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Abstract

We propose to design and build an algorithm that will use a convolutional neural network (CNN) and observations
from the Unistellar Network to reliably detect asteroid occultations. The Unistellar Network is made of more than
10,000 digital telescopes owned by citizen scientists, and is regularly used to record asteroid occultations. In order
to process the increasing amount of observational produced by this network, we need a quick and reliable way to
analyze occultations. In an effort to solve this problem, we trained a CNN with artificial images of stars with 20
different types of photometric signals. Inputs to the network consist of two stacks of snippet images of stars, one
around the star that is supposed to be occulted and a reference star used for comparison. We need the reference star
to distinguish between a true occultation and artifacts introduced by a poor atmospheric condition. Our Occultation
Detection Neural Network can analyze three sequences of stars per second with 91% precision and 87% recall. The
algorithm is sufficiently fast and robust so we can envision incorporating it on board the eVscopes to deliver real-
time results. We conclude that citizen science represents an important opportunity for the future studies and
discoveries in the occultations, and that application of artificial intelligence will permit us to to take better
advantage of the ever-growing quantity of data to categorize asteroids.

Unified Astronomy Thesaurus concepts: Asteroid occultation (71); Convolutional neural networks (1938);
Automated telescopes (121); Optical astronomy (1776)

1. Introduction

The Unistellar Network is a worldwide network of citizen
scientists and professional astronomers who collaborate on a
daily basis to scientific campaigns. These citizen scientists are
equipped with one of the Unistellar’s digital telescopes: the
eVscope 1 (Marchis et al. 2020), the eQuinox (same architecture
as the eVscope 1), or the eVscope 2. Those three models have
redundancies and differences detailed in the Table 1.

Because of their hardware similarities (mirror, aperture, focal
length, sensors, pixel scale, and sensitivity), researchers at the
SETI Institute, Unistellar’s scientific partner, can receive
standardized data sets for curated scientific campaigns. Those
campaigns are often organized by SETI institute researchers,
and announced on the Unistellar’s website.5 Professional
astronomers can also request observations to the Unistellar
Network. For selected campaigns, such as asteroid occultations,
exoplanet transits, comets, or near-Earth asteroid (NEA)

observations, citizen scientists can learn how to get involved
on the Unistellar’s website. The information available there
includes the timing of the observations, the locations to be
observed, the celestial coordinates, and the observing para-
meters (exposure, gain, duration) to be used on the eVscope.

One of the most popular Unistellar scientific programs is
related to occultations by asteroids, which are astronomical
events defined as when an asteroid passes between a star and an
observer located on Earth, hiding the star for a brief moment.

From the observer’s point of view, the star will disappear from
less than a second up to more than a minute depending on the
size, relative velocity, and position of the asteroid. Recording
such events helps astronomers retrieve the characteristics of
asteroids including its astrometric positions, an estimate of its
projected shape (Braga-Ribas et al. 2014), and even whether
moons or rings surround it (Gibney 2014).
The Gaia mission now offers accurate astrometric measure-

ments of bright stars (typically G< 18), which allows
astronomers to increase the accuracy of occultation predictions,
and maximize the chance of successful observations. Over the
past 40 years, occultation have been used to derive the size,
shape, and multiplicity of asteroids. Combined with other
techniques such as radar detection (Ostro et al. 2000), direct
imaging by adaptive optics on ground-based telescopes
(Descamps et al. 2007 and Vernazza et al. 2021) or using the
Hubble Space Telescope (Parker et al. 2006)), astronomers can
gain new insights into asteroids. Unfortunately because only a
handful number of space missions have flown past asteroids
(Barucci et al. 2007), and even fewer have orbited them
(Russell & Raymond 2011), today our knowledge about these
asteroids relies mostly on remote observing methods. Because
occultation events are numerous and can be performed for any
type of asteroids (from the NEA population to the distant trans-
Neptunian objects), they are probably the most promising
techniques we have to characterize asteroids in coming years.
Occultation combined with light-curve inversion (Ďurech

