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ABSTRACT

Multi-layer spatial structures usually take considerable external loads with a small material usage at all scales.
Polyhedral graphic statics (PGS) provides a method to design multi-layer funicular polyhedral structures, and the
structural forms are usually materialized as space frames. Our previous research shows that the intrinsic planarity
of the polyhedral geometries can be harnessed for efficient fabrication and construction processes using flat-sheet
materials. Sheet-based structures are advantageous over conventional space frame systems because sheets can
provide more load paths and constrain the kinematic degrees of freedom of the nodes. Therefore, they are more
capable of taking a wider variety of load cases compared to space frames. Moreover, sheet materials can be
fabricated into complex shapes using CNC milling, laser cutting, water jet cutting, and CNC bending techniques.
However, not all sheets are necessary as long as the load paths are preserved and the system does not have
kinematic degrees of freedom. To find an efficient set of faces that satisfies the requirements, this paper first
incorporates and adapts the matrix analysis method to calculate the kinematic degrees of freedom for sheet-based
structures. Then, an iterative algorithm is devised to help find a reduced set of faces with zero kinematic degrees
of freedom. To attest to the advantages of this method over bar-node construction, a comparative study is carried
out using finite element analysis. The results show that, with the same material usage, the sheet-based system has
improved performance than the framework system under a range of loading scenarios.

Keywords: polyhedral graphic statics, matrix analysis, sheet-based structure, form-finding, funicular structure,
structural optimization

1. INTRODUCTION structural efficiency under the specific design loads.
However, those space frames have certain
shortcomings. When the actual loads are different
from the design loads, the nodes of the 3D
frameworks may undergo considerable bending
moments, and the safety of the structure relies
heavily on the nodal bending resistance. Moreover,
when it comes to complex irregular space frames, the
unique geometries of bars and nodes usually lead to
high costs during fabrication and assembly.

Space frames, featured as lightweight and efficient,
have been commonly practiced for creating long-
span or cantilever structures. The recent
development of three-dimensional graphic statics
using polyhedral reciprocal diagrams, usually
referred to as polyhedral graphic statics (PGS),
provides an approach to designing complex and
multi-layer 3D funicular frameworks while being
aware of the internal force distribution [1]. The
dimensions of the members can be determined based It’s worth noting that the forms found through PGS
on their internal forces, which ensures a high have intrinsic planarity that can be harnessed for the
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design of sheet-based structure systems, which can
avoid the issues brought by the space frames. Sheet-
based systems have certain advantages over space
frames because of their material accessibility,
processibility, low cost, and applicability to large
scales [2]. Sheet materials can be easily processed by
various fabrication techniques such as laser cutting,
CNC milling, CNC bending, waterjet cutting, etc. In
terms of structural performance, a sheet-based
system provides more stability and is less vulnerable
to various loading scenarios because the forces can
be transferred and distributed across the faces.

1.1. Background and Related Work

The recent development of 3D graphic statics greatly
increased the ease of designing spatial structures.
There are two subcategories in the realm of 3D
graphic statics using reciprocal diagrams, vector-
based [3] and polyhedron-based (PGS) [1], which
follow different rules in constructing the form and
force 3D dualities. The polyhedron-based approach
was initially introduced by Rankine [4] and later
developed by Maxwell [S]. Compared to the vector-
based method, it guarantees the inherent planarity
which can be exploited for sheet-based
materialization.

Several research projects investigate the design of
sheet-based structures and their materialization
approach based on PGS. Akbari et al. introduced a
novel method that translates a cellular polyhedral
geometry into a polyhedral surface-based manifold
structure named shellular structure [12, 13]. The
mechanical properties of such structures were
studied, and they showed significantly enhanced
performance compared to the strut-based cellular
structures [14]. A fabrication technique was also
proposed based on tucking molecules, a method
introduced by Tachi for designing 3D origami [15],
and a prototype was made using 0.5mm stainless
steel [2]. Akbarzadeh et al. showed the possibility
of materializing a 10m- span, modularized glass
bridge as a multi-layer system using hollow glass
units (HGU) made of lcm glass sheets [16]. Yost,
et al. physically tested the behaviors of one single
HGU constructed with 3M™ Very High Bond
(VHB) tape as bonding material [17], and the
results show that HGU has a significant amount of
load capacity. Aiming to address the challenges of
large-scale constructions using HGU modules
regarding  detail developments, fabrication
constraints, and assembly logic, Lu et al. presented

the design and fabrication of a 3 m-long double-
layer glass bridge prototype [18, 19].

