-in ability to replay change feeds on

a remote platform. In other words, since OADA defines pre-

cisely how writes occur in an OADA-conformant API, one

OADA-conformant platform inherently knows exactly how to

write to a destination OADA-conformant platform to make

the destination platform’s copy of a resource look the same as

its own copy. It can simply “replay” the original change at the

destination.

And finally, the Trellis framework (https://github.com/

trellisfw) project is a parallel brand of the OADA framework

that focuses the OADA framework’s capabilities specifically

for supply chains such as those found in fresh produce. Trellis

adds to OADA the ability to apply digital signatures to docu-

ments to verify authenticity as they are exchangedwith trading

partners as well as supporting several of the advanced sharing

use cases that we will describe in later sections.

2 SHARING DESIGN PATTERNS

Design patterns can prove useful when designing data sharing

systems. We present several patterns that have proven use-

ful in real-world industry cases presented in the context of

OADA. The patterns are summarized in Table 1.

2.1 Pattern 1: Shared bookmarks

Each user’s bookmarks resource is the same actual resource

(Figure 2). This model is good for small groups of people who

all trust each other, and all have similar permissions; they sim-

F IGURE 2 Shared bookmarks pattern. Both users on the same

platform use the same bookmarks tree. Alice’s apps and Bob’s apps see

the same resources at all endpoints: easy to stay in synchronized, but no

cross-user privacy

ply need to have the exact same data served to all their appli-

cations such as a manager and all their employees on a small

farm. This model avoids any potential data inconsistencies in

that all users are updating the same actual resources, but no

single user can act in their own bookmarks separately from

the group. It is nearly equivalent to all employees on a farm

using the same user account but has the advantage of know-

ing which users made which changes, and users can have their

access revoked entirely as needed such as in the case of an

employee no longer working on that farm. This pattern can be

succinctly represented by stating that the path /bookmarks
for every user is the same underlying resource.

2.2 Pattern 2: Shared nodes

Each user has a different top-level bookmarks resource, but

the parts of their bookmarks tree, which should be shared

among other users are linked as the same actual resources

(Figure 3). For example, a farm manager and his accountant

may have a common /bookmarks/taxes resource, but the

farm employees’ bookmarks trees do not share that endpoint.

An employee could use an application that creates their own

/bookmarks/taxes resource and still function properly, but

they would not be able to see the farm manager’s resource.

This model requires that graph paths perfectly match privacy

goals of the data owner since they do not limit access to the

graph’s contents below the shared node.

2.3 Pattern 3: Service users

Many services often cooperate to achieve overall goals. It can

be a convenient means of service isolation and tracking to

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/trellisfw
https://github.com/trellisfw


2686 AULT ET AL.

TABLE 1 Summary of sharing design patterns

No. Pattern and description Advantage Disadvantage Examples
1 Shared bookmarks: Each user’s

bookmark is the same

resource

Trivial synchronization: all users

see same data

Nothing private between users Employees on a small farm

sharing all data

2 Shared nodes: Only some parts

of data are the same

resources between users

Trivial to keep shared data

synchronized with additional

setup

Some data can be private, but

others easily shared

Employees on a small farm with

limited access to some data

3 Service users: Create a

special-purpose user for each

intended service

Isolates services and makes them

easy to track

Same as no. 2 Microservices that operate on

user’s data

4 Single-authority filtered graph:

Use a service to maintain a

filtered copy of all shared

resources

High control over permissions;

easy to merge data from

multiple platforms

Data only flows one direction As-applied fertilizer maps from

service providers

5 Multi-authority filtered graph:

Use a service to synchronize

data to and from multiple

platforms

High control over permissions;

