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Abstract. We prove that the homotopy theory of N∞ operads is equivalent
to a homotopy theory of discrete operads, and we construct free and associative
operadic realizations of every indexing system. This resolves a conjecture of
Blumberg and Hill in the affirmative.
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1. Introduction

Operads were first introduced by May in [25], and they have been applied
throughout algebra and topology ever since. As the name might suggest, an operad
is an object that parametrizes operations. They appear in many contexts, and in-
teresting structure on an operad O translates universally into interesting structure
on the algebras over O.

The original application of operad theory was the recognition principle for it-
erated loop spaces, due to Boardman-Vogt, May, and Milgram. May’s approach
to this theorem leverages operadic structure on X to construct an equivalence be-
tween X and an n-fold loop space ΩnY = Map∗(S

n, Y ). The basic idea is to
track the homotopy coherence of the sum + in πn(Y ) = π0(Ω

nY ). Two maps
f, g : Sn = In/∂In ⇒ Y are usually added together by pasting f and g onto two
different halves of the n-cube In, but there are n different dimensions to choose
from, and this operation is only a group structure up to homotopy. Moreover,
there are many homotopies that witness the associativity, unitality, and the com-
mutativity of + when n > 1. The little n-cubes operad Cn parametrizes all of the
possibilities, and the operadic recognition principle states that X is a n-fold loop
space if and only if X is a grouplike Cn-algebra (i.e. π0(X) is a group).
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As n increases, there are more and more degrees of freedom in In, and the con-
nectivity of the operads Cn correspondingly increases. Passing to colimits yields the
infinite little cubes operad C∞, which parametrizes the additive structure on infinite
loop spaces. This is the prototypical example of an E∞ operad. It parametrizes
operations that are associative, unital, and commutative, up to all possible homo-
topies, and its actions can be used to construct infinite deloopings.

Now, grouplike infinite loop spaces are equivalent to connective spectra, with the
C∞-action corresponding to addition. On the other hand, multiplicative structures
on spectra are classically parametrized by a different operad. If E is a spectrum
indexed over the subspaces of R∞, then E∧n is naturally indexed over the subspaces
of (R∞)⊕n. After changing universe along a linear isometry f : (R∞)⊕n → R∞, we
can map back to E, but there are many possible choices for f . The linear isometries
operad L parametrizes all of the options. It is also an E∞ operad, but its geometry
differs greatly from that of C∞. Nevertheless, there is a zig-zag of equivalences
C∞

∼
← C∞ × L

∼
→ L connecting them. This is May’s “product trick.” It implies

that all E∞ operads are equivalent.
The situation is not nearly so clear-cut in equivariant homotopy theory. Suppose

G is a finite group. Then there are G-equivariant analogues to the operads C∞ and
L. The equivariant version of L = L(R∞) is obtained by replacing R∞ with a G-
universe U . We think of L(U) as the natural representing object for multiplication
on G-spectra over U . The equivariant version of C∞ is more subtle. Cubes are “too
square” to support a G-action, so one replaces the cubes in Cn with the unit discs
of finite-dimensional G-representations V . The result is the little V -discs operad
D(V ). Given a universe U , one takes a colimit over finite-dimensional subrepresen-
tations V ⊂ U to get the infinite little discs operad D(U) = colimV⊂UD(V ), but
this does not naturally act on equivariant iterated loop spaces. However, there is a
thickening of D(U) which does act, namely the Steiner operad K(U). We think of
K(U) as the natural representing object for addition on G-spectra over U .

Now suppose that R is a genuine commutative ring G-spectrum. Ignoring multi-
plication for a moment, the Z-graded homotopy groups of R are naturally G-Mackey
functors. We may understand their transfers in terms of the K(U)-action. Indeed,
additive transfers are usually constructed by embedding an orbit into a represen-
tation V and then taking the Pontrjagin-Thom collapse map. This corresponds to
an operation in D(U) and also in K(U) ' D(U). On the other hand, there are
also multiplicative norms in the RO(G)-graded homotopy of R, first introduced by
Greenlees and May [20], and used to great effect by Hill-Hopkins-Ravenel [22]. One
can similarly understand these norms in terms of the L(U)-action. On the level
of universes, norms from H to G arise from certain G-equivariant linear isometries
f : U⊕n → U , for which the G-action on U⊕n is restricted from an action of Σn oH.

Thus, equivariant E∞ operads parametrize much more than just a homotopy
coherent commutative monoid operation ∗. They also parametrize transfers or
norms, depending on whether we think of ∗ as additive or multiplicative. If U is a
complete universe, then K(U) and L(U) parametrize all transfers and norms, and
if U is a trivial universe, then K(U) and L(U) parametrize no transfers or norms.
A surprising observation, due to Blumberg and Hill [5, Theorem 4.22], is that there
are incomplete universes U such that K(U) and L(U) parametrize different sets of
transfers and norms. Thus, as U varies over all possible G-universes, we obtain
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distinct families of operads K(U) ' D(U) and L(U). These are the prototypical
examples of N∞ operads.

In general, a N∞ operad is a G-equivariant operad that parametrizes a homo-
topy coherent commutative monoid structure together with a compatible system of
(additive or multiplicative) transfers. When G is the trivial group, a N∞ operad is
just an E∞ operad, and all E∞ operads are equivalent. For general groups G, the
homotopy type of a N∞ G-operad is completely determined by its transfers. As
explained above, there are multiple possibilities, so it makes sense to try to classify
them. Blumberg and Hill began such a program in [5]. Given any N∞ operad
O, they construct an “indexing system,” which encodes the transfers of O. This
is a combinatorial object, which satisfies axioms that encode how transfers inter-
act with an operad structure. For any group G, the collection of all G-indexing
systems forms a lattice under inclusion, and maps O1 → O2 between N∞ operads
induce inclusions of indexing systems. Thus, we obtain a functor from the category
N∞-OpG of N∞ G-operads to the poset category Ind(G) of all G-indexing systems.

In fact, this functor factors through the homotopy category Ho(N∞-OpG) because
equivalent N∞ operads have equal indexing systems.

Blumberg and Hill proved that Ho(N∞-OpG) is mapped fully and faithfully into
Ind(G). They also made the following

Conjecture. Taking indexing systems determines an equivalence between the cat-
egory Ho(N∞-OpG) and the poset Ind(G).

In other words, Blumberg and Hill conjectured that every indexing system is
realized by some N∞ operad. In this paper, we shall give a combinatorial verifica-
tion of Blumberg and Hill’s conjecture. Other solutions to this problem have been
found independently by Gutiérrez and White [16], and by Bonventre and Pereira
[9], and we give a quick comparison between our constructions in §8.3.

Our three solutions are very different, and they highlight complementary aspects
of equivariant operad theory. Gutiérrez and White study a myriad of model cate-
gory structures on the category of G-operads, much in the spirit of Berger-Moerdijk
[4]. Their realizations of indexing systems arise as cofibrant replacements of the
commutativity operad in judiciously chosen model categories. In contrast, Bon-
ventre and Pereira introduce a novel kind of equivariant operad, which are a blend
of ordinary operads and fixed-point presheaves. Thus, they build norms into the
underlying formalism, and their realizations of indexing systems arise as operadic
variants of Elmendorf’s construction of universal spaces [13].

The purpose of this paper is to reduce N∞ theory to combinatorics. This dras-
tically simplifies the mathematics, and it brings precise, algebraic theorems within
arm’s reach. In effect, our approach strips away all of the topology, leaving only
the algebra of discrete equivariant operads. That being said, this algebra is rather
nontrivial. An operad is a generalization of a monoid, and the most interesting
operads arise as quotients. Thus, we are forced to contend with word problems. Of
course, these word problems are also present in the topological case, but our work
demonstrates that they are, in some sense, the only problems.

More precisely, we introduce discrete analogues to N∞ operads, which we call N
operads, and then we prove the following result.

Theorem 3.7. The category of N∞ operads and the category of N operads have
equivalent hammock localizations, and this equivalence respects indexing systems.
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This theorem can be refined. The category of N∞ operads is not bicomplete,
and therefore cannot admit a model category structure, but we can replace N∞

operads with a model category that has the same underlying homotopy theory. Let
OpG

+ denote the category of operads in G-sets, equipped with a marked G-fixed
constant and G-equivariant binary product.

Theorem 8.10 and Proposition 8.11. The category OpG
+ supports a right proper,

combinatorial, simplicial model category structure. This model category has the
same hammock localization as the category of N∞ operads.

This model category structure on OpG
+ has a number of uses. Looking ahead, it

is indispensible in [32], where we lift natural operations on indexing systems back
to the operad level. In this paper, we use it to give a new, combinatorial proof that
Ho(N∞-OpG) embeds into Ind(G), and we also use it to contextualize our first
major construction.

Theorem 4.9. Every indexing system I is realizable by a finitely generated free N
operad F(I), which may be constructed functorially in I.

From a conceptual standpoint, the operad F(I) is a cofibrant replacement of the

commutativity operad in a suitable model structure on OpG
+ (cf. Proposition 8.14).

This is formally analogous to the situation in [16] and [9], and after passing to N∞

operads, we obtain a similar operad to theirs (cf. §8.3). Theorem 4.9 resolves
Blumberg and Hill’s conjecture, but it also goes further.

For example, the finite generation of F(I) is of great use. One can construct

a categorical N∞ operad F̃(I) by applying the right adjoint to the object functor

Ob : Cat→ Set, and we prove in [30] that F̃(I)-algebra G-categories are “normed
symmetric monoidal categories” (NSMCs), i.e. ordinary symmetric monoidal cate-
gories equipped with certain twisted products. The finite generation of F(I) ensures
that NSMCs are finitely presentable, which is in sharp contrast to Guillou-May-
Merling-Osorno’s symmetric monoidalG-categories (cf. [19] and [3]). We emphasize
that the finite generation of F(I) is a consequence of the combinatorics of indexing
systems, rather than the model-categorical formalism.

Just as Theorem 3.7 can be refined, so too can Theorem 4.9.

Theorem 7.2. Every indexing system I is realizable by a finitely presented, asso-
ciative and unital N operad As(I), which may be constructed functorially in I.

In contrast to F(I), the operad As(I) is invisible to the model-category theory
because it is not cofibrant. However, it has a number of convenient properties.
To start, it is very small. It has no nontrivial nullary or unary operations, and
As(I)(n) grows far more slowly than the G-permutativity operad considered by
[19]. Applying the right adjoint to the object functor Ob : Cat → Set yields a

N∞ permutativity operad P(I) = Ãs(I), whose algebras are strictly associative
and unital NSMCs, i.e. normed permutative categories. We suspect that these
structures will be useful in categorical infinite loop space theory, but that remains
to be seen. On the other hand, if we pass to space-level N∞ operads, then we
obtain an equivariant Barratt-Eccles operad E (I). The operad E (I) is reduced,
which is technically convenient in [7, Remark 2.7]. We do not know of any other
general construction of reduced N∞ operads.
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Organization. The remainder of this paper is organized as follows. In §2, we give
a quick introduction to the theory of N∞ operads. We recall some basic definitions
and examples, and then we summarize the classification theorem. In §3, we intro-
duce N operads, explain their relationship to N∞ operads, and give examples. We
prove that N operads and N∞ operads have the same homotopy theory (Theorem
3.7). In §4, we explain how to construct free realizations of indexing systems (Theo-
rem 4.9), modulo the calculation of the fixed points of a free operad (Theorem 4.6).
Theorem 4.6 is the key technical result of this paper. We set up some scaffolding in
§5, and then we do the calculation in §6. In §7, we introduce associative N operads
and establish their basic properties. This strengthens the result in §4. Lastly, we
spend §8 developing the model category theory of discrete operads in G-sets.

The reader who wants a quick introduction to N∞ theory should read §2. The
reader who wants a summary of our solution to Blumberg and Hill’s conjecture
should read §3.1, §4, §5.1, and §6.

Conventions. Throughout this paper, G denotes a finite, discrete group with unit
e, and all spaces are understood to be compactly generated and weak Hausdorff. All
of our operads are symmetric operads in an ambient cartesian monoidal category.
Typically, this will be the category of left G-spaces or left G-sets.

Acknowledgements. It is a pleasure to thank Peter May and Mike Hill for guid-
ance and inspiration throughout this project. We also thank Angélica Osorno, Kyle
Ormsby, and the students at Reed for stimulating conversations that prompted this
revision. This work was partially supported by NSF Grant DMS-1803426.

2. The classification of N∞ operads

This section is a brief introduction to the theory of N∞ operads. We review
some key concepts and examples, and then we summarize the classification of N∞

operads (Theorem 2.18). Our discussion is based heavily on [5] and [17]. With the
exception of the surjectivity portion of Theorem 2.18, the contents of this section
were already known. The surjectivity follows independently from [9], [16], and
Theorems 4.9 or 7.2 in this paper.

2.1. Equivariant operads. Let G be a finite group with unit e. Throughout this
discussion, we work in the category TopG of left G-spaces and G-equivariant con-
tinuous maps. The category TopG carries two natural enrichments. Let Top(X,Y )
denote the space of all continuous maps from X to Y equipped with the compact-
open topology. On the one hand, we can topologize the set TopG(X,Y ) of G-
equivariant continuous maps X → Y as a subspace TopG(X,Y ) ⊂ Top(X,Y ),

which enriches TopG over Top. On the other hand, TopG is a cartesian closed cate-
gory, whose products X×Y are equipped the diagonal G-action, and whose internal
homs TopG(X,Y ) are the spaces Top(X,Y ) equipped with the conjugation G-
action. These two enrichments are related through TopG(X,Y )G = TopG(X,Y ),
but the hom G-spaces TopG(X,Y ) are more relevant to operad theory.

The prototypical example of a G-operad is the endomorphism operad End(X)
of a G-space X. The nth level of End(X) is the hom G-space TopG(X

×n, X). It
carries a left conjugation G-action and a right permutation Σn-action, and these
actions commute. We usually repackage this structure into a single left G × Σn-
action (g, σ) · f = gfσ−1. The identity map id ∈ TopG(X,X) is G-fixed, the
composition operation γ(h; f1, . . . , farity(h)) = h◦(f1×· · ·×farity(h)) isG-equivariant
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with respect to conjugation, and evident associativity, unitality, and Σ-equivariance
relations hold. This structure is axiomatized in the following definition.

Definition 2.1. A G-operad O is a symmetric operad in the category TopG.
Explicitly, O consists of a sequence (O(n))n≥0 of G × Σn-spaces, equipped with a
G-fixed identity id ∈ O(1) and a continuous G-equivariant composition map

γ : O(k)× O(j1)× · · · × O(jk)→ O(j1 + · · ·+ jk)

for every k, j1, . . . , jk ≥ 0, such that the usual associativity, unitality, and Σ-
equivariance axioms hold (cf. [25, Definition 1.1]). We write |f | for the arity
of an operation in O. Thus |f | = n means f ∈ O(n).

