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Abstract: Auxins are a class of plant hormones playing crucial roles in plant growth and develop-
ment and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found
widely in plants. Although auxin activity of PAA in plants was identified several decades ago, PAA
homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the
most potent auxin, has been used for most auxin studies. Recent studies have revealed unique fea-
tures of PAA distinctive from IAA and enzymes and intermediates of PAA biosynthesis pathway
have been identified. Here, we summarize the occurrence and function of PAA in plants and high-
light the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and a crosstalk
between IAA and PAA metabolism.
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1. Introduction

Auxins are best known as plant hormones crucial for plant growth and development
and survival. Several endogenous auxins are found in plants [1-3]. Among them, indole-
3-acetic acid (IAA) has been commonly used for studying auxin function and its biosyn-
thesis. Phenylacetic acid (PAA) is a phenylalanine-derived auxin. Although the auxin ac-
tivity of PAA was demonstrated nearly a century ago and has been detected widely in
plants, PAA homeostasis and its function remain poorly understood. Here, we review the
occurrence and function of PAA and recent findings on PAA homeostasis focusing on
PAA biosynthesis.

2. Occurrence of PAA

Auxin activity of PAA was reported in the 1930s, but PAA was first isolated in plants
in the 1960s. Acidic fractions of aqueous extract from etiolated seedlings of Phaseolus were
shown to promote growth of oat coleoptile sections, and further analysis identified that
these acidic fractions contained PAA [4]. Subsequently, PAA was detected in various
plants. Interestingly, most organs and species accumulate PAA to significantly higher lev-
els than IAA [5-7]. In Arabidopsis, PAA contents range from 200 to 3500 pmol/gFW de-
pending on organs, which is higher than IAA in most organs except silique [7-11] (Table
1). Other dicots such as tomato, pea, sunflower, and tobacco accumulate around 600 to
1600 pmol/gFW of PAA in their shoots, which is also several folds greater than IAA con-
tents [5,12]. However, PAA content in Tropaeolum majus (< 16 pmol/gFW) is lower than
IAA (>70 pmol/gFW) [13]. Monocots and non-vascular plants accumulate 300 to 5000
pmol/gFW of PAA similar to other dicots [5,7,11,12,14,15] (Table 1). Taken together, PAA
is widely distributed in the plant kingdom and overall, PAA accumulates more than IAA
in most plants.
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Table 1. Occurrence of PAA in plants, showing plant tissue, PAA and IAA contents (if available)
Species Name Plant tissue (PAA content) Plant tissue (IAA content) Reference
Seedling (413 pmol/gFW); Seedling (49 pmol/gFW);
Dry seed (3,250 pmol/gFW); Dry seed (1,950 pmol/gFW);
Silique (800 pmol/gFW); Silique (2,000 pmol/gFW);
. . . ) . Inflorescence (1,900 pmol/gFW); Inflorescence (130 pmol/gFW);
Arabidopsis (Arabidopsis thaliana) Cauline leaf ((400 prlzqol/ gl§W) ;) Cauline leaf 230 pljnol/gfliW);) (7111
Rosette leaf (250 pmol/gFW); Rosette leaf (33 pmol/gFW);
Stem (200 pmol/gFW); Stem (50 pmol/gFW);
Root (1,100 pmol/gFW) Root (130 pmol/gFW)
Bean (Phaseolus vulgaris) Shoot N/A [4]
Tomato (Lycopersicon esculentum) Shoot (1,616 pmol/gFW) Shoot (211 pmol/gFW) [5,12]
Shoot (632 pmol/gFW); Shoot (126 pmol/gFW);
. . Root (347 pmol/gFW); Root (115 pmol/gFW);
Pea (Pisum sattvtim) Cotyledc()n (415)1 pm%)l/gF)W) ; Cotyledfm (lg pmc;gl/ gF\)N); [56.12]
Epicotyl (427 pmol/gFW); Epicotyl (46 pmol/gFW)

Sunflower (Helianthus annuus) Shoot (1,484 pmol/gFW) Shoot (245 pmol/gFW) [5,12]
Tobacco (Nicotiana tabacum) Shoot (1,234 pmol/gFW) Shoot (228 pmol/gFW) [5,12]
Cotton (Gossypium hirsutum) Cotyledon N/A [16]