changes replicated across

platforms

Data conflicts between

platforms; prone to infinite

cycles

Field boundaries shared across

multiple applications and

tractors on a farm

6 Mirror user: Create specialized

users to hold all data shared

with each outside source

Easy to know what is shared and to

whom at all times; easy to

synchronize

Requires many users and using

services to maintain sharing

to those users

Agronomist with multiple

farmer clients who all use

apps to see recommendations

7 Single-token shares: One user

shares data to another user as

a “suggestion” and the other

user accepts

Only requires one low-privilege

token to perform sharing

Recipient must appropriately

handle incoming shares

Farmer-to-farmer sharing on the

same platform

8 Domain admin with in-and-out

demilitarized zones: Create

specialized users for all

sharing partners and maintain

independent copies of

everything coming and going

from and to that partner

Clearest and cleanest sharing

model for large numbers of

customers or vendors; enables

approval process for incoming

data

High level of complexity and

maintenance required for

approvals and sharing

Enterprise sharing of food safety

documents; co-ops with many

farmer customers sharing data

in-and-out

create individual users (that are prohibited from logging in)

for each service and then setting the bookmarks tree for that

user to be the same resource as the primary tree it was sup-

posed to operate on without this model. Applying the shared

nodes pattern above tends to create the best blend between

efficiency and access granularity, for example, the service

user has access to fields but not taxes. The service administra-

tor then simply needs to communicate a token to the service

tied to that service user. In this way, the actions of this partic-

ular service can be isolated, permissioned, and tracked easily

just as if it were a farm employee.

2.4 Pattern 4: Single-authority filtered
graph

Each user has their own bookmarks resource, but a copy of

parts of a master bookmarks tree is maintained across users

rather than sharing resources directly (Figure 4). This model

is more complex than Patterns 1 and 2 because it requires

an actively running service with permissioned tokens capa-

ble of writing to all involved users. This service must main-

tain synchronization in real time between copies. It sets a

watch on the nodes in the master tree and replays changes in

the copied resources that are linked in the downstream user’s

trees. Because the master copy is considered authoritative, it

only maintains a one-way synchronization. This means if the

downstream users write to their copies, this data stays in their

own tree and does not migrate up to the master copy. If the

master copy overlaps with data in the copies, the data in the

copy is overwritten when changed in the master.

This allows granular control of sharing by a user to any

other users according to whatever rules drive the filter-plus-

sharing service. This model can perform property-based shar-

ing, that is, sharing only some data points within the same

resource based on their value and not others. For example,

only sharing as-harvested data points that fall within a par-

ticular field boundary. If data points in the harvest resource

lie outside a given boundary, they could be excluded from

sharing.

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



AULT ET AL. 2687

F IGURE 3 Shared nodes pattern. Alice’s apps and Bob’s apps

see the same resources under /bookmarks/fields and

/bookmarks/harvest but not others such as /bookmarks/taxes.
Alice’s “tax” apps interact with her “taxes” endpoint and not Bob’s, but

changes to her “fields” endpoint will be reflected in Bob’s apps as well

F IGURE 4 Single-authority filtered nodes pattern. Alice’s user

on Platform A is the authoritative source for data point “a” within the

resource at /bookmarks/yield-map. A separate service maintains a

copy of Alice’s point “a” under Bob’s user on his own platform, but

Alice’s point “b” remains only on her platform. If Bob changes point

“a” on his platform, Alice’s user does not see his change

Since the service performs its task using the OADA API,

and any OADA-conformant platform speaks that API, then

this is the first of the sharing design patterns that does not

care if the two users are on the same platform or different

platforms. In other words, this model allows a user to share

data just as easily across platforms as across users on the same

platform.

As a corollary, consider a person with users at multiple

platforms where data is created. They are each authoritative

over the data in their platform. The user would like to collect

all the data together into a single user on a single platform.

For example, a farmer that uses multiple service providers to

spread their fertilizer. Each provider would have as-applied

F IGURE 5 Multi-authority filtered nodes pattern. Both Alice and

Bob have a copy of data point “a,” but a change to either side is

replayed at the other. The only difference from the single-authority

model above is the bidirectional arrow on the copy service

fertilizer data for the farmer on their own platform. The farmer

would like to get all of their as-applied fertilizer data into one

place, so the farmer has a user account at their preferred cloud

provider to collect the data from the farmer’s users on the var-

ious service provider platforms.