A map ϕ : O1 → O2 of G-operads is a sequence of continuous, G×Σn-equivariant
maps ϕn : O1(n)→ O2(n) that preserve the identity and composition. An O-algebra

G-space is a representation of O over a G-space, i.e. an object X ∈ TopG equipped
with an operad map O → End(X).

We think of the nth level O(n) of a G-operad as a parameter space for n-
ary operations on a G-space X. The stabilizer of f ∈ O(n) encodes the G-
equivariance and commutativity relations that f : X×n → X satisfies. For ex-
ample, if f is G-fixed, then f : X×n → X is G-equivariant, and if f is Σn-fixed,
then f(xσ−11, . . . , xσ−1n) = f(x1, . . . , xn) for every permutation of its arguments.
More interesting relations appear when G and Σn isotropy conditions mix.

We start with the simplest case. Regard the commutativity operad Com as a
discrete G-operad with trivial G-action. The nth level of Com is ∗ for all n ≥ 0. A
Com-algebra G-space X is a strictly associative, commutative, and unital monoid
in TopG, whose product ∗ is strictly G-equivariant, i.e.

g(x ∗ y) = (gx) ∗ (gy),

and whose unit element 1 ∈ X is strictly G-fixed.
Now consider the fixed point subspaces XH of X. Every inclusion K ⊂ H

of subgroups gives a reverse inclusion XK ⊃ XH on fixed points, every element

g ∈ G gives an isomorphism g · (−) : XH → XgHg−1

, and these data determine
the equivariant homotopy type of X by Elmendorf’s theorem [13, Theorem 1].
However, there is additional structure on the fixed points of X coming from the
operad action. Since ∗ is G-equivariant and 1 is G-fixed, the monoid structure on
X restricts to every subspace XH . More interestingly, for every inclusion K ⊂ H
of subgroups, there is a “wrong-way” norm map nHK : XK → XH , defined by
nH
K(x) = r1x∗r2x∗· · ·∗rnx for some choice of H/K-coset representatives r1, . . . , rn.

Indeed, if x ∈ XK and h ∈ H, and we write h · riK = rσiK, then

h · (r1x ∗ · · · ∗ rnx) = hr1x ∗ · · · ∗ hrnx = rσ1x ∗ · · · ∗ rσnx = r1x ∗ · · · ∗ rnx

by the strict G-equivariance and commutativity of ∗. Thus, the fixed-point presheaf
of X is a topological semi-Mackey functor.

While strict associativity and unitality are negotiable in homotopical algebra,
strict commutativity is far too much to ask for. We say that a G-operad O is Σ-free
if the Σn-action on O(n) is free for every n ≥ 0. Such operads parametrize no strict
commutativity relations, and they typically have the most interesting algebras.

Example 2.2. Suppose V is a finite-dimensional real G-representation and write
D(V ) for the unit disc centered at the origin in V . A little V -disc in D(V ) is an
affine, but not necessarily equivariant, map of the form av + b : D(V ) → D(V ).
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The nth level of the little V -discs operad D(V ) is the space of all disjoint n-tuples
of little V -discs in D(V ). The group G acts on D(V )(n) by conjugation, the group
Σn acts by permuting tuples, the map id : D(V )→ D(V ) is the operadic identity,
and operadic composites are computed by slotting little V -discs into little V -discs.
The operad D(V ) is Σ-free.

The prototypical example of a D(V )-algebra G-space is the V -fold loop space
ΩV X = Map∗(S

V , X). Here SV is the one-point compactification of V , X is a based
G-space, and Map∗(S

V , X) is the space of all continuous, based maps SV → X,
equipped with the conjugation G-action. Conversely, every D(V )-algebra G-space
group completes to a V -fold loop space, provided that R2 ⊂ V [17].

Experience has shown that transfer maps are useful and ubiquitous in genuine
equivariant homotopy theory. However, they do not arise from the recipe above,
because we very rarely have strictly commutative operations. For example, suppose
ρ is the regular representation of G 6= {e}. Then the sum on ΩρX is only homotopy
commutative. Nevertheless, for every pair of subgroups K ⊂ H, there is an additive
transfer map (ΩρX)K → (ΩρX)H . It arises by summing the H-conjugates of
a ρ-loop l ∈ (ΩρX)K over a tubular neighborhood of a copy of H/K ⊂ resGHρ.
After ordering the orbit H/K, this neighborhood corresponds to an element d ∈
D(ρ)(|H : K|), and this element isH-fixed, up to a twist given by the action ofH on
H/K. We can formalize this kind of twisted equivariance, but first, a preliminary.

Definition 2.3. Let n ≥ 0 be a nonnegative integer. A graph subgroup of G× Σn

is a subgroup Γ ⊂ G× Σn that intersects Σn = {e} × Σn trivially.

Crucially, if O is a Σ-free G-operad and f ∈ O(n), then Stab(f) ⊂ G × Σn

is a graph subgroup. The terminology is motivated by the following standard
observation.

Lemma 2.4. For any graph subgroup Γ ⊂ G × Σn, there is a unique subgroup
H ⊂ G and group homomorphism σ : H → Σn such that Γ = {(h, σ(h)) |h ∈ H}.
Conversely, every subgroup of the form {(h, σ(h)) |h ∈ H} is a graph subgroup.

Now suppose that Γ = {(h, σ(h)) |h ∈ H} ⊂ G × Σn is a graph subgroup, and
that f ∈ O(n) is a Γ-fixed operation. Then for any O-algebra G-space X, we obtain
a n-ary product f : X×n → X such that

hf(x1, . . . , xn) = f(hxσ(h)−11, . . . , hxσ(h)−1n)

for every h ∈ H and (x1, . . . , xn) ∈ X×n. Assume further that σ : H → Σn

represents the H-action on H/K = {r1K < · · · < rnK}, i.e. hriK = rσ(h)iK for
every h ∈ H and 1 ≤ i ≤ n. Thus f exhibits precisely the same equivariance as the
operation d ∈ D(ρ) considered above, and we obtain a norm map

nHK(x) = f(r1x, . . . , rnx) : X
K → XH .

Thus, if we are interested in constructing transfer maps in homotopy commutative
settings, then a system of twisted equivariant maps, such as f above, is a reasonable
substitute for a strictly G-equivariant and commutative product ∗ : X×2 → X.
Accordingly, we introduce the following terminology.

Definition 2.5. Suppose X is a G-space, H ⊂ G is a subgroup, and T is a
finite, ordered H-set whose permutation representation is σ : H → Σ|T |. Write
Γ(T ) = {(h, σ(h)) |h ∈ H} ⊂ G×Σn for the graph of σ. An external T -norm on X
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is a Γ(T )-fixed point of End(X)(|T |). More generally, if O is an operad, then we
shall sometimes refer to elements of O(|T |)Γ(T ) as external T -norms, and similarly
for symmetric sequences.

Note that if X×T is the T -indexed power of X, i.e. the space X×|T | equipped
with the H-action

h(x1, . . . , x|T |) = (hxσ(h)−11, . . . , hxσ(h)−1|T |),

then an external T -norm on X is an H-equivariant map f : X×T → X.
With these notions in mind, we introduce N∞ operads.

Definition 2.6. Let O be a symmetric operad in the category TopG of G-spaces.
We say that O is a N∞ operad if it satisfies the following three conditions:

(1) for every integer n ≥ 0, the G× Σn-space O(n) is Σn-free,
(2) for every graph subgroup Γ ⊂ G×Σn, the subspace O(n)Γ is either empty

or contractible, and
(3) the spaces O(0)G and O(2)G are nonempty.

We write N∞-OpG for the category of all N∞ G-operads.

Remark 2.7. This is equivalent to [5, Definition 3.7]. Note that (1) implies O(n)Ξ =
∅ for all non-graph subgroups Ξ ⊂ G×Σn, and that (3) implies O(n)G 6= ∅ for all
n ≥ 0 because O is a G-operad. Therefore O(n) is a universal space for a family
of subgroups of G × Σn, which contains H × {1} for all subgroups H ⊂ G. In
particular, O(0) and O(1) are G-contractible.

Condition (2) ensures that O parametrizes at most one external T -norm of each
kind, up to coherent homotopy, and condition (3) ensures that O parametrizes
a homotopy coherent associative, commutative, and unital operation, for which
all data is G-equivariant. More precisely, the G-fixed suboperad OG ⊂ O is an
E∞ operad in the nonequivariant sense. Informally, we think of N∞ operads as
representing objects for homotopy coherent incomplete semi-Mackey functors. A
N∞ operad O such that O(n)Γ ' ∗ for every graph subgroup Γ is often called an
E∞ G-operad (e.g. in [24], [11], and [17]).

Example 2.8. Let U be a G-universe, i.e., a countably infinite-dimensional real G-
inner product space that contains each of its finite-dimensional subrepresentations
infinitely often, and which also contains trivial summands.

The nth level of the linear isometries operad L(U) is the space of all linear, but
not necessarily equivariant, isometries U⊕n → U . The operad structure is inherited
from End(U). The operad L(U) is N∞, and we think of it as representing the
canonical multiplicative structure for G-spectra indexed over U .

The infinite little discs operad D(U) is the colimit colimV⊂UD(V ) of the little
V -discs operads D(V ), as V ranges over all finite-dimensional subrepresentations
of U . The operad D(U) is N∞, and we think of it as representing the canonical
additive structure for G-spectra indexed over U . However, there is a catch. The
point-set level colimit that defines D(U) is not compatible with suspension, and
therefore D(U) does not naturally act on infinite loop spaces structured by U . One
can replace D(U) with a levelwise homotopy-equivalent operad K(U), called the
infinite Steiner operad, which does act on equivariant infinite loop spaces [17].

Surprisingly, there are universes U such that the operads D(U) and L(U) are
inequivalent [5, Theorem 4.22].
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Algebras over N∞ operads also appear in equivariant homotopical algebra for
conceptual reasons. Hill and Hopkins [21] have proven that localizations of genuine
commutative ring G-spectra need not have all multiplicative norms. The underlying
multiplication survives for formal reasons, which further justifies condition (3) in
Definition 2.6, but that is all we are guaranteed. Subsequent work of Gutiérrez and
White [16] addresses when general left Bousfield localizations preserve and destroy
N∞ algebra structures.

2.2. The homotopy theory of N∞ operads. The purpose of a N∞ operad is
to parametrize homotopy coherent algebraic structures. Accordingly, we introduce
the following weak equivalences.

Definition 2.9. An operad map ϕ : O1 → O2 between N∞ operads is a weak
equivalence if ϕn : O1(n)

Γ → O2(n)
Γ is a weak homotopy equivalence of topological

spaces for every n ≥ 0 and graph subgroup Γ ⊂ G× Σn.

Note that a weak equivalence ϕ : O1 → O2 between N∞ operads is actually a
levelwise weak G × Σn-homotopy equivalence, because we have no Ξ-fixed points
when Ξ ⊂ G× Σn is not a graph subgroup.

In contrast to the situation for nonequivariant E∞ operads, not all N∞ G-
operads are equivalent. However, May’s product trick still works.

Lemma 2.10. Let O1 and O2 be N∞ operads. Suppose that for every n ≥ 0 and
graph subgroup Γ ⊂ G× Σn, either O1(n)

Γ and O2(n)
Γ are both empty, or O1(n)

Γ

and O2(n)
Γ are both nonempty. Then O1 and O2 are equivalent.

Proof. Both projections O1 ← O1 × O2 → O2 are weak equivalences. �

Thus, a N∞ operad O is determined by the norms it parametrizes, or more
formally, by the set of graph subgroups Γ ⊂ G × Σn such that O(n)Γ 6= ∅. These
collections cannot be arbitrary. If we fix n ≥ 0, then the set of such Γ is closed
under subconjugacy. As we vary n, the operad structure on O implies further
closure conditions. It is convenient to phrase these conditions in terms of actions
by subgroups of G.

Definition 2.11. Suppose O is a N∞ operad, H ⊂ G is a subgroup, and T is a
finite H-set. Choose an order on T and let Γ(T ) ⊂ G × Σ|T | be the graph of the
corresponding permutation representation. We say that T is admissible for O or
that O admits T if O(|T |)Γ(T ) is nonempty. We write A(O) for the class of all
admissible sets of O.

The admissibility of a H-set T is independent of the choice of order on T because
different choices conjugate Γ(T ). Note that the class of admissible sets of a N∞

operad is graded over Sub(G), the set of all subgroups of G.

Definition 2.12. A class of finite G-subgroup actions is a class X , equipped with
a function X → Sub(G), such that the fiber over H ⊂ G is a class of finite H-
sets. We write X (H) for the fiber over H. A G-indexing system is a class of finite
G-subgroup actions I that satisfies the following seven conditions:

(1) (trivial sets) For any subgroup H ⊂ G, the class I(H) contains all finite
trivial H-actions.

(2) (isomorphism) For any subgroup H ⊂ G and finite H-sets S and T , if
S ∈ I(H) and S ∼= T , then T ∈ I(H).
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(3) (restriction) For any subgroups K ⊂ H ⊂ G and finite H-set T , if T ∈
I(H), then resHKT ∈ I(K).

(4) (conjugation) For any subgroup H ⊂ G, group element a ∈ G, and finite
H-set T , if T ∈ I(H), then caT ∈ I(aHa−1).

(5) (subobjects) For any subgroup H ⊂ G and finite H-sets S and T , if T ∈
I(H) and S ⊂ T , then S ∈ I(H).

(6) (coproducts) For any subgroup H ⊂ G and finite H-sets S and T , if S ∈
I(H) and T ∈ I(H), then S t T ∈ I(H).

(7) (self-induction) For any subgroups K ⊂ H ⊂ G and finite K-set T , if

T ∈ I(K) and H/K ∈ I(H), then indHKT ∈ I(H).

We call the elements of I(H) the admissible H-sets of I. Let Ind(G) denote the
class of all G-indexing systems.

Condition (1) says the space O(n)G is nonempty for every n ≥ 0. Conditions
(2)–(4) say the set {Γ ⊂ G×Σn |O(n)Γ 6= ∅} is a family. Conditions (5)–(7) encode
the operad structure on O. For every k, j1, . . . , jk ≥ 0, we have a G-equivariant
composition map γ : O(k)×O(j1)×· · ·×O(jk)→ O(j1+· · ·+jk) that is also suitably
Σ-equivariant. If the domain has a Γ-fixed point, then so does the codomain, and
one can deduce conditions (5)–(7) by evaluating γ on particular tuples of external
norms in O (cf. Definition 2.5).