et al. 2011; Viikinkoski et al. 2015) is a powerful way to
estimate the size of many asteroids. To date, the DAMIT
(Ďurech et al. 2010) database contains the size estimate of 3462
asteroids most of them in the main belt and with a diameter
greater than 10 km. Determining the size and shape of asteroids
is one key to understanding their formation and evolution. For
instance, the elongated and bilobated shape of the asteroid
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(216) Kleopatra is linked to its critically rotating state, which
probably formed the moons (Marchis et al. 2021). One caveat of
the occultation technique is the need for a large number of
observers able to properly estimate an object’s shape and size.
Highly sampled occultations are rare, since they require a large
number of observers under the path (which has a width similar to
the projected size of the asteroid). The odds that a prediction is
accurate enough to detect the occultation is high for those
observers. One of the most densely viewed occultation to date
was a campaign organized with the professional and amateur
community in California targeting the binary asteroid (90)
Antiope (Colas et al. 2012). A classic occultation lasts from less
than 1 s to 20 s, while the total duration of an observation might
be 5 to 15 minutes long due to uncertainties. The exposure time
(i.e., the time between the opening and closing of the shutter
while the detector is continuously acquiring photons) is then set
to 200–300 ms, meaning that an observation for one user can
represent as much as 3000 frames. Note that the occultation
appears only on ∼60 of those frames in the best cases (and 5–20
frames in most of the time). Given the number of observers for
each event the amount of information to treat for scientific teams
can swiftly be overwhelming.

As the Unistellar community grows, so does the amount of
data acquired in asteroid occultations. This means that the rapid
manual identification of occultations and subsequent proces-
sing can become unsustainable. This can lead to a bottleneck in
refining the asteroid ephemerides and characteristics. The
slowdown may also reduce citizen scientist interest in
observing asteroid occultations. This issue is shared by any
large network of observers conducting asteroid occultation
observations. Also, the legacy detection code, that will be
described in Section 2 yields a critical number of false results,
increasing delays in data analysis and requiring additional
human involvement. We clearly need an accurate, fast, and
automated tool to confirm or refute the presence of an
occultation in a photometric data set. To solve this problem,
the SETI-Unistellar team worked to develop a faster but
nonetheless reliable solution based on machine learning to
detect occultation as seen from an eVscope. Because we know
exactly which star should disappear as we predict the
occultation, we can reduce the area of interest to the pixels
of that star and its neighborhood.

Between 2020 March and 2022 June, Unistellar collected
∼1014 occultation observations, with 132 positive and 394
negative results. The remaining observations were unusable
due to a bad pointing, weather issues, and other environmental
problems during the observation. This database is always
growing: it represented 217 individual observation on the year
2020, 461 observations in 2021, and 336 in the first semester
of 2022.

The article is organized as follows. In Section 2, we examine
the occultation method currently used by the science team. In

Section 3, we conduct a global modeling of the CNN model,
named the Occultation Detection Neural Network (“ODNet”),
justifying our choices of architecture and the application’s
expected inputs and outputs for the application. In Section 4,
we confirm the efficiency of the trained network, testing it on
real data and using different metrics to determine if this new
method is more efficient than the legacy code. In Section 5, we
discuss the characteristics of our solution for the automatic
detection of occultation. In Section 6, we summarize our
findings and explain their potential for future works they imply.

2. Standard Detection of an Occultation with an eVscope

Let us now describe the analysis currently in use by the
SETI-Unistellar science team for the detection of occultation on
the eVscope network. From here, we will refer to the following
method as the “legacy code” in opposition to the machine-
learning (ML) method.
For the purpose of this study, we assume that all frames

captured by an eVscope are saved as .FITS files (Wells &
Greisen 1979) and have size 1305× 997 pixels2 or 2048× 1536
pixels2 depending on the eVscope model. To create a uniform
data set, eVscope 2 frames are reduced to the eVscope 1 format,
making a typical star selected for an observation 5 to 25 pixels
wide, depending on its magnitude (usually between V = 7
and V = 13).
We apply a 2D Gaussian filter to the raw frame to soften the

point-spread function (PSF; i.e., improve the roundness of the
shape of the stars) and to smooth over some of the background
noise.
Also, we subtract a dark frame and the background if

needed. Some observers are located in urban areas, having a
Bortle scale of 5 or 6, making ambient light pollution
prominent). Next, we conduct an autonomous field detection
(AFD), which is effectively an optimized plate solution, and we
define a reference star to use as a comparison for the possibly
occulted target star. We conduct an aperture photometry of the
target and reference stars via Photutils (Bradley et al.
2022) to determine their flux, flux error, and signal-to-noise
ratio (S/N) as a function of time. The transition from raw to a
reduced, plate-solved data is illustrated in Figure 1.
After completing the photometry, we try to fit a rectangular