For the sake of simplicity, assume all the plat-

forms store as-applied fertilizer at the location

/bookmarks/fertilizer/as-applied. The farmer’s

preferred platform can configure the resource at each outside

platform to replay their changes under the farmer’s user at the

preferred platform. If the keys that identify the underlying

data points in the /bookmarks/fertilizer/as-applied
tree are randomly generated strings, then the net result at the

preferred platform after merging will be a subtree with the

same structure but containing all the merged data from all

sites. In effect, using random string keys allow resources to

be merged together without conflict because the data points

never overlap (i.e., conflict) at the destination.

In this way, each platform can be the authoritative copy for

the data they generate. Counterintuitively, despite the grower

thinking of their primary platform as the definitive place

where they store all their fertilizer data, it is actually not the

authoritative copy in this case since it simply accepted the data

generated at other places.

2.5 Pattern 5: Multi-authority filtered
graph

Each user has their own bookmarks and their own copies of

all shared resources, but either user may write to their copy

and expect it to be reflected in the other copy. In other words,

neither copy is authoritative (Figure 5). This is the most com-

monly used case for real-world users, but it is also the most

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



2688 AULT ET AL.

F IGURE 6 Mirror user. Alice’s user creates a user for Bob on

Alice’s platform and links Bob’s bookmarks under her own tree. Alice’s

apps can interact with Bob’s bookmarks as Bob. Alice still has her own

fields and harvest data

complex. If the exact same data paths are not written on

either side, conflicts do not overwrite. Inmany situations, sim-

ply placing data at a key that is a randomly generated string

ensures no conflicts, although this can suffer from duplicate

data if the same data is written on both sides and then syn-

chronized. The vast majority of cases where conflicts may

occur can be reasonably solved with a last-write-wins con-

flict resolution model, but this should be considered carefully

when dealing with such situations. For example, if a user’s

field boundaries contain a field named “Smith30,” and one

employee changes the name to “Smith29” in a tractor while

another employee changes it to “Smith31” on their phone,

whichever change is written last would be considered the “cor-

rect” name. Care must be taken here to avoid infinite cycles,

that is, Platform A writes Smith30 while Platform B writes

Smith29, then Platform A replays the Smith30 write to Plat-

form B, but Platform B is also simultaneously replaying the

Smith29 write to Platform A, which Platform A then replays

back to B, and so on, and so on.

As with the single-authority sharing design pattern, a sepa-

rate synchronization service is needed if filtering is to be per-

formed, and the users involved need not be on the same plat-

form.

2.6 Pattern 6: Mirror user

When a user wants to share data with a remote platform—or

even another user—they create a separate user whose book-

marks tree represents the full set of data to be synchronized

and optionally link that new user’s bookmarks tree into their

own. (Figure 6). By storing an exact bookmarks tree of every-

thing destined for a different user or outside platform, it is very

simple to audit and debug synchronization. It allows the pri-

mary user to use an application as if they were the other user

to ensure the shared user’s experience is appropriate.

This effectively splits the task of synchronization into two

phases: first, make the mirror tree look like you want, then

make sure the remote looks just like the mirror. If a user ever

F IGURE 7 Single-token shares pattern. Alice’s user can share

Field A with Bob’s user, but Bob must “accept” the share by deciding

what to do with that field for his own bookmarks tree. Alice only needs

a token with permission to her own user accomplish this pattern

wants to ask a question like “Exactly what data did I share

to company X?” this model works very well. Because the

synchronization is logically split from the sharing, the built-

in OADA synchronization can tackle keeping the mirror tree

synchronized with the remote, vastly simplifying the task of

the sharing application. Conveniently, this model also does

not require the sharing application (which only writes to the

mirror tree) to have a token authorized for the remote user.

Only the synchronization of the mirror to the remote needs

such a token.

2.7 Pattern 7: Single-token shares

A user can choose a particular subtree of their bookmarks to

share with another local user and grant that user permission

to that subtree (Figure 7). This granting of permission causes

the shared node to appear in the list of shares for the other

local user. This action does not link the shared resource into

the appropriate place in the other local user’s bookmarks tree,

leaving that task up to another application or service. This pat-

tern has the advantage of not requiring the original user to

have permissions to the other local user’s data.

This model has merits for a clean separation of

permission—the original user is essentially just sug-

gesting to the other local user that they accept this data.