The matrix analysis methods have been created and
developed since the 1930s for structural evaluation
purposes. For the analysis of frames using the classic
forces method, the non-matrix approach initiated by
Maxwell [6] has been routinely taught to acrospace,
civil, and mechanical engineering students and offers
a substantial scope of ingenuity to experienced
engineers through a clever selection of redundant
force systems [7]. A matrix analysis framework was
then found convenient for organizing those
calculations. With a focus on pin-jointed spatial
frameworks, Pellegrino and Calladine [8] formulated
an algorithm that evaluates the performance of the
framework rapidly by determining the rank of the
kinematic matrix and the bases of its four linear-
algebraic vector subspaces. Specifically, it offers
complete details of any states of inextensional
deformation that a framework may possess. For the
face and hinge systems, matrix analysis is also used
in the folding simulation of rigid origami, where the
loops of bars simulate rigid faces, and the
connections between faces act as hinges. The idea of
representing triangulated origami as a pin-jointed
framework was first proposed by Schenk and Guest
[9]. Filipov et al. [10] improved this method with
new triangulation schemes for quadrilateral facets.
Zhang et al. [11] further generalized the triangulation
schemes for any n-gons.

1.2. Problem Statements and Objectives

As shown above, sheet-based structures made
through PGS are advantageous because sheet
elements constrain the nodal kinematic degrees of
freedom and provide more load paths. However, not
all sheet elements in the form generated through PGS
are necessary as long as the load paths are preserved,
and the system does not have kinematic degrees of
freedom. By removing redundant sheets, the material
cost can be reduced, and the structural efficiency can
be further improved.

The design principle is inspired by trusses, where the
beam members are connected in a way that they are
geometrically restrained. Therefore, when a truss is
loaded, the forces are mostly transferred through the
axial directions of the beam members without
needing much nodal bending resistance. Similarly,
for a sheet-based system, this geometric restraining
effect is desired such that its load-bearing capacity
does not rely much on the edge bending resistance.
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Figure 1: A small-scale physical model made of Bristol paper

In more technical terms, this “restraining” effect can
be described as zero kinematic degrees of freedom,
meaning that there is no mechanism in the structure.
In order to know whether a structure is kinematically
determinate or indeterminate, the matrix analysis
method is incorporated for kinematic analyses. The
matrix analysis method has been used to analyze pin-
jointed inextensional frameworks. In this paper, it is
adapted for the analysis of rigid face and frictionless
hinge systems because a rigid face can be simulated
by a cluster of kinematically determinate pin-jointed
bars. The performance of this face-hinge system is a
good indicator of the performance of a real
engineering structure constructed with rigidly
connected sheet materials. Zero kinematic degrees of
freedom implies a structure with more stability and
better performance. This adapted matrix analysis
approach is then incorporated into a computational
pipeline to help find an efficient set of faces adequate
for the construction of a kinematically determinate
face-hinge structure (Figure 1).

1.3. Contributions

Based on PGS, this paper introduces a method for
designing sheet-based funicular structures that are
featured as lightweight and multi-layer. There are
several main contributions: first, it provides a new
way of utilizing PGS for designing efficient sheet-
based structures; second, it adapts the matrix analysis
method for the kinematic analysis of face and hinge
structural system; finally, a computational pipeline is
created as a tool that can be exploited by designers.
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2. METHOD

This section is organized into three parts. First, the
base geometry is generated using PGS. Next, the
matrix analysis method is adapted for the kinematic
analysis of sheet-based structures. This is then
incorporated into a computational workflow that
helps determine an efficient group of faces adequate
to keep the kinematic stability and load paths.

2.1. Base Geometry Preparation: Form-
Finding through Polyhedral Graphic Statics

@ Ly
A

Figure 2: Form-finding of a single-layer funicular shell



The workflow starts with form-finding using PGS. In
this section, a single-layer funicular shell is used as
an example for the explanation and demonstration of
the design principles (Figure 2). As mentioned
carlier, the intrinsic planarity allows the form to be
delivered as a faceted shell in addition to a space
frame (Figure 2d). The goal is to find an efficient set
of faces that does not have any mechanisms while
maintaining the structural form, i.e., keeping all the
load paths. Not all faces in the original faceted
geometry are needed to achieve the kinematic
determinacy, hence a computational pipeline is
devised to help find a reduced number of faces that
satisfy the requirements.