Remark 2.13. Indexing systems in the sense of Definition 2.12 are equivalent to
indexing systems in the sense of [5, Definition 3.22], because full subcategories are
determined by their objects, and the axioms in Definition 2.12 imply closure under
cartesian products. For suppose S, T ∈ I(H) and choose orbit decompositions
S ∼=

∐
i H/Ki and T ∼=

∐
j H/Lj . Then H/Ki, H/Lj ∈ I(H) for every i and j

by (5), and S × T ∼=
∐

i,j(H/Ki × H/Lj). By (2) and (6), it will be enough to

show H/K ×H/L ∈ I(H) whenever both H/K ∈ I(H) and H/L ∈ I(H), but this

follows from the isomorphism H/K ×H/L ∼= indHKresHKH/L and (2), (3), and (7).

As suggested by the repeated use of “admissible,” we have the following result.

Theorem 2.14 ([5, Theorem 4.17]). If O is a N∞ G-operad, then the class A(O)
of admissible sets of O is a G-indexing system.

This theorem is the key link between N∞ operads and indexing systems. Ac-
cordingly, we pause for a moment to analyze indexing systems.

If I is a G-indexing system, then conditions (5) and (6) imply that I(H) is the
class of all finite coproducts of admissible H-orbits of I. Thus, I is determined by
the orbits it contains, and there are only finitely many G-indexing systems for a
given group G.

Next, we declare I ≤ J if I(H) ⊂ J (H) for every subgroup H ⊂ G. The
componentwise intersection of a set of G-indexing systems is a G-indexing system,
and therefore (I ∧ J )(H) = I(H) ∩ J (H) is the meet of I and J in Ind(G). The
componentwise union (I∪J )(H) = I(H)∪J (H) is not always an indexing system,
but it generates one.

Definition 2.15. For any class of finite G-subgroup actions X , we define 〈X 〉 to
be the intersection of all G-indexing systems that contain X .

The join I∨J of I and J is the indexing system 〈I ∪J 〉. It follows that Ind(G)
is a finite lattice. There is a maximum G-indexing system, whose H-component
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contains all finite H-sets, and there is a minimum G-indexing system, whose H-
component contains only trivial finite H-sets. We denote the former Set and the
latter triv. We summarize.

Proposition 2.16. The class Ind(G) of all G-indexing systems is a finite lattice
under levelwise inclusion. The meet of two indexing systems is their levelwise inter-
section, the join of two indexing systems is the indexing system generated by their
levelwise union, the minimum indexing system triv is class of all trivial actions,
and the maximum indexing system Set is the class of all actions.

We return to the classification of N∞ operads. Taking admissible sets sends
an N∞ operad O to an indexing system A(O), and converts a map ϕ : O1 → O2

between N∞ operads into an inclusion A(O1) ⊂ A(O2). Moreover, if ϕ is a weak
equivalence, then A(O1) = A(O2). Thus we obtain a functor

A : Ho(N∞-OpG)→ Ind(G),

where Ho(N∞-OpG) is the category of N∞ operads with weak equivalences in-
verted. The classification theorem says this functor is an equivalence.

To show A : Ho(N∞-OpG)→ Ind(G) is full, note A(O1×O2) = A(O1)∧A(O2)
for any N∞ operads O1 and O2. Thus, if A(O1) ⊂ A(O2), then A(O1×O2) = A(O1)
and the left projection map in O1 ← O1 × O2 → O2 is an equivalence. Therefore
this zig-zag determines a morphism O1 → O2 in Ho(N∞-OpG), which maps to
A(O1) ⊂ A(O2) in Ind(G).

Establishing faithfulness is more involved. Blumberg and Hill proved that every
derived mapping space Map(O1,O2) in the hammock localization LH(N∞-OpG)
is either empty or contractible [5, Proposition 5.5]. The strategy is to resolve O1

by free operads, and then to use the free-forgetful adjunction and the emptiness
or contractibility of O2’s fixed point subspaces. Taking connected components of
LH(N∞-OpG) shows that every hom set in Ho(N∞-OpG) is either empty or a

point, so the functor A : Ho(N∞-OpG)→ Ind(G) cannot help but be faithful. We
give a new proof of this result in §8 (cf. Corollary 8.12).

Lastly, Blumberg and Hill made the following conjecture.

Conjecture 2.17. The functor A : Ho(N∞-OpG)→ Ind(G) is surjective.

This has since been proven. We show that the functor A is surjective in §4 and §7,
and both Bonventre-Pereira [9] and Gutiérrez-White [16] have given independent
proofs. Our approaches are rather different. As explained in §1, each has its own
set of advantages, and each highlights distinct features of N∞ theory. However,
there is a common theme in our solutions, which we describe in §8.3.

We arrive at the following conclusion.

Theorem 2.18 (Classification of N∞ operads). Taking admissible sets determines

a Dwyer-Kan equivalence A : LH(N∞-OpG)→ Ind(G) of simplicial categories and

an ordinary equivalence A : Ho(N∞-OpG)→ Ind(G) of 1-categories.

Proof. Combine [5, Theorem 3.24] with Theorems 4.9 or 7.2 of this paper, or the
results in [9] or [16]. �

Remark 2.19. Indexing systems are a natural device for studying N∞ operads, but
there are other equivalent and useful formulations.
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When contemplating incomplete Tambara functors, it is convenient to think in
terms of polynomial bispans in the category SetGfin of finite G-sets, whose mul-

tiplicative legs are restricted to a subcategory D ⊂ SetGfin. This subcategory D
should be wide, pullback stable, and finite coproduct complete to ensure that the
corresponding category of bispans is sensible. Blumberg and Hill prove that such
indexing categories D are in bijective correspondence with indexing systems [6].

One can also recast the definition of an indexing system purely in terms of
orbits, and the result is what we call a transfer system. More precisely, a transfer
system is a partial order on Sub(G) that refines inclusion, and which is closed
under conjugation and restriction. Transfer systems are useful in combinatorially
intensive situations, and we prove that transfer systems and indexing systems are
equivalent in [31]. This notion was also discovered in striking, independent work of
Balchin, Barnes, and Roitzheim [2], in which they prove that the lattices Ind(Cpn)
are isomorphic to associahedra.

3. Discrete N operads

In this section, we explain how to reduce problems about N∞ operads to discrete
combinatorics. The key point is that N∞ operads contain no higher homotopical
information. We leverage this to give a quick construction of N∞ operads from
operads in SetG that have the same isotropy properties. We call these combinatorial
objects N operads, and we show that N operads are equivalent to N∞ operads for
all homotopical purposes (Theorem 3.7). We conclude with a few examples of N
operads that elaborate on Guillou and May’s constructions [17].

3.1. N operads. Consider the following discrete analogue to a N∞ operad.

Definition 3.1. Let O be a symmetric operad in the category SetG of G-sets with
respect to the cartesian product. We say that O is a N operad if it satisfies the
following two conditions:

(1) for every integer n ≥ 0, the G× Σn-set O(n) is Σn-free,
(2) the sets O(0)G and O(2)G are nonempty.

We write N -OpG for the category of N operads in SetG.
For any subgroup H ⊂ G and finite H-set T , we say that T is admissible for O

or that O admits T if the set O(|T |)Γ(T ) is nonempty. We write A(O) for the class
of admissible sets of O.

We construct N∞ operads from N operads by attaching cells to kill all homotopy.
This must be done somewhat carefully to ensure that the end result is still an
operad. We borrow a trick from [18].

Let Cat be the category of small categories. The functor

Ob : Cat→ Set,

which sends a small category C to its set of objects, has a right adjoint

Cat← Set : (̃−).

For any X ∈ Set, the category X̃ has object set X, and a unique morphism

(x, y) : x→ y for every pair x, y ∈ X. Therefore ∅̃ = ∅ and X̃ ' ∗ if X 6= ∅.

Definition 3.2. Let E : Set → Top be the composite of (̃−) : Set → Cat with
the classifying space functor B : Cat→ sSet→ Top.
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The functor E preserves all finite limits because B does and (̃−) is a right adjoint.
It follows immediately that E induces a functor

E : Op(SetG)→ Op(TopG)

between categories of operads. The next observation explains our notation.

Lemma 3.3. Suppose X is a G-set, and let F = {H ⊂ G |XH 6= ∅}. Then EX
is a universal space for the family F .

Proof. For any subgroup H ⊂ G, the functor (−)H is a finite limit because G is
a finite group. Therefore (EX)H ∼= E(XH), and this is empty if XH = ∅, and
contractible if XH 6= ∅. �

To go the other way, we ignore topology.

Definition 3.4. Let (−)u : Top→ Set be the forgetful functor.

The functor (−)u also preserves all (finite) limits, so it induces a functor

Op(SetG)← Op(TopG) : (−)u.

The functors E and (−)u form a tight link between N∞ operads and N operads.

Proposition 3.5. Let G be a finite group.

(i) If O is a N operad in SetG, then EO is a N∞ operad in TopG with the
same admissible sets.

(ii) If O is a N∞ operad in TopG, then Ou is a N operad in SetG with the
same admissible sets.

Proof. We begin with (i). Suppose O is a N operad. We apply Lemma 3.3 re-
peatedly to verify the conditions in Definition 2.6. For (1), if Ξ ⊂ {e} × Σn is
a nontrivial subgroup, then O(n)Ξ = ∅ because O(n) is Σn-free, and therefore
EO(n)Ξ = ∅ as well. Thus EO(n) is a Σn-free space. Condition (3) follows from
O(0)G,O(2)G 6= ∅, and condition (2) is immediate from Lemma 3.3. Therefore
EO is a N∞ operad, and for any graph subgroup Γ ⊂ G×Σn, we know that O(n)Γ

is nonempty if and only if EO(n)Γ is nonempty. Thus O and EO have the same
admissible sets.

Claim (ii) holds because the functor (−)u preserves Σ-freeness, emptiness, and
nonemptiness. �

Even though N operads are discrete, we can equip the category of all N operads
with a perfectly good homotopy theory by creating weak equivalences along the
functor E : N -OpG → N∞-OpG.

Definition 3.6. A morphism f : O1 → O2 of N operads is a weak equivalence if
Ef : EO1(n)

Γ → EO2(n)
Γ is a weak homotopy equivalence of topological spaces

for all n ≥ 0 and graph subgroups Γ ⊂ G× Σn.

Since the fixed points EOi(n)
Γ are either empty or contractible for i = 1, 2,

saying Ef : EO1 → EO2 is a weak equivalence is the same as saying O2(n)
Γ 6= ∅

implies O1(n)
Γ 6= ∅ for all n and Γ. This is a purely combinatorial condition with

little dependence on f ; however, the existence of an operad map f : O1 → O2

implies that if O2(n) has a Γ-fixed point, then some Γ-fixed point of O2(n) lifts
along f to a Γ-fixed point of O1(n), namely the image of an element x ∈ O1(n)

Γ.



14 JONATHAN RUBIN

Thus, we have a homotopical category N∞-OpG of N∞ operads, and a homo-
topical category N -OpG of N operads. The functor E preserves weak equivalences
by definition, and it is straightforward to show the functor (−)u also preserves weak
equivalences. The interesting thing is that E and (−)u induce an equivalence of
homotopy theories.

Theorem 3.7. The homotopical functors E : N -OpG
� N∞-OpG : (−)u preserve

admissible sets and induce Dwyer-Kan equivalences between the hammock localiza-
tions of N -OpG and N∞-OpG.

Proof. Proposition 3.5 handles the claim about admissibles. The remainder of the
proof is another application of May’s product trick [25]. Let O be a N∞ G-operad.
Then E(Ou) is a N∞ operad with the same admissible sets by Proposition 3.5, and
therefore both of the product projections

O ← O × E(Ou)→ E(Ou)

are weak equivalences. Therefore E ◦ (−)u and the identity functor on N∞-Op are
connected through a zig-zag of natural weak equivalences. Similar reasoning shows
that (−)u ◦E and the identity functor on N -Op are connected through a zig-zag of
natural weak equivalences. Therefore E and (−)u induce Dwyer-Kan equivalences

between the simplicial hammock localizations LH(N∞-OpG) and LH(N -OpG) (cf.
[12, Propositions 3.3 and 3.5]). �

Thus, there is no homotopical difference between topological N∞ operads and
discrete N operads.

Remark 3.8. Blumberg and Hill prove that every hom space in LH(N∞-OpG) is
either empty or contractible (cf. [5, Proposition 5.5]), so the same is true for the

hom spaces in LH(N -OpG). We shall give a purely combinatorial argument for
this fact in §8, thus reproving Blumberg and Hill’s result.

3.2. Examples of N operads. We now describe a few examples of N operads
that build on the ideas in [17]. We begin with coinduced operads.

Suppose X is a nonempty right G-set and O is a N operad in Set, i.e. O is
Σ-free and O(0),O(2) 6= ∅. Then Set(X,O) is a N G-operad. Moreover, if T is a
finite H-set, then

Set(X,O) admits T if and only if
every h ∈ H that fixes a point in X

acts as the identity on T .

Here are two extreme cases of this construction.

Example 3.9. Suppose As is the associativity operad. Its n-ary operations are
As(n) = Σn, with Σn acting on the right by group multiplication. Let X = G,
with G also acting on the right by group multiplication. Then O = Set(G,As) is a
N operad, and A(O) = Set. Applying the right adjoint to Ob : Cat→ Set yields

an operad Õ, which is isomorphic to the operad PG considered in [17] and [19].
On the other hand, if X = ∗, then the N operad O = Set(X,As) is isomorphic

to As equipped with a trivial G-action. Therefore A(O) = triv, and Õ is the
ordinary Barratt-Eccles operad P equipped with a trivial G-action.

Unfortunately, not every indexing system I is of the form A(Set(X,As)).
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Counterexample 3.10. Let G = C4 and choose a generator g ∈ G. Let H =
{e, g2} and let I be the C4-indexing system that contains all finite H-sets, but only
trivial sets otherwise. Then I 6= A(Set(X,As)) for every nonempty right G-set
X. Indeed, if I ⊂ A(Set(X,As)), then Set(X,As) admits H/e, and then since g2

acts nontrivially on H/e, it follows g2 cannot fix any element of X. Therefore G
acts freely on X and A(Set(X,As)) = Set properly contains I.

Similarly, one might hope that every G-indexing system is realized by a subop-
erad of Set(G,As), because A(Set(G,As)) = Set is the terminal indexing system.
This is also false. Bonventre shows that if G = C2 × C2, then the indexing system
that contains all finite C2× 1-sets, but only trivial actions otherwise, cannot be re-
alized as a suboperad of PG [8, Example B.2.1]. The problem is that the elements
of Set(G,As) are overcrowded.

We now consider discrete variants of the linear isometries operads L(U), following
[17, §7].

Definition 3.11. A discrete G-universe is a countably infinite G-set U , which
contains infinitely many copies of each orbit G/H that embeds in U , and which
also contains copies of G/G.

The following is a generalization of Guillou and May’s additive operad VG(U).

