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ABSTRACT

Aims. The orbit of the outer satellite Alexhelios of (216) Kleopatra is already constrained by adaptive-optics astrometry obtained with
the VLT/SPHERE instrument. However, there is also a preceding occultation event in 1980 attributed to this satellite. Here, we try to
link all observations, spanning 1980–2018, because the nominal orbit exhibits an unexplained shift by +60◦ in the true longitude.
Methods. Using both a periodogram analysis and an ` = 10 multipole model suitable for the motion of mutually interacting moons
about the irregular body, we confirmed that it is not possible to adjust the respective osculating period P2. Instead, we were forced to use
a model with tidal dissipation (and increasing orbital periods) to explain the shift. We also analysed light curves spanning 1977–2021,
and searched for the expected spin deceleration of Kleopatra.
Results. According to our best-fit model, the observed period rate is Ṗ2 = (1.8 ± 0.1) × 10−8 d d−1 and the corresponding time-lag
∆t2 = 42 s of tides, for the assumed value of the Love number k2 = 0.3. This is the first detection of tidal evolution for moons orbiting
100 km asteroids. The corresponding dissipation factor Q is comparable with that of other terrestrial bodies, albeit at a higher loading
frequency 2|ω − n|. We also predict a secular evolution of the inner moon, Ṗ1 = 5.0 × 10−8, as well as a spin deceleration of Kleopatra,
Ṗ0 = 1.9× 10−12. In alternative models, with moons captured in the 3:2 mean-motion resonance or more massive moons, the respective
values of ∆t2 are a factor of between two and three lower. Future astrometric observations using direct imaging or occultations should
allow us to distinguish between these models, which is important for our understanding of the internal structure and mechanical
properties of (216) Kleopatra.

Key words. minor planets, asteroids: individual: (216) Kleopatra – planets and satellites: individual: I Alexhelios –
planets and satellites: dynamical evolution and stability – celestial mechanics – methods: numerical

1. Introduction

It is already known that small (1 km) binary asteroids are
driven by radiative torques, tides, or both (e.g. Scheirich et al.
2021). In the case of binaries, the secondary orbital evolution
is obtained by measuring the steady decrease or increase in the
period of eclipses. However, the primary rotation evolution is not
observed.

For large (100 km) asteroids with relatively small satellites,
the situation is different. Radiative torques (cryptographically,

‘BYORP’) are considered weak because they scale as (Ćuk &
Burns 2005):
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where Γ denotes the torque, L angular momentum, ah helio-
centric semimajor axis, ρ density, a1 binary semimajor axis,
P1 orbital period, and R2 secondary radius. The normalisa-
tion is given for ah0 = 1 au, ρ0 = 1750 kg m−3, a10 = 2 km,
R20 = 0.15 km, P10 = 20 h, and synchronous rotation.

? Based on observations made with ESO Telescopes at the La Silla
Paranal Observatory under program 199.C-0074 (PI Vernazza).

On the contrary, tides scale as (de Pater & Lissauer 2010):
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where k2 denotes the Love number, Q quality factor, R1 pri-
mary radius, and m1, m2 are the component masses. Tides are
known to operate in planet–moon systems where dissipation
occurs inside the planet. More precisely, they are measured for
the Earth–Moon system, where Ṗ0 = 5.4 × 10−13 d d−1 (primary
rotation period) and Ṗ1 = 1.1 × 10−11 (secondary orbital period;
equivalent to the orbital expansion of the Moon 0.038 m y−1).
Sometimes, dissipation must occur in the moon to explain
the observed orbits (e.g. Phobos; Rosenblatt 2011) or volcan-
ism (Io; Peale et al. 1979; Morabito et al. 1979). There is no
reason why 100 km asteroids should be different from other bod-
ies, except for their material properties. Unfortunately, no such
measurements exist for the moons of such large asteroids.

In this paper, we focus on the (216) Kleopatra moon sys-
tem (Ostro et al. 2000; Descamps et al. 2011; Hirabayashi &
Scheeres 2014; Shepard et al. 2018; Marchis et al. 2021; Brož
et al. 2021). On October 10 1980, an occultation of Kleopa-
tra itself was observed together with a serendipitous occultation
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Fig. 1. Sky-plane projection of moons orbiting (216) Kleopatra, with
the observed position of the occultation (black circle) from October 10,
1980, and the corresponding chord (dashed line) from Descamps et al.
(2011). For comparison, both inner and outer moon orbits are plotted
(green, blue; bodies 2, 3). The projected orbital velocity is indicated by
an arrow. The ephemeris with constant osculating periods derived from
adaptive-optics datasets (2008–2018) is offset by ∼60◦ in the true lon-
gitude λ2 (black cross, orange line). This offset corresponds to a shorter
orbital period P2 in the past.

event, which was later attributed to the outer moon of Kleopatra,
and was designated S/2008 (216) 1, or I Alexhelios (Descamps
et al. 2011). The event lasted only 0.9 s, but was observed by two
independent observers separated by 0.61 km. Its sky position in
the (u, v) plane coincided with the respective orbit of the outer
(second) moon.