However, it suffers from added dependency that it requires

a different piece of software to identify the newly shared

subtree and decide what to do with it (i.e., where to put it

in the other local user’s bookmarks tree). For example, an

agronomist that shares a planting prescription with a farmer

might prefer that their map just show up in the planter tractor

for the farmer rather than requiring action on the part of their

customer.

2.8 Pattern 8: Domain admin with
in-and-out demilitarized zones

Each user is separate and has their own bookmarks tree, but a

top-level domain admin user created all the other users in their

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



AULT ET AL. 2689

F IGURE 8 Domain admin with in-and-out demilitarized zones

pattern. Don, the domain admin, created a user for Pat, the trading

partner. Pat sends Don fields at /bookmarks/fields, which Don
accesses at /bookmarks/trading-partners/Pat/bookmarks/
fields. Don sends fields to Pat in /bookmarks/trading-partners/
Pat/bookmarks/shared-in/fields, which Pat’s apps access at

/bookmarks/shared-in/fields

domain and linked their bookmarks trees under the domain

admin’s bookmarks tree (Figure 8). For the purpose of this

discussion, the domain admin user is the authoritative user

implementing this scheme, and the partner users are themirror

users that the domain admin created on their platform to facil-

itate sharing. Each partner user’s tree acts like a mirror user

described in Pattern 5 above, that is, its bookmarks tree can

be directly synchronized out to another platform controlled

by the partner user. This model works quite well in enterprise

scenarios where an enterprise wants to provide a user on their

platform to each of their vendors or customers.

Sharing can be bidirectional (both domain admin to partner

and partner to domain admin), but each direction carries its

own unique considerations from the standpoint of the domain

admin. For data shared out (from domain admin to the part-

ner), it is typically desirable to share copies of data rather than

originals to the partner. This way, the partner user’s copy is

completely isolated, and the partner user cannot gain write

access to original internal company documents. This treats

the partner user’s bookmarks as a sort of “demilitarized zone”

(DMZ) separate from the core data of the company.

This DMZ concept becomes evenmore effective when con-

sidering data shared in (partner to domain admin). Treat-

ing the partner user’s bookmarks as untrustworthy means an

approval process must occur before a document from a partner

is accepted by the domain admin. To accomplish this, another

bookmarks tree is maintained by the domain admin that rep-

resents the approved tree for that partner, but it does not grant

the partner user direct access to it. Writes that occur to the

DMZ bookmarks tree by the partner can then be promoted to

the approved tree through rule-based automated processes, a

manual approval process, or some combination of both.

Therefore, a full implementation of this model involves

maintaining three bookmarks trees for each partner: the

shared-in DMZ bookmarks tree, the approved copy of the

shared-in DMZ bookmarks tree, and the shared-out DMZ

bookmarks tree. Since the partner user needs access to both

the shared-in DMZ tree (to send data to the domain admin)

and the shared-out tree (to receive data from the domain

admin), it is convenient to link the shared-out DMZ tree under

the shared-in DMZ tree so that the same partner user can

access both. Care must be taken to remember that the direc-

tions of in and out are relative to the user in question, that is,

“in” to the domain admin is “out” to the partner user and vice

versa.

The primary simplification here is that a token with only

permission to the domain admin’s bookmarks tree is inher-

ently capable of caring for the underlying customer users.

Combining this pattern with the previous patterns allows for

a single master bookmarks resource to be maintained for an

entire enterprise but still relegate particular users in the com-

pany to perform specific roles through their own bookmarks

trees while still able to have permission to care for customer

needs.

Most important about this model is that almost all other

sharing models can be represented using this model since the

partner user could exist on another platform as simply amirror

of the one on the domain admin’s platform. It does not matter

where the user resides; what matters is the model that there

is a shared bookmarks structure defining the API and a clear

understanding of which data goes where when sharing in and

out.

3 ADVANCED SHARING DESIGN
PATTERNS

Having a standardized API framework enables some excit-

ing privacy paradigms that are difficult to conceive other-

wise. This section discusses two advanced cases that enable

data owners to have greater control over their data sovereignty

while supporting regulatory and reporting needs. First, it is

important to introduce two background concepts relevant to

more advanced data sharing in food and agriculture: hashes

and digital signatures.