Root (12 pmol/gFW); Root (679 pmol/gFW);
Hypocotyl (14 ng/gFW); Hypocotyl (166 ng/gFW);
Nasturtium (Tropaeolum majus) Shoot (12 pmol/gFW); Shoot (103 pmol/gFW); [13]
Leaf stalk (13 pmol/gFW); Leaf stalk (74 pmol/gFW);
Older leaf (11 pmol/gFW) Older leaf (86 pmol/gFW)
Sorghum (Sorghum bicolor) Leaf (300 pmol/gFW) N/A [15]
Maize (Zea mays) Shoot (903 pmol/gFW) Shoot (143 pmol/gFW), [5,12]
Shoot (514 pmol/gFW); Shoot (63 pmol/gFW);
Barley (Hordeum vulgare) Young sho(ot (4%53 pgmol/;gFW) Young shi)ot I(330 pjol/g)FW) [57,12]
Oat (Avena sativa) Young shoot (3,860 pmol/gFW)  Young shoot (31 pmol/gFW) [7]
Crozier (2,790 pmol/gFW); Crozier (119 pmol/gFW);
Young rachis (1,470 pmol/gFW); Young rachis (219 pmol/gFW);
Ostrich fern (Matteuccia struthi- Immature pinnae (4,860 Immature pinnae (161
opteris) pmol./ gFW); .meI/ gFW); [14]
Mature pinnae (2,380 Mature pinnae (67 pmol/gFW);
pmol/gFW); Fertile pinnae (70 pmol/gFW)
Fertile pinnae (2,490 pmol/gFW)
Moss (Physcomitrella patens) 1,049 pmol/gFW 14 pmol/gFW [7]
Liverwort (Marchantia polymorpha) 469 pmol/gFW 74 pmol/gFW [7]

Ipmol/gFW is uniformly used as the unit of approximate amount of PAA

N/A ; not available in the same paper

3. Biological Function of PAA

Auxin activity of PAA was identified through three classical auxin activity tests: pea
test, cylinder test, and oat bending test [17]. All three tests revealed PAA has less than 10%
of IAA activity [17]. One of the most representative functions of PAA is the promotion of
root growth and development [6,8,13,18,19]. PAA induced root formation in tomato, sun-
flower, marigold, artichoke, buckwheat, dahlia, and tobacco when applied to the stem
[20]. PAA application promoted the formation of adventitious roots of cress hypocotyls,
sugar-beet seedlings, and pea epicotyls [21]. Furthermore, leaf explants of Ajuga bracteosa
on growth media supplemented with PAA increased frequency of root induction and

44

45
46

47

48
49
50
51
52
53
54
55



Plants 2022, 11, x FOR PEER REVIEW 3of 14

biomass [19]. Arabidopsis seedlings treated with PAA increased the formation of lateral 56
roots, although PAA showed 10- to 20-fold lower activity than IAA [7]. However, some 57
studies showed stronger activity of PAA than IAA. In pea seedlings, PAA induced more 58
lateral root primordia and emerged lateral roots and longer lengths of lateral roots com- 59
pared to those of IAA [6,18]. 60

PAA impacts aerial parts of plants as well [7,11,22,23]. Daily exogenous application 61
of PAA on tomato plants for 2 weeks significantly increased tomato height [22]. PAA ap- 62
plication led to epinastic leaves of artichokes [20], stimulated the elongation of wheat col- 63
eoptile and moss gametophore [7,23], and promoted elongation of the Phaseolus internode 64
[24]. Arabidopsis plants with increased PAA production showed elongated hypocotyls 65
and epinastic leaves, similar to what was observed in high-IAA Arabidopsis plants [11]. 66
Supplementation of PAA induced callus formation in tobacco, sunflower, chickpea, and 67
lentil, but the optimal concentration of PAA for tobacco callus induction was 3-4 times 68
higher than IAA [25,26]. Similar to IAA, PAA application to leafless cotyledon retarded 69
the petiole abscission in cotton and inhibits ethylene evolution [16]. 70