window function to the S/N and flux time series in order to
identify an occultation as described in Virtanen et al. (2020). If
this code identifies an occultation in both flux and S/N, the
rectangular function’s parameters provide us with the timing of
the disappearance, reappearance, and incertitude of the observa-
tion. As seen in Figure 2, the beginning and end of the
rectangular window function correspond to the disappearance
and reappearance of the star, respectively. In this figure, the S/N
has been normalized, the saturated point erased, and the function
for occultation detection fitted. The resulting timing information
can then be inverted to conduct studies of an asteroid’s position
and shape. Alternatively, if the rectangular window function
cannot be fit to the flux and S/N, we declare a negative result
(nondetection).
Although the legacy code is effective for clear, high S/N

occultations, it also generates many false positives detections (see
Table 2), because the window function can often be fit to a noise
feature resulting from wind, clouds, or variable atmospheric
seeing. If left unchecked, the legacy code frequently finds
occultation where there are none. In the next section, we will
explain why we seek more efficient methods via deep learning.

Table 1

Hardware Comparison of eVscopes

Characteristics eVscope 1 eVscope 2

Pixels per Image 1304 × 996 2048 × 1536

Sensor IMX224 IMX347

Aperture (mm) 114.3

Focal Length (mm) 450

Field of View (arcsec2) 37 × 27 47 × 34

Pixel Scale (arcsec pixel−1
) 1.72 1.33
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3. Methods

In this section, we will explain why we are using deep neural

networks, how we built our model, and the tool used for this

purpose. This study relies on the library Tensorflow 2.4.0

(Abadi et al. 2015) on Python 3.7 (Van Rossum & Drake

2009).

3.1. Deep Learning

In the last decade, deep neural networks have shown

increased performance in many classification tasks compared

to traditional methods. Traditional methods compute represen-

tations of input signals using a fixed algorithm such as principal

component analysis (Pearson 1901) or Fourier or wavelet

Figure 1. Visualization of the process from a raw picture to a Gaussian-blurred frame to an AFD-identified frame with a coordinate grid of the RaDec in degrees and
the stars selected for study. From left to right: 1-Raw frame 2-Blurred and Post AFD frame. The display for the left image was adjusted so the low-level signal, the
faint stars and background noise, is visible.

Figure 2. Detection of an occultation using the legacy method.

Table 2

Metric Comparison of the Different Methods

Metrics Legacy Code ODNet

Precision (%) 64.7 91.3 =
+

Precision
TruePositive

TruePositive FalsePositive

Recall (%) 91.7 87.5 =
+

Recall
TruePositive

TruePositive FalseNegative

F1 (%) 75.9 89.4 = ´
´
+

F1 2
Precision Recall

Precision Recall

Accuracy (%) 78.8 92.4 =
+

Accuracy
TrueNegative TruePositive

Total

Total time (minutes) 20 2–4 a

Note.
a
Best values are showed in bold.
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decomposition (Howell 2001; Mallat 2009), and then learn the
highly nonlinear mapping between representations and classes
to predict, in our case, the class in which there is “presence of
occultation in the presented sample.” The computation of these
representations being critical, deep convolutional neural net-
works has been introduced to use the raw signal as input,
compute an internal representation, and predict a class, all in a
learnable end-to-end framework (LeCun et al. 2015). Most of
the significant advancements done by the machine-learning
community have been achieved in challenges using deep neural
networks like face recognition, object recognition, and scene
segmentation (Russakovsky et al. 2015; Deng et al. 2019; Zhu
et al. 2021). Therefore, we propose to train a deep neural
network to estimate if an observation contains an occultation,
as it represents an encouraging solution to our precision
problem, the slow response time, and the scalability of
detection.

To achieve this goal, a training set is crucial for deep-
learning-based methods. That is the reason why we detail the
characteristics of our training set in the next section.

3.2. Training Set: Simulating Stars

Typically, an eVscope occultation observation lasts for
several minutes (∼1500 frames). Of these frames, only ∼10
contain the occultation. At the onset of this study (2021
March), the entire Unistellar database only contained ∼100
usable occultation data sets. About 15% of these were positive,
meaning that we had only ∼150 frames containing an
occultation. Owing to the modest size of this data set and the
fact that we cannot use the same data for training and testing
our model, we decided to synthesize artificial data to use as the
training set. Later, we will apply the trained model to the real
positive occultation data to test its abilities.