When we compared this observation with the revised
ephemeris of Brož et al. (2021) – constrained by adaptive-optics
(AO) datasets, hereafter denoted DESCAMPS, SPHERE2017,
and SPHERE2018 – it turned out that the orbit orientation is
very similar, but the predicted position is offset in the true longi-
tude λ2 by approximately +60◦ (see Fig. 1). The synthetic moon
is farther away on its orbit. This certainly requires additional
analysis, because it could be related to tides.

The occultation can hardly be associated with the inner
(first) moon, because the distance between the sky-plane posi-
tion and the orbit is more than 4.5σ at any given time, and the
actual longitude λ1 is offset in the opposite direction by −90◦

(alternatively, by as much as +270◦).

2. Observed tidal evolution

2.1. Increasing orbital period P2

Naïvely, we expected that a minor change of the osculating
period P2 within the present uncertainty would be sufficient, but
it was not. Indeed, the time-span of the AO datasets (2008–2018,
or 3780 d) is comparable with the preceding occultation (1980–
2008, 10220 d). Moreover, their phase coverage constrains both
periods P1, P2.
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Fig. 2. Simplified periodograms for the second moon, obtained as a
χ2 difference between the observed epochs Ei and computed epochs
E(t) for constant mean periods P2 (green line), and linearly variable
periods P2(t) = P2(0)+ Ṗ2t (black line). The value Ṗ2 = 1.8×10−8 d d−1

corresponds to the offset of λ2 in Fig. 1. The grey box in the upper panel
shows a range of the bottom panel.

To demonstrate this clearly, we computed simplified peri-
odograms as follows. We used our previous converged model
(Brož et al. 2021) to determine the true longitudes λ2 (unfolded)
and orbital epochs Ei of all 2008–2018 observations with respect
to T0 = 2 454 728.761806. We then added one point correspond-
ing to the 1980 occultation with the respective epoch Ei =

λ2/(2π) = 0.55. We assumed uncertainties of σE = 0.001, which
corresponds to an astrometric uncertainty of about 10 mas. These
data were compared with two simplified ephemerides – constant
mean period1 (linear epoch):

E(t) =
t

P2

, (3)

or linear period (quadratic epoch):
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The difference between Ei, E(t), expressed as χ2, is plotted in
Fig. 2. It is not possible to fit all epochs Ei with any of the
constant periods. The structure of the periodograms is deter-
mined by the AO datasets, not by the occultation. On the other
hand, a linearly variable period, with a suitable derivative Ṗ2 =

(1.8 ± 0.1) × 10−8 d d−1, is satisfactory (and better by two orders
of magnitude).

2.2. Monopole model including tides

Tidal dissipation in Kleopatra is a likely dynamical mechanism
explaining the secular evolution of the orbital period P2. To

1 These mean Keplerian periods are different from osculating periods
reported in Brož et al. (2021) by a factor of approximately 1.02246.
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determine the basic parameters of the tides, we used a time-
lag model (Mignard 1979; Neron de Surgy & Laskar 1997).
The additional acceleration (and torque) was implemented in the
SWIFT integrator (Levison & Duncan 1994) as follows:

ftides = K1

[

K2r′ − K3r − K4(r × ω + u) + K5(K6r − K7r′)
]

, (5)
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K3 = r · ω × r′ + r′ · u, (8)

K4 = r′ · r, (9)

K5 =
r · u

r2
, (10)

K6 = 5r′ · r, (11)

K7 = r2, (12)

Γ = r × m′ ftides. (13)

The classical notation assumes an Earth–Moon–test particle, but
this can be any triple system and any combination of bodies
denoted by indices (i, j , i, k , i). Ergo, m? denotes the mass
of the Moon, m′ the mass of the test particle, R the radius of the
Earth, k2 the Love number of the Earth, ∆t the time-lag, r the
vector Earth–Moon (i.e. perturbing body), u the orbital velocity
of the Moon, r′ the vector Earth–test particle (interacting body),
ω the spin rate vector of the Earth, and Γ the torque acting on
the spin of Earth. This general formula is used to compute cross-
tides among all triples. In our case, non-negligible interactions
are expected for Kleopatra–first moon–first moon, Kleopatra–
second moon–second moon; where the tidal dissipation occurs in
Kleopatra itself. Both moons have to be accounted for, because
they contribute to the total torque (spin-down). A simple Euler
integrator is then used to evolve spins, assuming principal-axis
rotation. The time steps were 0.02 d (orbital) and 1 d (spin).

There are three relevant radii of Kleopatra: R = 59.6 km
(volume-equivalent), 69.0 km (surface-equivalent), and 135 km
(maximal). The volume equivalent is commonly used, but if
tidal dissipation happens in surface layers, the surface equiva-
lent should be preferred. In case of Kleopatra, we decided to use
the maximal radius, because the strongest dissipation is expected
at the ‘extremes’ of the elongated body. Other parameters are the
Love number k2 = 0.305 (here, we used the same value as for
the Earth), and the moment of inertia I = 1.72 × 1028 kg m2, as
derived from the ADAM model (Marchis et al. 2021). We var-
ied only the time-lag and obtained ∆t = 47 s, meaning that the
offset in true longitude is ∆λ2 = −60◦ with respect to the model
without tides, or ∼0◦ with respect to the observation (occulta-
tion). The evolution is shown in Fig. 3. It is very smooth because
we included only the monopole for Kleopatra and we overplotted
orbits computed separately, without perturbations.