Example 3.12. Suppose U is a discrete G-universe. The nth level of the operad
Ld(U) is the set of all injective, but not necessarily equivariant, functions Utn ↪→ U ,
where Utn is the n-fold coproduct of U . The group G acts by conjugation, Σn acts
by permuting U summands, the identity function id : U → U is the identity, and
γ(g; f1, . . . , fk) = g ◦ (f1 t · · · t fk) is composition. The Σn actions are free, and
Ld(U)(n)G 6= ∅ because Utn G-embeds into U . Therefore Ld(U) is a N operad.

The admissible sets of Ld(U) are easy to calculate. Let U be a discrete G-
universe and for any H ⊂ G, define StabH(U) = {StabH(x) |x ∈ U}. Then for any
subgroups K ⊂ H ⊂ G,

Ld(U) admits H/K if and only if StabK(U) ⊂ StabH(U).

Consequently, not every indexing system is realized by an operad Ld(U).

Counterexample 3.13. LetG = C4 and keep notation as in Counterexample 3.10.
Then the indexing system I is not realized by the operad Ld(U) for any discrete
G-universe U . For suppose Ld(U) admits H/e. Then {e} = Stabe(U) ⊂ StabH(U),
hence U contains the free orbit C4/e, and hence Stabe(U) ⊂ StabG(U). Therefore
Ld(U) also admits C4/e.

The relationship between Ld(U) and the topological linear isometries operad
L(R[U ]) is delicate. The extreme cases are easy. If U = [G/G]t∞, then A(Ld(U)) =
triv = A(L(R[U ])), and if U contains all G-orbits, then A(Ld(U)) = Set =
A(L(R[U ])). Things are less clear in between. If U = [G/G t G/e]t∞, then R[U ]
is a complete G-universe and A(L(R[U ])) = Set. On the other hand, Ld(U) does
not admit G/H for any nontrivial, proper subgroup H when U = [G/G tG/e]t∞.

There is also a multiplicative variant of Ld(U), which generalizes Guillou and
May’s operad V ×

G (U), and which is trying to model a linear isometries operad based
on the tensor powers of a universe. We shall not pursue it here.
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4. The realization problem

Despite the counterexamples in §3.2, it is possible to realize every indexing sys-
tem by a N operad or a N∞ operad. In this section, we give the simplest general
construction that we know (Theorem 4.9). The linchpin of our work is Theorem 4.6,
a calculation that is logically equivalent to Blumberg and Hill’s indexing system
conjecture (Proposition 4.11). Its proof is somewhat involved, so we defer it to §6.
We shall give a more refined construction of associative N∞ operads in §7.

4.1. The key calculation. We analyze the universal examples of N operads and
indexing systems. By general considerations, there is a free-forgetful adjunction

F : Sym(SetG) � Op(SetG) : U

between the categories of symmetric sequences and operads in G-sets. The left ad-
joint sends a G-symmetric sequence S to the free G-operad F (S) that it generates.
There is an analogous adjunction for indexing systems, and miraculously, taking
admissible sets preserves the adjunction, provided the operads and symmetric se-
quences are suitably restricted.

This is a non-formal fact. It hinges on a calculation of the fixed points of a free
G-operad, which amounts to composing a left adjoint with a right adjoint.

We begin on the operadic side, by restricting attention to N operads and to
certain symmetric sequences that generate them.

Definition 4.1. Let S be a symmetric sequence in the category SetG of G-sets.
We say S is a N symmetric sequence if:

(1) for every integer n ≥ 0, the G× Σn-set S(n) is Σn-free, and
(2) the sets S(0)G and S(2)G are nonempty.

We write N -SymG for the category of all N symmetric sequences in SetG.
For any subgroup H ⊂ G and finite H-set T , we say that T is admissible for S

if S(|T |)Γ(T ) is nonempty.

By neglect of structure, every N operad O is a N symmetric sequence. Con-
versely, every N symmetric sequence generates a N operad.

Proposition 4.2. The free-forgetful adjunction F : Sym(SetG) � Op(SetG) : U
restricts to an adjunction

F : N -SymG
� N -OpG : U.

between the full subcategories of N symmetric sequences and N operads.

Proof. It is enough to show that F (S) ∈ N -Op for every S ∈ N -SymG. If S ∈

N -SymG, then there is an operad map F (S) → Set(G,As). Therefore F (S) is
Σ-free, and F (S)(n)G 6= ∅ for n = 0, 2 because of the unit η : S → F (S). �

The admissible sets of a N symmetric sequence do not form an indexing sys-
tem, because the conditions on subobjects, coproducts, and self-induction reflect
operadic composition. We do retain some of the axioms in Definition 2.12, though.

Definition 4.3. A class of G-subgroup actions X is a G-coefficient system if it
satisfies conditions (2)–(4) of Definition 2.12. Let Coef(G) be the poset of all
G-coefficient systems, ordered under inclusion.
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Coefficient systems in the sense above are equivalent to full, replete subcoefficient
systems of Set in the sense of [5]. Since the subgroups of G×Σn that have nonempty
fixed points are closed under subconjugacy, the next result follows.

Lemma 4.4. If Q is a N symmetric sequence, then A(Q) is a coefficient system.

However, if O is a N operad, then we get all of the axioms.

Proposition 4.5. If O is a N operad, then A(O) is a indexing system.

Proof. We have A(O) = A(EO), and EO is a N∞ operad. Alternatively, Blumberg
and Hill’s original arguments [5, §4] work just fine, once we replace all instances of
“contractible” with “nonempty.” �

We now turn to the analogue of F : N -Sym � N -Op : U for indexing systems.
There is a free-forgetful adjunction

〈•〉 : Coef(G) � Ind(G) : ι

where ι is the inclusion, and 〈•〉 sends a G-coefficient system to the indexing system
that it generates (cf. Definition 2.15). Consider the squares below.

N -Sym N -Op

Coef(G) Ind(G)

N -Sym N -Op

Coef(G) Ind(G)

F

〈•〉

A A

U

ι

A A

For any N operad O, the equality A(U(O)) = ι(A(O)) for right adjoints is
immediate. The equality A(F (S)) = 〈A(S)〉 for left adjoints also holds, but this is
the crux of the problem.

Theorem 4.6. If S is a N symmetric sequence, then A(F (S)) = 〈A(S)〉.

Sketch of Proof. The inclusion 〈A(S)〉 ⊂ A(F (S)) follows from the equivariance of
the unit η : S → F (S) and the fact that A(F (S)) is an indexing system. The other
inclusion requires work. We unpack the general theory of generators and relations
for operads in §5, and then we calculate the admissible sets of F (S) in §6. �

Remark 4.7. Here is how to interpret the equality A(F (S)) = 〈A(S)〉. The indexing
system 〈A(S)〉 is obtained from the symmetric sequence S by taking the external
norms of S (cf. Definition 2.5), and then closing up under the indexing system
axioms. On the other hand, the indexing system A(F (S)) is obtained by closing
up S under composition, and then computing the resulting external norms. In the
former case, the closure conditions of an indexing system are dictated by Blumberg
and Hill’s axioms. In the latter case, the closure conditions on A(F (S)) are dictated
by algebra. That A(F (S)) and 〈A(S)〉 are equal says that Blumberg and Hill’s
indexing system axioms perfectly capture the algebra of composition for external
norms.

4.2. Free realizations of indexing systems. Assuming Theorem 4.6, we can
construct operadic realizations of all indexing systems, thus verifying Blumberg
and Hill’s indexing system conjecture.
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Definition 4.8. Let T = (Tα)α∈J be an indexed set of finite G-subgroup actions,
and let ST be the N symmetric sequence

ST =
G× Σ0

G× {id0}
t

G× Σ2

G× {id2}
t
∐

α∈J

G× Σ|Tα|

Γ(Tα)
.

More precisely, ST is the symmetric sequence whose nth level is the disjoint union
of all of the above orbits of the form G×Σn/Λ, where Λ is a subgroup of G×Σn.
We define FT = F (ST ) to be the free N -operad on ST .

Theorem 4.9. The functors A : N∞-OpG → Ind(G) and A : N -OpG → Ind(G)
have functorial sections. In particular, there is a section

F : Ind(G)→ N -OpG

given by the formula F(I) = FO(I), where O(I) is the set of nontrivial orbits
H/K ∈ I. The operad F(I) is a finitely generated free operad for every I ∈ Ind(G).

Proof. By Theorem 4.6, we have

A(F(I)) = 〈A(SO(I))〉 = 〈O(I)〉 = I.

Therefore F(I) is a N operad that realizes I, EF(I) is a N∞ operad that realizes
I, and Conjecture 2.17 is true. Moreover, if I ⊂ J , then SO(I) ⊂ SO(J ), and

this inclusion induces a map F(I) → F(J ). Therefore F : Ind(G) → N -OpG is a

functorial section of A : N -OpG → Ind(G) and E ◦ F : Ind(G) → N∞-OpG is a

functorial section of A : N∞-OpG → Ind(G). �

We use the set O(I) to generate the operad F(I) because it is efficient and
reasonably canonical. Plenty of other choices are possible.

Example 4.10. For each subgroup H ⊂ G, integer n ≥ 0, and homomorphism
σ : H → Σn, we write (n, σ) for the H-action on {1, . . . , n} determined by σ. Given
an arbitrary indexing system I, let N(I) be the set of all (n, σ) contained in I.
Then N(I) contains every admissible set of I up to isomorphism, and we obtain a

functorial section FN(I) : Ind(G)→ N -OpG of A : N -OpG → Ind(G).

We conclude with a comment on the logical significance of Theorem 4.6.

Proposition 4.11. Theorem 4.6 is logically equivalent to Conjecture 2.17

Proof. The proof of Theorem 4.9 shows that Theorem 4.6 implies Conjecture 2.17.
Now suppose that Theorem 4.6 were false. Then there would be some N symmetric
sequence S such that I = 〈A(S)〉 ( A(F (S)). We claim that I would be unre-
alizable. Suppose for contradiction that I = A(O) for some N operad O. Then
A(S) ⊂ I = A(O), and therefore there would be a map S → O of symmetric
sequences. By adjunction, we would obtain an operad map F (S)→ O, and deduce

A(O) = I = 〈A(S)〉 ( A(F (S)) ⊂ A(O). �

5. Free and quotient G-operads

There are plenty of excellent treatments of operads in symmetric monoidal cat-
egories (e.g. [28] and [14]). There are also excellent discussions of combinatorial
operads in Set (cf. [10] and [15]). Unfortunately, we could not find an account of

operads in SetG that met our needs. The proof of Theorem 4.6 hinges on delicate
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equivariant combinatorics, and we require an extremely precise description of free
N operads to carry it out. Thus, we shall spend this section building scaffolding.

The basic theory of combinatorial operads has many formal similarities to or-
dinary algebra, and we shall omit the most routine proofs. Unfortunately, this
material is fairly dry. Therefore we begin by summarizing the relevant results in
§5.1, and then we flesh out the details in §§5.2–5.5. We recommend skimming or
skipping the latter on a first reading.

5.1. Summary. We give an explicit description of the free N operad generated by
a N symmetric sequence. Suppose S = (S(n))n≥0 is a N symmetric sequence in

SetG. We think of the elements f ∈ Sn as n-ary operations, and we will usually
write them as functions f(x1, . . . , xn) in x1, . . . , xn.

The free N operad F (S) is constructed from S in two stages. First, we construct
a G-operad F0(S), whose n-ary operations are formal composites of the operations
in S, which contain each of the variables x1, . . . , xn exactly once. For example, if
f ∈ S(3), h ∈ S(2), k ∈ S(1), and ` ∈ S(3), then the formal composites

f(h(x3, x2), k(x1), `(x6, x4, x5)) and f(h(k(x6), x5), `(x4, x3, x2), x1)

are in F0(S).
Operadic composition γ on F0(S) is defined by reindexing variables and then

substituting functions into functions. For example,

γ
(
f(x2, x1, x3); k(x1), h(x2, x1), `(x3, x1, x2)

)
= f(h(x3, x2), k(x1), `(x6, x4, x5))

This requires a bit of explanation. The left hand side really is correct, because we
want all arguments of γ to be elements of F0(S). Now, the idea is to substitute
k(x1) for x1, h(x2, x1) for x2, and `(x3, x1, x2) for x3 in f(x1, x2, x3), but this does
not work because it produces something with three x1’s. Therefore we replace
h(x2, x1) with h(x3, x2) and `(x3, x1, x2) with `(x6, x4, x5) before substituting.

Now for the rest of the structure. The variable x1 is the identity for γ. Right
multiplication by a permutation σ moves xi to xσ(i)’s spot, e.g.

`(x2, x1, x3) · (321) = `(x3, x2, x1),

and the G-action on F0(S) is inherited from the G-action on S, e.g.

g · (f(k(x1), h(x3, x4, x2))) = gf(gk(x1), gh(x3, x4, x2))

for any g ∈ G. We think of the G-action as conjugation, which commutes with
composition. There is a natural inclusion map η0 : S → F0(S), which sends f ∈ Sn

to f(x1, . . . , xn) ∈ F0(S). This is the unit of the free-forgetful adjunction

F0 : (SetG)N � Op(SetG) : U

between non-symmetric sequences of G-sets and operads in G-sets.
Unfortunately, the map η0 : S → F0(S) is not Σ-equivariant, because we forgot

the Σ-action on S when we constructed F0(S). We fix this by passing to a quotient.
The operad F (S) is the operad F0(S), modulo the relations

fσ(x1, . . . , xn) ∼ f(xσ−11, . . . , xσ−1n) (n ≥ 0 , f ∈ S(n) , σ ∈ Σn).

We write [t] for the congruence class of t ∈ F0(S). Combining the universal prop-
erties of the unit η0 : S → F0(S) and the quotient π : F0(S) → F (S) shows that
F (S) is the free N operad generated by S. The unit of the free-forgetful adjunction

F : Sym(SetG) � Op(SetG) : U
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is the composite π ◦ η0 : S → F0(S)→ F (S), which sends f to [f(x1, . . . , xn)].
We shall need a more precise description of F (S) in order to compute its fixed

points. Choose a set SΣ of Σ-orbit representatives of S. By stringing together
the ∼ relations above, we may convert any formal composite of operations in S
into a formal composite of operations in SΣ. For example, if f = f ′ · (12) ∈ S(2),
h = h′ · (123) ∈ S(3), and k = k′ ∈ S(1), where f ′, h′, k′ ∈ SΣ, then

f(k(x1), h(x3, x4, x2)) ∼ f ′(h′(x2, x3, x4), k
′(x1)).