PAA itself has anti-microbial and anti-fungal activities and exogenous application of 71
PAA enhances tolerance to pathogen infection, whereas increased IAA in plants enhances 72
susceptibility to pathogens [27-29]. For example, exogenous application of PAA on citrus 73
inhibits the incidence of fungus molds caused by Penicillium digitatum and P. italicum [30]. 74
Herbivore infestation in maize, poplar, and plumeria increases PAA production [31-33]. 75
Application of PAA in oilseed rape enhances the prevention of Sclerotinia sclerotiorum and 76
in vitro treatment with PAA demonstrated adverse effects through the disruption of cell 77
wall and cytoplasm in mycelia [34]. However, any biological role of PAA in plant defense 78
remains unknown. 79

The first step of auxin action starts from auxin sensing by auxin receptors (TIR1 and 80
AFBs), which results in degradation of transcription repressors Aux/IAAs [35]. Shimizu- 81
Mitao and Kakimoto showed PAA-dependent degradation of Aux/IAA [35]. Interaction 82
of Aux/IAAs with auxin receptors TIR1 or AFB2 leads to degradation of Aux/IAA [35]. 83
They showed that PAA induced Aux/IAA degradation with lower activity than IAA [35]. 84
Sugawara et al. showed that PAA application rescued growth defects of IAA deficient 85
plants yuc quadruple mutants (yucQ) [7]. In the same study, a yeast two-hybrid assay and 86
a pull-down assay revealed that PAA promoted the interaction of auxin receptors and 87
Aux/IAA in vitro, suggesting that sensing and signaling modes of PAA are similar to IAA 88
[7]. 89

It is noteworthy that PAA does not engage in polar auxin transport [7,16,36-38]. La- 90
beled PAA transport assay using pea epicotyls revealed that the transport of PAA barely 91
occurs in both the basipetal and acropetal direction [36]. PAA applied to the apical bud of 92
intact pea plants did not move in the long-distance basipetal transport [38]. Auxin polar 93
transport inhibitor naphthylphthalamic acid (NPA) inhibited IAA transport, but NPA did 94
not affect PAA gradient patterns in cotton, pea, and maize [7,16,37]. Unlike IAA, PAA did 95
not form concentration gradients in response to gravitropic stimulation via active and di- 96
rectional transport in maize [7]. However, PAA inhibited IAA polar transport in internode 97
segments and long-distance movement of the pea apical bud [38]. 98

4. PAA Homeostasis 929

As auxins regulate a vast array of processes, changes in content or distribution of 100
auxins can have profound effects on plant growth and development and in extreme cases 101
can lead to severe dwarfism or sterility [39-42]. Auxin homeostasis refers to the spatio- 102
temporal distribution of auxin throughout plant tissues and organs which governs plant 103
growth and development. Although several processes, including auxin transport, conju- 104
gation and degradation influence auxin homeostasis, de novo biosynthesis directly affects 105
local concentration of auxins. 106

4.1 PAA Biosynthesis 107
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The main route of IAA biosynthesis from tryptophan in plants is the YUCCA path- 108
way [43-52] (Figure 1a). The first step of this pathway is the conversion of tryptophanto 109
indole-3-pyruvate (IPA) by enzymes belonging to the Tryptophan Aminotransferase of 110
Arabidopsis (TAA) family [53-56]. Then, flavin-containing monooxygenases belonging 111
the YUCCA (YUC) family convert IPA to IAA [42,55,57-60]. This pathway is also believed 112
to contribute towards PAA biosynthesis (Figure 1b), as several studies have shown that 113
TAA and YUC enzymes can convert phenylalanine to phenylpyruvate (PPA) and PPA to 114
PAA in vitro, respectively [7,54,59,61,62]. YUCCA overexpression increases endogenous 115
PAA or PAA conjugate content [7]. However, TAA and YUC mutants sometimes show 116
little or no change in PAA content despite significant alterations to IAA content. For ex- 117
ample, the maize YUCI1-deficient mutant de18 has an over 90% reduction in free and total 118
IAA contents while PAA content is not significantly affected, and the tar2-1 pea mutant 119
displays a near complete loss of free IAA but no change in PAA levels [61]. Similarly in 120
Arabidopsis the yuclyuc2yucé triple and yuc3yucsyuc7yuc8yuc9 quintuple mutants have 121
wild-type levels of PAA but 40-50% reductions in IAA content [7]. However the TAA1 122
deficient mutant wei8-1 displays a 20% and 80% reduction in PAA and IAA, respectively 123
[7]. These findings suggest that these enzymes may function in PAA biosynthesis in 124