In generating a synthetic training set, we wanted to explore
all possible photometric variation scenarios for occultations
with the goal of making our neural network as robust as
possible. To simulate stars in synthetic eVscope data, we
inspected every eVscope frame collected by the entire network
between 2020 October and 2021 March. From these frames, we
measured the statistical distributions of stellar fluxes and
background values. We then synthesized star snippets from
these distributions and blurred the snippets with a Gaussian
filter. We noticed that stars, when blurred, represented a more
constant and reproducible pattern, showing a Gaussian
distribution of light around the star, and a noisy background

as can be seen in Figure 4. Therefore, it represents a more
consistent way to produce artificial data in large quantities and
with variety.
In order to make the most reliable simulation of a star seen

by eVscopes that is usable as an input for the deep-learning
application, we must first normalize every set of snippet images
of one star (stack) so that the intensity spans from 0 to 1.
Specifically, we determine the maximum pixel value in a stacks
of N images and scale all of the snippets in that stack such that
the maximum is 1 and the background is near 0. We do this for
the N-image stack of the target and reference star separately, so
that each one is scaled between 0 and 1 even if one star is far
brighter than the other. In this way, the scaled intensity of the
target and reference star are very similar.
To construct a star as seen by an eVscope that has been

convolved with a Gaussian filter (as in Figure 3), we begin by
defining that a star has a background of zeros with a zero
matrix ´32 32. We chose this size of snippets because it readily
fits an average star’s PSF even if the star is not perfectly
centered. For the noise distribution we tested and compared
different models with Unistellar’s database, showing that the
best model of light noise is the Poisson noise, which
correspond to the noise due to a low light intensity. We decide
to neglect the Gaussian noise created by the electronic readout
as its order of magnitude is far less than the Poisson noise
(Lantéri & Theys 2005). The star’s span varies too, determined
by the variance (σ) value of the Gaussian blur, from σ= 1 to
σ= 4, so the more we blur, the more the span increases.
We obtain the following results for the simulation of a star,

as seen in the Figure 3. Figure 3 shows that the artificial star is
morphologically similar to the observed PSF, validating our
algorithm to create an appropriate training set.
The next step is to create a large data set of observations,

labeled “true” or “false,” corresponding respectively to “this set
contains an occultation” and “this set does not contain an
occultation.” The simplest way to create an artificial occultation
on a set of [N] snippets—which we call a sequence—is to
create a function that generates two stars with random noise.
See Appendix B for more information on the used terminology.
For a positive observation (i.e., a visible occultation), the
targeted star (TaSt) disappears during a random number of
frames while the reference star (RfSt) does not. For a negative
observation (i.e., no occultation), the two stars remain clearly
visible on top of the background. Note that their magnitude can
vary slightly during the sample of frames but will never fade.

Figure 3. Algorithm to create a random artificial star snippet as part of the training set (left) and comparison with TYC 6812-00410-1 as seen with an eVscope (right).
Display is at the same scale for both frame for comparisons.
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Also, we created the stacks of TaSt and RfSt such that the

background level has the same intensity, since the two stars are

supposed to be in the same frame within several arcminutes of

each other. A first model is trained and tested on these two

cases. However, real-life data tend to include more complex

photometric variation than a star simply maintaining a constant

brightness or disappearing entirely, and this complexity is

poorly described with these two extremely simple samples. For

example, a cloud passing across the field of view (FOV) would

create a variation of star magnitude that is not an occultation,

thereby creating a false result. To solve this problem, we

enriched the training cases by adding the following patterns to

the training database, according to our experience with

different kinds of data generated by eVscopes. The cases

herein are considered as positive observations:

1. The TaSt fades before disappearing. This can occur with

large or slow asteroids: they gradually decrease the

magnitude of the star on several frames before the star

reaches its lowest magnitude
2. The TaSt does not disappear entirely (its brightness drops

from 100% to ∼10%). This happens with brighter

asteroids, or when the asteroid’s magnitude is comparable

to the star’s magnitude. We decided to use 10% as the

occultation floor as it is enough to consider it is due to an

asteroid and not too high so fluctuation in the star’s signal

would not be considered an occultation.
3. The TaSt disappears but does not reappear (long

occultation). Because we are feeding ODNet with a finite

number of frames, a long-duration occultation would not

be seen as an occultation if we did not teach the CNN that

it is an occultation.
4. The TaSt is absent at the beginning of the set but appears

at the end of the occultation. This is the similar case as in

the previous item but for the reappearance.

