COMBINATORIAL N,, OPERADS

JONATHAN RUBIN

ABSTRACT. We prove that the homotopy theory of Noo operads is equivalent
to a homotopy theory of discrete operads, and we construct free and associative
operadic realizations of every indexing system. This resolves a conjecture of
Blumberg and Hill in the affirmative.
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1. INTRODUCTION

Operads were first introduced by May in [25], and they have been applied
throughout algebra and topology ever since. As the name might suggest, an operad
is an object that parametrizes operations. They appear in many contexts, and in-
teresting structure on an operad & translates universally into interesting structure
on the algebras over &.

The original application of operad theory was the recognition principle for it-
erated loop spaces, due to Boardman-Vogt, May, and Milgram. May’s approach
to this theorem leverages operadic structure on X to construct an equivalence be-
tween X and an n-fold loop space Q'Y = Map,(S™,Y). The basic idea is to
track the homotopy coherence of the sum + in 7,(Y) = m(Q"Y). Two maps
fig: 8™ =1"/0I" = Y are usually added together by pasting f and g onto two
different halves of the n-cube I™, but there are n different dimensions to choose
from, and this operation is only a group structure up to homotopy. Moreover,
there are many homotopies that witness the associativity, unitality, and the com-
mutativity of + when n > 1. The little n-cubes operad C,, parametrizes all of the
possibilities, and the operadic recognition principle states that X is a n-fold loop
space if and only if X is a grouplike C,-algebra (i.e. my(X) is a group).
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As n increases, there are more and more degrees of freedom in 1™, and the con-
nectivity of the operads C,, correspondingly increases. Passing to colimits yields the
infinite little cubes operad Co,, which parametrizes the additive structure on infinite
loop spaces. This is the prototypical example of an E., operad. It parametrizes
operations that are associative, unital, and commutative, up to all possible homo-
topies, and its actions can be used to construct infinite deloopings.

Now, grouplike infinite loop spaces are equivalent to connective spectra, with the
Coo-action corresponding to addition. On the other hand, multiplicative structures
on spectra are classically parametrized by a different operad. If E is a spectrum
indexed over the subspaces of R>, then E" is naturally indexed over the subspaces
of (R>)®"  After changing universe along a linear isometry f : (R®)®" — R we
can map back to E, but there are many possible choices for f. The linear isometries
operad £ parametrizes all of the options. It is also an F., operad, but its geometry
differs greatly from that of C.. Nevertheless, there is a zig-zag of equivalences
Coo < Coo x L 5 L connecting them. This is May’s “product trick.” It implies
that all £, operads are equivalent.

The situation is not nearly so clear-cut in equivariant homotopy theory. Suppose
G is a finite group. Then there are G-equivariant analogues to the operads Co, and
L. The equivariant version of £ = L(R*) is obtained by replacing R with a G-
universe U. We think of £(U) as the natural representing object for multiplication
on G-spectra over U. The equivariant version of C, is more subtle. Cubes are “too
square” to support a G-action, so one replaces the cubes in C,, with the unit discs
of finite-dimensional G-representations V. The result is the little V-discs operad
D(V). Given a universe U, one takes a colimit over finite-dimensional subrepresen-
tations V' C U to get the infinite little discs operad D(U) = colimy yD(V), but
this does not naturally act on equivariant iterated loop spaces. However, there is a
thickening of D(U) which does act, namely the Steiner operad IC(U). We think of
K(U) as the natural representing object for addition on G-spectra over U.

Now suppose that R is a genuine commutative ring G-spectrum. Ignoring multi-
plication for a moment, the Z-graded homotopy groups of R are naturally G-Mackey
functors. We may understand their transfers in terms of the (U )-action. Indeed,
additive transfers are usually constructed by embedding an orbit into a represen-
tation V' and then taking the Pontrjagin-Thom collapse map. This corresponds to
an operation in D(U) and also in K(U) ~ D(U). On the other hand, there are
also multiplicative norms in the RO(G)-graded homotopy of R, first introduced by
Greenlees and May [20], and used to great effect by Hill-Hopkins-Ravenel [22]. One
can similarly understand these norms in terms of the £(U)-action. On the level
of universes, norms from H to G arise from certain G-equivariant linear isometries
f:U®" = U, for which the G-action on U®" is restricted from an action of ¥, 0 H.

Thus, equivariant E,, operads parametrize much more than just a homotopy
coherent commutative monoid operation *. They also parametrize transfers or
norms, depending on whether we think of * as additive or multiplicative. If U is a
complete universe, then K(U) and L(U) parametrize all transfers and norms, and
if U is a trivial universe, then K(U) and £(U) parametrize no transfers or norms.
A surprising observation, due to Blumberg and Hill [5, Theorem 4.22], is that there
are incomplete universes U such that I(U) and £(U) parametrize different sets of
transfers and norms. Thus, as U varies over all possible G-universes, we obtain
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distinct families of operads K(U) ~ D(U) and L(U). These are the prototypical
examples of N, operads.

In general, a N, operad is a G-equivariant operad that parametrizes a homo-
topy coherent commutative monoid structure together with a compatible system of
(additive or multiplicative) transfers. When G is the trivial group, a N, operad is
just an E,, operad, and all F,, operads are equivalent. For general groups G, the
homotopy type of a No, G-operad is completely determined by its transfers. As
explained above, there are multiple possibilities, so it makes sense to try to classify
them. Blumberg and Hill began such a program in [5]. Given any N, operad
O, they construct an “indexing system,” which encodes the transfers of ¢. This
is a combinatorial object, which satisfies axioms that encode how transfers inter-
act with an operad structure. For any group G, the collection of all G-indexing
systems forms a lattice under inclusion, and maps ;7 — 05 between N, operads
induce inclusions of indexing systems. Thus, we obtain a functor from the category
Noo-Op€ of N G-operads to the poset category Ind(G) of all G-indexing systems.
In fact, this functor factors through the homotopy category HO(NOO—OpG) because
equivalent N, operads have equal indexing systems.

Blumberg and Hill proved that HO(NOO-OpG) is mapped fully and faithfully into
Ind(G). They also made the following

Conjecture. Tuaking indering systems determines an equivalence between the cat-
egory Ho(N-Op®) and the poset Ind(G).

In other words, Blumberg and Hill conjectured that every indexing system is
realized by some N, operad. In this paper, we shall give a combinatorial verifica-
tion of Blumberg and Hill’s conjecture. Other solutions to this problem have been
found independently by Gutiérrez and White [16], and by Bonventre and Pereira
[9], and we give a quick comparison between our constructions in §8.3.

Our three solutions are very different, and they highlight complementary aspects
of equivariant operad theory. Gutiérrez and White study a myriad of model cate-
gory structures on the category of G-operads, much in the spirit of Berger-Moerdijk
[4]. Their realizations of indexing systems arise as cofibrant replacements of the
commutativity operad in judiciously chosen model categories. In contrast, Bon-
ventre and Pereira introduce a novel kind of equivariant operad, which are a blend
of ordinary operads and fixed-point presheaves. Thus, they build norms into the
underlying formalism, and their realizations of indexing systems arise as operadic
variants of Elmendorf’s construction of universal spaces [13].

The purpose of this paper is to reduce N, theory to combinatorics. This dras-
tically simplifies the mathematics, and it brings precise, algebraic theorems within
arm’s reach. In effect, our approach strips away all of the topology, leaving only
the algebra of discrete equivariant operads. That being said, this algebra is rather
nontrivial. An operad is a generalization of a monoid, and the most interesting
operads arise as quotients. Thus, we are forced to contend with word problems. Of
course, these word problems are also present in the topological case, but our work
demonstrates that they are, in some sense, the only problems.

More precisely, we introduce discrete analogues to N, operads, which we call NV
operads, and then we prove the following result.

Theorem 3.7. The category of No, operads and the category of N operads have
equivalent hammock localizations, and this equivalence respects indexing systems.
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This theorem can be refined. The category of N, operads is not bicomplete,
and therefore cannot admit a model category structure, but we can replace N
operads with a model category that has the same underlying homotopy theory. Let
Opf denote the category of operads in G-sets, equipped with a marked G-fixed
constant and G-equivariant binary product.

Theorem 8.10 and Proposition 8.11. The category Op(j supports a right proper,
combinatorial, simplicial model category structure. This model category has the
same hammock localization as the category of No, operads.

This model category structure on Opf has a number of uses. Looking ahead, it
is indispensible in [32], where we lift natural operations on indexing systems back
to the operad level. In this paper, we use it to give a new, combinatorial proof that
Ho(N4-Op®) embeds into Ind(G), and we also use it to contextualize our first
major construction.

Theorem 4.9. FEvery indexing system I is realizable by a finitely generated free N
operad F(I), which may be constructed functorially in T.

From a conceptual standpoint, the operad F(Z) is a cofibrant replacement of the
commutativity operad in a suitable model structure on Opf (cf. Proposition 8.14).
This is formally analogous to the situation in [16] and [9], and after passing to N
operads, we obtain a similar operad to theirs (cf. §8.3). Theorem 4.9 resolves
Blumberg and Hill’s conjecture, but it also goes further.

For example, the finite generation of F(Z) is of great use. One can construct
a categorical N, operad i‘(I) by applying the right adjoint to the object functor
Ob : Cat — Set, and we prove in [30] that F(Z)-algebra G-categories are “normed
symmetric monoidal categories” (NSMCs), i.e. ordinary symmetric monoidal cate-
gories equipped with certain twisted products. The finite generation of F(Z) ensures
that NSMCs are finitely presentable, which is in sharp contrast to Guillou-May-
Merling-Osorno’s symmetric monoidal G-categories (cf. [19] and [3]). We emphasize
that the finite generation of F(Z) is a consequence of the combinatorics of indexing
systems, rather than the model-categorical formalism.

Just as Theorem 3.7 can be refined, so too can Theorem 4.9.

Theorem 7.2. Fvery indexing system I is realizable by a finitely presented, asso-
ciative and unital N operad As(T), which may be constructed functorially in T.

In contrast to F(Z), the operad As(Z) is invisible to the model-category theory
because it is not cofibrant. However, it has a number of convenient properties.
To start, it is very small. It has no nontrivial nullary or unary operations, and
As(Z)(n) grows far more slowly than the G-permutativity operad considered by
[19]. Applying the right adjoint to the object functor Ob : Cat — Set yields a
N, permutativity operad £(I) = AVS(I), whose algebras are strictly associative
and unital NSMCs, i.e. normed permutative categories. We suspect that these
structures will be useful in categorical infinite loop space theory, but that remains
to be seen. On the other hand, if we pass to space-level N, operads, then we
obtain an equivariant Barratt-Eccles operad &(Z). The operad &(Z) is reduced,
which is technically convenient in [7, Remark 2.7]. We do not know of any other
general construction of reduced N, operads.
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Organization. The remainder of this paper is organized as follows. In §2, we give
a quick introduction to the theory of N, operads. We recall some basic definitions
and examples, and then we summarize the classification theorem. In §3, we intro-
duce N operads, explain their relationship to N, operads, and give examples. We
prove that N operads and N, operads have the same homotopy theory (Theorem
3.7). In §4, we explain how to construct free realizations of indexing systems (Theo-
rem 4.9), modulo the calculation of the fixed points of a free operad (Theorem 4.6).
Theorem 4.6 is the key technical result of this paper. We set up some scaffolding in
65, and then we do the calculation in §6. In §7, we introduce associative N operads
and establish their basic properties. This strengthens the result in §4. Lastly, we
spend §8 developing the model category theory of discrete operads in G-sets.

The reader who wants a quick introduction to N, theory should read §2. The
reader who wants a summary of our solution to Blumberg and Hill’s conjecture
should read §3.1, §4, §5.1, and §6.

Conventions. Throughout this paper, G denotes a finite, discrete group with unit
e, and all spaces are understood to be compactly generated and weak Hausdorff. All
of our operads are symmetric operads in an ambient cartesian monoidal category.
Typically, this will be the category of left G-spaces or left G-sets.

Acknowledgements. It is a pleasure to thank Peter May and Mike Hill for guid-
ance and inspiration throughout this project. We also thank Angélica Osorno, Kyle
Ormsby, and the students at Reed for stimulating conversations that prompted this
revision. This work was partially supported by NSF Grant DMS-1803426.

2. THE CLASSIFICATION OF N,, OPERADS

This section is a brief introduction to the theory of N,, operads. We review
some key concepts and examples, and then we summarize the classification of N,
operads (Theorem 2.18). Our discussion is based heavily on [5] and [17]. With the
exception of the surjectivity portion of Theorem 2.18, the contents of this section
were already known. The surjectivity follows independently from [9], [16], and
Theorems 4.9 or 7.2 in this paper.

2.1. Equivariant operads. Let G be a finite group with unit e. Throughout this
discussion, we work in the category TopG of left G-spaces and G-equivariant con-
tinuous maps. The category Top® carries two natural enrichments. Let Top(X,Y)
denote the space of all continuous maps from X to Y equipped with the compact-
open topology. On the one hand, we can topologize the set TopG(X, Y) of G-
equivariant continuous maps X — Y as a subspace Top®(X,Y) C Top(X,Y),
which enriches TopG over Top. On the other hand, TopG is a cartesian closed cate-
gory, whose products X x Y are equipped the diagonal G-action, and whose internal
homs Topg(X,Y) are the spaces Top(X,Y) equipped with the conjugation G-
action. These two enrichments are related through Topg(X,Y)¢ = Top%(X,Y),
but the hom G-spaces Topg(X,Y') are more relevant to operad theory.

The prototypical example of a G-operad is the endomorphism operad End(X)
of a G-space X. The nth level of End(X) is the hom G-space Topg(X*", X). It
carries a left conjugation G-action and a right permutation X,,-action, and these
actions commute. We usually repackage this structure into a single left G x %,,-
action (g,0) - f = gfo~!. The identity map id € Topg(X, X) is G-fixed, the
composition operation y(h; f1, ..., farity(n)) = ho(f1X: X farity(n)) is G-equivariant
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with respect to conjugation, and evident associativity, unitality, and -equivariance
relations hold. This structure is axiomatized in the following definition.