It follows that F0(SΣ) ⊂ F0(S) is a set of representatives for ∼, which implies it
inherits an operad structure from F (S). All of the structure on F0(SΣ) is the same
as in F0(S), except for the G-action. This is because F0(SΣ) is not closed under the
G-action of F0(S). Thus, for any g ∈ G and t ∈ F0(SΣ), we define a new product
g ∗ t by computing g · t in F0(S), and then applying ∼ relations to convert g · t into
an element of F0(SΣ). For example, if f ∈ SΣ(n) is Γ(T )-fixed for some n-element
G-set T , then for any (g, σ(g)) ∈ Γ(T ), we have g · f = f · σ(g) in F0(S). Therefore

g ∗ f(x1, . . . , xn) = f(xσ(g)−11, . . . , xσ(g)−1n) in F0(SΣ),

which means that f(x1, . . . , xn) is formally an external T -norm. The operad F0(SΣ),
equipped with ∗, is isomorphic to the free operad F (S). This is the model of F (S)
that we will use in §6.

We shall spend the remainder of this section making the sketch above precise.
We treat formal composites in §5.3, we construct F0(S) in §5.4 (cf. Construction
5.15 and Proposition 5.18), and we construct F (S) in §5.5 (cf. Construction 5.19
and Theorem 5.23). Quotients operads are discussed in §5.2, because they logically
precede the construction of F (S).

5.2. Quotient operads. Suppose O is an operad in SetG. Since composition in
O is typically non-invertible, we cannot construct quotients of O as sets of cosets,
as one typically does in group, ring, and module theory. We shall use congruence
relations instead. They should be thought of as substitutes for normal subgroups,
ideals, and submodules.

Definition 5.1. Suppose O is an operad in SetG. A congruence relation ∼ on O
is a tuple (∼n)n≥0 such that

(1) for all integers n ≥ 0, ∼n is an equivalence relation on O(n),
(2) for all integers n ≥ 0, elements (g, σ) ∈ G×Σn, and operations f, f ′ ∈ O(n),

if f ∼n f ′, then gfσ ∼n gf ′σ, and
(3) for all integers k, j1, . . . , jk ≥ 0 and operations h, h′ ∈ O(k), f1, f

′
1 ∈ O(j1),

. . . , fk, f
′
k ∈ O(jk), if h ∼k h′ and fi ∼ji f ′

i for i = 1, . . . , k, then
γ(h; f1, . . . , fk) ∼j1+···+jk γ(h′; f ′

1, . . . , f
′
k).

In other words, a congruence relation on a G-operad is a graded equivalence
relation that is compatible with the operad structure. The axioms for a congruence
relation ensure that all of the structure on O descends to congruence classes.

Definition 5.2. Suppose O is an operad in SetG and ∼ is a congruence relation
on O. The quotient operad O = O/∼ is defined as follows:

(1) the set O(n) is the set O(n)/∼n of all ∼n-equivalence classes of O(n),
(2) given a class [f ] ∈ O(n) and (g, σ) ∈ G× Σn, we define g[f ]σ := [gfσ],

(3) the identity of O is the class [id] of the identity in O, and
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(4) for any integers k, j1, . . . , jk ≥ 0 and classes [h] ∈ O(k), [f1] ∈ O(j1), . . . ,

[fk] ∈ O(jk), we define γ([h]; [f1], . . . , [fk]) := [γ(h; f1, . . . , fk)].

Moreover, the quotient map π : O → O has the usual universal property.

Proposition 5.3. Suppose O is an operad in SetG, ∼ is a congruence relation on
O, and let π : O → O = O/∼ be defined by π(f) = [f ]. Then:

(1) The map π : O → O is an operad map, and π(f) = π(f ′) whenever f ∼ f ′.
(2) If ϕ : O → O ′ is an operad map such that f ∼ f ′ implies ϕ(f) = ϕ(f ′),

then there is a unique operad map ϕ : O → O ′ such that ϕ = ϕ ◦ π.

As one might hope, we can take quotients by kernels, but only after reinterpreting
kernels as congruence relations.

Definition 5.4. Suppose ϕ : O → O ′ is a map of operads in SetG. The kernel of
ϕ is the congruence relation ∼ϕ= (∼ϕ,n)n≥0 on O, defined by

f ∼ϕ,n f ′ if and only if ϕ(f) = ϕ(f ′) (n ≥ 0 , f, f ′ ∈ O(n)).

Since ∼ is the kernel of π : O → O/∼, it follows that congruence relations on O
are the same thing as kernels of operad maps out of O.

Congruence relations are typically quite large, and in practice, we shall specify
them using a small set of generators.

Definition 5.5. Suppose O is an operad in SetG and R is a graded binary relation
on O, i.e. R = (Rn)n≥0 where Rn is a binary relation on O(n). Then the congruence
relation generated by R is

〈R〉n =
{
(f, f ′) ∈ O(n)×2

∣∣∣ f ∼ f ′ for all congruence relations ∼⊃ R
}
,

i.e. 〈R〉 is the levelwise intersection of all congruence relations that contain R.

The relation 〈R〉 is the smallest congruence relation that contains R. We intro-
duce the relation R into an operad O by first enlarging R to 〈R〉, and then taking
the quotient O/〈R〉. This quotient also has the expected universal property.

Corollary 5.6. Suppose O is an operad in SetG, R is a graded binary relation on
O, and let π : O → O/〈R〉 be the quotient map. Then:

(1) The map π : O → O/〈R〉 is an operad map, and π(f) = π(f ′) if fRf ′.
(2) If ϕ : O → O ′ is an operad map such that fRf ′ implies ϕ(f) = ϕ(f ′), then

there is a unique operad map ϕ : O/〈R〉 → O ′ such that ϕ = ϕ ◦ π.

Proof. Part (1) follows immediately from part (1) of Proposition 5.3. For part (2),
suppose ϕ : O → O ′ is an operad map such that fRf ′ implies ϕ(f) = ϕ(f ′). Then
R refines ker(ϕ), and therefore 〈R〉 must, too. Thus, if f〈R〉f ′, then ϕ(f) = ϕ(f ′),
and the existence and uniqueness of ϕ : O/〈R〉 → O ′ follows from part (2) of
Proposition 5.3. �

It can be difficult to determine if two operations are identified by the congruence
relation generated by R, but the following description of 〈R〉 can help.

Definition 5.7. Suppose R is a graded binary relation on an operad O in SetG.

Given any integer n ≥ 0 and operations f1, f2 ∈ O(n), declare f1R̂f2 if

fb = g ·
(
r ◦k γ(sb; t1, . . . , tj)

)
· σ (b = 1, 2)

for some
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(1) (g, σ) ∈ G× Σn, and
(2) r ∈ O(m), s1, s2 ∈ O(j), and ta ∈ O(ia) for a = 1, . . . , j,

such that s1Rjs2 and the integers n,m, k, j, i1, . . . , ij ≥ 0 satisfy 1 ≤ k ≤ m and
n = m+ i1 + · · ·+ ij − 1. Here ◦k denotes the kth partial composition product.

The relation R̂ is obtained by closing R under the G × Σ-action and certain
composites. It is not usually an equivalence relation, so we generate one.

Proposition 5.8. Suppose O is an operad in SetG and R is a graded binary

relation on O. Then 〈R〉 is the equivalence relation generated by R̂ levelwise.

Proof. Let ∼ be the equivalence relation generated by R̂. It is straightforward to
check that ∼ refines every congruence relation that contains R. Thus, we only need

to check that ∼ is a congruence relation. Consider R̂. By construction, it satisfes
(2) of Definition 5.1, and it also satisfies a version of (3) where we only replace one
of the operations h or fi. It follows that ∼ satisfies (2) and (3), and it is a graded
equivalence relation by construction. �

5.3. Formal composites. We now turn to the constructions of F0(S) and F (S),
starting with a precise description of “formal composites.” We begin with some
standard notions in formal logic.

Definition 5.9. Suppose S = (S(n))n≥0 is a sequence of G-sets. Regard the
following formal symbols

xi i = 1, 2, 3, . . .
f f ∈

∐
n≥0 S(n)

( ) , (punctuation)

as the letters in an alphabet Σ(S). The elements of the free symmetric G-operad
F0(S) will be suitable finite sequences of these letters.

A word w is a finite, ordered sequence l1l2 · · · ln of letters li ∈ Σ(S). We write
ε for the empty word. A subword of w is a word that is either ε or of the form
lj lj+1 · · · lk−1lk for some 1 ≤ j ≤ k ≤ n. The length λ(w) of the word w = l1l2 · · · ln
is n, and λ(ε) = 0.

A term is any word constructed through the following recursion:

(1) every variable xi is a term, and
(2) if t1, . . . , tn are terms and f ∈ S(n), then f(t1, . . . , tn) is also a term.

A subterm of a word w is a subword of w that is also a term. The complexity of a
term t is the length of the longest chain of nested pairs of left and right parentheses
in t. For example,

t = f(h(k(x6), x5), `(x4, x3, x2), x1)

has complexity 3. Thus, if t = f(t1, . . . , tn), then the complexity of each ti is strictly
less than the complexity of t.

The arity of a term t is the number of distinct variable symbols xi that appear
in t. We say that a n-ary term t is operadic if each of the variables x1, . . . , xn occur
in t exactly once.

Notation 5.10. Suppose t is a term. We write t for the operadic term obtained
from t by reindexing the variables in t as x1, x2, . . . from left to right.
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Example 5.11. The unary term s = p(x1, x1, x1) is not operadic, and neither is
the ternary term t = p(x2, x3, x4). However, we have

s = t = p(x1, x2, x3),

and both s and t are operadic.

As we explain below, every term can be parsed into subterms, depending on
the configuration of parentheses within it. Such decompositions can be interpreted
as trees, but even though the corresponding pictures are intuitive, we find them
unwieldy in calculations. Thus, we use the logical formalism instead.

Definition 5.12. An initial segment of a word w = l1l2 · · · ln is a word of the form
s = l1l2 · · · lk for some 0 ≤ k ≤ n. We understand s = ε if k = 0, and we say s is
a strict initial segment if k < n. Dually, a terminal segment of w is a word that is
either ε or of the form s = lklk+1 · · · ln, and we say s is strict if 1 < k.

The key to parsing a term into subterms is the following parenthesis count. The
proof of the following is a straightforward induction on complexity.

Lemma 5.13. For any word w, write L(w) for the number of left parentheses in
w and R(w) for the number of right parentheses. Suppose that t is a term. Then:

(1) L(t) = R(t).
(2) If s is an initial segment of t, then L(s) ≥ R(s), and the inequality is strict

if 2 ≤ λ(s) < λ(t). In the latter case, s is not a term.
(3) If s is a terminal segment of t, then L(s) ≤ R(s), and the inequality is

strict if 0 < λ(s) ≤ λ(t)− 2. In the latter case, s is not a term.

Proposition 5.14. Suppose m,n ≥ 0 are integers, f ∈ S(m), g ∈ S(n), and that
s1, . . . , sm, t1, . . . , tn are terms. If f(s1, . . . , sm) = g(t1, . . . , tn) as words in Σ(S),
then m = n, f = g, and si = ti for i = 1, . . . ,m.

Proof. Suppose f(s1, . . . , sm) = g(t1, . . . , tn). Then f = g because they are the
first letters. To show s1 = t1, it is enough to check that s1 and t1 have the same
length. If λ(s1) < λ(t1), then s1 is a strict initial segment of t1. Either s1 is a
variable and t1 is not, or λ(s1) ≥ 2. The former case is clearly impossible, and the
latter is ruled out by (2) of Lemma 5.13. Continue inductively. �

Thus, it makes sense to speak of the subterms of a given term.

5.4. The operad F0(S). We now construct the free G-operad F0(S) on a non-
symmetric sequence of G-sets.

Construction 5.15. Let S ∈ (SetG)N be a sequence of G-sets, and define a sym-

metric operad F0(S) in SetG as follows.

(1) Let F0(S)(n) be the set of all n-ary operadic terms in the alphabet Σ(S).
(2) Given t ∈ F0(S)(n) and σ ∈ Σn, let t·σ be the n-ary operadic term obtained

from t by replacing xi with xσ−1i for each i = 1, . . . , n. This makes F0(S)(n)
into a right Σn-set.

(3) Given g ∈ G we define a left G-action on all terms in Σ(S) by the recursion:
(a) g · xn = xn for n = 1, 2, 3, . . . , and
(b) g · f(t1, . . . , tn) = f ′(g · t1, . . . , g · tn), where f ′ = gf ∈ S.
This action multiplies every letter f ∈ S in a term by g, and does nothing
to the variables and punctuation. Therefore it restricts to a G-action on
each set F0(S)(n), which commutes with the Σn-action.
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(4) The identity element is x1. It is G-fixed by definition.
(5) Given a k-ary operadic term t and ji-ary operadic terms si for i = 1, . . . , k,

the composite γ(t; s1, . . . , sk) is defined by:
(a) adding j1 + · · · + ji−1 to the subscript of every variable appearing in

si – call this new term s′i – and then
(b) substituting the terms s′1, . . . , s

′
k in for the variables x1, . . . , xk in t.

These substitutions commute with the substitutions that define the G-
action, and therefore γ is G-equivariant.

There is a G-equivariant unit map η0 : S → F0(S) that sends the letter f ∈ S(n) to
the n-ary operadic term f(x1, . . . , xn) ∈ F0(S)(n). If u ∈ S(0) we set η0(u) = u().

An important technical point is that every operadic term in F0(S) may be ex-
pressed canonically as a composite. Recall Notation 5.10.

Notation 5.16. Suppose t ∈ F0(S) and t = f(t1, . . . , tn) for some f ∈ S(n) and
ji-ary terms ti. Then there is a unique σ ∈ Σj1+···+jn such that

f(t1, . . . , tn) = γ(η0(f); t1, . . . , tn) · σ.

We call the right hand side the standard decomposition of t. If u ∈ S(0), we
understand the standard decomposition of u() to be γ(η0(u); ) · 1.

Example 5.17. The standard decomposition of q(q(x1, x3), x2) is

q(q(x1, x3), x2) = γ(q(x1, x2); q(x1, x2), x1) · (23).

With this decomposition in tow, we can establish the freeness of F0(S).

Proposition 5.18. The map η0 : S → F0(S) in Construction 5.15 is the unit of

the free-forgetful adjunction F0 : (SetG)N � Op(SetG) : U .

Proof. One checks that η0 has the necessary universal property.
Suppose O is an operad in SetG and ϕ : S → O is a map of non-symmetric

sequences. Then there is at most one operad map Φ : F0(S) → O that ex-
tends ϕ along η0 : S → F0(S). Indeed, let t = γ(η0(f); t1, . . . , tn) · σ be the
standard decomposition of t. Since Φ is an operad map, we must have Φ(t) =
γ(ϕ(f); Φ(t1), . . . ,Φ(tn)) · σ and Φ(x1) = id, which determines Φ recursively.