2.2. Matrix Analysis Method and Adaptation

Before diving into the details of the computational
pipeline, the matrix analysis method for pin-jointed
inextensional framework and its adapted method for
face-and-hinge structures are explained first as they
are the basis of the computational pipeline. The
kinematic analysis of a pin-jointed inextensional
framework starts from the assembly of the kinematic
matrix following the steps formulated by Pellegrino
and Calladine [8]. The form can be depicted with 3
characteristics: v vertices connected by e edges and
constrained by & kinematic constraints (each defined
as one constrained degree of freedom in X, Y, or Z
directions) to a rigid foundation.

z

Figure 3: An example edge and the geometric attributes
describing nodal displacements and edge elongation

There are also two sets of kinematic variables to be
considered: the elongation J; for each edge i, and the
displacements d., djy, djz along X, Y, and Z axes in
3D Euclidean space for each vertex j. Their
relationship (illustrated in Figure 3) can be written as

8i % Ui = (xp = xq)dpx + (Vo = ¥g)dpy + (2p — 24)dpz —
(xp - xq)dqx - (yp - yq)dqy - (Zp - Zq)dqz (1)

where /; is the length of edge i, p and ¢ are the
endpoints of edge i. Assemble all equations for the
e edges in matrix form as

A=A-d )

Here A is the vector of e elongation coefficients, each

defined as &; X [;
(61 X ll\‘
A == 5i X li (3)

6 X 1,

A is the e by 3v—k kinematic matrix, written as

Xp — Xq

Yo = Yq
Zp — Zq4

AT :

“4)
Xq —Xp
Yg — Wp
Zqg — 2p

d is the vector of 3v—k displacements, written as

dpy
by
dp,
d=| : (5)
Az
dqy
dqs

Qu

The kinematic indeterminacy m, meaning the
number of independent mechanisms, can then be
determined by the relationship between the numbers
of equations and unknowns, where an important
concept of rank 4 comes into play:

m=3v—k—r, (6)

It’s important to note that, as stated by Pellegrino, the
kinematic indeterminacy here may include the rigid
body motion of the framework. In other words, when
no vertex is constrained to a foundation, a framework
will have a kinematic indeterminacy of greater than
or equal to 6, including 3 translational and 3
rotational rigid body degrees of freedom. In the
scope of this paper, the rigid body motions are named
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external kinematic indeterminacy m.., and the
mechanisms at the vertices are named internal
kinematic indeterminacy m;,. They satisfy the
equation

m = Mgy + My (7

When detecting the internal mechanisms of the
structure, the external indeterminacy m.. should be
excluded. The calculation of m., is based on the &
kinematic constraints to the rigid foundation and is
omitted here. All examples in this paper are set up
with adequate kinematic constraints to the rigid
foundation such that m.. is zero. For the example
geometry, there are 24 bars, 12 unconstrained
vertices, and 4 other vertices set up as fully
constrained (Figure 2d). The rank of the kinematic
matrix is calculated to be 12, therefore the internal
kinematic indeterminacy is 12 given no rigid body
motion is possible, indicating that the framework has
12 internal independent mechanisms.

The locations of the mechanisms can then be
obtained by solving for the vertices that have
potential displacements. Since the edges in the
framework are assumed rigid, there is no elongation
in any edge, hence Eq.3 can be replaced by

0=A-d (8)

The potential displacements of the vertices can be
obtained by solving for d, which is equivalent to
solving for the null space of A. With SciPy [20], the
36 by 12 orthonormal basis of the null space can be
computed through singular value decomposition
(SVD). The linear combination of the 12 columns
represents the possible infinitesimal displacements
of the unconstrained vertices. If an unconstrained
vertex is unmovable, meaning that it’s geometrically
restrained by other edges, its displacements will
always be zero under any linear combinations. Some
random displacement scenarios are exaggerated and
visualized in Figure 4, and the locations of the
mechanisms can be found. As a side note, each
displacement scenario is interrelated to a set of
external loads that cannot be balanced, the
magnitudes and directions of those loads are not
discussed in this paper.