Definition 2.1. A G-operad € is a symmetric operad in the category Top®.

Explicitly, & consists of a sequence (€(n)),>0 of G x X,-spaces, equipped with a

G-fixed identity id € €(1) and a continuous G-equivariant composition map
v:Ok) x O(j1) x - x O(jx) = O(1 + -+ jir)

for every k,j1,...,jx > 0, such that the usual associativity, unitality, and X-

equivariance axioms hold (cf. [25, Definition 1.1]). We write |f| for the arity

of an operation in ¢. Thus |f| = n means f € (n).

A map ¢ : 01 — O, of G-operads is a sequence of continuous, G x ¥,,-equivariant
maps @, : 01(n) — O2(n) that preserve the identity and composition. An €-algebra
G-space is a representation of & over a G-space, i.e. an object X € TopG equipped
with an operad map ¢ — End(X).

We think of the nth level &(n) of a G-operad as a parameter space for n-
ary operations on a G-space X. The stabilizer of f € &(n) encodes the G-
equivariance and commutativity relations that f : X*™ — X satisfies. For ex-
ample, if f is G-fixed, then f : X*" — X is G-equivariant, and if f is ¥, -fixed,
then f(zg-11,...,25-1,) = f(x1,...,2,) for every permutation of its arguments.
More interesting relations appear when G and 3, isotropy conditions mix.

We start with the simplest case. Regard the commutativity operad Com as a
discrete G-operad with trivial G-action. The nth level of Com is * for all n > 0. A
Com-algebra G-space X is a strictly associative, commutative, and unital monoid
in Top®, whose product * is strictly G-equivariant, i.e.

g9z *y) = (gz) * (9y),
and whose unit element 1 € X is strictly G-fixed.

Now consider the fixed point subspaces X of X. Every inclusion K ¢ H
of subgroups gives a reverse inclusion X¥ > X on fixed points, every element
g € G gives an isomorphism g - (—) : X — XgHg_l, and these data determine
the equivariant homotopy type of X by Elmendorf’s theorem [13, Theorem 1].
However, there is additional structure on the fixed points of X coming from the
operad action. Since * is G-equivariant and 1 is G-fixed, the monoid structure on
X restricts to every subspace X . More interestingly, for every inclusion K ¢ H
of subgroups, there is a “wrong-way” norm map nfl : XX — X defined by
nfl(z) = riz*xrox*- - -xr,z for some choice of H/K-coset representatives rq, ..., 7.
Indeed, if z € X and h € H, and we write h - ;K = r,; K, then

h(rzs- - xrpx) =hri@ s % Arp®@ = To1@ %k -k Top® =TT %k -+ Xk TpT

by the strict G-equivariance and commutativity of . Thus, the fixed-point presheaf
of X is a topological semi-Mackey functor.

While strict associativity and unitality are negotiable in homotopical algebra,
strict commutativity is far too much to ask for. We say that a G-operad & is X-free
if the ¥,-action on &'(n) is free for every n > 0. Such operads parametrize no strict
commutativity relations, and they typically have the most interesting algebras.

Example 2.2. Suppose V is a finite-dimensional real G-representation and write
D(V) for the unit disc centered at the origin in V. A little V-disc in D(V) is an
affine, but not necessarily equivariant, map of the form av + b : D(V) — D(V).
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The nth level of the little V-discs operad D(V) is the space of all disjoint n-tuples
of little V-discs in D(V'). The group G acts on D(V')(n) by conjugation, the group
¥, acts by permuting tuples, the map id : D(V) — D(V) is the operadic identity,
and operadic composites are computed by slotting little V-discs into little V-discs.
The operad D(V) is Y-free.

The prototypical example of a D(V)-algebra G-space is the V-fold loop space
OV X = Map, (S, X). Here SV is the one-point compactification of V, X is a based
G-space, and Map, (SY, X) is the space of all continuous, based maps SV — X,
equipped with the conjugation G-action. Conversely, every D(V)-algebra G-space
group completes to a V-fold loop space, provided that R* C V [17].

Experience has shown that transfer maps are useful and ubiquitous in genuine
equivariant homotopy theory. However, they do not arise from the recipe above,
because we very rarely have strictly commutative operations. For example, suppose
p is the regular representation of G # {e}. Then the sum on X is only homotopy
commutative. Nevertheless, for every pair of subgroups K C H, there is an additive
transfer map (X)X — (Q°X)H. It arises by summing the H-conjugates of
a p-loop | € (2°X)X over a tubular neighborhood of a copy of H/K C res%p.
After ordering the orbit H/K, this neighborhood corresponds to an element d €
D(p)(|H : K|), and this element is H-fixed, up to a twist given by the action of H on
H/K. We can formalize this kind of twisted equivariance, but first, a preliminary.

Definition 2.3. Let n > 0 be a nonnegative integer. A graph subgroup of G x %,
is a subgroup I' C G x X, that intersects X,, = {e} x X,, trivially.

Crucially, if € is a Y-free G-operad and f € €(n), then Stab(f) C G x £,
is a graph subgroup. The terminology is motivated by the following standard
observation.

Lemma 2.4. For any graph subgroup I' C G x X,, there is a unique subgroup
H C G and group homomorphism o : H — %,, such that T' = {(h,o(h))|h € H}.
Conversely, every subgroup of the form {(h,o(h))|h € H} is a graph subgroup.

Now suppose that I' = {(h,o(h))|h € H} C G x 3, is a graph subgroup, and
that f € O(n) is a T-fixed operation. Then for any &-algebra G-space X, we obtain
a n-ary product f : X*™ — X such that

hf(xl, SN ,Zn) = f(hma(h)al, ey hxg(h)ﬂn)

for every h € H and (z1,...,z,) € X*". Assume further that ¢ : H — X,
represents the H-action on H/K = {rK < --- <r,K}, i.e. hriK = ry(,), K for
every h € H and 1 < i <n. Thus f exhibits precisely the same equivariance as the
operation d € D(p) considered above, and we obtain a norm map

ntt(z) = flrax, ... rpz) X5 - X,

Thus, if we are interested in constructing transfer maps in homotopy commutative
settings, then a system of twisted equivariant maps, such as f above, is a reasonable
substitute for a strictly G-equivariant and commutative product * : X*? — X.
Accordingly, we introduce the following terminology.

Definition 2.5. Suppose X is a G-space, H C G is a subgroup, and T is a
finite, ordered H-set whose permutation representation is o : H — X;7|. Write
I(T) ={(h,o(h)) | h € H} C G x X, for the graph of 0. An external T-norm on X
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is a I'(T)-fixed point of End(X)(|T|). More generally, if &' is an operad, then we
shall sometimes refer to elements of &(|T|)'?) as external T-norms, and similarly
for symmetric sequences.

Note that if X*7T is the T-indexed power of X, i.e. the space X *IT! equipped
with the H-action

h($17 ce »$|T|) = (hxa(h)*llv ey hxo(h)*l\T\)a

then an external T-norm on X is an H-equivariant map f: X*7 — X.
With these notions in mind, we introduce N, operads.

Definition 2.6. Let & be a symmetric operad in the category Top® of G-spaces.
We say that & is a Ny, operad if it satisfies the following three conditions:
(1) for every integer n > 0, the G x X,,-space €'(n) is X, -free,
(2) for every graph subgroup I' C G x ¥,,, the subspace &'(n)! is either empty
or contractible, and
(3) the spaces ¢(0)¢ and ¢(2)¢ are nonempty.
We write Noo-Op© for the category of all Noo G-operads.

Remark 2.7. This is equivalent to [5, Definition 3.7]. Note that (1) implies &(n)= =
@ for all non-graph subgroups = C G x %,,, and that (3) implies &'(n)¢ # @ for all
n > 0 because & is a G-operad. Therefore €'(n) is a universal space for a family
of subgroups of G x ¥, which contains H x {1} for all subgroups H C G. In
particular, &(0) and €(1) are G-contractible.

Condition (2) ensures that & parametrizes at most one external T-norm of each
kind, up to coherent homotopy, and condition (3) ensures that & parametrizes
a homotopy coherent associative, commutative, and unital operation, for which
all data is G-equivariant. More precisely, the G-fixed suboperad ¢¢ C € is an
F operad in the nonequivariant sense. Informally, we think of N,, operads as
representing objects for homotopy coherent incomplete semi-Mackey functors. A
No operad €@ such that &'(n)'" ~  for every graph subgroup I is often called an
Eo G-operad (e.g. in [24], [11], and [17]).

Example 2.8. Let U be a G-universe, i.e., a countably infinite-dimensional real G-
inner product space that contains each of its finite-dimensional subrepresentations
infinitely often, and which also contains trivial summands.

The nth level of the linear isometries operad L(U) is the space of all linear, but
not necessarily equivariant, isometries U®™ — U. The operad structure is inherited
from End(U). The operad L(U) is Noo, and we think of it as representing the
canonical multiplicative structure for G-spectra indexed over U.

The infinite little discs operad D(U) is the colimit colimyyD(V) of the little
V-discs operads D(V'), as V ranges over all finite-dimensional subrepresentations
of U. The operad D(U) is No, and we think of it as representing the canonical
additive structure for G-spectra indexed over U. However, there is a catch. The
point-set level colimit that defines D(U) is not compatible with suspension, and
therefore D(U) does not naturally act on infinite loop spaces structured by U. One
can replace D(U) with a levelwise homotopy-equivalent operad K(U), called the
infinite Steiner operad, which does act on equivariant infinite loop spaces [17].

Surprisingly, there are universes U such that the operads D(U) and L(U) are
inequivalent [5, Theorem 4.22].
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Algebras over N, operads also appear in equivariant homotopical algebra for
conceptual reasons. Hill and Hopkins [21] have proven that localizations of genuine
commutative ring G-spectra need not have all multiplicative norms. The underlying
multiplication survives for formal reasons, which further justifies condition (3) in
Definition 2.6, but that is all we are guaranteed. Subsequent work of Gutiérrez and
White [16] addresses when general left Bousfield localizations preserve and destroy
N, algebra structures.

2.2. The homotopy theory of N,, operads. The purpose of a N4, operad is
to parametrize homotopy coherent algebraic structures. Accordingly, we introduce
the following weak equivalences.

Definition 2.9. An operad map ¢ : &7 — O between N, operads is a weak
equivalence if o, : O1(n)t — Oa(n)! is a weak homotopy equivalence of topological
spaces for every n > 0 and graph subgroup I' C G x X,,.

Note that a weak equivalence ¢ : &) — 05 between N, operads is actually a
levelwise weak G x X,-homotopy equivalence, because we have no =-fixed points
when = C G x %, is not a graph subgroup.

In contrast to the situation for nonequivariant E., operads, not all N, G-
operads are equivalent. However, May’s product trick still works.

Lemma 2.10. Let 0y and 05 be Ny, operads. Suppose that for every n > 0 and
graph subgroup T' C G x %, either 0y (n)' and Oy(n)¥ are both empty, or Oy(n)"
and Os(n)'' are both nonempty. Then Oy and Oy are equivalent.

Proof. Both projections & < 0 X Oy — O are weak equivalences. O

Thus, a Ny operad & is determined by the norms it parametrizes, or more
formally, by the set of graph subgroups I' C G' x ¥,, such that &(n)' # @. These
collections cannot be arbitrary. If we fix n > 0, then the set of such I' is closed
under subconjugacy. As we vary n, the operad structure on & implies further
closure conditions. It is convenient to phrase these conditions in terms of actions
by subgroups of G.

Definition 2.11. Suppose 0 is a N, operad, H C G is a subgroup, and T is a
finite H-set. Choose an order on 7" and let I'(T") C G x X;p| be the graph of the
corresponding permutation representation. We say that T is admissible for & or
that @ admits T if O(|T|)"") is nonempty. We write A(€) for the class of all
admissible sets of &.

The admissibility of a H-set T is independent of the choice of order on T" because
different choices conjugate I'(T"). Note that the class of admissible sets of a N
operad is graded over Sub(G), the set of all subgroups of G.

Definition 2.12. A class of finite G-subgroup actions is a class X, equipped with
a function X — Sub(G), such that the fiber over H C G is a class of finite H-
sets. We write X'(H) for the fiber over H. A G-indexing system is a class of finite
G-subgroup actions Z that satisfies the following seven conditions:
(1) (trivial sets) For any subgroup H C G, the class Z(H) contains all finite
trivial H-actions.
(2) (isomorphism) For any subgroup H C G and finite H-sets S and T, if
SeZ(H)and S=T, then T € Z(H).
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(3) (restriction) For any subgroups K C H C G and finite H-set T, if T €
Z(H), then restT € Z(K).
(4) (conjugation) For any subgroup H C G, group element a € G, and finite
H-set T, if T € Z(H), then ¢, T € Z(aHa™1).
(5) (subobjects) For any subgroup H C G and finite H-sets S and T, if T' €
Z(H) and S C T, then S € Z(H).
(6) (coproducts) For any subgroup H C G and finite H-sets S and T, if S €
IZ(H)and T € Z(H), then SUT € Z(H).
(7) (self-induction) For any subgroups K C H C G and finite K-set T, if
T € Z(K) and H/K € Z(H), then indT € Z(H).
We call the elements of Z(H) the admissible H-sets of Z. Let Ind(G) denote the
class of all G-indexing systems.

Condition (1) says the space €(n)¢ is nonempty for every n > 0. Conditions
(2)—(4) say the set {T' € Gx %, | O(n)l' # @} is a family. Conditions (5)—(7) encode
the operad structure on &. For every k,ji,...,jkx > 0, we have a G-equivariant
composition map vy : (k)X O(j1)x---xO(ji) = O(j1+- - -+Ji) that is also suitably
Y-equivariant. If the domain has a I'-fixed point, then so does the codomain, and
one can deduce conditions (5)—(7) by evaluating v on particular tuples of external
norms in & (cf. Definition 2.5).