Now define Φ : F0(S)→ O by the recursion above. Straightforward checks show
that Φ is an operadic extension of ϕ. For example, the standard decomposition of
f(x1, . . . , xn) is γ(η0(f);x1, . . . , x1) · 1, and hence

Φ(η0(f)) = Φ(f(x1, . . . , xn)) = γ(ϕ(f); Φ(x1), . . . ,Φ(x1)) · 1 = ϕ(f).

Therefore Φ extends ϕ along η0 : S → F0(S).
The map Φ preserves the identity by definition.
To see that Φ is Σ-equivariant, note first that Φ(t · τ) = Φ(t) · τ is automatic if

t = x1. If t = f(t1, . . . , tn), then t · τ = f(t′1, . . . , t
′
n) for some terms t′i such that

ti = t′i. Thus, if t = γ(η0(f); t1, . . . , tn) · σ, then the standard decomposition of t · τ
is γ(η0(f); t1, . . . , tn)·στ , and thus Φ(t·τ) = γ(ϕ(f); Φ(t1), . . . ,Φ(tn))·στ = Φ(t)·τ .

The rest of the proof is similar. One can induct on complexity to show Φ is
G-equivariant, and Φ(γ(t; s1, . . . , sk)) = γ(Φ(t); Φ(s1), . . . ,Φ(sk)) also follows by
induction on the complexity of t. �
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5.5. The operad F (S). Finally, we construct the free operad F (S) on a symmetric
sequence of G-sets S.

Construction 5.19. Suppose S ∈ Sym(SetG) is a symmetric sequence of G-sets.
Define the G-operad F (S) by

F (S) =
F0(S)〈

fσ(x1, . . . , xn) ∼ f(xσ−11, . . . , xσ−1n)
∣∣∣n ≥ 0, f ∈ S(n), σ ∈ Σn

〉

and let η = π ◦ η0 : S → F (S) be the composite of η0 : S → F0(S) and the
projection π : F0(S)→ F (S), i.e. η(f) = [f(x1, . . . , xn)].

Proposition 5.20. The map η = π ◦ η0 : S → F (S) is the unit of the free-forgetful

adjunction F : Sym(SetG) � Op(SetG) : U .

Proof. The relations that define the quotient π : F0(S) → F (S) ensure that η =
π ◦ η0 is G×Σ-equivariant, and universal property of η follows from those of π and
of η0 (cf. Proposition 5.18 and Corollary 5.6). �

We shall momentarily give a more precise description of F (S) when S is a Σ-free
symmetric sequence of G-sets, but first we need some preliminaries. Indeed, we
shall use the diamond lemma to gain traction on the situation, and we review the
relevant notions now.

The diamond lemma is a combinatorial result that we shall use to find represen-
tatives for equivalence relations. It is originally due to Newman [27], but we shall
follow Huet’s treatment [23], with some minor differences in terminology. Let X be
a set and let → be a binary relation on X. For any x, y ∈ X, we shall say that y
is a one-step reduction of x if x → y. If y ∈ X is minimal with respect to →, i.e.
there is no z ∈ X such that y → z, then we shall say that y is →-reduced. Now let
∗
→ denote the reflexive and transitive closure of →. For any x, y ∈ X, we shall say

that y is a reduction of x if x
∗
→ y. If x, y ∈ X, x

∗
→ y, and y is →-reduced, then

we shall refer to y as a →-reduced form of x.
Now let x, y, z ∈ X and suppose that y and z are reductions of x. We shall be

concerned with when there is a common reduction of y and z. In such a case, we
write y ↓ z. Dually, we write y ↑ z if y and z are both reductions of a common
element x. We say that→ is confluent if, for all y, z ∈ X, the relation y ↑ z implies
the relation y ↓ z. Similarly, we say that→ is locally confluent if, for all x, y, z ∈ X,
the relations x→ y and x→ z imply that y ↓ z. Every confluent relation is locally
confluent, and the diamond lemma gives a sufficient condition for when the converse
is true. It is the following: say that → is noetherian if there are no infinite chains

x1 → x2 → x3 → · · ·

of → relations in X. We arrive at the following result.

Lemma 5.21 (The Diamond Lemma, [23, Lemma 2.4]). A noetherian relation is
confluent if and only if it is locally confluent.

We refer the reader to [23] for a proof. In what follows, we shall use the following
corollary to the diamond lemma.

Corollary 5.22. Suppose X is a set and → is a noetherian, locally confluent
relation on X. Then every element x ∈ X has a unique →-reduced form r(x) ∈ X.
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Proof. First, we show that every element of X has a →-reduced form. Suppose for
contradiction that some x ∈ X does not have a→-reduced form. Define recursively
a sequence as follows: first, set x1 = x. Then, assuming x1, . . . , xi have been
defined and x1 → · · · → xi, note that xi cannot be →-reduced, or else x would
have a→-reduced form, and then let xi+1 be any element of X such that xi → xi+1.
Continuing in this manner, we obtain an infinite sequence x1 → x2 → x3 → · · · ,
contradicting the fact that → is noetherian.

Now we show that →-reduced forms are unique. Suppose x ∈ X and that

y, z ∈ X are both →-reduced forms of x. Then x
∗
→ y and x

∗
→ z, and both y and

z are →-reduced. In particular, y ↑ z. By the diamond lemma, → is confluent, and

therefore y ↓ z. Thus, there is some w ∈ X such that y
∗
→ w and z

∗
→ w. However,

the elements y and z are both →-reduced, which implies that y = w = z. �

With this result in tow, we return to our identification of the operad F (S).

Theorem 5.23. Suppose that S ∈ Sym(SetG) is a Σ-free symmetric sequence of
G-sets and that SΣ(n) ⊂ S(n) is a set of Σn-orbit representatives for every integer
n ≥ 0. Then the free operad F (S) on S is isomorphic to the operad F0(SΣ) in Set,
equipped with the following recursively defined G-action. For any g ∈ G, declare:

(1) g ∗ xn = xn for every n > 0, and
(2) g∗f(t1, . . . , tn) = f ′(g∗tσ−11, . . . , g∗tσ−1n), where gf = f ′σ for f ′ ∈ SΣ(n)

and σ ∈ Σn, and the terms t1, . . . , tn are not necessarily operadic.

If f ∈ S(n), then the unit η : S → F0(SΣ) is defined by η(f) = η0(f
′)σ =

f ′(xσ−11, . . . , xσ−1n), where f = f ′σ for f ′ ∈ SΣ(n) and σ ∈ Σn.

Proof. By Construction 5.19, the operad F (S) is a quotient F0(S)/∼. By Propo-
sition 5.8, two n-ary terms t, t′ in F0(S) are identified by ∼ if and only if there is
m ≥ 0 and a sequence t0, . . . , tm of n-ary terms of F0(S) such that

(1) t = t0 and t′ = tm, and
(2) for each 0 ≤ i < m, either the term ti+1 is obtained by replacing a subterm

of ti of the form s = fσ(t1, . . . , tk) with the subterm s′ = f(tσ−11, . . . , tσ−1k),
or vice versa.

We now give a simpler description of ∼. Declare t→ t′ if

(i) t′ is obtained by replacing a subterm of t of the form s = fσ(t1, . . . , tk)
with the subterm s′ = f(tσ−11, . . . , tσ−1k), and

(ii) f ∈ SΣ(k) and σ 6= 1.

Observe that if t, t′ ∈ F0(S) and t→ t′, then t′ has one fewer operation symbol in
S \ SΣ. It follows that → is noetherian. Next, note that a term t is →-reduced if
and only if all of its operation symbols are in SΣ. Thus, the →-reduced terms are
precisely the elements of F0(SΣ). It is straightforward to check that → is locally
confluent, and therefore Corollary 5.22 implies that for every t ∈ F0(S)(n), there is

a unique r(t) ∈ F0(SΣ)(n) such that t
∗
→ r(t), where

∗
→ denotes the reflexive and

transitive closure of →. In particular, t ∼ r(t).
If t, t′ ∈ F0(S)(n) are such that r(t) = r(t′), then t ∼ t′ because there is a a chain

of forwards and backwards → relations between them. Conversely, if t ∼ t′, then
r(t) = r(t′). Indeed, it is enough to consider the case where t = αfσ(t1, . . . , tk)β
and t′ = αf(tσ−11, . . . , tσ−1k)β for some words α and β, and σ 6= 1. If f ∈ SΣ,
then t → t′, and hence r(t) = r(t′). If not, then f = fΣτ for fΣ ∈ SΣ and
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τ 6= 1. Writing t′′ = αfΣ(t(τσ)−11, . . . , t(τσ)−1k)β, we have t → t′′ and t′ → t′′, so
r(t) = r(t′′) = r(t′).

It follows that F0(SΣ) is a set of representatives for ∼ on F0(S), with r(t) repre-
senting t. The quotient π : F0(S) → F (S) induces a bijection π : F0(SΣ) → F (S)
whose inverse is π−1([t]) = r(t). This gives F0(SΣ) the stated G-operad structure,
and the unit is π−1 ◦ η : S → F0(S)/∼ → F0(SΣ). �

6. The proof of Theorem 4.6

In this section, we perform the key calculation of §4. For readability, we begin
by recalling some concepts and notation, and then we prove the following result.

Theorem 4.6. If S is a N symmetric sequence, then A(F (S)) = 〈A(S)〉.

6.1. Recollections. Fix a finite group G.
If T is a finite H-set, then the graph subgroup Γ(T ) ⊂ G × Σ|T | is the graph

of some permutation representation of T (Definition 2.5). The subgroup Γ(T ) is
well-defined up to conjugation, and it is canonically determined if T has an order.

A N symmetric sequence in SetG is a Σ-free symmetric sequence X such that
X(0)G, X(2)G 6= ∅. We say thatX admits T if X(|T |)Γ(T ) 6= ∅, and we write A(X)
for the class of admissible sets of X (Definition 4.1). The class A(X) is a coefficient
system. This means it is closed under isomorphism, restriction, and conjugation by
elements of G (Definition 4.3).

A N operad is an operad in SetG, which is also a N symmetric sequence (Def-
inition 3.1). Every N symmetric sequence generates a free N operad F (S), and if
O is any N operad, then A(O) is an indexing system. This is a coefficient system
that contains all trivial actions, and is closed under subobjects, coproducts, and
self-induction (Definition 2.12). Every coefficient system C generates an indexing
system 〈C〉 (Definition 2.15).

Theorem 4.6 asserts that taking admissible sets commutes with free generation.
This is a computation of the fixed points of a free N operad F (S). We shall see
that the indexing system axioms mirror the structure of composition in F (S).

The free operad F (S) is typically defined as a large colimit, but it is hard to
compute the fixed points of a quotient. Therefore we shall use a different model,
denoted F0(SΣ). This operad is described in detail in §5. We recommend rereading
§5.1, but briefly, SΣ is a set of Σ-orbit representatives for S, and the elements t ∈
F0(SΣ) are formal composites of operations in SΣ. The Σ-action permutes inputs,
and the G-action is computed by conjugating every operation, and then replacing
operations with their representatives in SΣ (Construction 5.15 and Theorem 5.23).
There is a related operad F0(S), whose elements are formal composites of operations
in S. It has the same nonequivariant operad structure, but its G-action is just
conjugation (Construction 5.15).

Given any t ∈ F0(SΣ), the complexity of t is the length of the longest chain
of nested parentheses in t (Definition 5.9). Thus if t = f(t1, . . . , tn), then the
complexity of each ti is less than the complexity of t. We write t for t, but with all
variables reindexed as x1, x2, . . . from left to right (Notation 5.10).

6.2. The proof of Theorem 4.6. As explained in §4.1, the inclusion A(F (S)) ⊃
〈A(S)〉 is easy. We now consider A(F (S)) ⊂ 〈A(S)〉.
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Definition 6.1. Suppose t ∈ F0(SΣ), H ⊂ G is a subgroup, and T is a finite H-set.
We say that T is t-admissible if t ∈ F0(SΣ)(|T |)

Γ(T ), where Γ(T ) is the graph of
some permutation representation of T .

We shall prove the following:

(∗) For any t ∈ F0(SΣ) and finite H-set T , if T is t-admissible, then T ∈ 〈A(S)〉.

Since every admissible set of F0(SΣ) is t-admissible for some t ∈ F0(SΣ), this will
establish the inclusion A(F (S)) = A(F0(SΣ)) ⊂ 〈A(S)〉.

Proof. We argue by induction on the complexity of t ∈ F0(SΣ). If t has complexity
0, then t = x1 ∈ F0(SΣ)(1). Therefore every t-admissible set T is an action of
a subgroup H ⊂ G on a point. It follows T ∈ 〈A(S)〉, because indexing systems
contain all trivial actions.

Now suppose t = f(t1, . . . , tn) ∈ F0(SΣ) for some f ∈ SΣ(n) and t1, . . . , tn.
Assume (∗) is true for all t of smaller complexity. For any 1 ≤ i ≤ n, the complexity
of ti is less than the complexity of t and equal to the complexity of ti ∈ F0(SΣ), so
by induction, every ti-admissible set is contained in 〈A(S)〉.

Consider a t-admissible H-set T . We must prove that T ∈ 〈A(S)〉. The
strategy is to use the action on F0(SΣ) to express T in terms of ti-admissible
sets. Since indexing systems are closed under isomorphism, we may assume that
T = {1, . . . , |T |} and t ∈ F0(SΣ)(|T |)

Γ(T ), where Γ(T ) = {(h, σ(h)) |h ∈ H} and
σ(h) = h · (−) : T → T . Therefore h ∗ t · σ(h)−1 = (h, σ(h)) ∗ t = t, and hence

h ∗ t = t · σ(h) (for all h ∈ H).

This is important. By Theorem 5.23, the term h ∗ t is computed by multiplying in
F0(S) and then shuffling subterms of t around, whereas the term t·σ(h) is computed
by permuting the variables of t according to σ(h) = h · (−) : T → T . Thus, we can
analyze the H-action on T using the recursive definition of h ∗ (−).

For every h ∈ H, write h · f = fh · τ(h) for unique fh ∈ SΣ(n) and τ(h) ∈ Σn.
Here f is the first letter of t, and products are computed in F0(S). Then

fh(h ∗ tτ(h)−11, . . . , h ∗ tτ(h)−1n) = h ∗ f(t1, . . . , tn) = f(t1, . . . , tn) · σ(h).

The first letters must agree, so fh = f and h · f = f · τ(h). Hence (h, τ(h)) · f =
h · f · τ(h)−1 = f for all h ∈ H, which implies the subgroup {(h, τ(h)) |h ∈ H} ⊂
G × Σn fixes f ∈ S(n). Since S is Σ-free, the set {(h, τ(h)) |h ∈ H} is the graph
subgroup Γ(U) of an H-set U with permutation representation τ : H → Σn. Thus
U ∈ A(S) ⊂ 〈A(S)〉. Decomposing U into orbits, we see that H/K ∈ 〈A(S)〉 for
every suborbit H/K ⊂ U , because indexing systems are closed under subobjects.