For comparison, the inner (first) moon should tidally evolve
with Ṗ1 = 5.0 × 10−8, which is inevitably larger than Ṗ2 = 1.8 ×
10−8 due to the smaller distance. The accumulated change in the
rotation phase of Kleopatra due to both moons over the entire
time-span of 1980–2018 should then reach 1◦ (see Sect. 2.4).
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Fig. 3. Tidal evolution of Kleopatra spin (dashed magenta) and moon
orbits (solid green, blue), computed as the difference in the true lon-
gitudes ∆λ0, ∆λ1, ∆λ2 between dynamical models with and without
tides. The value of the time-lag ∆t = 47 s corresponds to Ṗ2 in Fig. 2.
The epoch when mean periods coincide was arbitrarily shifted (↔)
towards 2 456 500. Moreover, the mean periods were adjusted (l) to fit
observations in 2008 and 2018.

2.3. Multipole model including tides

In order to have a complete dynamical model, we also imple-
mented tides (Eqs. (5)–(13)) in Xitau2 (Brož 2017; Brož et al.
2021), which enabled us to fit all observations. Let us recall that
the model already included multipoles up to the order ` = 10 and
mutual moon perturbations, and that our previous best-fit model
(Brož et al. 2021; without the 1980 occultation) had χ2

= 3683.
We proceeded in several steps: (i) we unsuccessfully tried

to re-converge periods P1, P2 (without tides), but the value of χ2

remained too high, at χ2
= 677, compared to the number of mea-

surements (reported in Table 1); (ii) we successfully converged
P1, P2 together with a non-zero time-lag ∆t and obtained χ2

=

388; (iii) we verified there is no deeper local minimum in the
surroundings (see Fig. 4); and (iv) we converged all remaining
parameters, with the final χ2

= 360 (see Fig. 5). The respective
parameters are presented in Table 1.

Although multipole perturbations (4 km in a2) or mutual
perturbations (2 km) are orders of magnitude larger than tides
(1 m yr−1 in ȧ2), the former are strictly conservative, or periodic,
and the latter are dissipative, or non-periodic. Tides are crucial
to explain the 1980 occultation.

Moreover, the tidal evolution may partially explain the sys-
tematic errors in our previous fitting of the SPHERE2017 dataset.
When the osculating periods are constant and constrained by
DESCAMPS and SPHERE2018, some offsets (of the order of
10 mas) are required for the intermediate dataset, especially for
the first moon which is more affected by tides. A detailed com-
parison shows that the offsets may be decreased when tides are
included (see Fig. 6). However, tidal evolution cannot explain all
remaining systematic errors (cf. our discussion of astrometry in
Brož et al. 2021).

2.4. Possibly increasing rotation period P0

As discussed in Sect. 2.2, if the moons are affected by tides,
so must be the rotation of Kleopatra. If the period is evolving

2 http://sirrah.troja.mff.cuni.cz/~mira/xitau/
3 More specifically, the individual contributions were χ2

sky
= 113

(absolute astrometry), χ2
sky2
= 66 (relative astrometry), χ2

ao = 621

(adaptive-optics), and the joint metric was given as χ2
sky
+ χ2

sky2
+ 0.3χ2

ao.
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Table 1. Best-fit models with no tides (left) and including tides (middle), together with realistic uncertainties of the parameters (right).

var. val. val. Unit σ

m1 1.492735 × 10−12 1.492735 × 10−12 MS 0.16 × 10−12

m2 2 × 10−16 2 × 10−16 MS 2 × 10−16

m3 3 × 10−16 3 × 10−16 MS 3 × 10−16

P1 1.822359 1.822281 day 0.004156
log e1 −3.991 −3.991 1 −3 (i.e. 0.001)
i1 70.104 70.104 deg 1.0
Ω1 252.920 252.920 deg 1.0
$1 0.089 0.089 deg 10.0
λ1 59.665 59.665 deg 1.0
P2 2.745820 2.745791 day 0.004820
log e2 −3.998 −3.998 1 −3
i2 70.347 70.347 deg 1.0
Ω2 252.954 252.954 deg 1.0
$2 1.601 1.601 deg 10.0
λ2 108.357 108.357 deg 1.0
lpole 72.961 72.961 deg 1.0
bpole 19.628 19.628 deg 1.0
∆t1 – 42.1 s 1.0

nsky 68 68
nsky2 28 28
nao 3240 3240

χ2
sky

617 110

χ2
sky2

66 60

χ2
ao 621 621

χ2 872 360

χ2
R sky

9.07 1.62

χ2
R sky2

2.35 2.14

χ2
R ao

0.19 0.19

Notes. The left model does not fit the October 10 1980 occultation (see Fig. 1); without this observation, its χ2 would be 368. Orbital elements of
the moons are osculating for the epoch T0 = 2454728.761806, where m1 denotes the mass of body 1 (i.e. Kleopatra), m2 body 2 (first moon), m3

body 3 (second moon), P1 the orbital period of the first orbit, e1 eccentricity, i1 inclination, Ω1 longitude of node, $1 longitude of pericentre, λ1

true longitude, etc. of the second orbit; lpole ecliptic longitude of Kleopatra’s rotation pole, bpole ecliptic latitude; n numbers of observations (SKY,
SKY2, AO), χ2 values, χ2