3.1 Cryptography: Hashes and digital
signatures

There are two basic concepts in cryptography relevant to

these privacy design concepts: hashes and digital signatures.

A “hash” is the result of running an arbitrarily long stream

of data through a function that produces a deterministic yet

hard-to-predict fixed-length piece of data (known as a hash

of the input data). A good hashing function has the property

that it is considered computationally infeasible to construct

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



2690 AULT ET AL.

an input data stream that produces a particular desired output

hash, and it is considered infeasible to invert the function to

learn the original input data using only the hash. Because of

this property, if you have the hash of some piece of informa-

tion and someone gives you what they claim was the original

information at a later time, you can easily check their claim

by computing the hash of what they give you and see if it is

the same as the hash you have.

The second useful concept in cryptography is a digital sig-

nature. A digital signature is similar to a hash in that it is gen-

erally produced by taking a piece of input data and comput-

ing an output. The input data for a digital signature is often

a hash of the document being signed. The signature function

also takes a password (known as a “private key”) as input and

produces an encrypted (but decryptable) output. Also like the

hash, it is considered computationally infeasible to construct

an input that produces a desired output or to take an output

and reconstruct the input or private key that produced it.

Critically, the private key has a corresponding public key

with the special property that a message encrypted with the

private key can only be decrypted with the public key. It is

computationally infeasible to figure out the private key given

only the public key. Digital signatures use this property such

that the trusted signer keeps their private key secret and puts

their public key on a list of trusted public keys. When a digi-

tal signature and corresponding document are to be validated,

one can check that a trusted private key did indeed create the

signature for the document by decrypting the signature with

the trusted public key and comparing the decrypted hash with

the hash of the received document.

3.2 Advanced sharing design patterns

3.2.1 Pattern 9: Mask and link

An extremely common occurrence in many areas of life is the

need to provide certification to a downstream customer or reg-

ulator that you have a piece of information, but you do not

want to share it unless absolutely necessary. Most businesses

would like such processes to be automated to ensure that data

shared outside their firewall adheres to company-wide privacy

policies and to avoid polluting the daily logistical tasks of

employees with tedious regulatory burdens that fall outside

their core business. The combination of mask and link tool

with the domain admin with in-and-out demilitarized zones

pattern, as illustrated in Figure 9, results in a very powerful

and flexible privacy solution.

The basic idea behind mask and link is that a masked copy

of a resource in OADA can be created that obscures some data

in the resource (but not necessarily all) by replacing the sen-

sitive parts of the resource with a hash of the original and a

URL (i.e., a link). In the event of a later audit, the hash can

F IGURE 9 Domain admin with mask and link pattern. Using the

domain admin sharing model, Don shares his fields with Pat’s user.

However, Don does not want to share his cash rent amounts for each

field with Pat, so his mask and link service automatically masks it away

before sharing a masked copy to Pat

be used to prove that the original data has not been changed

since it was originally shared, and anyone with permission

to the OADA platform where the original lives can access it

directly to verify. This allows the sharer to completely control

who is allowed to see their sensitive information even after the

masked version is shared outside of their control because the

downstream recipient of the masked document must access

the sharer’s platform to retrieve the actual data. A digital sig-

nature is also applied to the document after masking that can

be used to verify if a trusted party performed the masking

process.

This feature is available open source as part of the Trellis

framework (https://github.com/trellisfw) including a library

for masking and signing any JavaScript object notation

(JSON) document, a microservice to automatically mask doc-

uments as they arrive at an OADA platform, and a web appli-

cation to verify masks and signatures for authorized parties.

If a company is forced to publish some piece of data to an

outside platform for purposes of certification or traceability,

they can use mask and link to achieve fine-grain control of

what they approve for release outside their company and what

they choose to keep internal.