Remark 2.13. Indexing systems in the sense of Definition 2.12 are equivalent to
indexing systems in the sense of [5, Definition 3.22], because full subcategories are
determined by their objects, and the axioms in Definition 2.12 imply closure under
cartesian products. For suppose S,T € Z(H) and choose orbit decompositions
S=[],H/K; and T = [[; H/L;. Then H/K;, H/L; € Z(H) for every i and j
by (5), and S x T" =[], ,(H/K; x H/L;). By (2) and (6), it will be enough to
show H/K x H/L € Z(H) whenever both H/K € Z(H) and H/L € Z(H), but this
follows from the isomorphism H/K x H/L = ind%res®l H/L and (2), (3), and (7).

As suggested by the repeated use of “admissible,” we have the following result.

Theorem 2.14 ([5, Theorem 4.17)). If 0 is a N, G-operad, then the class A(O)
of admissible sets of O is a G-indexing system.

This theorem is the key link between N, operads and indexing systems. Ac-
cordingly, we pause for a moment to analyze indexing systems.

If 7 is a G-indexing system, then conditions (5) and (6) imply that Z(H) is the
class of all finite coproducts of admissible H-orbits of Z. Thus, Z is determined by
the orbits it contains, and there are only finitely many G-indexing systems for a
given group G.

Next, we declare Z < J if Z(H) C J(H) for every subgroup H C G. The
componentwise intersection of a set of G-indexing systems is a G-indexing system,
and therefore (ZA J)(H) =Z(H)N J(H) is the meet of Z and J in Ind(G). The
componentwise union (ZUJ)(H) = Z(H)UJ (H) is not always an indexing system,
but it generates one.

Definition 2.15. For any class of finite G-subgroup actions X, we define (X) to
be the intersection of all G-indexing systems that contain X'

The join ZV J of 7 and J is the indexing system (ZUJ). It follows that Ind(G)
is a finite lattice. There is a maximum G-indexing system, whose H-component
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contains all finite H-sets, and there is a minimum G-indexing system, whose H-
component contains only trivial finite H-sets. We denote the former Set and the
latter triv. We summarize.

Proposition 2.16. The class Ind(G) of all G-indexing systems is a finite lattice
under levelwise inclusion. The meet of two indexing systems is their levelwise inter-
section, the join of two indexing systems is the indexing system generated by their
levelwise union, the minimum indexing system triv is class of all trivial actions,
and the maximum indexing system Set is the class of all actions.

We return to the classification of N, operads. Taking admissible sets sends
an Ny, operad & to an indexing system A(€), and converts a map ¢ : 01 — Oy
between No, operads into an inclusion A(&7) C A(O>). Moreover, if ¢ is a weak
equivalence, then A(0) = A(0>). Thus we obtain a functor

A : Ho(No.-Op%) — Ind(G),

where HO(NOO—O]I)G) is the category of N, operads with weak equivalences in-
verted. The classification theorem says this functor is an equivalence.

To show A : Ho(Nao-Op®) — Ind(G) is full, note A(0; x Oy) = A(0)) A A(05)
for any N, operads ¢ and 0y. Thus, if A(01) C A(0%3), then A(0y x O3) = A(0))
and the left projection map in &) < 0y X Oy — 05 is an equivalence. Therefore
this zig-zag determines a morphism &, — 05 in HO(NOO—OPG), which maps to
A(01) C A(O2) in Ind(G).

Establishing faithfulness is more involved. Blumberg and Hill proved that every
derived mapping space Map(&y, 0s) in the hammock localization LH(NOO—OpG)
is either empty or contractible [5, Proposition 5.5]. The strategy is to resolve 0}
by free operads, and then to use the free-forgetful adjunction and the emptiness
or contractibility of 05’s fixed point subspaces. Taking connected components of
LH(NOO-OpG) shows that every hom set in HO(NOO-OPG) is either empty or a
point, so the functor A : Ho(Na-Op®) — Ind(G) cannot help but be faithful. We
give a new proof of this result in §8 (cf. Corollary 8.12).

Lastly, Blumberg and Hill made the following conjecture.

Conjecture 2.17. The functor A : Ho(N-Op%) — Ind(G) is surjective.

This has since been proven. We show that the functor A is surjective in §4 and §7,
and both Bonventre-Pereira [9] and Gutiérrez-White [16] have given independent
proofs. Our approaches are rather different. As explained in §1, each has its own
set of advantages, and each highlights distinct features of N, theory. However,
there is a common theme in our solutions, which we describe in §8.3.

We arrive at the following conclusion.

Theorem 2.18 (Classification of Ny, operads). Taking admissible sets determines
a Dwyer-Kan equivalence A : L¥ (Noo-Op®) — Ind(G) of simplicial categories and
an ordinary equivalence A : HO(NOO—OpG) — Ind(G) of 1-categories.

Proof. Combine [5, Theorem 3.24] with Theorems 4.9 or 7.2 of this paper, or the
results in [9] or [16]. O

Remark 2.19. Indexing systems are a natural device for studying N, operads, but
there are other equivalent and useful formulations.
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When contemplating incomplete Tambara functors, it is convenient to think in
terms of polynomial bispans in the category Set%n of finite G-sets, whose mul-
tiplicative legs are restricted to a subcategory 2 C Set?m. This subcategory 2
should be wide, pullback stable, and finite coproduct complete to ensure that the
corresponding category of bispans is sensible. Blumberg and Hill prove that such
indexing categories 9 are in bijective correspondence with indexing systems [6].

One can also recast the definition of an indexing system purely in terms of
orbits, and the result is what we call a transfer system. More precisely, a transfer
system is a partial order on Sub(G) that refines inclusion, and which is closed
under conjugation and restriction. Transfer systems are useful in combinatorially
intensive situations, and we prove that transfer systems and indexing systems are
equivalent in [31]. This notion was also discovered in striking, independent work of
Balchin, Barnes, and Roitzheim [2], in which they prove that the lattices Ind(Cpn)
are isomorphic to associahedra.

3. DISCRETE N OPERADS

In this section, we explain how to reduce problems about N, operads to discrete
combinatorics. The key point is that N, operads contain no higher homotopical
information. We leverage this to give a quick construction of N, operads from
operads in Set® that have the same isotropy properties. We call these combinatorial
objects N operads, and we show that IV operads are equivalent to N, operads for
all homotopical purposes (Theorem 3.7). We conclude with a few examples of N
operads that elaborate on Guillou and May’s constructions [17].

3.1. N operads. Consider the following discrete analogue to a N, operad.

Definition 3.1. Let & be a symmetric operad in the category Set® of G-sets with
respect to the cartesian product. We say that & is a N operad if it satisfies the
following two conditions:

(1) for every integer n > 0, the G x X,-set O(n) is X, -free,

(2) the sets €(0)¢ and €(2)¢ are nonempty.
We write N-Op© for the category of N operads in Set®.

For any subgroup H C G and finite H-set T, we say that T is admissible for &

or that @ admits T if the set @(|T|)T ™) is nonempty. We write A(&) for the class
of admissible sets of &.

We construct N, operads from N operads by attaching cells to kill all homotopy.
This must be done somewhat carefully to ensure that the end result is still an
operad. We borrow a trick from [18].

Let Cat be the category of small categories. The functor

Ob : Cat — Set,

which sends a small category % to its set of objects, has a right adjoint

Cat + Set : (—).

For any X € Set, the category X has object set X, and a unique morphism
(z,y) : x — y for every pair 2,y € X. Therefore & = @ and X ~  if X # @.

Definition 3.2. Let E : Set — Top be the composite of (—) : Set — Cat with
the classifying space functor B : Cat — sSet — Top.
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The functor E preserves all finite limits because B does and (/j) is a right adjoint.
It follows immediately that E induces a functor

E : Op(Set®) — Op(Top®)
between categories of operads. The next observation explains our notation.

Lemma 3.3. Suppose X is a G-set, and let F = {H C G| X" # @}. Then EX
is a universal space for the family F.

Proof. For any subgroup H C G, the functor (=) is a finite limit because G is
a finite group. Therefore (EX)H = E(XH), and this is empty if X¥ = @, and
contractible if XH # @. O

To go the other way, we ignore topology.
Definition 3.4. Let (—)* : Top — Set be the forgetful functor.
The functor (—)" also preserves all (finite) limits, so it induces a functor
Op(Set®) « Op(Top®) : (—)™
The functors E and (—)* form a tight link between N, operads and N operads.

Proposition 3.5. Let G be a finite group.

(i) If O is a N operad in SetY, then EC is a No operad in Top® with the
same admissible sets.

(ii) If 0 is a No operad in Top®, then 0 is a N operad in Set® with the
same admissible sets.

Proof. We begin with (i). Suppose & is a N operad. We apply Lemma 3.3 re-
peatedly to verify the conditions in Definition 2.6. For (1), if £ C {e} x X, is
a nontrivial subgroup, then €(n)= = @ because €(n) is ¥,-free, and therefore
E0(n)= = @ as well. Thus E€(n) is a ¥,-free space. Condition (3) follows from
0(0)%,0(2)¢ # @, and condition (2) is immediate from Lemma 3.3. Therefore
E0 is a N4, operad, and for any graph subgroup I' C G x 3,,, we know that &'(n)"
is nonempty if and only if E&(n)! is nonempty. Thus ¢ and E& have the same
admissible sets.

Claim (#%) holds because the functor (—)* preserves Y-freeness, emptiness, and
nonemptiness. [l

Even though IV operads are discrete, we can equip the category of all N operads
with a perfectly good homotopy theory by creating weak equivalences along the
functor E : N-Op® — N,.-Op©.

Definition 3.6. A morphism f : ), — 05 of N operads is a weak equivalence if
Ef : EO1(n)V' — E0y(n)! is a weak homotopy equivalence of topological spaces
for all n > 0 and graph subgroups I' C G x ¥,,.

Since the fixed points E0;(n)' are either empty or contractible for i = 1,2,
saying Ef : EO) — E05 is a weak equivalence is the same as saying Oy (n)' # @
implies @ (n)'' # @ for all n and T'. This is a purely combinatorial condition with
little dependence on f; however, the existence of an operad map f : 07 — Os
implies that if &5(n) has a I'-fixed point, then some I'-fixed point of €s(n) lifts
along f to a I'-fixed point of & (n), namely the image of an element z € & (n)".
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Thus, we have a homotopical category Noo—OpG of N, operads, and a homo-
topical category NV —OpG of N operads. The functor E preserves weak equivalences
by definition, and it is straightforward to show the functor (—)* also preserves weak
equivalences. The interesting thing is that F and (—)* induce an equivalence of
homotopy theories.

Theorem 3.7. The homotopical functors E : N-OpY 2 N,.-Op% : (=)* preserve
admissible sets and induce Dwyer-Kan equivalences between the hammock localiza-
tions of N-Op® and N..-Op©.

Proof. Proposition 3.5 handles the claim about admissibles. The remainder of the
proof is another application of May’s product trick [25]. Let & be a No, G-operad.
Then E(0O") is a Ny, operad with the same admissible sets by Proposition 3.5, and
therefore both of the product projections

O+ 0 xE")— E(0")

are weak equivalences. Therefore E o (—)* and the identity functor on N.-Op are
connected through a zig-zag of natural weak equivalences. Similar reasoning shows
that (—)“o F and the identity functor on N-Op are connected through a zig-zag of
natural weak equivalences. Therefore E and (—)* induce Dwyer-Kan equivalences
between the simplicial hammock localizations L (No-Op®) and L7 (N-Op®) (cf.
[12, Propositions 3.3 and 3.5]). O

Thus, there is no homotopical difference between topological N, operads and
discrete N operads.

Remark 3.8. Blumberg and Hill prove that every hom space in L7 (NOO—OpG) is
either empty or contractible (cf. [5, Proposition 5.5]), so the same is true for the
hom spaces in L (N-Op%). We shall give a purely combinatorial argument for
this fact in §8, thus reproving Blumberg and Hill’s result.

3.2. Examples of N operads. We now describe a few examples of N operads
that build on the ideas in [17]. We begin with coinduced operads.

Suppose X is a nonempty right G-set and & is a N operad in Set, i.e. O is
Y-free and €(0), 0(2) # @. Then Set(X, 0) is a N G-operad. Moreover, if T' is a
finite H-set, then

every h € H that fixes a point in X

Set(X, 0) admits T if and only if acts as the identity on 7.

Here are two extreme cases of this construction.

Example 3.9. Suppose As is the associativity operad. Its n-ary operations are
As(n) = X, with X,, acting on the right by group multiplication. Let X = G,
with G also acting on the right by group multiplication. Then & = Set(G, As) is a
N operad, and A(&) = Set. Applying the right adjoint to Ob : Cat — Set yields
an operad @, which is isomorphic to the operad Z¢ considered in [17] and [19].

On the other hand, if X = %, then the N operad ¢ = Set(X, As) is isomorphic
to As equipped with a trivial G-action. Therefore A(€) = triv, and 0 is the
ordinary Barratt-Eccles operad & equipped with a trivial G-action.

Unfortunately, not every indexing system Z is of the form A(Set(X, As)).
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Counterexample 3.10. Let G = C4 and choose a generator ¢ € G. Let H =
{e, g*} and let Z be the C;-indexing system that contains all finite H-sets, but only
trivial sets otherwise. Then Z # A(Set(X, As)) for every nonempty right G-set
X. Indeed, if T C A(Set(X, As)), then Set(X, As) admits H/e, and then since g*
acts nontrivially on H/e, it follows g? cannot fix any element of X. Therefore G
acts freely on X and A(Set(X, As)) = Set properly contains Z.