R
≡ χ2/n reduced values. The angular orbital elements are expressed in the standard stellar reference frame. If the orbits

lie in the equatorial plane of body 1, they fulfil i = 90◦ − bpole, Ω = 180◦ + lpole.
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values for a range of osculating periods P1, P2

and converged models. All black crosses correspond to local minima
of χ2; colours are interpolated. A normal χ2 map would be much more
irregular. The dotted lines show the periods of the global minimum.

in time, then the value of P0 = 5.3852824(10) h reported by
Marchis et al. (2021) corresponds to the middle of the 1977–
2018 time-span. To estimate a realistic uncertainty of this ‘mean’

rotation period, we created 1000 bootstrapped samples of the
light-curve data set (random selection of light curves and ran-
dom selection of points in those light curves) and used them as
input for convex light-curve inversion. The data set of Marchis
et al. (2021) was supplemented with other observations that are
listed in Table A.1, and now consists of 198 light curves covering
the interval 1977–2021. This led to the mean rotation period of:

P̄0 = (5.3852827 ± 0.0000003) h. (14)

This improved uncertainty of the rotation period corresponds to
uncertainty in Kleopatra’s rotation phase of 1.3◦ over the interval
of 44 yr, which is of the same order as the expected 1◦ shift
estimated in Sect. 2.2.

To check whether or not the predicted deceleration of the
main body’s rotation is ‘visible’ in the data, we divided light
curves into two sets: the first one covering the interval 1977–
1994 and the second one 2002–2021. If the rotation period is
changing, we should see some difference in the periods for these
two data sets. Similarly, as with the full data set, we created 1000
bootstrapped samples and performed the light curve inversion
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Fig. 5. Same as Fig. 1, but for our new multipole model including
tides. The offset in true longitude λ2 is negligible (comparable to the
uncertainty).

independently for all of them to estimate parameter errors. For
the interval 1977–1994, the rotation period was:

P̄1977–1994
0 = (5.3852821 ± 0.0000010) h (15)

and the corresponding phase shift 1.8◦. For 2002–2021, the
values were:

P̄2002–2021
0 = (5.3852822 ± 0.0000005) h (16)

and 1.0◦. The uncertainty intervals are therefore larger (due to
the shorter time span) than with the full data set and they overlap,
that is, there is no indication that the rotation period is chang-
ing. Controversially, the mean period derived from 1977–2021
observations is slightly longer than periods for 1977–1994 and
2002–2021 subsets, while we would expect it to be somewhere
in between the two values. This is partly caused by the corre-
lation between the period and the pole direction (which is also
optimised for each bootstrapped sample), but we think that the
main reason is some small but systematic errors present in some
of the light curves.

To test the sensitivity of our approach, we generated an
equivalent set of synthetic observations using the non-convex
ADAM shape model from Marchis et al. (2021), Hapke’s light-
scattering model, and two values of Ṗ0, 3.2 × 10−12 and 1.6 ×
10−12. We then treated the synthetic data set as real data and
applied the same bootstrap approach to detect possible changes
in rotation period. For Ṗ0 ' 3.2 × 10−12, the effect of chang-
ing period was clearly visible as a systematic difference between
periods for 1977–1994 and 2002–2021 data. In this way, we
checked that the choice of using convex or non-convex mod-
els does not affect the results in a systematic way. However,
when using Ṗ0 ' 1.6 × 10−12 and adding 2% random noise to
our synthetic light curves (which is a realistic estimate of obser-
vational uncertainties), the effect of changing period was no
more detectable – both subsets of bootstrapped light curves had
statistically the same rotation period.
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Fig. 6. Details of some SPHERE2017 astrometric observations and con-
verged models with no tides (top) and including tides (bottom). The
assumed uncertainties (10 mas) are indicated by black circles, and resid-
uals are shown as red or orange lines. There is a noticeable improvement
for the first moon. However, the second moon is still offset, possibly
because of some remaining systematic error. The proper motion in the
(u, v) plane is relatively slow because of the orbit orientation and the
line of sight.