3.2.2 Pattern 10: AGAPECert

Going one step further than mask and link, which merely

obscures data, AGAPECert (https://github.com/agapecert) is

a new solution that enables trusted claims about data to be

produced and shared instead of sharing data or masks This

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/trellisfw
https://github.com/agapecert


AULT ET AL. 2691

model is useful in a wide variety of scenarios: a produce ship-

per wants to certify that they have all the necessary records

to trace where their products came from but doesn’t want to

leak to all their downstream customers about exactly who they

buy from; a livestock producer who wants to certify they have

met environmental regulations for manure application without

needing to share the actual GPS paths of their manure spread-

ing equipment: or a fishing vessel would like to prove they

caught fish within the boundaries of allowable waters without

divulging their exact fishing grounds.

AGAPECert does this by providing an auditable, gen-

eralized, privacy-enabling certification framework (Interi-

ano, 2020). AGAPECert, like OADA and the Trellis frame-

works, is an open-source project of the Open Ag Technol-

ogy and Systems Center at Purdue University. Published at the

AGAPECert code repository (AGAPECert, 2020) are several

libraries, services, and applications that can be used to imple-

ment private automated certifications (PACs) for any indus-

try. A PAC is basically an attested claim about private data

that can be shared in lieu of sharing the actual data.

It is beyond the scope of this paper to fully describe

AGAPECert’s functionality, but at a basic level AGAPECert

allows a privacy-conscious data owner to run preapproved and

certified software code in their own environment on their pri-

vate data to produce a certification (a PAC) about that pri-

vate data (Interiano, 2020). That certification can then contain

proof of correct code execution that can be reasonably trusted

by recipients of the certification and is still able to be audited

in the future. The software code producing the certification

is called an oblivious smart contract (OSC), which can auto-

matically produce certifications about the underlying private

data, hence the “automated” part of the PAC name.

A regulator can approve a given OSC for use in automating

certifications in an industry, and a data owner can also approve

or have their trusted agent approve the OSC prior to running

it themselves on their own data, that is, the data owner could

look to an industry organization’s approval that a particular set

of code adheres to proper privacy and will faithfully produce

appropriate certifications. This model allows for a company

not only to obscure data released to another platform likemask

and link, but it also allows for the outside platform to achieve

some particular guarantees about the data transformation and

processing as well.

4 CONCLUSION

Data privacy continues to be a serious issue in the agri-

culture and food industry, and it will only become more

important in the next several years. A survey of concepts in

the technical toolbox to achieve various privacy and sharing

goals was presented as well as examples of how to apply

those in various design patterns using the OADA frame-

work. The concepts presented in this paper provide a com-

prehensive framework and language by which to understand

and compare various data sharing models and their privacy

implications. Importantly, two newly enabled advanced shar-

ing models are described: mask and link and AGAPECert.

The advanced cases provide significantly improved data

sovereignty paradigms over existing options and have been

implemented using the OADA framework.

ACKNOWLEDGMENTS
Sponsorship for this work was provided by Foundation

for Food and Agriculture Research (FFAR) under award

534662 through the Open Agriculture Technology and Sys-

tems (OATS) Center at Purdue University.

AUTHOR CONTR IBUT IONS
Aaron Ault: Conceptualization; Data curation; Formal analy-

sis; Funding acquisition; Investigation; Methodology; Project

administration; Resources; Software; Supervision; Valida-

tion; Visualization; Writing – original draft; Writing –

review & editing. Servio Palacios: Conceptualization; For-

mal analysis; Investigation; Methodology; Project adminis-

tration; Resources; Software; Supervision; Validation; Visu-

alization; Writing – original draft; Writing – review & edit-

ing. John Evans: Conceptualization; Formal analysis; Inves-

tigation; Methodology; Software; Validation; Visualization;

Writing – original draft; Writing – review & editing.

CONFL ICT OF INTEREST
As of the time of this writing, AaronAult is the Chief Technol-

ogy Officer of, and Servio Palacios is currently employed by,

The Qlever Company, LLC, a software consulting company

whose work includes helping companies include the OADA

and Trellis open source projects in their products and infras-

tructure. Dr. John Evans has no conflicts of interest.

ORC ID
AaronAult https://orcid.org/0000-0001-7060-6559

REFERENCES
AgGateway. (2017). Data privacy and use white paper: Version

1.2 updated. https://www.aggateway.org/eConnectivityActivities/

Committees/DataPrivacySecurity.aspx

American Farm Bureau Federation. (2016). Privacy and security princi-
ples for farm data.