When the structure is built with rigid faces, some
additional planar constraints are needed. Those
constraints can be implemented using helper edges
and vertices for the “stiffening” effect. The edges
related to each face need to form a rigid body such
that the resulting new pin-jointed framework
performs like a face and hinge structure (Figure 5).
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*XYZ constrained joint o unconstrained joint

Figure 4: Exaggerated infinitesimal deformations of the
framework

Figure 5: Pin-jointed framework performs like a face-
hinge structure

n b =n2

b.=n3 b —n
p op

Figure 6: Helper edges and vertices are added for the
simulation of rigid faces

The mathematical relationship between the number
of required helper edges and the number of
polygonal face sides is then established following a
method proposed by Zhang et al. [11]. As exploited
by [9], a triangular framework can be directly used



for the folding simulation of triangular origami
without any helper edges and vertices. For any side
count that is larger than 3, helper edges and vertices
are needed (Figure 6). Later, the kinematic
indeterminacy and locations of mechanisms can be
determined for the framework with certain rigid
faces. As illustrated in Figure 7, the kinematic
indeterminacy of the pin-jointed framework is
suppressed with an increasing number of rigid faces,
and the framework becomes kinematically stable
after 7 rigid faces are added.

2.3. Algorithmic Design

After establishing the analysis method that is
compatible with rigid faces, an iterative algorithm is
then devised to help determine the reduced group of
faces that are sufficient to keep the kinematic
stability and load paths. In each iteration, one rigid
face is added to the framework, and it stops when the
internal kinematic indeterminacy becomes zero.
Figure 7 shows the decreased kinematic
indeterminacy as more faces are added to the
framework. Notably, the sequence of adding rigid
faces significantly affects the result of this algorithm.
For example, Figure 8a to 8d show 4 cases of adding
7 rigid faces, in which 3 become stable while 1 is still
kinematically unstable. Besides, since the goal is to
use only sheet materials for the construction of the
structure, naked edges are not allowed in the result
(Figure 8e). To obtain an efficient number of faces
and therefore achieve higher structural efficiency,
the sequence of adding rigid faces needs careful
consideration. The design of the computational
pipeline is illustrated in Figure 9a.

m=1

« XYZ constrained joint o instable unconstrained joint o stable unconstrained joint

Figure 7: Reduce kinematic indeterminacy with more rigid
faces

e naked cdge

« XYZ constrained joint

o unconstrained joint

Figure 8: (a)-(d) Kinematic indeterminacies on different
sets of 7 faces, (e)the solution without naked edges

The algorithm starts with the input of polyhedral
geometry, including all vertices v;, edges e;, and
faces f;. The vertices and edges are used to construct
the initial framework, and the faces are the
candidates to be added. Next, the constraints are set,
and the initial m;, of the framework is calculated.
There is no face stiffened at this point. To help
determine the sequence for adding faces, the concept
of priority is introduced, where a larger priority
means a face will be added first. For each face, its
priority pri is calculated based on its area a, the
number of neighbor faces f,, and the number of
single-valence edges ey it has. A larger area leads to
a smaller priority because less area means less
material and hence higher efficiency. More neighbor
faces lead to a larger priority because it tends to
reduce more degrees of kinematic indeterminacy. In
the case of sheet-only systems, any face with an edge
of single-valence, meaning that the edge only
belongs to one face candidate, has an infinite priority
since it is required to keep the load paths. Based on
the description above, the priority function can be
formulated as

. o, ef>0 9
PIE=1x(1 — @) + vf,, er=0 ©)

where a is the face area mapped to range 0-1; x and
y are coefficients that can be adjusted to tune the
weights of @ and f,.. Also, this pipeline allows design
decisions to be incorporated into the priority
function. If certain face candidates are required due
to the functionality of the structure, its priority will
be overwritten to positive infinite. Contrarily, if any
face candidate is unwanted, its priority will be
overwritten to zero. After, the priorities of all face
candidates are calculated, and the faces are sorted
with descending priority. Then, faces are iteratively
added to the framework. In each iteration, the face
with the highest priority is removed from the list of
candidates and “stiffened”. The stiffening is realized
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Input geometry v, e; f;

!

Optional: set constraints

{

Calculate internal
kinematical indeterminacy
Min

{

Calculate priorities for the
list of all faces

{

Sort the faces with
descending priority

>
Pt

\

Stiffen the first face fp and
remove it from the list

!

!

®)

O ey

< -

Calculate new m;, unstiffen fp

m;, decreases?

Yes

Stiffen additional faces to
eliminate the free edges
and vertex-to-vertex
connections

!