The following should be considered to be negative
observations:

1. The TaSt and the RfSt both disappear at the same time.

This can be caused by a cloud or by wind shacking the

telescope, affecting both stars at the same time.
2. The RfSt is “occulted” (a disappearance following a

pattern of the TaSt). The RfSt is not suppose to be

occulted, but if a cloud covers this star before the TaSt,

the CNN must understand that it is not an occultation.
3. No stars on the FOV.

4. Both stars fade gradually before disappearing. Once
again, this can be caused by clouds.

5. The RfSt, the TaSt, or both disappear sporadically on
frames of the sample. This is typical of a very windy
observation, or if the stars fall out of the FOV or if some
frames are missing. Also, this can happen with variable
background noise, as when the citizen scientist is on the
side of a road and car lights randomly pollute the FOV.
See Appendix C for examples.

We are now able to generate a data set of [K] observations,
being composed of two sets of [N] snippets—32× 32 pixels—
for both TaSt and RfSt.

3.3. Proposed Method

We propose a CNN to detect asteroids occultations from
blurred raw frames.
Occultations are temporally limited events, necessarily

composed of a single star’s disappearance, a time when it is
obscured and its reappearance. Therefore it is not possible to
detect such event precisely from a single frame. Also, a drop of
flux intensity may sometimes be caused by various external
parameters (e.g., sensor gain, presence of clouds), making real
occultation detection even more challenging.
In order to overcome the brightness variation, the observed

star is at first compared to a second one, a reference star, close
to the FOV and bright enough, to ensure a flux ratio as
independent as possible from external phenomena. Second, a
set of N= 20 snippets rather than a single frame is more
appropriate to take into account the temporal evolution of
magnitude of both stars. A rolling sample of 20 frames is fed to
the neural network, permitting the CNN to “scan” the entire
observation for occultation. Note that the sample is normalized
on the 20 stars, meaning that if the occultation appears, we will
be able to see the star disappearing on the same scale, like in
Figure 4. We cannot apply the CNN on the entire set of frames
in an observation, because each observation has a different
number of frames and our input must be standardized.
In that regard, inputs to the neural network should be two

preprocessed stacks of stars (N snippets). The first stack
contains the supposedly occulted star taken consecutively. The
second stack contains snippets of a reference star extracted
from the same frame taken consecutively. This second stack
will help the network understand if the change in intensity in
the first stack is an occultation. Also, the convolutions will not
be applied to a single frame but rather to the sequence of
frames, meaning that we are looking for a pattern within a

Figure 4. A simulated stack (bottom) made of 20 snippets including a occultation lasting five frames. A stack (top) based on a recorded occultation observed on 2021
May 27 with the disappearance of the star over eight frames. Those stacks are part of the sequences input to ODNet.
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frame and between frames. The pattern sought within the
snippet is the star, and the temporal pattern sought between
frames is the disappearance of stars, if it happens. These
patterns are illustrated in Appendix C. Afterward, we use a set
of fully connected neuron layers to extract the final information
out of the convolutional layers: the pattern information must be
transformed into a “Yes/No” answer to the question “Does this
sequence contains an occultation?”

First, as in the legacy method, we apply a Gaussian blur of
2σ to each snippet in order to round the stars and diminish the
background noise. Second, the citizen’s blurred observation is
run through an algorithm to determine where the star and the
reference star are located, and to reduce each frame to a set of
two snippets, each 32× 32 pixels. Thus, on this model, we are
able to treat the occultation of each star in turn: this will be
further described in Section 5.

In our model, as described in Figure 5, we use five layers of
128 neurons using a rectified linear unit (ReLU; Equation (1)),
and the output neuron is with a sigmoid activation function
(Equation (2)), in order to emit a probability of presence of the
occultation as a number between 0 and 1. Before these dense
layers, we are using five layers of 3D convolutions, coupled
with max pooling, permitting to reduce the size of the input
sequence before they go in the dense layers. It produces a
model with ∼18 millions parameters to train. To that end, we
need to create a large training set that will fix the input for the
desired output of ODNet.