We also tried to detect a possible evolution of Kleopatra’s
rotation period by including Ṗ0 as a free parameter in the light
curve inversion. In practice, we used the same approach as

Kaasalainen et al. (2007) or Ďurech et al. (2018) when search-
ing for the YORP effect that influences light curves in the same
way – rotation period changes linearly over time (more precisely,
angular velocity changes linearly over time but the difference is
negligible). We used the same bootstrap sample as in the case
of fitting light curves with a constant-period model. The results
are shown in Fig. 7, where P0 is plotted against Ṗ0. There is a
strong anticorrelation between these two parameters – positive
Ṗ0 (deceleration of the rotation) and shorter initial rotation (at
the beginning of the observing time interval in 1977) has a sim-
ilar outcome as negative Ṗ0 (acceleration of the rotation) and
slower initial rotation. From bootstrap, Ṗ = (−0.5± 4.2)× 10−12,
which means that the effect we are searching for, Ṗ0 = 1.9 ×
10−12, is consistent with the data but cannot be confirmed. Zero
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Fig. 7. Period P0 and its change Ṗ0 for 1000 bootstrap samples of the
photometric data set. Each blue point represents one bootstrap run. The
mean value −0.5 × 10−12 of Ṗ0 is marked with a red line, and the the-
oretical prediction 1.9 × 10−12 of Kleopatra’s deceleration due to tides
is marked with the green line. The grey strip marks the 1σ uncertainty
interval for Ṗ.

Ṗ0 is also compatible with the data. Due to correlation, the
marginal uncertainty of P0 is 0.0000009 h, which is larger than
when assuming Ṗ0 = 0.

2.5. Discussion of the quality factor Q

Our modelling of tidal evolution indicates the time-lag around
∆t = 42 s, with the assumed Love number of k2 � 0.3. According
to the approximate relation (Efroimsky & Lainey 2007):

Q =
1

∆t 2|ω0 − n2|
, (17)

where Q denotes the quality factor, ω0 ≡ 2π/P0 the spin rate,
and n2 the mean motion, Q = 40, or Q/k2 = 131. This Q value
is relatively low (i.e. dissipation high), which seems reasonable
for (216) Kleopatra – an irregular body close to critical rotation
(Marchis et al. 2021). The value of k2 cannot realistically be
orders-of-magnitude lower, because Q would be unrealistically
low. For comparison, the Earth and Moon have Q = 280 ± 60
and 38 ± 4, respectively (Konopliv et al. 2013; Lainey 2016),
but they correspond to low loading frequencies, ξ ≡ 2|ω − n|,
and the expected dependence Q(ξ) is positive (Q ∝ ξ0.3 for ξ &
10−2 rad d−1; Efroimsky & Lainey 2007). This is demonstrated
in Fig. 8.

For uniform bodies, there is a relation between the Love
number k2 and the material rigidity µ (Goldreich & Sari 2009;
Eq. (24)):

µ =

(

3

2k2

− 1

)

6

19

Gm2
1

R2

1

S
�

9

19

1

k2

Gm2
1

R2

1

S
, (18)

where S denotes the surface area; the approximation holds for
bodies with substantial µ (or small k2). Because we know Q/k2,
we can obtain µQ = 2.7 × 107 Pa. This is the same order of
magnitude as the estimate for 1 km asteroids (Scheirich et al.
2015), but is three orders of magnitude smaller than the value
µQ ' 1010 Pa derived for other 100 km asteroids (Marchis et al.
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Fig. 8. Top: comparison of the quality factors Q for terrestrial bod-
ies and Kleopatra, which experience different loading frequencies ξ ≡
2|ω− n|. Data are from Lainey (2016). For Io and Kleopatra, Q was esti-
mated from Q/k2 and k2 � 0.3. The value denoted ‘3:2’ was derived
for Kleopatra when its moons are locked in the 3:2 resonance (see
Sect. 2.6). Similarly, ‘massive’ is for the model with more massive
moons (see Sect. 2.7). The dotted line is the expected dependence of
Q(ξ) (normalised with respect to the Moon; Efroimsky & Lainey 2007).
Bottom: comparison of the ratios k2/Q and ξ, which are directly con-
strained by the respective tidal evolution. Kleopatra’s value is slightly
above terrestrial bodies.

2008a,b). We can also try to express µ = 6.7 × 105 Pa (from k2),
but this is not independently constrained. It seems compatible
with loose material, or at least regolith-covered bodies.

There is also a relation to the regolith thickness (Nimmo &
Matsuyama 2019; Eq. (6)):

l =

√

m3n2
2
R2

3m1Gρ f Q
, (19)

where f = 0.6 is the assumed friction coefficient. This gives
l = 13 m. For non-spherical bodies, there may be significant
deviations. In particular, when we used the maximum radius R
and only a part of the surface is at this distance, the regolith
needed to explain all the dissipation is probably accordingly
thicker.

2.6. Q for orbits in the 3:2 resonance

The orbits of the two moons appear to be very close to the 3:2
mean-motion resonance; the respective critical angle σ does not
librate though, because orbits are so perturbed by the multipoles
of Kleopatra and eccentricities are too small (Brož et al. 2021).
Nevertheless, if they are locked, tides act on both moons at the
same time and, inevitably, Ṗ2 = 1.5Ṗ1. According to our numer-
ical experiments (using the machinery of Sect. 2.2), the value
of Ṗ1 decreases and Ṗ2 increases compared to their nominal
values. In order to obtain the same offset of ∆λ2 = +60◦, the
required values are now Ṗ0 = 0.9 × 10−12, Ṗ1 = 1.2 × 10−8, and
Ṗ2 = 1.8×10−8. This corresponds to a time-lag of approximately
∆t1 = 22 s.
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Fig. 9. Torque Γ over angular momentum L (in y−1 units) for the tidal
(black), strong radiative (red), and weak radiative torques (orange).
Relevant radial distances r are indicated (vertical dotted lines): the max-
imum radius R1 of the primary, Roche radius rR = R1(2ρ2/ρ0)1/3, last
stable orbit rlso, semimajor axes a1, a2 of the moons, half of rH, and the
Hill radius rH = ah(m1/(3 M�))1/3. The corotation orbit does not exist.
For (216) Kleopatra, tidal and radiative torques |Γ| become comparable
at r = 1500–2000 km.