Similarly, one might hope that every G-indexing system is realized by a subop-
erad of Set(G, As), because A(Set(G, As)) = Set is the terminal indexing system.
This is also false. Bonventre shows that if G = Cy x Cs, then the indexing system
that contains all finite Cs x 1-sets, but only trivial actions otherwise, cannot be re-
alized as a suboperad of Z¢ [8, Example B.2.1]. The problem is that the elements
of Set(G, As) are overcrowded.

We now consider discrete variants of the linear isometries operads £(U), following
[17, §7].

Definition 3.11. A discrete G-universe is a countably infinite G-set U, which
contains infinitely many copies of each orbit G/H that embeds in U, and which
also contains copies of G/G.

The following is a generalization of Guillou and May’s additive operad ¥ (U).

Example 3.12. Suppose U is a discrete G-universe. The nth level of the operad
L4(U) is the set of all injective, but not necessarily equivariant, functions U"" < U,
where UY" is the n-fold coproduct of U. The group G acts by conjugation, ¥,, acts
by permuting U summands, the identity function id : U — U is the identity, and
v(g; f1y- s ) = go (fiU---U fr) is composition. The ¥,, actions are free, and
L4(U)(n)¢ # @ because U™ G-embeds into U. Therefore L4(U) is a N operad.

The admissible sets of L£4(U) are easy to calculate. Let U be a discrete G-
universe and for any H C G, define Staby (U) = {Stabg(z) |z € U}. Then for any
subgroups K C H C G,

L4(U) admits H/K if and only if Stabg (U) C Staby (U).
Consequently, not every indexing system is realized by an operad L4(U).

Counterexample 3.13. Let G = C4 and keep notation as in Counterexample 3.10.
Then the indexing system Z is not realized by the operad L4(U) for any discrete
G-universe U. For suppose L4(U) admits H/e. Then {e} = Stab.(U) C Stabg (U),
hence U contains the free orbit Cy/e, and hence Stab.(U) C Stabg(U). Therefore
L4(U) also admits Cy/e.

The relationship between L4(U) and the topological linear isometries operad
L(R[U]) is delicate. The extreme cases are easy. If U = [G/G]"*°, then A(Lq(U)) =
triv = A(L(R[U])), and if U contains all G-orbits, then A(L4(U)) = Set =
A(L(R[U])). Things are less clear in between. If U = [G/G U G/e]"*°, then R[U]
is a complete G-universe and A(L(R[U])) = Set. On the other hand, £4(U) does
not admit G/H for any nontrivial, proper subgroup H when U = [G/G U G/e]"*.

There is also a multiplicative variant of £4(U), which generalizes Guillou and
May’s operad ¥/ (U), and which is trying to model a linear isometries operad based
on the tensor powers of a universe. We shall not pursue it here.
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4. THE REALIZATION PROBLEM

Despite the counterexamples in §3.2, it is possible to realize every indexing sys-
tem by a N operad or a N, operad. In this section, we give the simplest general
construction that we know (Theorem 4.9). The linchpin of our work is Theorem 4.6,
a calculation that is logically equivalent to Blumberg and Hill’s indexing system
conjecture (Proposition 4.11). Its proof is somewhat involved, so we defer it to §6.
We shall give a more refined construction of associative N, operads in §7.

4.1. The key calculation. We analyze the universal examples of N operads and
indexing systems. By general considerations, there is a free-forgetful adjunction

F : Sym(Set®) = Op(SetY) : U

between the categories of symmetric sequences and operads in G-sets. The left ad-
joint sends a G-symmetric sequence S to the free G-operad F'(S) that it generates.
There is an analogous adjunction for indexing systems, and miraculously, taking
admissible sets preserves the adjunction, provided the operads and symmetric se-
quences are suitably restricted.

This is a non-formal fact. It hinges on a calculation of the fixed points of a free
G-operad, which amounts to composing a left adjoint with a right adjoint.

We begin on the operadic side, by restricting attention to N operads and to
certain symmetric sequences that generate them.

Definition 4.1. Let S be a symmetric sequence in the category Set® of G-sets.
We say S is a N symmetric sequence if:

(1) for every integer n > 0, the G x X,-set S(n) is ¥, -free, and

(2) the sets S(0)¢ and S(2)¢ are nonempty.
We write N —SymG for the category of all N symmetric sequences in Set”.

For any subgroup H C G and finite H-set T', we say that T is admissible for S
if S(|T])"™) is nonempty.

By neglect of structure, every N operad & is a N symmetric sequence. Con-
versely, every N symmetric sequence generates a N operad.

Proposition 4.2. The free-forgetful adjunction F : Sym(SetG) = Op(SetG) U
restricts to an adjunction

F: N-Sym® = N-Op% : U.
between the full subcategories of N symmetric sequences and N operads.

Proof. It is enough to show that F'(S) € N-Op for every S € N-Sym©. If § €
N-Sym©®, then there is an operad map F(S) — Set(G, As). Therefore F(S) is
Y-free, and F(S)(n)% # @ for n = 0,2 because of the unit 7 : S — F(S). O

The admissible sets of a N symmetric sequence do not form an indexing sys-
tem, because the conditions on subobjects, coproducts, and self-induction reflect
operadic composition. We do retain some of the axioms in Definition 2.12, though.

Definition 4.3. A class of G-subgroup actions X is a G-coefficient system if it
satisfies conditions (2)—(4) of Definition 2.12. Let Coef(G) be the poset of all
G-coefficient systems, ordered under inclusion.



COMBINATORIAL No, OPERADS 17

Coefficient systems in the sense above are equivalent to full, replete subcoefficient
systems of Set in the sense of [5]. Since the subgroups of G x%,, that have nonempty
fixed points are closed under subconjugacy, the next result follows.

Lemma 4.4. If Q is a N symmetric sequence, then A(Q) is a coefficient system.
However, if ¢ is a N operad, then we get all of the axioms.
Proposition 4.5. If 0 is a N operad, then A(O) is a indexing system.

Proof. We have A(0) = A(E0), and E0 is a N, operad. Alternatively, Blumberg
and Hill’s original arguments [5, §4] work just fine, once we replace all instances of
“contractible” with “nonempty.” |

We now turn to the analogue of F': N-Sym &= N-Op : U for indexing systems.
There is a free-forgetful adjunction
(o) : Coef(G) = Ind(G) : ¢

where ¢ is the inclusion, and (e) sends a G-coefficient system to the indexing system
that it generates (cf. Definition 2.15). Consider the squares below.

N-Sym i» N-Op N-Sym L N-Op
| |4 | |4
Coef(G) — Ind(G) Coef(G) e Ind(G)

(o)

For any N operad O, the equality A(U(0)) = 1(A(0)) for right adjoints is
immediate. The equality A(F(S)) = (A(S)) for left adjoints also holds, but this is
the crux of the problem.

Theorem 4.6. If S is a N symmetric sequence, then A(F(S)) = (A(S)).

Sketch of Proof. The inclusion (A(S)) C A(F(S)) follows from the equivariance of
the unit  : § — F(S) and the fact that A(F(S)) is an indexing system. The other
inclusion requires work. We unpack the general theory of generators and relations
for operads in §5, and then we calculate the admissible sets of F(S) in §6. O

Remark 4.7. Here is how to interpret the equality A(F(S)) = (A(S)). The indexing
system (A(S)) is obtained from the symmetric sequence S by taking the external
norms of S (cf. Definition 2.5), and then closing up under the indexing system
axioms. On the other hand, the indexing system A(F(S)) is obtained by closing
up S under composition, and then computing the resulting external norms. In the
former case, the closure conditions of an indexing system are dictated by Blumberg
and Hill’s axioms. In the latter case, the closure conditions on A(F'(S)) are dictated
by algebra. That A(F(S)) and (A(S)) are equal says that Blumberg and Hill’s
indexing system axioms perfectly capture the algebra of composition for external
norms.

4.2. Free realizations of indexing systems. Assuming Theorem 4.6, we can
construct operadic realizations of all indexing systems, thus verifying Blumberg
and Hill’s indexing system conjecture.
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Definition 4.8. Let T = (T, )aecs be an indexed set of finite G-subgroup actions,
and let S7 be the N symmetric sequence
G x %o G x X9 G x X1,
St = - U - e
G x {ido} G x {id2} I(T,)

acJ
More precisely, St is the symmetric sequence whose nth level is the disjoint union
of all of the above orbits of the form G x X,,/A, where A is a subgroup of G X ¥,,.
We define F- = F(S7) to be the free N-operad on S7.

Theorem 4.9. The functors A : Noo-Op® — Ind(G) and A : N-Op® — Ind(G)
have functorial sections. In particular, there is a section

F :Ind(G) — N-Op®

given by the formula F(I) = Fo(z), where O(Z) is the set of nontrivial orbits
H/K €Z. The operad F(I) is a finitely generated free operad for every T € Ind(G).

Proof. By Theorem 4.6, we have

A(F(Z)) = (A(Som)) = (0(2)) =T.
Therefore F(Z) is a N operad that realizes Z, EF(Z) is a N, operad that realizes
Z, and Conjecture 2.17 is true. Moreover, if Z C J, then Soz) C So(s), and
this inclusion induces a map F(Z) — F(7). Therefore F : Ind(G) — N-Op© is a
functorial section of 4 : N-Op® — Ind(G) and E o F : Ind(G) — N.-Op€ is a
functorial section of A : Nyo-Op® — Ind(G). O

We use the set O(Z) to generate the operad F(Z) because it is efficient and
reasonably canonical. Plenty of other choices are possible.

Example 4.10. For each subgroup H C G, integer n > 0, and homomorphism
o: H — %,, we write (n, o) for the H-action on {1,...,n} determined by o. Given
an arbitrary indexing system Z, let N(Z) be the set of all (n,o) contained in Z.
Then N(Z) contains every admissible set of Z up to isomorphism, and we obtain a
functorial section Fyz) : Ind(G) — N-Op€ of A: N-Op“ — Ind(G).

We conclude with a comment on the logical significance of Theorem 4.6.
Proposition 4.11. Theorem 4.6 is logically equivalent to Conjecture 2.17

Proof. The proof of Theorem 4.9 shows that Theorem 4.6 implies Conjecture 2.17.
Now suppose that Theorem 4.6 were false. Then there would be some N symmetric
sequence S such that Z = (A(S)) € A(F(S)). We claim that Z would be unre-
alizable. Suppose for contradiction that Z = A(&) for some N operad &. Then
A(S) € T = A(0), and therefore there would be a map S — & of symmetric
sequences. By adjunction, we would obtain an operad map F(S) — &, and deduce

A(0) =T = (A(S)) C A(F(S)) C A(6). O

5. FREE AND QUOTIENT (G-OPERADS

There are plenty of excellent treatments of operads in symmetric monoidal cat-
egories (e.g. [28] and [14]). There are also excellent discussions of combinatorial
operads in Set (cf. [10] and [15]). Unfortunately, we could not find an account of
operads in Set® that met our needs. The proof of Theorem 4.6 hinges on delicate
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equivariant combinatorics, and we require an extremely precise description of free
N operads to carry it out. Thus, we shall spend this section building scaffolding.

The basic theory of combinatorial operads has many formal similarities to or-
dinary algebra, and we shall omit the most routine proofs. Unfortunately, this
material is fairly dry. Therefore we begin by summarizing the relevant results in
§5.1, and then we flesh out the details in §§5.2-5.5. We recommend skimming or
skipping the latter on a first reading.

5.1. Summary. We give an explicit description of the free N operad generated by
a N symmetric sequence. Suppose S = (S(n))n>0 is a N symmetric sequence in
Set®. We think of the elements f € S, as n-ary operations, and we will usually
write them as functions f(x1,...,2,) in Z1,..., Tp.

The free N operad F(S) is constructed from S in two stages. First, we construct
a G-operad Fy(S), whose n-ary operations are formal composites of the operations
in S, which contain each of the variables x1,...,z, exactly once. For example, if
f€8(3),heS2), ke S(1),and £ € S(3), then the formal composites

f(h(xs, 22), k(21), €(w6, 24, 25)) and  f(h(k(xe), ¥5), £(T4, T3, 22), 71)
are in Fy(9).
Operadic composition v on Fy(S) is defined by reindexing variables and then
substituting functions into functions. For example,

’Y(f(ﬂb, x1,73); k(21), h(wzvﬂfl)’f(%s,xl,xz)) = f(h(xs,x2), k(21), (w6, T4, T5))

This requires a bit of explanation. The left hand side really is correct, because we
want all arguments of v to be elements of Fy(S). Now, the idea is to substitute
k(xq) for 21, h(xe,x1) for 9, and €(x3,x1,22) for x3 in f(x1, 22, x3), but this does
not work because it produces something with three z;’s. Therefore we replace
h(xo, 1) with h(zs,x2) and £(x3, 1, 22) with £(zg, 24, x5) before substituting.

Now for the rest of the structure. The variable z; is the identity for . Right
multiplication by a permutation o moves z; to z,(;)’s spot, e.g.

f(.’ﬂQ, T, 1'3) . (321) = é(lL’g, 2, $1),
and the G-action on Fy(S) is inherited from the G-action on S, e.g.

g+ (f(k(21), h(xs, 24, 32))) = gf(gk(21), gh(ws, x4, x2))
for any ¢ € G. We think of the G-action as conjugation, which commutes with
composition. There is a natural inclusion map 79 : S — Fy(S), which sends f € S,
to f(x1,...,2n) € Fo(S). This is the unit of the free-forgetful adjunction
Fy : (Set®)N = Op(Set®) : U

between non-symmetric sequences of G-sets and operads in G-sets.

Unfortunately, the map no : S — Fo(S) is not X-equivariant, because we forgot
the 3-action on S when we constructed Fy(S). We fix this by passing to a quotient.
The operad F(S) is the operad Fy(S), modulo the relations

fo(xr, ... xn) ~ f(@g-11,...,To-1p) (n>0, feSn),ocek,).

We write [t] for the congruence class of ¢ € Fy(S). Combining the universal prop-
erties of the unit 79 : S — Fyp(S) and the quotient 7 : Fy(S) — F(S) shows that
F(S) is the free N operad generated by S. The unit of the free-forgetful adjunction

F : Sym(Set®) = Op(SetY) : U
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is the composite w o1 : S — Fy(S) — F(5), which sends f to [f(z1,...,z,)].

We shall need a more precise description of F(S) in order to compute its fixed
points. Choose a set Sy of ¥-orbit representatives of S. By stringing together
the ~ relations above, we may convert any formal composite of operations in S
into a formal composite of operations in Syx. For example, if f = /- (12) € S(2),

=h"-(1 € , an =k € 5(1), where f', h', k' € Sy, then
h="n-(123) € S(3 dk=kK eS8 here f/, h', k' € Sy, th
f(k(.’l}]_), h(.’I}g,.’I}4, IQ)) ~ f/(h/(.'lfg,l‘g, 1‘4), k/($1>)

It follows that Fy(Ss) C Fo(S) is a set of representatives for ~, which implies it
inherits an operad structure from F(S). All of the structure on Fy(Sy) is the same
as in Fy(S), except for the G-action. This is because Fy(Syx) is not closed under the
G-action of Fy(S). Thus, for any g € G and t € Fy(Syx), we define a new product
g *t by computing g -t in Fy(S), and then applying ~ relations to convert g - ¢ into
an element of Fy(Sx). For example, if f € Sx(n) is I'(T)-fixed for some n-element
G-set T, then for any (g,0(g)) € T'(T), we have g- f = f-0(g) in Fy(S). Therefore

g * f(.’El, cee ,:L'n) = f(:[,'g(g)—ll, ey xa(g)—ln) in Fo(Sg),

which means that f(x1,...,2,) is formally an external T-norm. The operad Fy(Sy),
equipped with #, is isomorphic to the free operad F'(S). This is the model of F(S)
that we will use in §6.

We shall spend the remainder of this section making the sketch above precise.
We treat formal composites in §5.3, we construct Fy(S) in §5.4 (cf. Construction
5.15 and Proposition 5.18), and we construct F'(S) in §5.5 (cf. Construction 5.19
and Theorem 5.23). Quotients operads are discussed in §5.2, because they logically
precede the construction of F(S).

5.2. Quotient operads. Suppose € is an operad in Set®. Since composition in
0 is typically non-invertible, we cannot construct quotients of & as sets of cosets,
as one typically does in group, ring, and module theory. We shall use congruence
relations instead. They should be thought of as substitutes for normal subgroups,
ideals, and submodules.

Definition 5.1. Suppose € is an operad in Set®. A congruence relation ~ on O
is a tuple (~y)n>0 such that

(1) for all integers n > 0, ~,, is an equivalence relation on &'(n),
(2) for all integers n > 0, elements (g, 0) € GXx X, and operations f, f' € &(n),
if f~, f/, then gfo ~, gf'c, and
(3) for all integers k, j1,...,jr > 0 and operations h,h' € O(k), f1, f1 € O(j1),
o Je fl € O(g), it b~ B/ and f; ~j, f] for ¢ = 1,...,k, then
V(ha fla ceey fk) g1tk W(hlv f{? RN} f]/q)

In other words, a congruence relation on a G-operad is a graded equivalence
relation that is compatible with the operad structure. The axioms for a congruence
relation ensure that all of the structure on & descends to congruence classes.

Definition 5.2. Suppose & is an operad in Set® and ~ is a congruence relation
on 0. The quotient operad O = €'/~ is defined as follows:

(1) the set O (n) is the set &(n)/~,, of all ~,-equivalence classes of &'(n),
(2) given a class [f] € O(n) and (g,0) € G x X, we define g[f|o := [gfo],
(3) the identity of € is the class [id] of the identity in &, and
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(4) for any integers k,j1,...,jr > 0 and classes [h] € 6(k), [f1] € 6(j1), - .-,
[fx] € O(ji), we define y([R]; [f], .., [fe]) == [v(hs f1, .-, fu)l-

Moreover, the quotient map 7 : & — € has the usual universal property.

Proposition 5.3. Suppose O is an operad in Set®, ~isa congruence relation on
O, andlet m: 0 — O = 0/~ be defined by w(f) = [f]. Then:
(1) The map w: € — O is an operad map, and 7(f) = w(f') whenever f ~ f'.
(2) If ¢ : €@ — 0" is an operad map such that f ~ f" implies o(f) = o(f'),
then there is a unique operad map @ : O — O’ such that o = po.

As one might hope, we can take quotients by kernels, but only after reinterpreting
kernels as congruence relations.

Definition 5.4. Suppose ¢ : & — 0’ is a map of operads in Set®. The kernel of
¢ is the congruence relation ~,= (~y 1, )n>0 on &, defined by

fren f ifandonly if o(f) =o(f)  (n=0, f,f € On)).
Since ~ is the kernel of 7 : & — €/ ~, it follows that congruence relations on &
are the same thing as kernels of operad maps out of &.

Congruence relations are typically quite large, and in practice, we shall specify
them using a small set of generators.

Definition 5.5. Suppose & is an operad in Set® and R is a graded binary relation
on 0,i.e. R= (R,)n>0 where R,, is a binary relation on &'(n). Then the congruence
relation generated by R is

(R), = {(f, )€ O(n)*%| f ~ f for all congruence relations ~ O R},
i.e. (R) is the levelwise intersection of all congruence relations that contain R.

The relation (R) is the smallest congruence relation that contains R. We intro-
duce the relation R into an operad & by first enlarging R to (R), and then taking
the quotient ¢'/(R). This quotient also has the expected universal property.

Corollary 5.6. Suppose O is an operad in Set®, R is a graded binary relation on
O, and let m: 0 — O/(R) be the quotient map. Then:

(1) The map w: O — O/(R) is an operad map, and w(f) == (f") if fRf’.

(2) If o : © — 0’ is an operad map such that fRf’ implies o(f) = p(f’), then

there is a unique operad map @ : O/{R) — 0" such that o = o .

Proof. Part (1) follows immediately from part (1) of Proposition 5.3. For part (2),
suppose ¢ : € — 0" is an operad map such that fRf" implies o(f) = ¢(f’). Then
R refines ker(y), and therefore (R) must, too. Thus, if f(R)f’, then ¢(f) = o(f'),
and the existence and uniqueness of ¥ : 0/(R) — ' follows from part (2) of
Proposition 5.3. [

It can be difficult to determine if two operations are identified by the congruence
relation generated by R, but the following description of (R) can help.

Definition 5.7. Suppose R is a graded binary relation on an operad ¢ in Set®.
Given any integer n > 0 and operations fi, fo € €(n), declare fiRfs if

fo=9-(roxv(spitr,....t;)) -0 (b=1,2)
for some
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(1) (g,0) € G x %, and
(2) re O(m), s1,82 € O(j), and t, € O(iy) fora=1,...,7,

such that s;R;s2 and the integers n,m,k, j,71,...,7; > 0 satisfy 1 < k < m and
n=m-+1i +---+14; — 1. Here o, denotes the kth partial composition product.

The relation R is obtained by closing R under the G x X-action and certain
composites. It is not usually an equivalence relation, so we generate one.

Proposition 5.8. Suppose O is an operad in Set® and R is a graded binary
relation on €. Then (R) is the equivalence relation generated by R levelwise.

Proof. Let ~ be the equivalence relation generated by R. Tt is straightforward to
check that ~ refines every congruence relation that contains R. Thus, we only need
to check that ~ is a congruence relation. Consider R. By construction, it satisfes
(2) of Definition 5.1, and it also satisfies a version of (3) where we only replace one
of the operations h or f;. It follows that ~ satisfies (2) and (3), and it is a graded
equivalence relation by construction. (I

5.3. Formal composites. We now turn to the constructions of Fy(S) and F(S),
starting with a precise description of “formal composites.” We begin with some
standard notions in formal logic.

Definition 5.9. Suppose S = (S(n))n>0 is a sequence of G-sets. Regard the
following formal symbols

v i=1,2,3,...

[ fellseShn)
() , (punctuation)

as the letters in an alphabet 3(S). The elements of the free symmetric G-operad
Fy(S) will be suitable finite sequences of these letters.

A word w is a finite, ordered sequence lyls - - -1, of letters I; € 3(S). We write
¢ for the empty word. A subword of w is a word that is either £ or of the form
Liligq - l—1lg for some 1 < j < k < n. The length A(w) of the word w = lyly-- -1,
is n, and A(e) = 0.

A term is any word constructed through the following recursion:

(1) every variable x; is a term, and
(2) if t1,...,t, are terms and f € S(n), then f(¢1,...,t,) is also a term.

A subterm of a word w is a subword of w that is also a term. The complexity of a
term ¢ is the length of the longest chain of nested pairs of left and right parentheses
in t. For example,

t = f(h(k(xg), x5), (x4, T3, T2), 1)

has complexity 3. Thus, if t = f(t1,...,t,), then the complexity of each ¢; is strictly
less than the complexity of t.

The arity of a term t is the number of distinct variable symbols x; that appear
in t. We say that a n-ary term t is operadic if each of the variables x1, ..., z, occur
in ¢ exactly once.

Notation 5.10. Suppose t is a term. We write ¢ for the operadic term obtained
from ¢ by reindexing the variables in ¢t as x1, x2,... from left to right.
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Example 5.11. The unary term s = p(x1,z1,21) is not operadic, and neither is
the ternary term ¢t = p(xs, 3, x4). However, we have

5=1=p(r1,22,23),
and both 5 and ¢ are operadic.

As we explain below, every term can be parsed into subterms, depending on
the configuration of parentheses within it. Such decompositions can be interpreted
as trees, but even though the corresponding pictures are intuitive, we find them
unwieldy in calculations. Thus, we use the logical formalism instead.

Definition 5.12. An initial segment of a word w = Iyl - - - 1,, is a word of the form
s = lylg-- -1l for some 0 < k < n. We understand s = ¢ if £ = 0, and we say s is
a strict initial segment if k¥ < n. Dually, a terminal segment of w is a word that is
either € or of the form s = lglgy1 - -1,, and we say s is strict if 1 < k.

The key to parsing a term into subterms is the following parenthesis count. The
proof of the following is a straightforward induction on complexity.

Lemma 5.13. For any word w, write L(w) for the number of left parentheses in
w and R(w) for the number of right parentheses. Suppose that t is a term. Then:
(1) L(t) = R(t).
(2) If s is an initial segment of t, then L(s) > R(s), and the inequality is strict
if 2 < A(s) < A(t). In the latter case, s is not a term.
(8) If s is a terminal segment of t, then L(s) < R(s), and the inequality is
strict if 0 < A(s) < A(t) — 2. In the latter case, s is not a term.

Proposition 5.14. Suppose m,n > 0 are integers, f € S(m), g € S(n), and that
S1yevySmytly .. tn are terms. If f(s1,...,8m) = g(t1,...,tn) as words in X(S5),
thenm=mn, f=g, and s; =t; fori=1,...,m.

Proof. Suppose f(s1,---,8m) = g(t1,...,ts). Then f = g because they are the
first letters. To show sy = t1, it is enough to check that s; and t; have the same
length. If A(s1) < A(t1), then s; is a strict initial segment of ¢;. Either s; is a
variable and ¢; is not, or A(s1) > 2. The former case is clearly impossible, and the
latter is ruled out by (2) of Lemma 5.13. Continue inductively. O

Thus, it makes sense to speak of the subterms of a given term.

5.4. The operad Fj(S). We now construct the free G-operad Fy(S) on a non-
symmetric sequence of G-sets.

Construction 5.15. Let S € (Set”)N be a sequence of G-sets, and define a sym-
metric operad Fy(S) in Set® as follows.

(1) Let Fy(S)(n) be the set of all n-ary operadic terms in the alphabet %(.5).

(2) Givent € Fy(S)(n) and o € 2, let t-0 be the n-ary operadic term obtained
from ¢ by replacing x; with z,-1; for each ¢ = 1,...,n. This makes Fy(S)(n)
into a right X, -set.

(3) Given g € G we define a left G-action on all terms in ¥(5) by the recursion:
(a) g-xp =a, forn=1,2,3,..., and
(b) g- f(t1,.- . tn)=f'(g-t1,...,9 tn), where f'=gf € 8S.
This action multiplies every letter f € S in a term by g, and does nothing
to the variables and punctuation. Therefore it restricts to a G-action on
each set Fy(S)(n), which commutes with the ¥, -action.
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(4) The identity element is ;. It is G-fixed by definition.

(5) Given a k-ary operadic term ¢ and j;-ary operadic terms s; fori =1,...,k,
the composite v(t; s1,. .., k) is defined by:

(a) adding j3 + --- + ji—1 to the subscript of every variable appearing in
s; — call this new term s, — and then

(b) substituting the terms s, ..., s}, in for the variables z1,...,zy in t.
These substitutions commute with the substitutions that define the G-
action, and therefore 7 is G-equivariant.

There is a G-equivariant unit map 7o : S — Fp(S) that sends the letter f € S(n) to
the n-ary operadic term f(z1,...,2,) € Fo(S)(n). If u € S(0) we set no(u) = u().

An important technical point is that every operadic term in Fy(S) may be ex-
pressed canonically as a composite. Recall Notation 5.10.

Notation 5.16. Suppose t € Fy(S) and t = f(ty,...,t,) for some f € S(n) and
Jji-ary terms ¢;. Then there is a unique o € X; 4.4, such that

fltrsostn) =700t tn) - 0

We call the right hand side the standard decomposition of t. If u € S(0), we
understand the standard decomposition of u() to be y(no(u);) - 1.

Example 5.17. The standard decomposition of g(q(x1,x3), z2) is

q(q(x1,73), 22) = v(q(1,22); (1, 22), 71) - (23).
With this decomposition in tow, we can establish the freeness of Fy(.9).

Proposition 5.18. The map ng : S — Fy(S) in Construction 5.15 is the unit of
the free-forgetful adjunction Fy : (Set®)N < Op(Set®) : U.

Proof. One checks that 79 has the necessary universal property.

Suppose € is an operad in Set® and p S — O is a map of non-symmetric
sequences. Then there is at most one operad map ® : Fy(S) — € that ex-
tends ¢ along ng : S — Fy(S). Indeed, let ¢ = vy(no(f);t1,...,tn) - o be the
standard decomposition of ¢. Since ® is an operad map, we must have ®(t) =
v(o(f); ®(t1),...,P(tn)) - 0 and ®(z1) = id, which determines ® recursively.

Now define ® : F(S) — € by the recursion above. Straightforward checks show
that ® is an operadic extension of ¢. For example, the standard decomposition of
flz,. .. xn) is y(no(f); z1,...,21) - 1, and hence

(no(f) = @(f(z1, -, 20)) = v(p(f); (1), -, B(21)) - 1 = @(f).

Therefore ® extends ¢ along 19 : S — Fu(S5).

The map & preserves the identity by definition.

To see that @ is Y-equivariant, note first that ®(¢ - 7) = ®(¢) - 7 is automatic if
t=ux. Ift = f(t1,...,tn), then t -7 = f(¢},...,¢,) for some terms ¢, such that
t; = t. Thus, if t = y(no(f); ?1,---,tn) - o, then the standard decomposition of ¢ -7
isy(no(f);ti,... tn) o7, and thus ®(¢t-7) = v(¢(f); (t1), ..., P(tn)) o7 = () 7.

The rest of the proof is similar. One can induct on complexity to show @ is
G-equivariant, and ®(y(t;s1,...,88)) = Y(P(¢); D(s1),...,P(sk)) also follows by
induction on the complexity of t. [
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5.5. The operad F(S). Finally, we construct the free operad F(.S) on a symmetric
sequence of G-sets S.

Construction 5.19. Suppose S € Sym(SetG) is a symmetric sequence of G-sets.
Define the G-operad F(S) by

Fy(S)
<fa(x1, cosp) ~ f(g-11y. -y Tg-1p) [0 >0, f € S(n), o€ Zn>

and let n = womny : S — F(S) be the composite of 1y : S — Fy(S) and the
projection 7 : Fy(S) — F(S), i.e. n(f) = [f(z1,...,24)]

F(S) =

Proposition 5.20. The map n=mong : S — F(S) is the unit of the free-forgetful
adjunction F : Sym(Set®) = Op(Set®) : U.

Proof. The relations that define the quotient 7 : Fy(S) — F(S) ensure that n =
monnp is G X Y-equivariant, and universal property of 1 follows from those of 7 and
of ng (cf. Proposition 5.18 and Corollary 5.6). O

We shall momentarily give a more precise description of F'(S) when S is a ¥-free
symmetric sequence of G-sets, but first we need some preliminaries. Indeed, we
shall use the diamond lemma to gain traction on the situation, and we review the
relevant notions now.

The diamond lemma is a combinatorial result that we shall use to find represen-
tatives for equivalence relations. It is originally due to Newman [27], but we shall
follow Huet’s treatment [23], with some minor differences in terminology. Let X be
a set and let — be a binary relation on X. For any z,y € X, we shall say that y
is a one-step reduction of x if x — y. If y € X is minimal with respect to —, i.e.
there is no z € X such that y — z, then we shall say that y is —-reduced. Now let
5 denote the reflexive and transitive closure of —. For any z,y € X, we shall say
that y is a reduction of z if z > y. If z,y € X, x = y, and y is —-reduced, then
we shall refer to y as a —-reduced form of x.

Now let z,y,z € X and suppose that y and z are reductions of x. We shall be
concerned with when there is a common reduction of y and z. In such a case, we
write y | z. Dually, we write y T z if y and z are both reductions of a common
element x. We say that — is confluent if, for all y, z € X, the relation y 1 z implies
the relation y | z. Similarly, we say that — is locally confluent if, for all z,y, z € X,
the relations © — y and = — z imply that y | z. Every confluent relation is locally
confluent, and the diamond lemma gives a sufficient condition for when the converse
is true. It is the following: say that — is noetherian if there are no infinite chains

X1 —> Ty —> T3 —> -
of — relations in X. We arrive at the following result.

Lemma 5.21 (The Diamond Lemma, [23, Lemma 2.4]). A noetherian relation is
confluent if and only if it is locally confluent.

We refer the reader to [23] for a proof. In what follows, we shall use the following
corollary to the diamond lemma.

Corollary 5.22. Suppose X is a set and — is a noetherian, locally confluent
relation on X. Then every element x € X has a unique —-reduced form r(x) € X.
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Proof. First, we show that every element of X has a —-reduced form. Suppose for
contradiction that some x € X does not have a —-reduced form. Define recursively
a sequence as follows: first, set 1 = x. Then, assuming x1,...,z; have been
defined and 1 — --- — x;, note that x; cannot be —-reduced, or else x would
have a —-reduced form, and then let z; 1 be any element of X such that ; — ;1.
Continuing in this manner, we obtain an infinite sequence r; — x3 — 3 — -+,
contradicting the fact that — is noetherian.

Now we show that —-reduced forms are unique. Suppose x € X and that
y,z € X are both —-reduced forms of . Then z — y and = - z, and both y and
z are —-reduced. In particular, y 1 z. By the diamond lemma, — is confluent, and
therefore y | z. Thus, there is some w € X such that y - w and z - w. However,
the elements y and z are both —-reduced, which implies that y = w = z. O

With this result in tow, we return to our identification of the operad F(.5).

Theorem 5.23. Suppose that S € Sym(SetG) is a X-free symmetric sequence of
G-sets and that Sx(n) C S(n) is a set of ¥,,-orbit representatives for every integer
n > 0. Then the free operad F(S) on S is isomorphic to the operad Fy(Sx) in Set,
equipped with the following recursively defined G-action. For any g € G, declare:

(1) gz, =z, for every n >0, and
(2) gxf(t1,...,tn) = f'(gxto=-11,...,9%ts-1,), where gf = f'o for f' € Ss(n)
and o € ¥, and the terms t1,...,t, are not necessarily operadic.
If f € S(n), then the unit n : S — Fy(Sx) is defined by n(f) = no(f)o =
fl(@o-11,. .. Ze—1,), where f = f'o for f' € Sx(n) and o € 3,,.

Proof. By Construction 5.19, the operad F(S) is a quotient Fy(S)/~. By Propo-
sition 5.8, two m-ary terms ¢,t in Fy(S) are identified by ~ if and only if there is
m > 0 and a sequence ty, ..., ty of n-ary terms of Fy(S) such that
(1) t=tp and ¢’ = t,,,, and
(2) for each 0 < i < m, either the term ¢;11 is obtained by replacing a subterm
of t; of the form s = fo(ty,...,t;) with the subterm s’ = f(t5-11,...,te-1%),
or vice versa.

We now give a simpler description of ~. Declare t — ¢’ if

(i) ¢’ is obtained by replacing a subterm of ¢ of the form s = fo(ty,...,t)
with the subterm s = f(t,-11,...,t,-1}), and

(ii) f € Sx(k) and o # 1.
Observe that if t,t' € Fy(S) and t — t/, then ¢’ has one fewer operation symbol in
S\ Sx. It follows that — is noetherian. Next, note that a term ¢ is —-reduced if
and only if all of its operation symbols are in Sy,. Thus, the —-reduced terms are
precisely the elements of Fy(Sx). It is straightforward to check that — is locally
confluent, and therefore Corollary 5.22 implies that for every ¢ € Fy(S)(n), there is
a unique 7(t) € Fy(Sx)(n) such that t = r(t), where = denotes the reflexive and
transitive closure of —. In particular, ¢ ~ r(t).

If ¢, € Fy(S)(n) are such that 7(¢) = r(t'), then ¢ ~ ¢’ because there is a a chain
of forwards and backwards — relations between them. Conversely, if ¢ ~ ¢/, then
r(t) = r(t'). Indeed, it is enough to consider the case where t = afo(ty,...,t)5
and t' = af(tg-11,...,ts-13)0 for some words « and 8, and o # 1. If f € Sy,
then t — t/, and hence r(t) = r(¥'). If not, then f = fy7 for fx € Sy and



COMBINATORIAL No, OPERADS 27

T # 1. Writing t” = afs(t(zo)-11,- -+ t(ro)-1%) 5, We have t — " and ¢’ — t", so
r(t) =rit") =r{).

It follows that Fy(Sx) is a set of representatives for ~ on Fy(S), with r(¢) repre-
senting ¢. The quotient 7 : Fy(S) — F(S) induces a bijection 7 : Fy(Ss) — F(S)
whose inverse is 771([t]) = r(¢). This gives Fy(Sx) the stated G-operad structure,
and the unit is 7=t on: S — Fy(S)/~ — Fy(Sx). O

6. THE PROOF OF THEOREM 4.6

In this section, we perform the key calculation of §4. For readability, we begin
by recalling some concepts and notation, and then we prove the following result.

Theorem 4.6. If S is a N symmetric sequence, then A(F(S)) = (A(S)).

6.1. Recollections. Fix a finite group G.

If T is a finite H-set, then the graph subgroup I'(T) C G x ¥p| is the graph
of some permutation representation of T (Definition 2.5). The subgroup I'(T) is
well-defined up to conjugation, and it is canonically determined if 7" has an order.

A N symmetric sequence in Set” is a X-free symmetric sequence X such that
X(0)%, X (2)¢ # @. We say that X admits T if X(|T|)" ™) # @, and we write A(X)
for the class of admissible sets of X (Definition 4.1). The class A(X) is a coefficient
system. This means it is closed under isomorphism, restriction, and conjugation by
elements of G (Definition 4.3).

A N operad is an operad in Set®, which is also a N symmetric sequence (Det-
inition 3.1). Every N symmetric sequence generates a free N operad F(S), and if
O is any N operad, then A(0) is an indexing system. This is a coefficient system
that contains all trivial actions, and is closed under subobjects, coproducts, and
self-induction (Definition 2.12). Every coeflicient system C generates an indexing
system (C) (Definition 2.15).

Theorem 4.6 asserts that taking admissible sets commutes with free generation.
This is a computation of the fixed points of a free N operad F(S). We shall see
that the indexing system axioms mirror the structure of composition in F(S).

The free operad F(S) is typically defined as a large colimit, but it is hard to
compute the fixed points of a quotient. Therefore we shall use a different model,
denoted Fy(Sx). This operad is described in detail in §5. We recommend rereading
§5.1, but briefly, Sy, is a set of X-orbit representatives for S, and the elements ¢ €
Fy(Sx) are formal composites of operations in Sy;. The ¥-action permutes inputs,
and the G-action is computed by conjugating every operation, and then replacing
operations with their representatives in Sy, (Construction 5.15 and Theorem 5.23).
There is a related operad Fy(S), whose elements are formal composites of operations
in S. It has the same nonequivariant operad structure, but its G-action is just
conjugation (Construction 5.15).

Given any ¢ € Fy(Sy), the complexity of t is the length of the longest chain
of nested parentheses in ¢ (Definition 5.9). Thus if t = f(¢1,...,t,), then the
complexity of each t; is less than the complexity of t. We write ¢ for ¢, but with all
variables reindexed as x1, 3, ... from left to right (Notation 5.10).

6.2. The proof of Theorem 4.6. As explained in §4.1, the inclusion A(F(S)) D
(A(S)) is easy. We now consider A(F(5)) C (A(S5)).
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Definition 6.1. Suppose ¢t € Fy(Sx), H C G is a subgroup, and T is a finite H-set.
We say that T is t-admissible if t € Fy(Sx)(|T|)' ™), where I'(T) is the graph of
some permutation representation of T'.

We shall prove the following:
() For any t € Fy(Sy) and finite H-set T, if T' is ¢-admissible, then T € (A(S)).

Since every admissible set of Fy(Sx) is t-admissible for some t € Fy(Sx), this will
establish the inclusion A(F(S)) = A(Fyp(Sx)) C (A(S9)).

Proof. We argue by induction on the complexity of ¢t € Fy(Sx). If ¢ has complexity
0, then t = 27 € Fy(Sx)(1). Therefore every t-admissible set T is an action of
a subgroup H C G on a point. It follows T € (A(S)), because indexing systems
contain all trivial actions.

Now suppose t = f(t1,...,tn) € Fo(Sx) for some f € Sx(n) and tq,...,t,.
Assume (%) is true for all ¢ of smaller complexity. For any 1 < ¢ < n, the complexity
of t; is less than the complexity of ¢ and equal to the complexity of ¢; € Fy(Sx), so
by induction, every ¢;-admissible set is contained in (A(S)).

Consider a t-admissible H-set T. We must prove that T € (A(S)). The
strategy is to use the action on Fy(Sx) to express T in terms of ¢;-admissible
sets. Since indexing systems are closed under isomorphism, we may assume that
T ={1,...,|T|} and t € Fo(Sx)(|T)" D), where T(T) = {(h,o(h))|h € H} and
o(h)=h-(=):T — T. Therefore h*t-o(h)~t = (h,a(h)) *t = t, and hence

hxt=t-o(h) (for all h € H).

This is important. By Theorem 5.23, the term h x t is computed by multiplying in
Fy(S) and then shuffling subterms of ¢ around, whereas the term t-o(h) is computed
by permuting the variables of ¢ according to o(h) = h-(—) : T — T. Thus, we can
analyze the H-action on T using the recursive definition of h * (—).

For every h € H, write h- f = fp, - 7(h) for unique f5 € Sx(n) and 7(h) € X,,.
Here f is the first letter of ¢, and products are computed in Fy(.S). Then

In(h* Lr(h)=115-- -5 h t.,.(h)—ln) =hxf(t1,...,tn) = f(t1,....tn) - o(h).

The first letters must agree, so f, = f and h- f = f - 7(h). Hence (h,7(h)) - f =
h-f-7(h)~t = f for all h € H, which implies the subgroup {(h,7(h))|h € H} C
G x %, fixes f € S(n). Since S is X-free, the set {(h,7(h))|h € H} is the graph
subgroup I'(U) of an H-set U with permutation representation 7 : H — X,,. Thus
U € A(S) C (A(S)). Decomposing U into orbits, we see that H/K € (A(S)) for
every suborbit H/K C U, because indexing systems are closed under subobjects.

Now we group the variables in each ¢; along the orbits of U. Let

T; = {j € N|z; appears in ¢;} (1<i<n),
so that Ty U---UT, =T as sets. For each orbit O C U ={1,...,n}, let
To = [[ T
i€O

We claim that To is a sub-H-set of T'. In fact, we shall show o (h)(T;) = Ty (p);-

For any h € H, write ¢; for the term obtained from ¢; by replacing each variable
x; with z5(p)-1;. Then

f(tllvat;z) :tO'(h) =hxt= f(h*t‘r(h)_117"'ah*tr(h)_ln)a
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and therefore ¢/ (h)i = hxt; by Proposition 5.14. Thus, the same variables appear in
t’T(h)i and ¢;, which means U(h)’l(TT(h)i) = T;. This proves that Tp is a sub-H-set
of T. Moreover, there is an isomorphism

TzHTO
O

of H-sets. Thus, to prove T' € (A(S)), it will be enough to show Tp € (A(S)) for
each orbit O, because indexing systems are closed under coproducts.

Consider T/ = HGKGH/K T,k for a given orbit H/K C U. Then o(h)(Tex) =
Tyx for each h € H. Thus, T,k is a sub-K-set of resﬁTH/K that generates T/ as
an H-set, and ‘TH/K‘ = |H : K| |Tek|. Therefore the inclusion Tex — res%TH/K
induces an isomorphism

Ty/x = indi Tor.
Thus, to prove Ty € (A(S)), it will be enough to show T, € (A(S)), because
H/K € (A(S)) and indexing systems are closed under self-induction.

However, the K-action on T,k is isomorphic to the K-action on the variables of
one of the subterms ¢; in f(¢1,...,t,), and this is isomorphic to the K-action on the
variables of ;. This K-action is f;~admissible, by the definition of the G' x X-action
on Fy(Sy), and therefore T € (A(S)) by the induction hypothesis.

Thus Ter, Th/x = ind® T, x, and T = [Io To are all elements of (A(S)), which
is what we needed to prove. By induction on the complexity of t € Fy(Sx), we
conclude that A(F(S)) C (A(S)). O

7. EQUIVARIANT BARRATT-ECCLES OPERADS

In §4, we showed how to realize every indexing system as a free N operad. In
this section, we construct strictly associative and unital realizations (Definition 7.1).
These are the smallest models of N, operads that we know of, and after applying
the functor E : N-Op® — N..-Op©, they become N, variants of the Barratt-
Eccles operad. We summarize the basic properties of these operads in Theorem
7.2, and then we analyze their combinatorics in §7.1. The proof of Theorem 7.2 is
given in §7.3.

7.1. Associative N operads. For each indexing system Z, we construct an asso-
ciative and unital operad As(Z) as follows.

Definition 7.1. Let T = (Ty)acs and F7 be as in Definition 4.8, and suppose
1 : S+ — F7 is the unit of the adjunction. Write
e=n(G x {idp}), ® = n(G x {id2}), and ®Ta: n(T(Ty))
for every index a € J. We define Asy to be the quotient
Fr
Y(®;®,id) ~ y(®;id; ®) , 7(®;e,id) ~ id ~ v(®;id, e)
7(®Ta;e,...,e) ~e, 7(®Ta;e,...,e,id,e,...,e) ~ id

AST =

a€J>

of Fr by the indicated relations. In v(@®7 ;e,...,e,id,e,...,e), we allow id to
range over the 2nd — [|T,,| + 1]st arguments of . If |T,| = 0, then we understand
the lower left relation to be @, ~e.

For any indexing system Z, let As(Z) = Asg(z), where O(Z) is the set of all
nontrivial orbits H/K € 7.
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The operads As(Z) have a number of useful properties, which are summarized
in the theorem below.

Theorem 7.2. The functor A : N-Op® — Ind(G) has a functorial section
As : Ind(G) — N-Op®

such that

(1) As(triv) is the associativity operad equipped with a trivial G-action,
and for oll T € Ind:

(2) As(Z) is finitely presented, and

(3) |As(Z)(0)| = |As(Z)(1)] = 1, and there is C = C(I) € N such that for

every n > 2, we have the inequality |As(Z)(n)| < C™(n!)2.

The proof will be given in §7.3. For now, we explain the significance of this
result. Functoriality of As in Z implies we can restrict As(J) actions to As(Z)
actions directly, provided that Z C J. This eliminates the need to pass through a
zig-zag As(T) < As(Z) x As(J) — As(J).

Condition (1) says that As(Z) is a generalization of the usual associative operad.

Conditions (2) and (3) are bounds on the size of As(Z), but first, a bit of context.
Recall that the categorical Barratt-Eccles operad &2 has nth space As(n), where

As(n) = X, is the associativity operad, and (—) : Set — Cat is the right adjoint
to the object functor.
In their work on equivariant infinite loop space theory, Guillou-May-Merling-

Osorno consider the coinduced operad Pg(n) = Set(G,X,,). This is a genuine
FE, G-operad, meaning it is N4, and its indexing system is Set. The operad P
was thought by many to be the smallest model for an E., G-operad, because & is
certainly the smallest model nonequivariantly.

This intuition is false. Work in [3] shows that Set(G, As) = Ob(ZHs) is not
finitely generated when G is nontrivial, and if Z = Set, then (3) implies

|As(Set)(n)|

n—o0|Ob(Pg(n))|
whenever |G| > 2. The bound on |As(Z)(0)| is also useful. It says that As(Z) is
a reduced operad, and therefore FAs(Z) is, too. This can be quite convenient in

applications (cf. [7, Remark 2.7]).
We round off this section by proposing two new definitions.

Definition 7.3. Let Z be a G-indexing system. The Z-permutativity operad is

—_~—

2(1) = As(1),

where (f;J) : Set — Cat is the right adjoint to Ob : Cat — Set. The Z-Barratt-
FEccles operad is
&(I) = FAs(Z),

where F = Bo (/—v) is the composite of (—) and the classifying space functor.

Remark 7.4. The operad &g is homotopy terminal, and early attempts at Con-
jecture 2.17 sought to realize arbitrary indexing systems as suboperads of .
Bonventre proved this is impossible [8, Example B.2.1], and the construction of
N, permutativity operads has been a sticking point ever since. Our operads Z(7)
are one possible solution.
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7.2. Identifying associative N operads. The proof of Theorem 7.2 requires a
precise description of Asy. This section works out the details. We recommend
skimming it on a first reading.

Lemma 7.5. For any indezed set (Ty,)ae of finite G-subgroup actions, the operad
Asy is isomorphic to the operad

GXZ, GXX\1,
F(HTLZO GX?idn} U H(XEJ F(TLT) ‘>

< A(Msid, o Ty yid) ~ My 5 I ~id

m>1,n2>0 >’

’)/(®TQ;H0,...,H0)NHO y ’Y(®TQ;H0,...,id,...,H0)Nid CkEJ

where 1, = n(G x {idy}) for all k > 0, Q1 = n(I'(T,)) for all a € J, and n is
the unit map. If |To| = 0, we understand the bottom left relation to be @ ~ Ilo.

Proof. The inclusion of generators
H GxX, G X X1, N GxX, g G X X1,
G x {id,, } I(T.) o G x {id,, } iy I(Ty)

eJ

induces an 1somorphlsm. O

The presentation of Asy in Lemma 7.5 is easier to work with, because the
relations are clearly “reductions.” We use it to solve the word problem for Asy.

Proposition 7.6. Let T = (Ty)acs be an indexed set of finite G-subgroup actions.
The operad Ast is isomorphic to a sub-symmetric sequence of the free operad

G x 3, G x X7,
F F — el
T (H G x {id,} H T(T)
equipped with a reduced composition operation.

Proof. For each subgroup H C G, choose a set {e = ril ..., T%:H‘} of G/H-coset
representatives once and for all. Then

ISEN| {G X {idn}} U T {rﬁr T,

and 1 <i<|G: H|
n>0 acJ

H C G, T, an H-set, }

is a set of Y-orbit representatives for the generators of #+. It follows from Theorem
5.23 that S = Fy(Ps) with a twisted G-action.

We identify the congruence relation ~ on Fy(Ps) that is generated by the re-
lations in Lemma 7.5. For any n > 0 and ¢, € Fy(Px)(n), declare ¢ — ¢ if ¢/
is obtained by replacing a subterm s of ¢ with a new subterm s’, in one of the
following ways:

s s’
Hm(tla . ati—l7H’rL(ti7 - 7ti+n—1)ati+n7 . 7tm+n—1) Hm+n—1(t17 . 7tm+n—1)
Iy (t1) 31
TzH ®Ta(H0()7"'7H0()) HO()
’I’,LH®TQ(H0(),...,Ho()7t17no(),...7no()) tl

In the first line, we require m > 1 and n > 0, and in the third and fourth lines, we
require a € J and 71 to be a coset representative for G/H, where H is the subgroup
acting on T,. We say that ¢ is reduced if there is no ¢ such that t — t/, and we
write rFy(Pg) C Fy(Px) for the sub-symmetric sequence of reduced elements.
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Each of the substitutions above strictly decreases the number
w(t) = #(I1; symbols in t) + 2 - #(ry; Q. symbols in ) > 0,

and therefore — is noetherian (cf. p. 25). Moreover, it is straightforward to check
that — is locally confluent. By Corollary 5.22, it follows that for any t € Fy(Ps),
there is a unique r(t) € rFy(Ps) such that ¢ = 7(t), where > denotes the reflexive
and transitive closure of —.

By Proposition 5.8, the congruence relation ~ is the equivalence relation gener-
ated by —. It follows that ¢ ~ ¢’ if and only if r(¢) = r(¢'), and therefore rFy(Ps)
is a set of representatives for ~, with r(¢) representing ¢. Hence

Ast = Fo(Pg)/~ = rFy(Px)

as symmetric sequences. Composition in Asy is identified with r o vy, where ~
denotes composition in Fy(Ps). O

Now we can estimate the size of Asy. We focus on 7 = O(Z) for simplicity, but
the same reasoning applies for any finite 7.

Lemma 7.7. Suppose T is an indexing system, O(Z) is the set of nontrivial orbits
in I, and write As(Z) = Asg(z). Then |As(Z)(n)| =1 forn = 0,1, and there is a
constant C = C(Z) € N such that |As(Z)(n)| < C™(n!)? for n > 2.

Proof. Keep notation as in the proof of Proposition 7.6 and set T = O(Z). We
count the number of elements in rFy(Px)(n) = As(Z)(n) for each n > 0. The
estimates are clear (and poor) when Z = triv, so assume Z is nontrivial.

Given t € Fy(Ps)(0), we can use the relation r” Q. () ~ () for empty T,,’s to
convert all nullary function symbols in ¢ into IIg’s. Call the result ¢'. Now we use
Hm(th e ,Ho(), RN 7tﬂ»L,l) ~ Hmfl(tly e ,tmfl) and ’l"iH ®Ta (Ho(), .o ,HQ()) ~
Ty () inductively to collapse ¢’ to (). Therefore |rFy(Ps)(0)| = 1.

The case for rFy(Ps)(1) is similar. We claim that every ¢ € Fy(Px)(1) can be
reduced to zy. For, if t = f(t1,...,tn) = Yo (f);t1,...,tn) -0, thereis 1 <i <n
such that ¢; is unary and and ¢; is nullary for j # i. By the above, we have
t; ~ (), and we can assume t; ~ z; by induction on complexity. Therefore
t~ f(Ho(), BN A TR ,Ho()) ~ T7.

Now we make the estimate for n > 2. Every ¢t € rFy(Pg)(n) can be factored as
t = (by ok, ba ok, -+ 0k, _, by) -0, where 0 € X, o is partial composition, and
bi,...,by, are basic terms of the form

HQ(xlva) or T{I®H/K(tla"~7t\H:K|),

such that all of the terms ¢; are either variables or IIy()’s, and at least two of the
t;’s are variables. The arity of each basic term is at least 2. Hence

2S‘b1‘<‘b10k1 b2|<"'<|b10k1b20k2"'0k

m—1

bm’ =n,
and it follows m < n.

Let B be the set of all basic terms and set C = |B| > 2. For each m =
1,...,n—1, there are no more than C™ choices of basic operations (b, ..., by) such
that |by|+-- -+ |bm|+m—1 = n, and for each choice (b1, ..., by, ), there are no more
than n! choices of sequences (k1, ..., kp—1) such that 1 < k; < |by|+---+]bj|—j+1.
Summing over m and choosing a permutation o € ¥, shows there are fewer than
C™(n!)? n-ary expressions of the form (by oy, by o, -+ - 0k, by) - 0. O

m—1
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7.3. The proof of Theorem 7.2. In this section, we prove Theorem 7.2, starting
with a calculation of the admissible sets of Asy.

Lemma 7.8. For any T, Ast is a N operad, and A(Ast) = (T |a € J).

Proof. Let %1 be as in Proposition 7.6. There is an embedding of symmetric
sequences Asy — .Fy. Therefore Asy is X-free and A(Ast) C A(Z7). On
the other hand, Lemma 7.5 implies there is a quotient operad map #7 — Ast.
Therefore Ast(n)¢ # @ and A(F7) C A(Asy). This proves that Asr is a N
operad, and

A(Asy) = A(F7) = To|la e J)
by Theorem 4.6. (]

Now we can prove the theorem.

Proof of Theorem 7.2. Define As(—) : Ind(G) — N-Op% by As(Z) = Aso(z),
where O(Z) is the set of nontrivial orbits H/K € Z. The same argument given in
the proof of Theorem 4.9 shows that As(—) is functorial, and Lemma 7.8 shows

A(As(Z)) = (H/K | H/K € T is nontrivial) = 7.

Therefore As is a section of A : N-Op® — Ind(G).
We have As(triv) = As by inspection, and As(Z) = Asg(z) is finitely generated
because O(Z) is finite. Lemma 7.7 gives the desired cardinality bound. (]

8. MODEL CATEGORIES OF DISCRETE (G-OPERADS

This final section interprets §3.1 and §4 through a model categorical lens. We
set up the basic model structures in §§8.1-8.2, and then we compare our work to
[16] and [9] is §8.3.

We have a few reasons for introducing this formalism. To start, we find it
clarifying. The free operads in §4 may seem ad hoc, but they are completely natural
from a model categorical perspective (cf. Proposition 8.14). Model categorical
language also helps explain the relationship between our construction of F(Z), and
the realizations in [16] and [9] (cf. §8.3). That being said, the associative N operads
considered in §7 do not mesh well with model structures. The operad As is just
too small to be cofibrant, and should be understood on the point-set level.

Remark 8.1. Looking ahead, we will truly need these model structures in subsequent
work. We could do things by hand in this paper, but parts of [32] require a more
sophisticated approach.

8.1. Model category structures on OpG. A model category must be bicom-
plete, which implies we cannot literally equip the category N —OpG of N operads
with a model structure. Instead, we consider the category Op® = Op(SetG) of all
operads in G-sets, and then we cut things down later.

We start on the point-set level. The following holds in general (cf. [28, §2.3]).

Lemma 8.2. The category OpG is complete and cocomplete.

Limits are computed levelwise in SetG, and colimits are similar to colimits of
nonabelian groups. We write x for the coproduct in op©.
The category OpG also has a small set of small generators.

Lemma 8.3. The category OpG 1s locally finitely presentable.
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Proof. The free operads F(G x %,,) form a strong generator of Op® [1, §0.6], where
n > 0 is a nonnegative integer. Moreover, each of the operads F(G x ¥,,) is finitely
presentable. Therefore Op© is locally finitely presentable by [1, Theorem 1.11]. O

Our ultimate goal is to construct a simplicial model category. We therefore give

OpG a simplicial enrichment. There is an adjunction
(7)0:SSet<:>Set:E:NOZ:/)

where (—)g is the 0-simplices functor, (/—V) : Set — Cat is the right adjoint to the
object functor, and N : Cat — sSet is the nerve functor. As in §3.1, F(&) = @
and EX ~ % if X # @.

Since (—)o and E are both limit-preserving functors, we may use the adjunction
(=)o 4 E to enrich, tensor, and cotensor Op® over sSet (cf. [29, Theorem 3.7.11]).

Lemma 8.4. The category OpG is enriched, tensored, and cotensored over the
category sSet of simplicial sets, with:

(a) hom objects: Op® (0, 0") = EOp® (0, 0"),

(b) tensors: K ® 0 = K- O, the Ky-fold coproduct of copies of €, and

(c) cotensors: OK = 0% the Ko-fold product of copies of O,

where 0, 0" € Op® and K € sSet.

We could have done the same thlng with Op® replaced by almost any 1- category,
but it is a reasonable choice for Op® because we are really thinking of & € Oop®
as the categorical operad 0. The hom object between 6’1 and ﬁg is naturally a

1-category that is isomorphic to Op (01, 05).
Now we make OpG into a model category.

Definition 8.5. Let Z be an indexing system and I' C G x ¥,. We say that
I' = {(h,o(h))|h € H} is an Z-graph subgroup if o : H — ¥,, is the permutation
representation of a member of Z. A morphism f : 01 — 05 in Op% is an Z-
weak equivalence if Ef : EO1(n)' — E0>(n)' is a weak homotopy equivalence of
topological spaces for every n > 0 and Z-graph subgroup I' C G x 3,,.

This boils down to the condition that & (n)! is nonempty whenever @(n)! is
nonempty, provided that I" is an Z-graph subgroup.

Proposition 8.6. Fix an indexing system L. The category OpG, together with the
T-weak equivalences, can be enhanced to a right proper, combinatorial, simplicial
model category with generating cofibrations

Iy = {{id} s F(G XFE">

and generating acyclic cofibrations

B GxX, i 1 GxX, n>0,' CcGxX,an
/I_{F< r > — A ®F< r ) ’ Z-graph subgroup }
Here F : Sym(Set®) = OpY : U is the free-forgetful adjunction, and {id} = F (@)

is the initial operad. Moreover:

(1) every object of Op© is I-fibrant, and
(2) every simplicial mapping space in OpG is either empty or contractible.

n>0,TCGxX,an
Z-graph subgroup
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Proof. The construction of this model structure is a straightforward application of
the small object argument (cf. [26, Theorem 15.2.3]). It is also straightforward to
verify that it is right proper and that every object is fibrant. The only interesting
point is that axiom SM7 holds, which we now prove.
Suppose i : &/ — 2 is an Z-cofibration and p : & — £ is an Z-fibration, and
consider the map
(Z*7p*) : QpG(gbVa éa) — QPG(%7£)) X OpC (o ,B) QPG(‘%/7 gg)

If either ¢ or p is an Z-weak equivalence, then (i*, p,) is a weak equivalence. Indeed,
the domain and codomain are either empty or contractible, and if the codomain is
nonempty, then the domain is nonempty by lifting. Thus, axiom SM7 will follow if
we show that (i*,p,) is a Kan fibration.

By the adjunction (=)o - E, the simplicial map (i*,p,.) is a Kan fibration if
and only if the set map (i*, p.) has the right lifting property with respect to the
inclusion {0} — {0,1}. This is easy to check when p is an Z-fibration and ¢ is a
relative .#z-cell complex iy : & — O * F(S). Passing to retracts proves the result
for general Z-cofibrations. Therefore OpG is a simplicial model category. O

We do not know if these model structures on Op® are left proper, because we
do not know how to compute the fixed points of the relevant pushouts.

Definition 8.7. We shall refer to the model structure in Proposition 8.6 as the
T-model structure on Op©.

Remark 8.8. There are analogous Z-model structures on Op(sSet) and Op(Top®)
by the work in [16] and [9]. The adjunction (—)g : sSet < Set : F induces a Quillen
adjunction between the Z-model structures on Op(sSet®) and Op® because (—)o
sends generating (acyclic) cofibrations to (acyclic) cofibrations. In fact, one can
construct the Z-model structure on Op® by transport along (=)o 1 E.

8.2. The homotopy theory of N operads. The Set-model structure on OpG
governs a broader homotopy theory than the homotopy theory of N operads. One
can prove that every bifibrant operad & € Op€ is X-free, but nothing ensures that
0(n)¢ # @. We fix things by passing to a slice category of Oop"©.

Definition 8.9. Let F be the free operad on (G x £y)/G U (G x £2)/G, and write
Opf for the slice category F/ Op€ of symmetric operads in Set® under F.

By adjunction, an object of Opi is the same thing as an operad & € OpG7
equipped with marked operations u € ¢(0)¢ and p € ¢(2)“. A morphism in Opf
is just a morphism in OpY that preserves the markings.

We enrich, tensor, and cotensor Opf over sSet as before, i.e. we declare
pr(ﬁl, Oy) = EOp(j(ﬁl, 0») and we define tensors and cotensors by adjunc-
tion (cf. Lemma 8.4). From here, we use the Set-model structure on Op© to
create a model structure on Opf. We summarize its properties.

Theorem 8.10. The category Opf 18 a right proper, combinatorial, simplicial
model category. A morphism [ : 01 — Oy in Opf s a weak equivalence, fibration,
or cofibration if, after forgetting markings, it is such a map in the Set-model struc-
ture on OpG, The generating cofibrations and acyclic cofibrations of Opg are the
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sets Fx Sger and Fx _ZFget, where Fgey and Fset are the corresponding generators
for OpY. Moreover:

(1) every object of Opﬁ is fibrant,

(2) every cofibrant object of Opf is a N operad (but not conversely), and

(8) every mapping space in Opf is either empty or contractible.

Proof. The Set-model structure on OpG lifts to a model structure on Opf =
F/ Op% by [26, Theorem 15.3.6], and the remaining claims about the unenriched
model structure are standard. Axiom SM7 holds for Opf, because for any cofibra-
tion i : & — Z and fibration p: & — £ in Opf7 the map

is a pullback of the analogous map for Op®. It remains to show that every cofibrant
operad O € Opf is a N operad.

If 0 € Opf is cofibrant, then F < U@ is a Set-cofibration in Op®, and since
F is Set-cofibrant, so too is U&. Therefore U is a retract of a free operad F(S)
on a X-free symmetric sequence S. By universality, F'(S) must be Y-free, and since
U0 is a retract of F'(S), there is a map U — F(S). Therefore U0 is also ¥-free.
It follows that U& is a N operad because we have another map F — U0 O

Part (2) of Theorem 8.10 lets us relate Opf to N-Op©.

Proposition 8.11. The cofibrant replacement functor Q : Opf — N—OpG induces
a Dwyer-Kan equivalence between the hammock localizations of Opf and N—OpG.
Therefore the functor LE = E o Q : Opf — Nao-Op% also induces a Duwyer-Kan
equivalence between the corresponding hammock localizations.

Proof. Consider the functors below.
s ) i
N_Opfree T (Oer)CE”

N-Op%

Op(j

7

Here N—Op?ree is the full subcategory of N-Op® spanned by free objects, (Opf)ce”
is the full subcategory of Opﬁ spanned by cell complexes, i denotes inclusion, U
is forgetful, F' is free, and @ is cofibrant replacement. Every composite of oppos-
ing pairs is naturally weakly equivalent to the identity. Therefore all six of these
functors induce Dwyer-Kan equivalences by [12, §3]. The same is true for LE by
Theorem 3.7. O

Since every mapping space in L (Opf) is empty or contractible, we deduce the
same holds for N-Op® and N..-Op©.

Corollary 8.12. Every mapping space in the hammock localization LT (N—OpG)
is either empty or contractible, and the same is true for LH(NOO—OpG).

This reproves [5, Proposition 5.5]. We end this section with an observation.

Remark 8.13. Consider the functor A : Ho(N-Op®) — Ind(G) once more. Corol-
lary 8.12 implies that A is faithful, and Theorems 4.9 and 7.2 imply that A is
surjective. Fullness can be deduced be using the product trick. If &) and O, are
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N operads and A(0y) C A(0y), then 0y < 0} x Oy — O, represents a morphism
in Ho(N —OpG) that lifts the inclusion. This is a purely combinatorial proof that
A : Ho(N —OpG) — Ind(Q) is an equivalence. Thus, the only topological ingredient
in our proof of the classification of N4, operads (Theorem 2.18) is the equivalence
between N, operads and N operads (Theorem 3.7).

8.3. Comparisons of N, realizations. In §4, we showed how to realize arbitrary
indexing systems using the free N operads F7. We now explain how to compare
these operads to the operads constructed in [16] and [9]. Recall that Com is the
terminal operad, whose levels are Com(n) = x for all n > 0.

Proposition 8.14. The N operads Fo(z)y and Fn(z), described in Theorem 4.9
and Example 4.10, are cofibrant replacements of the operad Com in the T-model
structure on OpG.

Proof. Let .# = Fo(z) or Fz). The operad F(G x £,,/T") is Z-cofibrant for every
Z-graph subgroup I', and .# is a coproduct of such operads. Therefore .%# is also
Z-cofibrant. Moreover, the unique morphism .# — Com is an Z-acyclic fibration,
because Theorem 4.6 enusres A(.Z) = T. O

Thus, the functor F : Ind — N-Op in Theorem 4.9 constructs operads that are
formally analogous to Gutiérrez and White’s N, operads [16, Theorem 4.7]. They
prove that an Z-cofibrant replacement of the operad Com € Op(Top®) is a Nuo
realization of Z.

More concretely, consider the Ny, operad EFy(z). It is constructed by gener-
ating a free, discrete operad Fy(z) with all operations specified by Z, and then
killing all homotopy groups with E. Gutiérrez and White’s operads are similarly
constructed. By the small object argument, an Z-cofibrant replacement of Com
may be presented as a transfinite sequential colimit €'z = colimy«, 0, where

(i) 0 = {id},

(ii) Ou41 is obtained from O, by attaching a free cell F((G x £,,/T') x D™)
along every operad map F((G x %,/T) x S™~ 1) — &, where m,n > 0
and T' is an Z-graph subgroup, and

(ili) O = colima<30, for each limit ordinal 3 < 7.

In particular, &4 splits as F(] [ G x X,,/T) * 0], where T ranges over all Z-graph
subgroups and & is built from F((G x 31)/H x D™)-cell attachments. Subsequent
stages introduce more generators and kill elements of homotopy. By compactness,
all homotopy is killed in the limit.

Bonventre and Pereira [9, Remark 6.73] also construct N, operads as cofibrant
replacements of Com, but they use a different model. Their powerful theory realizes
the indexing system Z as a monadic bar construction #Br = B.(@G,ﬁg,aj:) €
Op(sSetG), which is an operadic variant of Elemendorf’s construction of universal
spaces [13, §2]. The 0-simplices in Az form a discrete, free G-operad that contains
all operations specified by Z, and the remaining simplices kill all homotopy by the
extra degeneracy argument.
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