( ) ( ) ( )=x xReLU max 0, 1

( ) ( )s =
+ -

x
e

1

1
. 2

x

3.4. Experiments

To train our model, we used a stochastic gradient descent
with a learning rate = 0.001, β1= 0.9, β2= 0.999, ò= 1e− 07,
and the Adam optimizer (Kingma & Ba 2014). The training set
is composed of 80% of the simulated data, and the test set of
the remaining 20%. After the training, we observed that a good
trade-off between [K] and the efficiency of the network was to
use K= 50,000 observations, half negative, half positive,
following the different photometric cases explained in the table
(see Appendix C). As a reminder, it represents 2,000,000
snippets of stars randomly generated and variable in position in
the frame, span, and S/N.

With only simulated data, the efficiency of our CNN was
unsatisfactory, because the test set was generated in the same
way as the training set. To remedy this situation, we added
some real observations during the testing, using them only as a
metric: five positive occultations have been input at the end of
each optimization’s iteration, or “epoch,” which tells us if the
model is improving over time. This way, after each epoch, we
would not determine our precision on the simulated data
anymore. This test set represents ∼6000 frames, with ∼200
frames containing the occultation event. The positive data
representing only 3.33% of the test set, we need to balance the
way the metric is calculated. We gave 30 times more value to
the frames containing the occultation so the total of positive
frames has the same weight as the negative frames. Better
results were immediately observed, as it can be seen on the
receiver operating characteristic (ROC; Hoo et al. 2017) curve
in Figure 6.

4. Test on Real Data

For the evaluation of our model, we selected 66 observa-
tions: 24 positives and 42 negatives, representing different
S/N, star shapes, and occultations duration. It represents
∼30,000 sets of pair of stars, among them ∼450 sets containing
a positive observation with the rest being negative. The average
execution time of ODNet is 1 s per 100 frames.
Let us take the example of (617) Patroclus observed by a

citizen astronomer on 2021 September 5. This observation took
several hours for humans to investigate because it needed
background reduction and a manual selection the area we
wanted to study: clouds and wind made the observation seems
—seen by the legacy code—to contain three occultations
before the real one. ODNet needed only 3 minutes: 3 minutes
to extract the two sets of stars’ snippets, and less than 8 s to
give us its output.
As we can see on Figure 7 (middle panel), occasionally

during the occultation (i.e., where the detection plateaus), some
samples are detected negative. We coded a short algorithm that
interpret singular points as natural errors: a single positive point
with no other positive around it is declared negative, and a
negative surrounded by positives is changed to positive. These
singular outliers should not exist in most standard single-body
occultations given the scanning technique we use to search the
data set. Even if an occultation occurs in just a single frame,
ODNet will detect that occultation each time it appears in the

Figure 5. Visualization of ODNet’s model chosen. We can observe the 4D data (2 × 20 × 32 × 32) being flattened by the consecutive convolution and max-pooling
layers, then, the five layers of neurons treat the sample to conclude if it contains or not an occultation. The user is informed of the output via one last neuron. The
output neuron is a number from 0 to 1, seen as a probability of the event “presence of an occultation in the set presented.” Between each layers of convolution, there is
a 3D max pooling, of size 2 × 2 × 2.
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Figure 6. ROC curve of model including real data during the training and including only artificial data. A perfect model would be represented as a right angle at the
top left corner: we see that as we input only five real observations in the test set, our area under curve (AUC) goes from 83% to 87%. Thus, more real data permits a
more precise CNN. Note that this ROC curve is not from the same model as the model in the one in Table 2; it is an example for the enhancement of the model
depending on the training data.

Figure 7. Patroclus’s observation seen by ODNet. From top to bottom: star occulted—reference star—raw output from ODNet—cleaner output.
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set of 20 adjacent frames (i.e., 20 times). Very specific cases of
binary asteroids or ring systems could possibly be hidden by
this technique, identified as just a standard single occultation.
Identifying these cases are not the initial purpose of ODNet, so
we are not concerned by this presently (see Section 5).

To rate our model, we used five metrics: the precision, the
recall, the F1, the accuracy and the time of execution. They are
calculated as follows:

Precision describes the ability of the CNN to correctly detect
occultations without errors of a positive label on a given set.
Recall describes the ability of the CNN to avoid mislabelling a
true occultation as negative. The F1 score represents the
balance of the CNN correctly detecting the occultation, but also
not missing or mislabelling them. Accuracy permits us to score
the ability of the CNN to generate correct detections (true
negatives or true positives) out of the entire test set. With
ODNet, we achieve a precision of 91.3% and a recall of 87.5%,
a F1 score of 89.4% with an accuracy of 92.4%. These values
exclude the “inconclusive” case, where the observation is not
exploitable due to environmental factors.