Consequently, the dissipation factor as well as other derived
quantities from Sect. 2.5 are revised as follows: Q = 76,
Q/k2 = 250, µQ = 5.0 × 107 Pa, and l = 9 m. The assumption
of the 3:2 resonance thus decreases the dissipation rate and puts
Kleopatra somewhat closer to the theoretical dependence of Q(ξ)
in Fig. 8.

2.7. Q for more massive moons

In an alternative model, moons can be more massive (more dense
than Kleopatra), with m2 = 4× 10−16 MS and m3 = 9× 10−16 MS

(Brož et al. 2021), and the deformation potential is proportion-
ally larger (Eq. (6)). Again, to obtain ∆λ2 = +60◦, ∆t2 = 16 s
is required, together with Ṗ0 = 3.6 × 10−12, Ṗ1 = 3.1 × 10−8,
and Ṗ2 = 1.8 × 10−8. The value of P0 is increased substantially,
but still not enough to be confirmed (or excluded) by observa-
tions. Adjustments of other parameters are as follows: Q = 100,
Q/k2 = 330, µQ = 8.2× 107 Pa, and l = 13 m. This puts Kleopa-
tra even closer to the theoretical dependence on Fig. 8 and
indicates that mechanical properties of Kleopatra’s material may
actually be similar to those of terrestrial bodies.

2.8. Discussion of the origin

Regarding the origin of the moons, it is interesting to estimate
the timescale as the angular momentum over the tidal torque,
L2/Γ2 ' 1.3 × 106 yr, because this would indicate the moons are
very young. The dependence of both tidal and radiative torques,
computed for the Kleopatra system according to Eqs. (1) and (2),
is shown in Fig. 9. If the initial distance coincided with the last
stable orbit (LSO), at about rlso = 280 km (or P ' 0.8 d) accord-
ing to our numerical tests, and the final distance is comparable
to half of the Hill sphere, rH = 33 100 km, the overall evolu-
tion would take over 2 × 108 yr4. In a broader perspective, this
is comparable to the dynamical timescale of the rings of Saturn
(Charnoz et al. 2009; although cf. Crida et al. 2019).

4 Assuming the BYORP were not interrupted by periods of non-
synchronous rotation of the moon.

The moons are definitely younger than Kleopatra, because
a large-scale collisional event would leave observable traces
(an asteroid family). The moons may alternatively be related
to small-scale craterings, which are much more frequent. Of
the three following options, the latter appears the most plausi-
ble: (i) a cratering with a direct re-accretion of multi-kilometre
moons; (ii) a collisional spin-up of Kleopatra over its critical
frequency and mass shedding; (iii) low-speed ejection of mate-
rial from the surface below the L1 critical point (see Fig. 6 in
Marchis et al. 2021) and continuous accretion from ring. This
suggested mechanism requires lower kinetic energy of collisions.

However, the long-term evolution could be complicated. If
Kleopatra has been close to its rotation limit for a prolonged
period of time, many moons have likely been created. This
implies there are perhaps more moons within the Hill sphere,
as suggested by some Keck images. The most likely distance
seems to be about 1500 km, where Γ/L is lowest and evolution
is slowest. Such a hypothetical third moon would be close to the
3:1 resonance with the second moon and capture is inevitable.
Subsequent evolution of eccentricity, which is increased by tides
(Goldreich 1963; Correia et al. 2012), would lead to an instability
of the moon system and an ejection of one or two moons beyond
the Hill sphere. The timescale of evolution is determined by the
inner moon. The instability may be delayed by the protective res-
onant mechanism, or alleviated if the moons have been rotating
synchronously (1:1) and dissipating due to higher tidal modes
(3:2, 2:1).

3. Conclusions

Astrometric and occultation observations of Kleopatra’s outer
moon indicate a secular evolution of its orbital period Ṗ2 =

(1.8 ± 0.1) × 10−8, which is the first such observation in a sys-
tem of moons orbiting a large (100 km) asteroid. This should
be linked to the secular evolution of the rotation period Ṗ0 =

1.9 × 10−12 of (216) Kleopatra itself. The latter value is not
excluded by current photometric observations, but their preci-
sion (about 1◦ in phase, or 3 miliseconds in period) is still not
sufficient to exclude Ṗ0 = 0.