Now we group the variables in each ti along the orbits of U . Let

Ti = {j ∈ N |xj appears in ti} (1 ≤ i ≤ n),

so that T1 t · · · t Tn = T as sets. For each orbit O ⊂ U = {1, . . . , n}, let

TO =
∐

i∈O

Ti.

We claim that TO is a sub-H-set of T . In fact, we shall show σ(h)(Ti) = Tτ(h)i.
For any h ∈ H, write t′i for the term obtained from ti by replacing each variable

xi with xσ(h)−1i. Then

f(t′1, . . . , t
′
n) = t · σ(h) = h ∗ t = f(h ∗ tτ(h)−11, . . . , h ∗ tτ(h)−1n),
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and therefore t′τ(h)i = h∗ti by Proposition 5.14. Thus, the same variables appear in

t′τ(h)i and ti, which means σ(h)−1(Tτ(h)i) = Ti. This proves that TO is a sub-H-set

of T . Moreover, there is an isomorphism

T ∼=
∐

O

TO

of H-sets. Thus, to prove T ∈ 〈A(S)〉, it will be enough to show TO ∈ 〈A(S)〉 for
each orbit O, because indexing systems are closed under coproducts.

Consider TH/K =
∐

aK∈H/K TaK for a given orbit H/K ⊂ U . Then σ(h)(TeK) =

ThK for each h ∈ H. Thus, TeK is a sub-K-set of resHKTH/K that generates TH/K as

an H-set, and
∣∣TH/K

∣∣ = |H : K| · |TeK |. Therefore the inclusion TeK ↪→ resHKTH/K

induces an isomorphism
TH/K

∼= indHKTeK .

Thus, to prove TH/K ∈ 〈A(S)〉, it will be enough to show TeK ∈ 〈A(S)〉, because
H/K ∈ 〈A(S)〉 and indexing systems are closed under self-induction.

However, the K-action on TeK is isomorphic to the K-action on the variables of
one of the subterms ti in f(t1, . . . , tn), and this is isomorphic to the K-action on the
variables of ti. This K-action is ti-admissible, by the definition of the G×Σ-action
on F0(SΣ), and therefore TeK ∈ 〈A(S)〉 by the induction hypothesis.

Thus TeK , TH/K
∼= indHKTeK , and T ∼=

∐
O TO are all elements of 〈A(S)〉, which

is what we needed to prove. By induction on the complexity of t ∈ F0(SΣ), we
conclude that A(F (S)) ⊂ 〈A(S)〉. �

7. Equivariant Barratt-Eccles operads

In §4, we showed how to realize every indexing system as a free N operad. In
this section, we construct strictly associative and unital realizations (Definition 7.1).
These are the smallest models of N∞ operads that we know of, and after applying
the functor E : N -OpG → N∞-OpG, they become N∞ variants of the Barratt-
Eccles operad. We summarize the basic properties of these operads in Theorem
7.2, and then we analyze their combinatorics in §7.1. The proof of Theorem 7.2 is
given in §7.3.

7.1. Associative N operads. For each indexing system I, we construct an asso-
ciative and unital operad As(I) as follows.

Definition 7.1. Let T = (Tα)α∈J and FT be as in Definition 4.8, and suppose
η : ST → FT is the unit of the adjunction. Write

e = η(G× {id0}) , ⊗ = η(G× {id2}) , and
⊗

Tα
= η(Γ(Tα))

for every index α ∈ J . We define AsT to be the quotient

AsT =
FT〈

γ(⊗;⊗, id) ∼ γ(⊗; id;⊗) , γ(⊗; e, id) ∼ id ∼ γ(⊗; id, e)
γ(
⊗

Tα
; e, . . . , e) ∼ e , γ(

⊗
Tα

; e, . . . , e, id, e, . . . , e) ∼ id

∣∣∣∣∣ α ∈ J

〉

of FT by the indicated relations. In γ(
⊗

Tα
; e, . . . , e, id, e, . . . , e), we allow id to

range over the 2nd – [|Tα| + 1]st arguments of γ. If |Tα| = 0, then we understand
the lower left relation to be

⊗
Tα
∼ e.

For any indexing system I, let As(I) = AsO(I), where O(I) is the set of all
nontrivial orbits H/K ∈ I.
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The operads As(I) have a number of useful properties, which are summarized
in the theorem below.

Theorem 7.2. The functor A : N -OpG → Ind(G) has a functorial section

As : Ind(G)→ N -OpG

such that

(1) As(triv) is the associativity operad equipped with a trivial G-action,

and for all I ∈ Ind:

(2) As(I) is finitely presented, and
(3) |As(I)(0)| = |As(I)(1)| = 1, and there is C = C(I) ∈ N such that for

every n ≥ 2, we have the inequality |As(I)(n)| < Cn(n!)2.

The proof will be given in §7.3. For now, we explain the significance of this
result. Functoriality of As in I implies we can restrict As(J ) actions to As(I)
actions directly, provided that I ⊂ J . This eliminates the need to pass through a
zig-zag As(I)

∼
← As(I)×As(J )→ As(J ).

Condition (1) says that As(I) is a generalization of the usual associative operad.
Conditions (2) and (3) are bounds on the size of As(I), but first, a bit of context.

Recall that the categorical Barratt-Eccles operad P has nth space Ãs(n), where

As(n) = Σn is the associativity operad, and (̃−) : Set → Cat is the right adjoint
to the object functor.

In their work on equivariant infinite loop space theory, Guillou-May-Merling-

Osorno consider the coinduced operad PG(n) ∼= ˜Set(G,Σn). This is a genuine
E∞ G-operad, meaning it is N∞ and its indexing system is Set. The operad PG

was thought by many to be the smallest model for an E∞ G-operad, because P is
certainly the smallest model nonequivariantly.

This intuition is false. Work in [3] shows that Set(G,As) = Ob(PG) is not
finitely generated when G is nontrivial, and if I = Set, then (3) implies

lim
n→∞

|As(Set)(n)|

|Ob(PG(n))|
= 0

whenever |G| > 2. The bound on |As(I)(0)| is also useful. It says that As(I) is
a reduced operad, and therefore EAs(I) is, too. This can be quite convenient in
applications (cf. [7, Remark 2.7]).

We round off this section by proposing two new definitions.

Definition 7.3. Let I be a G-indexing system. The I-permutativity operad is

P(I) = Ãs(I),

where (̃−) : Set → Cat is the right adjoint to Ob : Cat → Set. The I-Barratt-
Eccles operad is

E (I) = EAs(I),

where E = B ◦ (̃−) is the composite of (̃−) and the classifying space functor.

Remark 7.4. The operad PG is homotopy terminal, and early attempts at Con-
jecture 2.17 sought to realize arbitrary indexing systems as suboperads of PG.
Bonventre proved this is impossible [8, Example B.2.1], and the construction of
N∞ permutativity operads has been a sticking point ever since. Our operads P(I)
are one possible solution.
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7.2. Identifying associative N operads. The proof of Theorem 7.2 requires a
precise description of AsT . This section works out the details. We recommend
skimming it on a first reading.

Lemma 7.5. For any indexed set (Tα)α∈J of finite G-subgroup actions, the operad
AsT is isomorphic to the operad

F
(∐

n≥0
G×Σn

G×{idn}
t
∐

α∈J
G×Σ|Tα|

Γ(Tα)

)

〈
γ(Πm; id, . . . ,Πn, . . . , id) ∼ Πm+n−1 , Π1 ∼ id

γ(
⊗

Tα
; Π0, . . . ,Π0) ∼ Π0 , γ(

⊗
Tα

; Π0, . . . , id, . . . ,Π0) ∼ id

∣∣∣∣∣
m ≥ 1 , n ≥ 0

α ∈ J

〉 ,

where Πk = η(G × {idk}) for all k ≥ 0,
⊗

Tα
= η(Γ(Tα)) for all α ∈ J , and η is

the unit map. If |Tα| = 0, we understand the bottom left relation to be
⊗

Tα
∼ Π0.

Proof. The inclusion of generators
∐

n=0,2

G× Σn

G× {idn}
t
∐

α∈J

G× Σ|Tα|

Γ(Tα)
↪→

∐

n≥0

G× Σn

G× {idn}
t
∐

α∈J

G× Σ|Tα|

Γ(Tα)

induces an isomorphism. �

The presentation of AsT in Lemma 7.5 is easier to work with, because the
relations are clearly “reductions.” We use it to solve the word problem for AsT .

Proposition 7.6. Let T = (Tα)α∈J be an indexed set of finite G-subgroup actions.
The operad AsT is isomorphic to a sub-symmetric sequence of the free operad

FT = F

(
∐

n≥0

G× Σn

G× {idn}
t
∐

α∈J

G× Σ|Tα|

Γ(Tα)

)
,

equipped with a reduced composition operation.

Proof. For each subgroup H ⊂ G, choose a set {e = rH1 , . . . , rH|G:H|} of G/H-coset

representatives once and for all. Then

PΣ =
∐

n≥0

{
G× {idn}

}
t
∐

α∈J

{
rHi Γ(Tα)

∣∣∣∣∣
H ⊂ G, Tα an H-set,
and 1 ≤ i ≤ |G : H|

}

is a set of Σ-orbit representatives for the generators of FT . It follows from Theorem
5.23 that FT

∼= F0(PΣ) with a twisted G-action.
We identify the congruence relation ∼ on F0(PΣ) that is generated by the re-

lations in Lemma 7.5. For any n ≥ 0 and t, t′ ∈ F0(PΣ)(n), declare t → t′ if t′

is obtained by replacing a subterm s of t with a new subterm s′, in one of the
following ways:

s s′

Πm(t1, . . . , ti−1,Πn(ti, . . . , ti+n−1), ti+n, . . . , tm+n−1) Πm+n−1(t1, . . . , tm+n−1)
Π1(t1) t1

rHi
⊗

Tα
(Π0(), . . . ,Π0()) Π0()

rHi
⊗

Tα
(Π0(), . . . ,Π0(), t1,Π0(), . . . ,Π0()) t1

In the first line, we require m ≥ 1 and n ≥ 0, and in the third and fourth lines, we
require α ∈ J and rHi to be a coset representative for G/H, whereH is the subgroup
acting on Tα. We say that t is reduced if there is no t′ such that t → t′, and we
write rF0(PΣ) ⊂ F0(PΣ) for the sub-symmetric sequence of reduced elements.
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Each of the substitutions above strictly decreases the number

w(t) = #(Πk symbols in t) + 2 ·#(riH
⊗

Tα
symbols in t) ≥ 0,

and therefore → is noetherian (cf. p. 25). Moreover, it is straightforward to check
that → is locally confluent. By Corollary 5.22, it follows that for any t ∈ F0(PΣ),

there is a unique r(t) ∈ rF0(PΣ) such that t
∗
→ r(t), where

∗
→ denotes the reflexive

and transitive closure of →.
By Proposition 5.8, the congruence relation ∼ is the equivalence relation gener-

ated by →. It follows that t ∼ t′ if and only if r(t) = r(t′), and therefore rF0(PΣ)
is a set of representatives for ∼, with r(t) representing t. Hence

AsT ∼= F0(PΣ)/∼ ∼= rF0(PΣ)

as symmetric sequences. Composition in AsT is identified with r ◦ γ, where γ
denotes composition in F0(PΣ). �

Now we can estimate the size of AsT . We focus on T = O(I) for simplicity, but
the same reasoning applies for any finite T .

Lemma 7.7. Suppose I is an indexing system, O(I) is the set of nontrivial orbits
in I, and write As(I) = AsO(I). Then |As(I)(n)| = 1 for n = 0, 1, and there is a

constant C = C(I) ∈ N such that |As(I)(n)| < Cn(n!)2 for n ≥ 2.

Proof. Keep notation as in the proof of Proposition 7.6 and set T = O(I). We
count the number of elements in rF0(PΣ)(n) ∼= As(I)(n) for each n ≥ 0. The
estimates are clear (and poor) when I = triv, so assume I is nontrivial.

Given t ∈ F0(PΣ)(0), we can use the relation rHi
⊗

Tα
() ∼ Π0() for empty Tα’s to

convert all nullary function symbols in t into Π0’s. Call the result t′. Now we use
Πm(t1, . . . ,Π0(), . . . , tm−1) ∼ Πm−1(t1, . . . , tm−1) and rHi

⊗
Tα

(Π0(), . . . ,Π0()) ∼

Π0() inductively to collapse t′ to Π0(). Therefore |rF0(PΣ)(0)| = 1.
The case for rF0(PΣ)(1) is similar. We claim that every t ∈ F0(PΣ)(1) can be

reduced to x1. For, if t = f(t1, . . . , tn) = γ(η0(f); t1, . . . , tn) · σ, there is 1 ≤ i ≤ n
such that ti is unary and and tj is nullary for j 6= i. By the above, we have
tj ∼ Π0(), and we can assume ti ∼ x1 by induction on complexity. Therefore
t ∼ f(Π0(), . . . , x1, . . . ,Π0()) ∼ x1.

Now we make the estimate for n ≥ 2. Every t ∈ rF0(PΣ)(n) can be factored as
t = (b1 ◦k1

b2 ◦k2
· · · ◦km−1

bm) · σ, where σ ∈ Σn, ◦k is partial composition, and
b1, . . . , bm are basic terms of the form

Π2(x1, x2) or rHi
⊗

H/K(t1, . . . , t|H:K|),

such that all of the terms tj are either variables or Π0()’s, and at least two of the
tj ’s are variables. The arity of each basic term is at least 2. Hence

2 ≤ |b1| < |b1 ◦k1
b2| < · · · <

∣∣b1 ◦k1
b2 ◦k2

· · · ◦km−1
bm
∣∣ = n,

and it follows m < n.
Let B be the set of all basic terms and set C = |B| ≥ 2. For each m =

1, . . . , n−1, there are no more than Cm choices of basic operations (b1, . . . , bm) such
that |b1|+ · · ·+ |bm|+m−1 = n, and for each choice (b1, . . . , bm), there are no more
than n! choices of sequences (k1, . . . , km−1) such that 1 ≤ kj ≤ |b1|+· · ·+|bj |−j+1.
Summing over m and choosing a permutation σ ∈ Σn shows there are fewer than
Cn(n!)2 n-ary expressions of the form (b1 ◦k1

b2 ◦k2
· · · ◦km−1

bm) · σ. �
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7.3. The proof of Theorem 7.2. In this section, we prove Theorem 7.2, starting
with a calculation of the admissible sets of AsT .

Lemma 7.8. For any T , AsT is a N operad, and A(AsT ) = 〈Tα |α ∈ J〉.