We can see in Table 2 that the deep-learning method
competes successfully with the legacy code in terms of
precision, F1, and accuracy, but is less effective in terms of
recall. This can be understood as the CNN making far fewer
errors when it comes to labeling negative observations as
negative: it generates fewer false positive. Nevertheless, it has
missed some occultations (positive detections), while the
legacy method did not. The reasons for these missed detections
are known and will be considered in the Section 5.

Also, the CNN is more efficient in terms of time: a typical
extraction of data to make the sample of stars is 82 s per 1000
frames and the CNN itself takes less than 1 minute. As

example, the legacy method takes 20 minutes to generate a
conclusion for the same kind of occultation. We have, in short,
developed a faster and more efficient method. It is important to
note that 1000 frames represent generally 5 minutes of the
observational time; so long as ODNet’s time of response is
faster than the time it takes for the data to be observed, we can
imagine real-time detection.
Another example of detection of an occultation is the

observation of Misa we used in Figure 2 for the description of
the legacy code. We can see on Figure 8 that the algorithm is
indeed detecting the occultation in the same spot as the legacy
method.

5. Discussion

On the real observational data set that we used as a test, the
magnitude of the studied star in the G band was from 8 to 13,
with an average value of 12. We compare the results of ODNet
and the legacy code within the limitations presented by the
legacy code. Hence, we were not able to evaluate ODNet with
observations presenting an S/N lesser than 20. For stars fainter
than G= 14, the legacy code is not efficient anymore because
the star signal is lost into the background. For example, in
occultation of UCAC4 669-035752 shown in Appendix A by
the main-belt asteroid (795) Fini on 2021 March 10, a citizen
astronomer was observing from the downtown of a large city in
Japan. Due to the bright sky, the S/N of the observed star was
about 20 during the whole observation. Neither the legacy code
nor the neural network algorithm could reach a conclusion
using this observation. In this case, the cleaning algorithm
shown in Figure 7 will be unable to find the signal of unique
occultation; it will consequently label this observation as

Figure 8. Public occultation report for Misa seen by the legacy code (top) and the same observation seen by ODNet (bottom). We can see that on simple occultation
(no wind nor cloud), ODNet performs as good as the legacy code.

8

The Astronomical Journal, 165:11 (14pp), 2023 January Cazeneuve et al.



“Inconclusive” since it has not been able to conclude on the
presence or absence of an occultation.

We noted that most of the false results were caused by to
background noise, clouds, or very low S/N. ODNet is faster
and better at detection than our legacy code (as seen in
Section 2), but problems created by environmental conditions
such as poor weather or light pollution cannot yet be solved. In
the future, we could create a better training set that will include
simulation of cloud perturbations so the model is better
prepared to identify such a case and label it as “inconclusive.”

ODNet is fast but has some limitations. First, a bright
asteroid’s occultations cannot be detected with the current
deep-learning method because its apparent magnitude is too
close to the magnitude of the occulted star. We can take the
example of the observation involving the main-belt asteroid
(13) Egeria on the night of 2021 March 15–16. The asteroid has
occulted UCAC4 655-038057, a magnitude G = 12.5 star,
while Egeria has a predicted magnitude 11.6 in the V band, so
the occultation’s drop was predicted to be less than 1. In this
case, ODNet is unable to detect the event. An algorithm similar
to the legacy code is able to detect such a shallow occultation.

We could enhance and improve the capability of the CNN
algorithm by making it more versatile and aware of the
environment. For instance we could make the output of the
network multiclass: by adding more than one probability of
event to detect (thus transforming the one ending neuron to a
list of labeled neurons) we can collect more details on the
quality of the recorded frames. For instance, we could add a
“cloud” neuron, which would determine the probability that the
frames are contaminated by clouds, or a “low S/N” neuron, or
even a detector of vibrations and wind. This improved ODNet
will return a metric on the quality of the data, helping us to
assess if an occultation is detected along the observation.