For future observers, we predict a secular evolution of the
first moon Ṗ1 ' 5.0 × 10−8, which is inevitable when the sec-
ond moon is driven by tides. If the observed value is found to
be different, this could indicate, for example, stronger mutual
interactions, different masses of the moons (m2, m3), or a greater
proximity to the 3:2 mean-motion resonance. If the moons are
inside the 3:2 resonance, the tides acting on the first moon also
act on the second moon, and a lower dissipation in Kleopa-
tra is sufficient to explain the offset in true longitude λ2. In
more complex rheological models the time-lag ∆t (or Q) also
depends on loading frequencies, i.e. 2|ω − n|. However, in the
Kleopatra triple system, the loading frequencies are perhaps too
close (49.1, 51.4 rad d−1) to measure this dependence directly by
means of accurate astrometry.

At the same time, adaptive-optics observations of fast-
moving shadows (at higher phase angles) could perhaps be used
to better constrain the rotation phase of Kleopatra and detect
a possible difference between measured Ṗ0 and Ṗ′

0
inferred

from tides (similarly as in the Earth–Moon system; cf. post-
glacial rebound). Consequently, ground-based observations with
the VLT/SPHERE instrument have the potential to constrain the
‘geophysical’ internal evolution of large asteroids.

There will be another opportunity to observe (216) Kleopatra
and its moons in 2022–2024. According to our ephemeris,

A76, page 7 of 10



A&A 657, A76 (2022)
v
 [
a
rc

s
e
c
]

u [arcsec]

viewing geometry is changing...

3
2

shape
10 km

-0.2

-0.1

 0

 0.1

 0.2

-0.2 -0.1  0  0.1  0.2

jd = 2459872.0555

bessel = 2022.80

d = 1.349271 au

Fig. 10. Sky-plane projection of Kleopatra and moon orbits for the
Besselian year 2022.80 (October), i.e. one of the epochs when eclipses
and transits will be observable. The spacing between points corresponds
to 0.02 d. Approximate sizes of the moons are 10 km, corresponding to
5 mas.

transits and eclipses of the moons will occur (e.g. Fig. 10). The
intervals when orbital planes cross Kleopatra are as follows:

2022.34–2022.41 May 2.32 au
2022.80–2022.87 Oct.–Nov. 1.34 au
2023.93–2024.05 Dec.–Jan. 1.94 au
2024.51–2024.59 July 3.70 au.

Adaptive-optics and possibly also precise photometric observa-
tions could help to constrain the sizes and albedos of the moons.
This is also true for stellar occultations (see Appendix B).
Regarding hypothetical moons separated by 1500 km or more,
where radiative torques should be dominant, a deeper survey
with the next-generation AO instruments like VLT/ERIS or
Gemini/GPI2 would be useful.
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Kaasalainen, M., Ďurech, J., Warner, B. D., Krugly, Y. N., & Gaftonyuk, N. M.

2007, Nature, 446, 420
Konopliv, A. S., Park, R. S., Yuan, D.-N., et al. 2013, J. Geophys. Res. Planets,

118, 1415
Lainey, V. 2016, Celest. Mech. Dyn. Astron., 126, 145
Levison, H. F., & Duncan, M. J. 1994, Icarus, 108, 18
Marchis, F., Descamps, P., Baek, M., et al. 2008a, Icarus, 196, 97
Marchis, F., Descamps, P., Berthier, J., et al. 2008b, Icarus, 195, 295
Marchis, F., Jorda, L., Vernazza, P., et al. 2021, A&A, 653, A57
Mignard, F. 1979, Moon Planets, 20, 301
Morabito, L. A., Synnott, S. P., Kupferman, P. N., & Collins, S. A. 1979, Science,

204, 972
Neron de Surgy, O., & Laskar, J. 1997, A&A, 318, 975
Nimmo, F., & Matsuyama, I. 2019, Icarus, 321, 715
Ostro, S. J., Hudson, R. S., Nolan, M. C., et al. 2000, Science, 288, 836
Pál, A., Szakáts, R., Kiss, C., et al. 2020, ApJS, 247, 26
Peale, S. J., Cassen, P., & Reynolds, R. T. 1979, Science, 203, 892
Rosenblatt, P. 2011, A&ARv, 19, 44
Scheirich, P., Pravec, P., Jacobson, S. A., et al. 2015, Icarus, 245, 56
Scheirich, P., Pravec, P., Kušnirák, P., et al. 2021, Icarus, 360, 114321
Shepard, M. K., Timerson, B., Scheeres, D. J., et al. 2018, Icarus, 311, 197

A76, page 8 of 10



M. Brož et al.: Observed tidal evolution of Kleopatra’s outer satellite

Appendix A: List of new light curves

Observational circumstances of new light curves are provided in
Table A.1.

Table A.1. New optical disk-integrated lightcurves of (216) Kleopatra used in
this work.

N Epoch Np ∆ r ϕ Filter Observers/Reference
(AU) (AU) (◦)

1 2002-05-15.0 31 2.45 3.45 2.0 C Christophe Demeautis
2 2002-05-15.9 17 2.45 3.45 2.2 C Christophe Demeautis
3 2002-05-17.0 35 2.45 3.45 2.5 C Christophe Demeautis
4 2003-07-19.0 39 1.68 2.64 8.9 C Claudine Rinner
5 2004-12-14.1 122 1.59 2.41 15.6 C Horacio Correia
6 2004-12-20.1 315 1.56 2.43 13.7 C Horacio Correia
7 2010-04-09.9 18 2.39 3.01 16.9 C Yassine Damerdji, Jean-Pierre Troncin

Jean Surej, Philippe Bendjoya
Davide Ricci, Raoul Behrend
Thierry De Gouvenain, Mugane Diet
Mathias Marconi, Jean-By Gros
Christophe Giordano, Jean-Christophe Flesch
Ivan Belokogne, Andrei Belokogne
Axel Bazi

8 2010-04-09.9 5 2.39 3.01 16.9 C Yassine Damerdji, Jean-Pierre Troncin
Jean Surej, Philippe Bendjoya
Davide Ricci, Raoul Behrend
Thierry De Gouvenain, Mugane Diet
Mathias Marconi, Jean-By Gros
Christophe Giordano, Jean-Christophe Flesch
Ivan Belokogne, Andrei Belokogne
Axel Bazi

9 2010-04-09.9 6 2.39 3.01 16.9 C Yassine Damerdji, Jean-Pierre Troncin
Jean Surej, Philippe Bendjoya
Davide Ricci, Raoul Behrend
Thierry De Gouvenain, Mugane Diet
Mathias Marconi, Jean-By Gros
Christophe Giordano, Jean-Christophe Flesch
Ivan Belokogne, Andrei Belokogne
Axel Bazi

10 2010-04-26.9 72 2.64 3.04 18.7 C Jacques Montier, Serge Heterier, Raoul Behrend
11 2010-05-22.9 37 3.04 3.10 18.9 C Jacques Montier, Jean-Pierre Previt
12 2015-01-25.1 203 2.44 3.10 15.3 C Georg Piehler, Alfons Gabel
13 2015-01-29.1 128 2.40 3.11 14.5 C Georg Piehler, Alfons Gabel
14 2015-02-19.0 343 2.25 3.15 9.1 C Pierre Antonini
15 2015-02-19.0 67 2.25 3.15 9.0 C Matthieu Conjat
16 2015-02-19.1 387 2.25 3.15 9.0 C Rene Roy
17 2015-02-23.0 183 2.24 3.16 7.9 C Federico Manzini
18 2015-03-06.0 310 2.21 3.18 4.9 C Nicolas Esseiva, Raoul Behrend
19 2017-07-16.0 154 1.72 2.68 8.6 C Nicolas Esseiva, Raoul Behrend
20 2017-07-16.0 9 1.72 2.68 8.6 C Nicolas Esseiva, Raoul Behrend
21 2017-07-16.0 9 1.72 2.68 8.6 C Nicolas Esseiva, Raoul Behrend
22 2017-8-30.3 74 1.75 2.56 16.2 I Kevin Alton, Alton (2009)
23 2017-8-31.3 115 1.75 2.56 16.5 I Kevin Alton, Alton (2009)
24 2017-8-6.2 106 1.67 2.62 9.4 I Kevin Alton, Alton (2009)
25 2017-9-10.1 120 1.81 2.53 19.0 I Kevin Alton, Alton (2009)
26 2017-9-11.1 124 1.82 2.53 19.2 I Kevin Alton, Alton (2009)
27 2017-9-5.1 113 1.78 2.55 17.8 I Kevin Alton, Alton (2009)
28 2017-9-7.3 83 1.79 2.54 18.3 I Kevin Alton, Alton (2009)
29 2019-1-4.2 889 1.49 2.43 8.7 R Stéphane Fauvaud
30 2019.1-2019.1 543 1.50 2.45 8.2 V TESS, Pál et al. (2020)
31 2021-04-12.1 49 2.68 3.37 13.8 C David Augustin, Raoul Behrend
32 2021-04-19.3 98 2.59 3.37 12.4 C David Augustin, Raoul Behrend

Notes. For each lightcurve, the table gives the epoch, the number of individual measurements Np, asteroid’s distances to the Earth ∆ and the Sun
r, phase angle ϕ, photometric filter and the observer(s). Majority of the data is from the Courbes de rotation d’astéroïdes et de comètes database
(CdR, http://obswww.unige.ch/~behrend/page_cou.html), maintained by Raoul Behrend at Observatoire de Genève.
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Appendix B: Predictions for stellar occultations 2022–2026

Predictions of the positions of Kleopatra’s moons for expected stellar occultations 2022–2026 are plotted in Fig. B.1.
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Fig. B.1. Predictions of the positions of Kleopatra’s moons in the (u, v) plane for the beginning time of expected stellar occultations in 2022–2026.
Our ephemerides including tides (+) and without tides (×) are plotted for comparison. The projected orbital velocity (arrow) and the occultation
chord (dashed line) are also indicated. If one of the alternative models is valid (Sects. 2.6, 2.7), the position of the inner moon will be somewhere
in between. If chords intersecting Kleopatra are close to the inner moon, the event is very promising (see bold dates).
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