Carbonell, I. M. (2016). The ethics of big data in big agriculture. Internet
Policy Review, 5. https://doi.org/10.14763/2016.1.405

Ferris, J. L. (2017). Data privacy and protection in the agriculture indus-

try: Is federal regulation necessary? Minnesota Journal of Law, Sci-
ence & Technology, 18, 309.

Interiano, S. E. P. (2020). Auditable computations on (un)encrypted
graph-structured data (M.S. thesis Purdue University Gradu-

ate School, West Lafayette, IN). https://doi.org/10.25394/PGS.

12721169.v1

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://orcid.org/0000-0001-7060-6559
https://orcid.org/0000-0001-7060-6559
https://www.aggateway.org/eConnectivityActivities/Committees/DataPrivacySecurity.aspx
https://www.aggateway.org/eConnectivityActivities/Committees/DataPrivacySecurity.aspx
https://doi.org/10.14763/2016.1.405
https://doi.org/10.25394/PGS.12721169.v1
https://doi.org/10.25394/PGS.12721169.v1


2692 AULT ET AL.

Nielsen, K. (2019). Big data and sensitive data. In A. Emrouznejad &

V. Charles (Eds.), Big data for the greater good (pp. 183–204). https:
//doi.org/10.1007/978-3-319-93061-9_9

Sykuta, M. E. (2016). Big data in agriculture: Property rights, privacy

and competition in ag data services. International Food and Agribusi-
ness Management Review, 19, 57–74. http://doi.org/10.22004/ag.

econ.240696

Wilgenbusch, J., Lynch, B., Hospodarsky, N., & Pardey, P. (2020).Deal-
ing with data privacy and security to support agricultural R&D:
Technical practices and operating procedures for responsible agroin-

formatics data management. CGIAR Big Data Platform. https://hdl.

handle.net/10568/108095

How to cite this article: Ault, A., Palacios, S., &

Evans, J. (2022). Agriculture data sharing: Conceptual

tools in the technical toolbox and implementation in

the Open Ag Data Alliance framework. Agronomy
Journal, 114, 2681–2692.
https://doi.org/10.1002/agj2.21007

 14350645, 2022, 5, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21007, W

iley O
nline Library on [28/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1007/978-3-319-93061-9_9
https://doi.org/10.1007/978-3-319-93061-9_9
http://doi.org/10.22004/ag.econ.240696
http://doi.org/10.22004/ag.econ.240696
https://hdl.handle.net/10568/108095
https://hdl.handle.net/10568/108095
https://doi.org/10.1002/agj2.21007

	Agriculture data sharing: Conceptual tools in the technical toolbox and implementation in the Open Ag Data Alliance framework
	Abstract
	1 | INTRODUCTION
	1.1 | Technical data privacy conceptual tools
	1.1.1 | Concept 1: Access types
	1.1.2 | Concept 2: Users or accounts and permissions
	1.1.3 | Concept 3: Scopes and tokens
	1.1.4 | Concept 4: Shares
	1.1.5 | Concept 5: Data organization
	1.1.6 | Concept 6: Synchronization and caching
	1.1.7 | Concept 7: Obfuscation
	1.1.8 | Concept 8: Cryptography

	1.2 | Implementation in the OADA framework

	2 | SHARING DESIGN PATTERNS
	2.1 | Pattern 1: Shared bookmarks
	2.2 | Pattern 2: Shared nodes
	2.3 | Pattern 3: Service users
	2.4 | Pattern 4: Single-authority filtered graph
	2.5 | Pattern 5: Multi-authority filtered graph
	2.6 | Pattern 6: Mirror user
	2.7 | Pattern 7: Single-token shares
	2.8 | Pattern 8: Domain admin with in-and-out demilitarized zones

	3 | ADVANCED SHARING DESIGN PATTERNS
	3.1 | Cryptography: Hashes and digital signatures
	3.2 | Advanced sharing design patterns
	3.2.1 | Pattern 9: Mask and link
	3.2.2 | Pattern 10: AGAPECert


	4 | CONCLUSION
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES


