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Abstract: Within cells, cytoskeletal filaments are often arranged into loosely aligned bundles. These
fibrous bundles are dense enough to exhibit a certain regularity and mean direction, however,
their packing is not sufficient to impose a symmetry between—or specific shape on—individual
filaments. This intermediate regularity is computationally difficult to handle because individual
filaments have a certain directional freedom, however, the filament densities are not well segmented
from each other (especially in the presence of noise, such as in cryo-electron tomography). In this
paper, we develop a dynamic programming-based framework, Spaghetti Tracer, to characterizing
the structural arrangement of filaments in the challenging 3D maps of subcellular components.
Assuming that the tomogram can be rotated such that the filaments are oriented in a mean direction,
the proposed framework first identifies local seed points for candidate filament segments, which are
then grown from the seeds using a dynamic programming algorithm. We validate various algorithmic
variations of our framework on simulated tomograms that closely mimic the noise and appearance
of experimental maps. As we know the ground truth in the simulated tomograms, the statistical
analysis consisting of precision, recall, and F1 scores allows us to optimize the performance of this
new approach. We find that a bipyramidal accumulation scheme for path density is superior to
straight-line accumulation. In addition, the multiplication of forward and backward path densities
provides for an efficient filter that lifts the filament density above the noise level. Resulting from our
tests is a robust method that can be expected to perform well (F1 scores 0.86-0.95) under experimental
noise conditions.

Keywords: actin; cryo-electron tomography; segmentation; dynamic programming; denoising;

missing wedge; tomogram simulation

1. Introduction

In cryo-electron tomography (cryo-ET), frozen-hydrated cell samples are mounted
on a rotating specimen holder to capture multiple views of biological cells in their native
environment. After 3D reconstruction, the resulting tomograms provide 3-5nm resolution
views of the cell’s ultrastructure, down to the level of macromolecular assemblies and
individual molecules. However, even after image processing, the tomograms exhibit
considerable noise because the electron dose is limited to prevent radiation damage.

There are also blurring artifacts visible in the 3D reconstruction because of the lim-
ited tilt range of the specimen holder that masks out a wedge of the transformed image
data in Fourier space [1]. In recent years, several computational groups have focused
on automatically detecting and segmenting biomolecular shapes in such tomograms by
using techniques such as deep learning [2-4]. Furthermore, a number of toolboxes have
been developed for tomography analysis [5-7]. These efforts have mainly been aimed
at improving the signal-to-noise ratio by averaging multiple particles in subtomogram
averaging [8]; however, the averaging approach is unsuitable for long cytoskeletal filaments
that exhibit variable shapes.
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Our own work over the past decade has mainly focused on developing specialized
techniques for the automated detection and modeling of cytoskeletal filaments such as
actin [1,9,10]. The orientation of actin filaments within cells is of considerable biological
importance because the filaments organize the structure of functional cell appliances such as
focal adhesions, bacterial comet tails, hair cell stereocilia, lamellipodia, and filopodia. Actin
filament detection and analysis has become the focus of optical microscopy in 2D [11,12]
and cryo-ET in 3D [13-16].

Given the noise, missing-wedge artifacts, and large volume of cryo-ET reconstructions,
computational tracing methods often require manual intervention [17]. Furthermore, a
manual tracing of cytoskeletal filaments is labor intensive [18]. To achieve a more repro-
ducible and efficient analysis, we have developed several fully automated approaches over
the past decade that do not require manual intervention. These approaches were motivated
by the biological application requirements of our experimental collaborators.

For example, in Dictyostelium discoideum filopodia, the packing density is relatively
low, meaning that individual actin filaments are well separated and show random orienta-
tion. We developed the voltrac tool to find the seed locations of filaments using a genetic
algorithm-based search of a population of cylindrical templates [9]. The filaments can
then be traced, starting from the seeds, by using a bidirectional search that can follow
curved paths, as long as the filaments are separated. In contrast, the shaft region of hair cell
stereocilia is comprised of densely packed bundles that can be traced with bundletrac [10],
starting from user-provided seed points, here by taking advantage of the hexagonal packing
symmetry orthogonal to the filament axis.

In this work, we analyze the taper region of hair cell stereocilia [18]. Actin bundles
in this region exhibit an intermediate density that imposes a certain regularity and mean
direction; however, individual filaments can deviate from this mean direction. Moreover,
because of the proximity of the filaments, the missing-wedge effect fuses adjacent densities,
seemingly impeding their direct tracing. This problem led us to earlier developing a
template-based deconvolution [1] to correct the missing-wedge artifacts prior to the tracing;
however, this approach required expensive numerical techniques (up to a week of run
time), and it came at the price of interpreting the entire tomogram (including membranes,
other biomolecules, and noise) as filaments, leading to false-positive predictions.

In a recent workshop paper [19], we showed that it is possible to achieve a significantly
faster tracing of dense, semiregular filaments (as in the challenging intermediate density
case of the stereocilia taper region [18]) by combining denoising with tracing in a single
dynamic programming (DP)-based framework. This approach was particularly promising
because of the small number of false-positive predictions. However, earlier work has called
for additional tests and optimizations, which we provide in the present paper. For example,
the DP approach relied on a novel design of a bipyramidal path density (PD) accumulation
scheme, and thus we also tested a more conventional straight-line PD accumulation to
demonstrate the need for our innovation.

For the noisy density maps arising in cryo-ET, we recommended in [19] a denoising
filter as a preprocessing step; the filter was based on the same DP algorithm that we devel-
oped for the filament tracing (Figure 1). Although computationally more expensive than
the later tracing, the preprocessing can strengthen the underlying filamentous structures
against the noise for better visualization and automatic extraction [19]. Enhancement
techniques have also been proposed by other groups as well [20,21]. To provide further
justification for its inclusion in the workflow (Figure 1), we investigated the filament-tracing
performance at various noise levels in the presence and absence of this preprocessing step.

The denoising filter relies on the most efficient blending of the forward and backward
accumulated PDs. We empirically found that the filament contrast can be enhanced when
requiring both PDs to be simultaneously of a high value. The simplest way to implement
this in [19] was by multiplying the PDs (essentially, using the square of the geometric mean).
A squared density, however, has no biological meaning. Furthermore, it was not clear if
the product offered the most discriminating performance against the noise. Therefore, we
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have explored three additional blending functions in this paper that do not yield a squared
density: the arithmetic mean, geometric mean, and minimum.

We introduced a new automatic method for seed point generation based on a spa-
tial decomposition of the volume that specifically designed for our semiregular filament
bundles [19]. These seeds provide the starting points for the traces grown from the seeds.
The nascent filaments are processed in various groupings, screenings, and fusion stages
(Figure 1), eventually yielding the final interpretation.
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Figure 1. The filament-tracing framework originally developed in [19]. The enhancement step filters
the tomogram by utilizing a cumulative path-based density-contrast enhancement algorithm. This
relatively slow preprocessing step raises the intensity values of filaments to make them stand out
better from the noise. Subsequently, the filaments can be quickly generated in a bottom-up manner
from candidate seed points (CSPs), which is followed by tracing short candidate filament segments
(CFSs) from the CSPs. The large number of short CFSs are then refined and fused to generate the
detected output filaments.

The filament predictions can then be evaluated in terms of true and false positives
or negatives and statistical criteria, such as recall, precision, and F1 score. The statistical
validation requires a known ground truth; therefore, we used only simulated tomograms
modeled to closely match the noise level, noise color, and missing-wedge effects of an
experimental tomogram. The results provide a quantitative justification and optimization
of the various algorithmic modifications we have explored.

2. Methods

This section first introduces how our simulated tomograms were built from an existing
manual tracing and how the map noise levels for our validation tests were calibrated
against the existing experimental map. The simulated tomograms were then subjected
to the main filament-tracing framework, which was developed in [19] and is depicted in
Figure 1. The framework consists of several denoising, seed generation, tracing, refinement,
and fusion steps, which will be described in the following.

2.1. Noise Calibration and Simulation of Tomograms

We recently developed a software tool, TomoSim, for the realistic simulation of tomo-
grams [22]. The simulation will allow us to test the filament-tracing performance based on
a known filament model (Figure 2) and its corresponding experimental tomogram. The
initial model can be a manually obtained interpretation of an experimental density map
(Figure 2) or automated tracing generated by a computational tracing approach described
in the next section. As described in more detail in [22], the simulation aims to faithfully
recreate the noise and missing-wedge Fourier space artifacts typically found in cryo-ET.
The simulations created for the current paper do not include nonfilamentous biological
features, such as membranes.
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Figure 2. Manually traced filaments in the stereocilia taper region. The manual “spaghetti” model is
consistent with the experimentally observed density of the actin filaments [18] in cryo-ET. The true
position of actin filaments in the experimental map is not known with complete certainty, but manual
tracing can serve as a ground truth for testing our algorithms when using simulated tomograms
modeled after the shown filament traces. All molecular graphics figures in the present paper have
been prepared with UCSF Chimera [23] and oriented with the 4Y direction to the right.

We started the simulation approach by interpolating the existing model filaments and
rasterizing them onto the cubic grid of an experimental map corresponding to the start
model. The grid indices i, j, and k correspond to the X, Y, and Z axes, respectively. We also
retained the size and dimensions of the experimental reference map grid in our simulations.

The projected filament traces were then enlarged by convolving the voxel densities
D(i, j, k) with a Gaussian-shaped kernel whose dimensions (full width at half maximum
5 nm with a voxel spacing of 0.947 nm, ~2.01 voxels) were matched to the width of an actin
filament. Color-filtered noise was added from a noise map that matched the radial power
spectral density (noise color) and the signal-to-noise ratio of an experimental reference
tomogram [22]. In a second step, we also matched the noise level in the experimental map
by visual appearance by applying an amplification factor of 1.85 to the filament voxels
prior to volumization. This additional manual amplification can be seen as subjective,
but it helped provide a better visual match to the experimental data than our present
automated noise matching, as described in [22]. The manual adjustment accounted mainly
for discrepancies between the model and experimental map. For example, the manual
tracing might not perfectly match the experimental tomogram positions (which we called
the “alignment error” in [22]) or the tomogram might exhibit an inhomogeneous density
distribution across the volume due to gaps or helical twist in the actin [18] (whereas
our simulated filament densities were perfectly homogeneous along the filament length).
In such situations, the automatically calibrated filament signal strength can be weaker
than a visual inspection suggests. After noise was added, a wedge was masked out in
Fourier space to emulate the missing views from the limited tilt range of the microscope
specimen holder.

To validate the performance of our proposed tracing framework, we have considered
simulated tomograms with varying degrees of noise (Figure 3). In our simulations, we
used four noise levels ranging from 0.4 to 1.0 (Figure 3). The manually amplified noise
level (factor 1.85) was used as an upper bound (worst case experimental noise), which
was normalized as a noise level of 1.0 in the current paper. Lower levels were used
as an additional scale factor. For example, the 0.6 noise level would be the closest to
the automatically matched experimental noise. The lowest 0.4 level might help identify
improvements that could be afforded by better quality data in future work.
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Figure 3. Illustration of the simulated density maps at various noise levels relative to noise in the
experimental map [18] (see text). (A) noise level 0.40; (B) noise level 0.60; (C) noise level 0.80; (D) noise
level 1.00. For the illustration, we used a 10-voxel-thick slab (corresponding to Z-indices 120-129,
using experimental map voxel spacing 0.947 nm [18]), with an isocontour density threshold of mean
plus two times the standard deviation.

In summary, the main advantages of using simulated maps were as follows: (i) to
provide us with a needed ground truth for validation and (ii) to free us from the above
subjective amplification uncertainty (the manual matching is only used once to set the
reference level 1.0). Consequently, we can consider a reasonable range of noise levels that
we would expect to encounter in experimental maps. The noise level (global scale factor)
did not affect the noise color calibration or missing-wedge modeling.

2.2. Density Map Preprocessing: Accumulation of Forward and Backward Path Densities

For cryo-ET maps, we recommended in [19] a denoising filter as a preprocessing step.
Our approach assumes that filaments have a mean direction, which, in the current work, is
in the Y direction, the same as the experimental map [18]. Individual filaments may deviate
from the mean direction, so we allowed for an up to a 45° deviation from the dominant
axis. For each voxel (i, j, k), here represented in green in Figure 4, the preprocessing step
assigns the path density values accumulated following a search window, starting from
(i, 7, k). This search window originating from (i, j, k) has a pyramidal shape in both directions
constrained by the 45° limiting angle. The end points of the search window in the forward
direction (fully shown in Figure 3 of [19]) are represented in Figure 4 by the black voxels
(the base of the pyramid).

The forward path density FPD(i, ], k;1) (Figure 4A) and backward path density
BPD(i,j,k;1) (similar, not shown) are accumulated along certain paths (red) of a fixed
length I. In this paper, the term “length” is used for the extent in the Y direction (mean
direction), not the Euclidean length. The length I can be tuned to the nominal resolution
of the tomogram or separation of the desired features, or it can be used to control the
straightness of the filaments. In this work, we set the length of [ to five voxels, here
considering the trade-off between the noise present in the tomogram and shape of the
filaments. The originally proposed accumulation scheme (fully shown in Figure 4 of [19])
adds up intensity values within a zone of influence that forms a reverse pyramid with its
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Figure 4. Two path density accumulation schemes were employed in the filament pattern enhance-
ment and CFS tracing steps (Figure 1). (A) illustrates how the forward path density (FPD) of length
I = 5 voxels accumulated from the voxel (i, j, k) (green) using the original DP approach [19] in
Equation (1). The accumulation zone (red) is shown for a random target voxel (i’,j + I, k) (blue),
but the final FPD has been taken as the maximum among all potential targets (black) at the base
of the search pyramid (i — < i’ < i+1,k—1 < k' < k+1, Equation (1)). (B) shows how the
FPD accumulated with the alternative straight-line approach (also I = 5 voxels) in the CFS tracing
(Figure 1).

Therefore, the voxels contributing to the FPD(i, j, k; 1) form the intersection of two
pyramids, the forward-facing search pyramid (Figure 4A), and the reverse influence pyra-
mid with its tip at the blue target voxel (Figure 4 of [19]). This intersection is the accu-
mulation zone, as shown in red in Figure 4A. The accumulation zone is confined to a
relatively localized volume reaching from the green origin (i, j, k) to the potential blue target
(i',j +1,k'). This localized zone inspired us to also test a simpler approach, where the path
densities are accumulated directly along a thin straight line of voxels, as shown in Figure 4B
(see below).

For mathematical completeness, we again provide the details of the DP implemen-
tation (described above and shown in Figure 4A). Readers familiar with the workshop
proceedings [19] may skip the following equations.

2.2.1. Pyramidal Search Window and Maximum Path Density Selection

The voxel densities D(i, j, k) (normalized between 0 and 1) are accumulated as follows
toward the base of the forward pyramid (j + /; black in Figure 4) and, similarly, in the
backward direction (j — [; not shown), from which the maximum values can be selected:

FPD(i,j,k;1) = max PD(/,j+1,k'), and 1)
i—1<i'<i+l
k—1<k' <k+1

BPD(i,j,k;1) = max PD(i,j—1K), )
i—1<i’'<i+l

k—1<k' <k+1
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where PD(i, j, k) is initialized with the value of its normalized density
PD(i,j,k) = D(i,j, k). 3)

2.2.2. Accumulation and Reverse Pyramid Influence Zone

The accumulation proceeds iteratively through intermediate voxels (i’ , j’ Sk ), whose
PD is updated from immediately adjacent voxels in the previous Y-slice (i.e., j — 1 for the
forward direction or /' + 1 for the backward direction) according to

pD(i,j',k') = D(,j, k') +

max  PD(i'+m,j F1,k +n), 4)
mmne{-1,0,1}
(if contributing)

where F denotes the minus for Equation (1) and plus for Equation (2) and only neighbors
m,n € {—1,0,1} within the above search pyramid are contributing (see Figure 4 of [19]
for an illustration). This scheme allows only voxels in a reverse pyramid to influence the
blue target (i, j + I, k). The “if-contributing” condition in Equation (4) forces an intersec-
tion of the reverse influence pyramid with the above search pyramid, yielding the red
accumulation zone in Figure 4A.

2.3. Combining Forward and Backward Path Densities for Filament Pattern Enhancement

In the second preprocessing stage, the FPD(i, j, k;1) and BPD(i, j, k; 1) values are com-
bined to form a single map, where (i, j, k) acts as the center point and FPD(i, j, k;1) and
BPD(i,j,k;1) are sampled from the two opposite directions. It is expected that if voxel
(1,7,k) is located on a filament segment, it will have high values for both FPD(i, j, k; 1) and
BPD(i,j,k;1).

The two directional PDs can be combined using a blending function. In our original
approach [19], we used a simple product for this purpose (first in the following list), but
in the present paper, we also explored three additional alternative blending functions.
Consequently, one of the following four equations was used in the present paper:

CPD(i,j k;1) = FPD(i, ] k;1) * BPD(i, j, k;1), or ®)
CPD(i,j, k;1) = FPD(i,j,k;1) + BPD(i, ], k; 1), or (6)
CPD(i,j,k;1) = \/FPD(i,j,k;1) * BPD(i,j k; ), or @)
CPD(i,j,k;1) = min(FPD(i, j,k;1), BPD(i, j, k;1)). ®)

The CPD values are also normalized to a range from 0 to 1 for an easier way of classi-
fying them in subsequent stages of the workflow (Figure 1). Therefore, no normalization
constants appear on the right side of the equations.

The original multiplication (Equation (5)) provides a heuristic score to ensure a logical
conjunction (and gate); only if both FPD and BPD are large will CPD be large as well. In
this type of blending, the product of the two densities in the filtered map CPD no longer
corresponds to the density of the biological specimen (e.g., the larger dynamic range might
amplify inhomogeneous density variations).

The addition (Equation (6)) is identical to the arithmetic mean (we ignore any normal-
ization constants). It appears to be a more natural way to combine accumulated (summed)
densities BPD and FPD. Moreover, the filtered map CPD has the advantage of being pro-
portional to the physical density of the specimen. Addition is similar to a logical disjunction
(or gate), so filament voxels (with simultaneously high FPD and BPD) are rewarded less
than by multiplication.

Because Equation (5) is essentially the square of the geometric mean (ignoring nor-
malization), we can take its square root (Equation (7)). The geometric mean (Equation (7)),
much like the arithmetic mean (Equation (6)), is a physical density (not density squared),
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but like Equation (5), it acts as a logical conjunction because filament voxels with simul-
taneously high FPD and BPD are rewarded more than surrounding noise (albeit at a
compressed dynamic range because of the use of the square root).

Finally, we also tested the minimum function (Equation (8)). Like the geometric mean
(Equation (7)), it is a density and acts as a logical conjunction (because filament voxels with
simultaneously high FPD and BPD are rewarded more). However, the dynamic range of
the minimum function is not immediately obvious and requires further testing on actual
density maps.

2.4. Candidate Seed Point Selection

It is often convenient to initiate automatic tracing from a given set of seed points. For
example, Sazzed et al. [10] required the user to provide a seed point for each filament in a
highly regular (hexagonally packed) actin bundle. Rusu et al. [9] used a genetic algorithm
to find seeds for bidirectional tracing of isolated, irregular filaments. In particular, the
manual placement of seeds is a tedious process and is only feasible when a small number of
filaments are present. For hundreds of actin filaments forming loosely organized bundles
with variable spacing among them (Figure 2), a manual seed point selection is not practical
(and it is also subjective and not reproducible). The automated genetic algorithm search
uses cylindrical templates that require the filaments to be well separated [9] and, therefore,
is not applicable to our case of intermediate packing density.

The newly developed CSP generation stage of our workflow (Figure 1) involves a
spatial subdecomposition of the map into cubes of a user-defined size. For each cube,
the voxel with the highest density value is considered a CSP. Here, we used cubes of
5 x 5 x 5 voxels. (The CSP cube length was identical to the path length, /, hence providing
a natural length scale for coarse-grained seed placement.)

All the local high-density voxels in the spatial decomposition are initially considered
CSPs; however, it is not yet known whether any CFS generated from them constitute true
filaments because the final traces are determined later (Figure 1). A direct determination of
true seed points and corresponding true filament traces is computationally out of reach be-
cause of the low signal-to-noise ratio and missing-wedge artifacts present in tomograms [1].
Therefore, as described in the next section, the algorithm first generates a large number
of CFSs from all the CSPs. Later, the CFSs pass through several rounds of screening to
determine the true filaments (Figure 1).

2.5. Tracing of Candidate Filament Segments

From each CSP, we can trace a path of length | (the same length as above) in the
dominant forward direction (+Y axis in this work) to generate a set of short CFSs. Longer
filaments will be fused from the short CFSs, if indicated, at a later stage. A CFS is repre-
sented by ((is, js, ks) — (ie, je, ke)), where (is, js, ks) is the start voxel (i.e., the CSP), (i, je, k)
is the end voxel (i.e., the voxel with the maximum FPD after tracing a path of length / from
(is, js, ks ) along the forward pyramid), and [ = j, — js.

The CFS tracing can use either one of the forward processing algorithms shown in
Figure 4. We have already explained the DP method (Figure 4A) above (Equations (1), (3)
and (4)) because it is used in the preprocessing of the map. In the current paper, the rel-
atively narrow width of the accumulation zone, as shown in Figure 4A, inspired us to
test an alternative straight-line density accumulation (Figure 4B) that is simpler to imple-
ment. In this alternative approach, instead of considering the density of the neighbor voxels
(Equations (3) and (4)) for creating the CFS ((is, js, ks) — (ie, je, ke)) Of length I, we can con-
sider straight lines, where lines are drawn from each of the seed points (is, js, ks) to the
target points (i, js + 1, k¢ ). For a specific seed, the target point (i, je, k.) is the point on the
base of the search pyramid, is — ] < i, <is+/and ks — I < k. +1 < ks + [, that exhibits
the maximum FPD (Equation (1)) among all the base points. The intermediate voxels of
each straight line are determined by interpolation of the X(Y) and Z(Y) indices, here using
first-order Lagrange interpolating polynomials in Y, rounded to the nearest integer.
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In both approaches, we compute the FPD(is, js, ks; 1), and we also identify the corre-
sponding CFS end voxels (i, je, k¢ ). For each CFS, we finally obtain its NPD (normalized
FPD) score, with a range between 0 and 1. (The FPD values range from 0 to (I 4 1) because
the densities D(i, j, k) were normalized between 0 and 1, so we divide by (I 4+ 1) to obtain
the NPD; this revised formula supersedes the earlier calculation [19]).

2.6. Grouping and Selection of Candidate Filament Segments

Based on their NPD scores, the generated CFSs were grouped into 10 bins of a width
of 0.1. Therefore, the bin numbers reflect the first floating point digit of the NPD values
(e.g., bin 10 contains CFSs with NPD scores ranging from 0.9 to 1.0).

We observed earlier that CFSs of very high-numbered bins usually represent segments
of true filaments. As we gradually move toward the lower-level bins, many false filament
segments appear. For example, in our simulated map, we can see that the CFSs belonging
to bins 6-9 are primarily true filament segments, whereas the CFSs of bins 5 and lower
exhibit false filament segments that are no longer localized in the expected filament region
of the map (see Figure 6 in [19]).

To identify the bin that starts introducing false CFSs, which we refer to as the threshold
bin, we take advantage of the fact that false CFSs in the threshold bin spread to the full
volume (Figure 6 in [19]) because they are mainly picking up noise. By iterating from
high to low numbered bins, we automatically detect at which bin value the CFSs are
no longer localized and spread to the full volume. We decompose the tomogram into
100 x 100 x 100 voxel cubes, which is an intermediate level of detail between the fine CSP
grid and global map size. If we find that at least 15% of the cubes contain less than 10 CFS
midpoints, we deem that the CFSs do not yet occupy the entire volume, and we proceed to
test the next lower bin. In this way, the approach selects the top bins that represent mostly
true CFSs. Note that the threshold bin number is not a static value; it may vary based on
the density distribution of the map. For example, in our simulated tomograms, we have
observed various threshold bin indices when different levels of noise are added.

Subsequently, in another refinement step, the CFSs of the selected bins are further
screened based on backward tracing. Backward tracing helps determine whether a CFS
truly represents a filament segment because it is expected that the traces of a filament
should be similar in both directions. Specifically, we select the CFS endpoint from forward
tracing and retrace it backward using BFD. False CFSs are then excluded based on their
dissimilar forward and backward trace orientations (angle tolerance: 30°). Because the
algorithm is sufficiently fast to generate CFSs, this retracing step does not introduce any
significant computational overhead.

2.7. Fusion of Filaments

The final stage of filament formation employs multiple strategies to fuse surviving
CFSs into longer individual filaments:

Connecting CFS by collinearity: This step considers the collinearity to connect adjacent
filaments that exhibit the same orientation and represent fragments of the same filament.
A pair of CFS that are collinear or nearly collinear (0 to 6° angle) and are very close (or
connected) along the primary axis of the filament (distance between 0 to 10 voxels) are
assumed to represent the same filament and are consequently merged to generate a single,
longer CFS.

Remouval of isolated CFS: An additional screening step automatically excludes spatially
distant CFSs that are arbitrarily generated because of the presence of noise in the tomogram.
A small number of false CFSs can exhibit moderate to high NPD scores. If these CFSs are
indeed caused by erratic, local noise and not by nearby filaments (that are populated by
other CFSs), these spurious CFSs can be detected and excluded by considering the mutual
separation of CFSs in a local region (Figure 7 in [19]). To determine whether a CFS is false
(isolated), its center is first computed, and then, the number of other CFSs present within a
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sphere of a radius of 20 voxels are determined. If the number of neighboring CFSs is less
than three, the CFS is considered false and excluded accordingly.

Extending and fusing the CES: Because of the noise present in the cryo-ET map, a
filament may not exhibit a homogeneous density distribution along its length. Therefore, it
is possible that the fragments of the filament (i.e., CFSs) fall into multiple bins; some may
even fall below the threshold density and are excluded in the above screening. To bridge
between such weaker segments of the same filament, we extend the surviving CFSs as
follows: Each CFS of length [ is gradually extended in the forward direction by repeatedly
adding a new segment of length [ but only if this new segment has an NPD score of at
least that of the threshold bin. This process continues until the NPD value of the newly
generated segment falls below that of the threshold bin or until a maximum length of 5[ is
reached (this empirical limit caps the number of overlapping traces, which will need to be
reduced below, but the exact multiplier of / has little effect on the final results).

The current set of CFSs is then fused using a directional traversing algorithm. Specifi-
cally, we labeled all voxels on the CFSs that survived the previous steps as filament voxels
(FVs). Starting from one FV as a seed, we iteratively traverse in the main filament direction
(+Y in this work) by considering that the possible range of movement along the X-axis and
Z-axis is half of the Y-axis movement. For example, using relative grid indices for an FV
(0,0,0) and connection range of value 2, the algorithm first checks whether voxel (0,1,0) is
an FV; if not, it checks whether any of the voxels (0,2,0), (0,2,1), (0,2,—1), (1,2,1), (1,2,—1),
(—-1,2,—-1), (1,2,0), or (—1,2,0) are FVs. If a new FV is found, it is selected as a second voxel
of the FS, and the search continues until no FV is found, which marks the end point of that
FS. Then, we initiate traversing again from another FV, which does not belong to any of the
existing FSs yet, and follow the same procedure. This process continues until all FVs are
assigned to their final FSs.

Excluding redundant filament segments: This final refinement step excludes short FSs that
overlap with a longer FS along the dominant axis of filaments. By discarding the spurious
FS, this step can also help distinguish true filaments from noise artifacts. FSs that have
more than 90% voxels in common with a longer FS are automatically discarded (Figure 8
in [19]).

3. Results

Below, we provide molecular graphics visualizations of the resulting maps and fil-
ament tracings. This is followed by a quantitative statistical performance analysis. The
validation shows how downstream tracing differs if different path density accumulations
or denoising preprocessing are used. We conclude the section with information about the
program run times.

3.1. Visualization

Figure 5 shows a comparison of the original map and maps after DP-enhancement of
the filament pattern. In the original density map (Figure 5A), the distinction between the
density levels of filament and noise is not always obvious; thus, computationally separating
them may not be possible. In the CPD maps (Figure 5B-E), the filaments are enhanced and
more distinguishable from the noise. The visual inspection at a relatively high noise level
of 0.8 shows that all four methods can be useful as denoising filters.
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Figure 5. Comparison of the unfiltered and various CPD-filtered maps using | = 5 voxels. The
same 10-voxel-wide slab of Figure 3C) is shown, except that it is rendered at the mean + standard
deviation isolevel to emphasize the noise. (A) Original unfiltered map with a noise level of 0.8 (as
in Figure 3C). (B) The map filtered by multiplication of FPD and BPD (Equation (5)). (C) The map
filtered by addition/arithmetic mean (Equation (6)). (D) The map filtered by the geometric mean
(Equation (7)). (E) The map filtered by the minimum (Equation (8)).

The final FS results of one typical case are compared with the ground truth manual
tracing in Figure 6. The persistence length of pure actin filaments is on the order of 10 um,
which is more than three orders of magnitude longer than the length | = 5 voxels, or 4.7 nm.
Nevertheless, some of our traces in Figure 6 clearly follow curved paths that are picked up
by the tracing algorithm on short scales that justify the use of I = 5. This is not surprising
because the curved filaments on this scale have been detected by manual tracing (Figure 2),
and there may be a biological interpretation—for example, because of the cross-linking of
filaments and the decoration of filamentous actin with other proteins.

As of the different normalized CPD distributions, it is hard to predict from Figure 5
which denoising strategy will enhance the filament density most relative to the noise level.
Therefore, we have performed a quantitative analysis of the tracing performance of these
four cases in the following section. Quantitative validation is also important for ruling out
any errors introduced by the positional and directional granularity of our approach. (Given
the short CFS length [ = 5 voxels and restriction of CFS end points to voxel positions
on the 3D grid, our approach is limited to about 9° directional and 1 voxel = 0.947 nm
positional granularity).
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Figure 6. Automatically detected FSs (solid blue; this work) superimposed by the ground truth
manually traced filaments (transparent yellow, [18]). (A) The green areas in this full-view rendering
indicate good agreement because of the subtractive color mixing. (B) A slab consisting of 10 Z-slices,
which is taken from the center portion of (A), provides a detailed view of the individual filaments. The
FSs (blue) have been obtained from the 0.60 noise level simulated map (Figure 3B), which is closest to
the automatically matched noise (see the Methods section), here by using DP-based enhancement
with multiplication (Equation (5)), DP-based CFS tracing, and | = 5.

3.2. Statistical Performance Evaluation

To assess the performance of the proposed tracing framework, an F1 score-based
statistical measure is employed. The criteria for the F1 score calculation are similar to those
used by [24], except predicted FVs are dilated by one voxel to balance recall and precision
values (see below). The ground truth FVs determined by the manual annotation [18]) are
compared with those of the automatically traced filaments. True positive (TP), false-positive
(FP), and false-negative (FN) voxels are defined as follows:

True Positive: A predicted FV is considered a TP prediction if a true FV exists within
3 voxels in any direction.

False Positive: A predicted FV is classified as an FP voxel if no true FV exists within
3 voxels in any direction.

False Negative: A FV in the ground truth map is considered an FN if no predicted FV is
found within 3 voxels in any direction.

Based on the computed TP, FP, and FN values, the recall (R), precision (P), and F1
(F1) scores are calculated using the following equations:

TP
R=—"
TP+ FN

TP
" TP+ FP

©)

P (10)
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2x P xR
F1=— ———
P+ R

Table 1 shows the precision, recall, and F1 scores of the proposed framework when ap-
plied to the simulated tomograms of various levels of noise and using different processing
methods. As a performance reference, the exclusive DP-based approach (Table 1, left) pro-
vides a very high F1 score of 0.97 for a simulated map of a noise level of 0.4. The very high
recall score (0.99) suggests that the framework identifies almost all the filaments present in
the simulated tomogram at this noise level. As the noise level increases, it negatively affects
the performance, even though the obtained F1 scores can still be considered very good.
Even at a noise level of 1.0, the DP-based approach shows an F1 score of 0.86, suggesting
that it is capable of detecting filaments in the worst-case map (see the Methods section),
albeit with some minor inaccuracies. With the current settings, the precision score is slightly
lower than the recall score in the pure DP approach (Table 1, left) because of the remaining
FPs, as can be expected given the noisy nature of the tomogram. Nevertheless, the ob-
served F1 scores from 0.86-0.95 (for noise levels 0.6-1.0) are quite high for a density-based
structure prediction. For comparison, in a recent state-of-the-art deep learning prediction
of secondary structure features in cryo-electron microscopy maps, we achieved F1 scores of
0.72 for alpha helices and 0.65 for beta sheets [25].

(11)

Table 1. A performance comparison of the proposed DP-based framework with the line-based
approach for tracing actin filaments without density enhancement preprocessing at various levels of
noise. UND = undefined because the FP and TP values are both zero.

Noi DP-Tracing Line-Tracing DP-Tracing
oise w/DP-Enhancement w/DP-Enhancement w/o Enhancement
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

0.4 0.945 0.994 0.969 0.591 0.988 0.740 0.963 0.909 0.935
0.6 0.923 0.978 0.950 0.603 0.962 0.742 0.952 0.878 0.913
0.8 0.848 0.965 0.903 0.568 0.940 0.709 UND 0 UND
1.0 0.828 0.898 0.861 0.575 0.813 0.674 UND 0 UND

Table 1 also provides a comparison of the proposed DP-based framework to two
alternatives workflows, which are explained in the Methods section, one with an alternative
filament tracing based on straight-line density accumulation (Figure 4B) and one without
the filamentous pattern enhancement (denoising).

Substituting the line-based tracing in the workflow (Table 1, center) significantly
lowers the precision and F1 scores compared with the pure DP approach, mainly because
of a significant increase in the number of FP filaments. The results suggest that (at least
with the current settings) any efficiency gain by the simpler approach comes at too high of
a performance cost. Because of the apparent overinterpretation of the noise, we did not
implement the line-based tracing in the more expensive preprocessing stage, where noise
suppression is crucial.

For a better-quality map (0.4 and 0.6 noise level), the denoising (Table 1, left) provides
only a modest benefit (compared with Table 1, right) and may not be necessary. However,
at higher noise levels the detection breaks down (Table 1, right). Unless denoising is used,
no filaments are detected for noise levels >0.8 (at least with the same parameter settings as
in the other cases).

Table 2 shows the performance of the proposed DP-based framework with the al-
ternative addition/arithmetic mean (Equation (6)), geometric mean (Equation (7)), and
minimum (Equation (8)) blending functions. The results correspond to those of multi-
plication (Equation (5)) shown in Table 1 in the left column. As can be seen in Table 2
(center, right), the performance of both geometric mean and minimum degrades at higher
noise levels. This is because the compressed dynamic range of the density distributions
impedes the binning and associated screening of CFSs, such that many EN filaments remain
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undetected, which then lowers the recall. Only the arithmetic mean blending manages to
achieve similar F1 scores. However, the high value at noise level 1.0 is likely an outlier
because the trend at lower noise levels is irregular, as exemplified by low recall values
at noise level 0.8 (which exhibits binning problems because of the lower dynamic range).
At least with the current binning approach, multiplication remains the most consistently
well-performing blending function across all noise levels.

Table 2. Performance achieved with both DP enhancement and DP tracing using addition/arithmetic
mean (Equation (6)), geometric mean (Equation (7)), and minimum (Equation (8)) blending functions.

Noise Addition Square-Root Minimum
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

0.4 0.945 0.994 0.969 0.950 0.982 0.966 0.946 0.99 0.968
0.6 0.948 0.806 0.806 0.967 0.250 0.397 0.95 0.35 0.514
0.8 0.926 0.686 0.788 0.936 0.176 0.296 0.938 0.444 0.602
1.0 0.939 0.879 0.907 0.874 0.138 0.239 0.904 0.139 0.241

3.3. Algorithm Run Times

The tracing part of our framework is computationally highly efficient, but the pre-
processing step (which is a requirement for noisy maps, as indicated in our F1 score
analysis) takes more time. On an Apple MacBook Pro with a 2.6 GHz Intel Core i7 pro-
cessor, it takes around 3 min to trace filaments in a simulated tomogram with a size of
283 x 664 x 269 voxels. In contrast, the denoising of all voxels by the preprocessing stage
is slower, taking about 5 h. The tracing stage of the filaments is much more efficient than
the denoising stage because the coarse-grained selection of the CSPs is based on the highest
density voxels in the spatial subdivision. For | = 5, the CSP generation selects one voxel
out of 5 X 5 x 5 = 125 voxels, whereas the preprocessing acts on all the voxels in the map.
Moreover, in the preprocessing, each voxel is traced twice: once in the forward direction
and once in the backward direction, whereas in the tracing stage, only the forward direction
is required.

4. Discussion and Conclusions

In the current work, we have optimized a fully automatic and fast framework for
tracing filaments in an semiregular actin bundle. Our DP-based approach is a spatial
domain technique that operates directly on the voxels of the 3D tomogram. The use
of simulated maps based on a known model has allowed us to validate the algorithm
performance quantitatively. The main result of the statistical analysis is that the earlier
approach described in a previous workshop paper [19] is robust, and it would take some
considerable effort to match or surpass its performance.

The neighborhood-based density accumulation scheme (Figure 4A) enables robustness
in tracing because we do not observe clean filament densities that could be picked up
by a thin line accumulation (Figure 4B). The pyramidal search window ensures that the
PDs are large when filaments pass through the tip of the pyramid while providing some
robustness against noise because individual voxel densities are replaced with PDs. The
tracing assumes that filaments are oriented in a mean direction and bundled, even though
individual filaments may deviate up to 45° from the main direction because of the search
pyramid. The main advantage of the current approach is its applicability to dense filament
bundles while still being able to follow individual curved filaments.

Among the various blending functions, the multiplication of forward and backward
path densities provides for an efficient filter lifting the filament density above the noise
level. Our results (Table 1) show that such a denoising is crucial for the detection of
filaments in lower quality maps. There are alternative denoising filters already in use in
tomography [26-28], but generally, the earlier filters have made no assumptions about the
shape of the biological structures. For example, the earlier work of Starosolski et al. [26]
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also considered a path density-based filtering, but numerically expensive random walks
were required to sample the density map isotropically. In contrast, our bidirectional filter is
designed for filaments that are mainly oriented in the mean direction of the bundle, and
we could take advantage of this known direction to develop a more efficient approach.

The tracing stage of our framework is several orders of magnitude faster than our
earlier methods and only takes minutes (facilitated by the spatial coarse graining of the
CSPs). However, the denoising of all tomogram voxels is a current bottleneck and still
takes several hours on a standard computer. Note that in both the forward and backward
directions, density is accumulated from the origin (initialized in Equation (3)). Therefore,
DP is performed only locally for each voxel, and the full density map needs to be processed
exhaustively, which is expensive. We will explore further speed up in the future.

Prospective experimental applications [1,10,18] of our Spaghetti Tracer framework call
for a modeling of filament gaps, as described in Figure 2 of [18], and for a more detailed
analysis of filament curvature. Another future application of our framework would be
the tracing of irregular filaments that do not exhibit a mean direction [9]. The future DP
algorithm we envisioned [29] would be able to identify high-density filament segments in
any arbitrary orientation by combining the above DP search pyramids in £X, +Y,and +Z
directions into an omnidirectional search cube. To enable future work on more complete
cellular tomograms, we have already developed a spatial subdecomposition [1] scheme
for handling large 3D maps in memory, and we have taken the first steps to generalize the
tracing to the detection of other cellular components besides actin bundles [1,18].
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