The method described in this article is not costly in terms of
computing power, opening the possibility for us to embed it on
the telescope directly. Indeed the eVscope is doing the AFD on
the first frame, and tracking the motion of the stars, meaning
that once it is set, we can assume that the relative position of
the studied star on the FOV is almost constant. A short code
can be written to track a given star on each frames knowing its
initial position, making us save precious time of calculation
instead of doing AFD on each frames to keep track of TaSt and
RfSt position. Also, due to the really simple operations that
constitute the neural network, the integration of such comput-
ing method should be doable on board a Unistellar telescope.

Using the Unistellar’s citizen scientist network, we are now
able to process a large amount of data. A typical preparation of
data and ODNet’s analysis is made within 3 minutes. By way
of contrast, the legacy code takes 20 minutes to generate a
conclusion for the same occultation. Clearly, we have achieved
a faster and more efficient method. We believe we have created
the first method of occultation detection using a CNN. The
results with this first algorithm are very encouraging and at a

low computational cost. Combined with the availability of

citizen scientists, this CNN algorithm is well fitted to handle

the large amount of data continuously generated by the

Unistellar Network.
To date, ODNet is included in the scientific pipeline of the

occultation analysis as a trustworthy indicator for occultation

detection: it allows us to focus our time and computing power

on observations for which positive occultation events are

indeed present and to know immediately, without deep diving

into the observational data, if a report from the legacy code is

correct or not. The legacy code is still needed to derive an

accurate timing for disappearance and reappearance with their

uncertainties. The next step could be to embed this ML model

directly into the telescope, doing the calculation during the

acquisition of data (edge computing) and flagging the data

before it is even sent to the SETI astronomers. We believe that

ODNet can be used with other telescope data as long as the

sequence of two stacks of 20 snippets (32 by 32 pixels) is

provided to the code as an input. The code and few examples

are available on Github.6

6. Perspective

This study was applied to known events in that we knew

which star to look at and which star to use as a reference. But

what if we take a random observation on the database without

knowing which star to observe? Due to the short duration of

this study, we can simply select tens of stars inside a frame,

declare one as the reference star and the others as potentially

occulted, and let ODNet do the rest. But another enhancement

could use more recent CNN techniques to detect occultations:

fast-RCNN (Girshick 2015) and YOLO (Redmon et al. 2016)

models could be applied to the entire frame, detecting what is a

star and, among them, which ones are occulted. It would be a

more of an end-to-end application as the direct output of the

observation will be an input to the AI, and the last output would

be the beginning and end of the occultation (if there is one)

without any human pre- or posttreatment. The direct applica-

tion of such enhancement could be the detection of unpredicted

asteroid occultations. For example, this could open the field to

autonomous detection of unknown, or poorly known, NEAs, or

even distant trans-Neptunian objects.

This material is partially based upon work supported by the

National Science Foundation under grant No. 1743015, and the

generous donation from the Richard Lounsbery foundation and

the Moore Foundation. P.D. acknowledges support from the

51 Pegasi b Fellowship funded by the Heising-Simons

Foundation.
Software: Tensorflow, (Abadi et al. 2015) Photutils,

(Van Rossum & Drake 2009).

6
For printed version: https://github.com/doriancazeneuve/ODNet.
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Appendix A
Example of Low S/R Star Seen from an eVscope

As seen in Figure 9, we can see that a highly polluted

environment can create a pattern in the snippet so that noise

and signal are indistinguishable.

Figure 9. Example of low S/N star, mixed with its background. The star is at the exact center of the frame.
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Appendix B
Terminology for Simulating ODNet’s Input

For comprehension’s sake, the reader can refer to Figure 10

in order to understand better the meaning of what we call in this

paper “frame”, “snippet”, “stack,” and “sequences”.

Appendix C
Zoology of Photometric Signals Used for Model’s Training

The different photometric variations used for training our

model are visually described in Figure 11.

Figure 10. Terminology of the simulated set. A frame contains the stars in the FOV of the eVscope. The snippet is an image containing a star, artificial or not. A stack
is a set of N snippets, permitting to look at the evolution of a star through time. A sequence is a combination of the TaSt and RfSt stacks: this is the input that is fed to
ODNet.
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Figure 11. Note that during the observation, the background intensity can vary, but in the same way on the TaSt and RfSt, meaning that if the S/N of one star is
affected, it is in the same way affected for the other. This way, environmental perturbations are not counted as anomalies but regular events that always happen. Such
an event is observed in real observations with high-altitude clouds, or nearby punctual light pollution due to, as an example, a car’s light.
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Figure 11. (Continued.)
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