(a) End

o Constraints
e Vertex connection between
adjacent faces

Figure 9: The computational flowchart for determining the faces sufficient to stabilize the framework

by adding helper vertices according to the rule
described above in Figure 6. This is then followed by
calculating the new m;, with all helper vertices and
edges. If m;, stays the same compared to the last
iteration, meaning that this newly added face doesn’t
help constrain the mechanisms, it will be
“unstiffened” by removing the corresponding helper
vertex and edges. This process repeats until m;,
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becomes zero. The final step is to add additional
faces in order to eliminate the naked edges and
vertex-to-vertex connections (see section 3.1 for
more details) since the structure is designed to be
built with only sheet materials and the original load.
As a result, the output faces function as a
kinematically stable face-hinge structure that
maintains all primary load paths.



3. CASE STUDY

In this section, the method outlined above is used to
design a bridge to attest to the proposed method. A
comparative study is carried out using finite element
analysis (FEA). A small-scale physical model is also
made to explore the connection details between the
sheets.

3.1. Base Geometry and Generation Process

The form and force diagrams generated using PGS
are shown in Figure 9b, ¢. 10 kN is used as the total
design load applied on the top of the structure, and
the total span is set to 3 m. The face-adding process
begins after having the base framework geometry.
Eight vertices are first chosen as pin anchors to
constrain the structure (Figure 9c). No faces are
added at this point. Due to its functionality as a
bridge, 31 top faces are determined as must-haves for
people to walk on. Later, the iterative face-adding
algorithm is invoked which finds the additional faces
with the least area that reduce the internal kinematic
indeterminacy to zero, meaning that there is no
mechanism across the structure (Figure 9d). Next, a
secondary iterative algorithm is needed to add the
minimum set of faces for removing naked edges
(Figure 9e). The resulting structure may have vertex-
to-vertex connections between adjacent faces as
illustrated in Figure 9e, which causes problems for
materialization. Therefore, one further action is
taken to add additional faces that help eliminate
those vertex-to-vertex connections. The final
structure is shown in Figure 9f.

3.2. Comparative Numerical Study

To further understand the mechanical performance
of the design, a comparative numerical study is
carried out on both the sheet-based structure and
space frame using the Finite Element Method
(FEM). Structural steel is used as the material, and
the total material usage is controlled at 66.5 kg for
both structures. The structures are simply supported
on the vertices of two ends of the bridge, and they
are simulated under two static loading scenarios: first
under the design load of 10 kN distributed on the top
vertices (Figure 10a, b), then under a point load of 3
kN (Figure 10c, d). For the first loading scenario,
both structures reported a max displacement below
0.8 mm, and the space frame slightly outperforms the
sheet-based structure. For the second loading
scenario, the max displacement of the sheet-based
structure remains at a low level. However, the space
frame reports that of more than 45 mm, indicating a

high risk of failure. The results show that although
the sheet-based structure performs slightly worse
than the space frame under the design loads, it’s
potentially more versatile in taking a wider range of
loads in real-world applications.
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Figure 10: Comparative study with FEA on the sheet-
based and framework structures under two load cases
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Assembled bridge model with
35 strips

Partialimodel :
with 3 istrips

Strip® | Unrolled @

s """""""" gl
Strip@ Unrolled @

Figure 12: Strips and tabs facilitate the fabrication and assembly of the model

3.3. Small-Scale Physical Model

A 1:6 physical model spanning 0.5 m is made using
Bristol paper (Figure 11). For a complex non-
manifold geometry like this, two techniques are used
to facilitate the fabrication and assembly. First, the
total 283 faces are merged into 35 continuous strips
and unrolled onto flat sheets such that they can be
laser-cut and assembled with fewer parts. Second, all
edge connections are realized by small overlaps
(tabs) bonded with glue (Figure 12). The model can
take 2.3 kg of load with a span of 0.5 m and a self-
weight of 110 g, manifesting minor deflections.

4. CONCLUSION AND FUTURE WORK

This paper presents a novel workflow that adapts and
combines the matrix analysis method with
polyhedral graphic statics to facilitate the design of
multi-layer sheet-based lightweight funicular
structures with the minimum cost of sheet materials.
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The numerical simulation and physical small-scale
prototype both show that this system can achieve
considerable load capacity with a low material cost.
Some materialization strategies are also explored
through the physical model. In future steps, the
buckling issue of thin sheet materials will be
considered in the computational pipeline, and a
variety of multi-layer forms will be designed and
studied using more comprehensive numerical
simulations. Moreover, a larger-scale prototype will
be constructed and tested to gain a further
understanding of its real-world performance.
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