Proof. Let FT be as in Proposition 7.6. There is an embedding of symmetric
sequences AsT ↪→ FT . Therefore AsT is Σ-free and A(AsT ) ⊂ A(FT ). On
the other hand, Lemma 7.5 implies there is a quotient operad map FT → AsT .
Therefore AsT (n)

G 6= ∅ and A(FT ) ⊂ A(AsT ). This proves that AsT is a N
operad, and

A(AsT ) = A(FT ) = 〈Tα |α ∈ J〉

by Theorem 4.6. �

Now we can prove the theorem.

Proof of Theorem 7.2. Define As(−) : Ind(G) → N -OpG by As(I) = AsO(I),
where O(I) is the set of nontrivial orbits H/K ∈ I. The same argument given in
the proof of Theorem 4.9 shows that As(−) is functorial, and Lemma 7.8 shows

A(As(I)) = 〈H/K |H/K ∈ I is nontrivial〉 = I.

Therefore As is a section of A : N -OpG → Ind(G).
We have As(triv) = As by inspection, and As(I) = AsO(I) is finitely generated

because O(I) is finite. Lemma 7.7 gives the desired cardinality bound. �

8. Model categories of discrete G-operads

This final section interprets §3.1 and §4 through a model categorical lens. We
set up the basic model structures in §§8.1–8.2, and then we compare our work to
[16] and [9] is §8.3.

We have a few reasons for introducing this formalism. To start, we find it
clarifying. The free operads in §4 may seem ad hoc, but they are completely natural
from a model categorical perspective (cf. Proposition 8.14). Model categorical
language also helps explain the relationship between our construction of F(I), and
the realizations in [16] and [9] (cf. §8.3). That being said, the associative N operads
considered in §7 do not mesh well with model structures. The operad AsT is just
too small to be cofibrant, and should be understood on the point-set level.

Remark 8.1. Looking ahead, we will truly need these model structures in subsequent
work. We could do things by hand in this paper, but parts of [32] require a more
sophisticated approach.

8.1. Model category structures on OpG. A model category must be bicom-
plete, which implies we cannot literally equip the category N -OpG of N operads
with a model structure. Instead, we consider the category OpG = Op(SetG) of all
operads in G-sets, and then we cut things down later.

We start on the point-set level. The following holds in general (cf. [28, §2.3]).

Lemma 8.2. The category OpG is complete and cocomplete.

Limits are computed levelwise in SetG, and colimits are similar to colimits of
nonabelian groups. We write ∗ for the coproduct in OpG.

The category OpG also has a small set of small generators.

Lemma 8.3. The category OpG is locally finitely presentable.
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Proof. The free operads F (G×Σn) form a strong generator of OpG [1, §0.6], where
n ≥ 0 is a nonnegative integer. Moreover, each of the operads F (G×Σn) is finitely

presentable. Therefore OpG is locally finitely presentable by [1, Theorem 1.11]. �

Our ultimate goal is to construct a simplicial model category. We therefore give
OpG a simplicial enrichment. There is an adjunction

(−)0 : sSet � Set : E = N ◦ (̃−)

where (−)0 is the 0-simplices functor, (̃−) : Set → Cat is the right adjoint to the
object functor, and N : Cat → sSet is the nerve functor. As in §3.1, E(∅) = ∅
and EX ' ∗ if X 6= ∅.

Since (−)0 and E are both limit-preserving functors, we may use the adjunction

(−)0 a E to enrich, tensor, and cotensor OpG over sSet (cf. [29, Theorem 3.7.11]).

Lemma 8.4. The category OpG is enriched, tensored, and cotensored over the
category sSet of simplicial sets, with:

(a) hom objects: OpG(O,O ′) = EOpG(O,O ′),
(b) tensors: K ⊗ O = K0 · O, the K0-fold coproduct of copies of O, and
(c) cotensors: OK = OK0 , the K0-fold product of copies of O,

where O,O ′ ∈ OpG and K ∈ sSet.

We could have done the same thing with OpG replaced by almost any 1-category,
but it is a reasonable choice for OpG because we are really thinking of O ∈ OpG

as the categorical operad Õ. The hom object between Õ1 and Õ2 is naturally a

1-category that is isomorphic to ÕpG(O1,O2).

Now we make OpG into a model category.

Definition 8.5. Let I be an indexing system and Γ ⊂ G × Σn. We say that
Γ = {(h, σ(h)) |h ∈ H} is an I-graph subgroup if σ : H → Σn is the permutation

representation of a member of I. A morphism f : O1 → O2 in OpG is an I-
weak equivalence if Ef : EO1(n)

Γ → EO2(n)
Γ is a weak homotopy equivalence of

topological spaces for every n ≥ 0 and I-graph subgroup Γ ⊂ G× Σn.

This boils down to the condition that O1(n)
Γ is nonempty whenever O2(n)

Γ is
nonempty, provided that Γ is an I-graph subgroup.

Proposition 8.6. Fix an indexing system I. The category OpG, together with the
I-weak equivalences, can be enhanced to a right proper, combinatorial, simplicial
model category with generating cofibrations

II =

{
{id} −→ F

(
G× Σn

Γ

) ∣∣∣∣∣
n ≥ 0, Γ ⊂ G× Σn an
I-graph subgroup

}

and generating acyclic cofibrations

JI =

{
F

(
G× Σn

Γ

)
i0−→ ∆1 ⊗ F

(
G× Σn

Γ

) ∣∣∣∣∣
n ≥ 0, Γ ⊂ G× Σn an
I-graph subgroup

}
.

Here F : Sym(SetG) � OpG : U is the free-forgetful adjunction, and {id} ∼= F (∅)
is the initial operad. Moreover:

(1) every object of OpG is I-fibrant, and

(2) every simplicial mapping space in OpG is either empty or contractible.
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Proof. The construction of this model structure is a straightforward application of
the small object argument (cf. [26, Theorem 15.2.3]). It is also straightforward to
verify that it is right proper and that every object is fibrant. The only interesting
point is that axiom SM7 holds, which we now prove.

Suppose i : A → X is an I-cofibration and p : E → B is an I-fibration, and
consider the map

(i∗, p∗) : OpG(X ,E )→ OpG(A ,E )×OpG(A ,B) OpG(X ,B).

If either i or p is an I-weak equivalence, then (i∗, p∗) is a weak equivalence. Indeed,
the domain and codomain are either empty or contractible, and if the codomain is
nonempty, then the domain is nonempty by lifting. Thus, axiom SM7 will follow if
we show that (i∗, p∗) is a Kan fibration.

By the adjunction (−)0 a E, the simplicial map (i∗, p∗) is a Kan fibration if

and only if the set map (i∗, p∗) has the right lifting property with respect to the
inclusion {0} → {0, 1}. This is easy to check when p is an I-fibration and i is a
relative II-cell complex i1 : O → O ∗ F (S). Passing to retracts proves the result

for general I-cofibrations. Therefore OpG is a simplicial model category. �

We do not know if these model structures on OpG are left proper, because we
do not know how to compute the fixed points of the relevant pushouts.

Definition 8.7. We shall refer to the model structure in Proposition 8.6 as the
I-model structure on OpG.

Remark 8.8. There are analogous I-model structures onOp(sSetG) andOp(TopG)
by the work in [16] and [9]. The adjunction (−)0 : sSet � Set : E induces a Quillen

adjunction between the I-model structures on Op(sSetG) and OpG because (−)0
sends generating (acyclic) cofibrations to (acyclic) cofibrations. In fact, one can

construct the I-model structure on OpG by transport along (−)0 a E.

8.2. The homotopy theory of N operads. The Set-model structure on OpG

governs a broader homotopy theory than the homotopy theory of N operads. One
can prove that every bifibrant operad O ∈ OpG is Σ-free, but nothing ensures that
O(n)G 6= ∅. We fix things by passing to a slice category of OpG.

Definition 8.9. Let F be the free operad on (G×Σ0)/Gt (G×Σ2)/G, and write

OpG
+ for the slice category F/OpG of symmetric operads in SetG under F.

By adjunction, an object of OpG
+ is the same thing as an operad O ∈ OpG,

equipped with marked operations u ∈ O(0)G and p ∈ O(2)G. A morphism in OpG
+

is just a morphism in OpG that preserves the markings.
We enrich, tensor, and cotensor OpG

+ over sSet as before, i.e. we declare

OpG
+(O1,O2) = EOpG

+(O1,O2) and we define tensors and cotensors by adjunc-

tion (cf. Lemma 8.4). From here, we use the Set-model structure on OpG to

create a model structure on OpG
+. We summarize its properties.

Theorem 8.10. The category OpG
+ is a right proper, combinatorial, simplicial

model category. A morphism f : O1 → O2 in OpG
+ is a weak equivalence, fibration,

or cofibration if, after forgetting markings, it is such a map in the Set-model struc-
ture on OpG. The generating cofibrations and acyclic cofibrations of OpG

+ are the
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sets F∗ISet and F∗JSet, where ISet and JSet are the corresponding generators

for OpG. Moreover:

(1) every object of OpG
+ is fibrant,

(2) every cofibrant object of OpG
+ is a N operad (but not conversely), and

(3) every mapping space in OpG
+ is either empty or contractible.

Proof. The Set-model structure on OpG lifts to a model structure on OpG
+ =

F/OpG by [26, Theorem 15.3.6], and the remaining claims about the unenriched

model structure are standard. Axiom SM7 holds for OpG
+, because for any cofibra-

tion i : A →X and fibration p : E → B in OpG
+, the map

(i∗, p∗) : OpG
+(X ,E )→ OpG

+(A ,E )×OpG

+
(A ,B) OpG

+(X ,B)

is a pullback of the analogous map for OpG. It remains to show that every cofibrant
operad O ∈ OpG

+ is a N operad.

If O ∈ OpG
+ is cofibrant, then F ↪→ UO is a Set-cofibration in OpG, and since

F is Set-cofibrant, so too is UO. Therefore UO is a retract of a free operad F (S)
on a Σ-free symmetric sequence S. By universality, F (S) must be Σ-free, and since
UO is a retract of F (S), there is a map UO → F (S). Therefore UO is also Σ-free.
It follows that UO is a N operad because we have another map F→ UO. �

Part (2) of Theorem 8.10 lets us relate OpG
+ to N -OpG.

Proposition 8.11. The cofibrant replacement functor Q : OpG
+ → N -OpG induces

a Dwyer-Kan equivalence between the hammock localizations of OpG
+ and N -OpG.

Therefore the functor LE = E ◦ Q : OpG
+ → N∞-OpG also induces a Dwyer-Kan

equivalence between the corresponding hammock localizations.

Proof. Consider the functors below.

N -OpG N -OpG
free (OpG

+)cell OpG
+

F

i

F ∗ (−)

U

i

Q

HereN -OpG
free is the full subcategory ofN -OpG spanned by free objects, (OpG

+)cell

is the full subcategory of OpG
+ spanned by cell complexes, i denotes inclusion, U

is forgetful, F is free, and Q is cofibrant replacement. Every composite of oppos-
ing pairs is naturally weakly equivalent to the identity. Therefore all six of these
functors induce Dwyer-Kan equivalences by [12, §3]. The same is true for LE by
Theorem 3.7. �

Since every mapping space in LH(OpG
+) is empty or contractible, we deduce the

same holds for N -OpG and N∞-OpG.

Corollary 8.12. Every mapping space in the hammock localization LH(N -OpG)

is either empty or contractible, and the same is true for LH(N∞-OpG).

This reproves [5, Proposition 5.5]. We end this section with an observation.

Remark 8.13. Consider the functor A : Ho(N -OpG)→ Ind(G) once more. Corol-
lary 8.12 implies that A is faithful, and Theorems 4.9 and 7.2 imply that A is
surjective. Fullness can be deduced be using the product trick. If O1 and O2 are
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N operads and A(O1) ⊂ A(O2), then O1
∼
← O1 × O2 → O2 represents a morphism

in Ho(N -OpG) that lifts the inclusion. This is a purely combinatorial proof that

A : Ho(N -OpG)→ Ind(G) is an equivalence. Thus, the only topological ingredient
in our proof of the classification of N∞ operads (Theorem 2.18) is the equivalence
between N∞ operads and N operads (Theorem 3.7).

8.3. Comparisons of N∞ realizations. In §4, we showed how to realize arbitrary
indexing systems using the free N operads FT . We now explain how to compare
these operads to the operads constructed in [16] and [9]. Recall that Com is the
terminal operad, whose levels are Com(n) = ∗ for all n ≥ 0.

Proposition 8.14. The N operads FO(I) and FN(I), described in Theorem 4.9
and Example 4.10, are cofibrant replacements of the operad Com in the I-model
structure on OpG.

Proof. Let F = FO(I) or FN(I). The operad F (G×Σn/Γ) is I-cofibrant for every
I-graph subgroup Γ, and F is a coproduct of such operads. Therefore F is also
I-cofibrant. Moreover, the unique morphism F → Com is an I-acyclic fibration,
because Theorem 4.6 enusres A(F ) = I. �

Thus, the functor F : Ind→ N -Op in Theorem 4.9 constructs operads that are
formally analogous to Gutiérrez and White’s N∞ operads [16, Theorem 4.7]. They

prove that an I-cofibrant replacement of the operad Com ∈ Op(TopG) is a N∞

realization of I.
More concretely, consider the N∞ operad EFN(I). It is constructed by gener-

ating a free, discrete operad FN(I) with all operations specified by I, and then
killing all homotopy groups with E. Gutiérrez and White’s operads are similarly
constructed. By the small object argument, an I-cofibrant replacement of Com

may be presented as a transfinite sequential colimit OI = colimα<γOα, where

(i) O0 = {id},
(ii) Oα+1 is obtained from Oα by attaching a free cell F ((G × Σn/Γ) × Dm)

along every operad map F ((G × Σn/Γ) × Sm−1) → Oα, where m,n ≥ 0
and Γ is an I-graph subgroup, and

(iii) Oβ = colimα<βOα for each limit ordinal β < γ.

In particular, O1 splits as F (
∐

Γ G× Σn/Γ) ∗ O ′
1, where Γ ranges over all I-graph

subgroups and O ′
1 is built from F ((G×Σ1)/H×Dm)-cell attachments. Subsequent

stages introduce more generators and kill elements of homotopy. By compactness,
all homotopy is killed in the limit.

Bonventre and Pereira [9, Remark 6.73] also construct N∞ operads as cofibrant
replacements ofCom, but they use a different model. Their powerful theory realizes

the indexing system I as a monadic bar construction BI = B•(F̂G, F̂G, ∂F ) ∈

Op(sSetG), which is an operadic variant of Elemendorf’s construction of universal
spaces [13, §2]. The 0-simplices in BI form a discrete, free G-operad that contains
all operations specified by I, and the remaining simplices kill all homotopy by the
extra degeneracy argument.
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