plants, but may not be major players in PAA biosynthesis in some species [35]. 125
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Figure 1. Schematic diagrams of IAA biosynthesis (a), PAA biosynthesis (b), and a link be- 126
tween IAA and PAA metabolism in plants (c). The pathways only include steps and enzymes that 127
are demonstrated via genetic evidence. Solid arrows represent single reactions catalyzed by known 128
enzymes, and dotted arrows represent predicted single or multiple steps. Blue arrows and metabo- 129
lites represent pathways and metabolites present only in Brassicales species. IAA, indole-3-acetic 130
acid; IAA-AA, amino acid-conjugated IAA; IAN, indole-3-acetonitrile; IAOx, indole-3-acetaldox- 131
ime; IPA, indole-3-pyruvate; MeIAA, methyl-conjugated IAA; oxIAA, 2-oxindole-3-acetic acid; ox- 132
TAA-AA, amino-acid conjugated oxIAA; PAA, phenylacetic acid; PAA-AA, amino-acid conjugated 133
PAA; PAOx, phenylacetaldoxime; Phe, phenylalanine; PPA, phenylpyruvate; Trp, tryptophan; AT, 134
amino transferase; CYP79, cytochrome P450 monooxygenase of the 79 family; DAO, dioxygenase 135
for auxin oxidation; FMO, flavin-containing monooxygenase; GH3, Gretchen Hagen 3 auxin-amido 136
synthetase; ILR, IAA-Leu Resistant IAA-Amino hydrolase; IAMT, IAA carboxymethyltransferase; 137
NIT, nitrilase; PAT, prephenate aminotransferase; PDT, prephenate dehydratase; PPA-AT, phe- 138
nylpyruvate aminotransferase; TAA, tryptophan aminotransferase of Arabidopsis; TS, tryptophan 139
synthase; UGT, UDP-glucuronosyltransferase; YUC, YUCCA family of flavin-containing monooxy- 140
genase; VAS; methionine aminotransferase 141

In plants and prokaryotes, phenylalanine biosynthesis from prephenate occurs 142
through two routes: transamination of prephenate to arogenate which is subsequently de- 143
carboxylated and dehydrated into phenylalanine, or decarboxylation and dehydration of 144
prephenate to form phenylpyruvate (PPA) which is converted to phenylalanine through 145
transamination [63-65] (Figure 1c). Generally, the PPA pathway is more commonly found 146
in prokaryotes while the arogenate pathway is the major route of phenylalanine 147
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biosynthesis in plants; however, there is evidence for both pathways existing and making 148
significant contributions in several plant and bacterial species [63—65]. Thus, modification 149
of PPA metabolism may impact PAA biosynthesis not only directly by being converted to 150
PAA but also indirectly by affecting phenylalanine pools in plants (Figure 1c). 151

Aoi et al. demonstrated that arogenate dehydratase (ADT), the enzyme that catalyzes 152
the conversion of arogenate to phenylalanine, affects PAA biosynthesis, as overexpression 153
or knockout of ADTs results in increased or decreased PAA content, respectively [10]. As 154
arogenate serves as a precursor of phenylalanine, increased ADT activity results in in- 155
creases in phenylalanine-derived metabolites such as PAA. They also detected changesin 156
PPA levels upon modulation of ADT activity that followed the trends measured for PAA 157
content (i.e. ADT overexpression resulted in increased levels of PAA and PPA)[10], sup- 158
porting the role of PPA as a precursor of PAA. 159

Another PAA biosynthesis pathway is the aldoxime pathway using phenylalanine- 160
derived aldoxime, phenylacetaldoxime (PAOXx), as an intermediate [8,10,11,15,66]. Aldox- 161
imes such as indole-3-acetaldoxime (IAOx) and PAOx as well as aldoximes derived from 162
other amino acids are well characterized as precursors of various specialized metabolites 163
such as glucosinolates, cyanogenic glycosides, and camalexin as well as nitrogenous vol- 164
atiles [31,33,67-72]. Several studies have shown that IAA can be made from IAOx in Bras- 165
sicales and monocots [11,73-75] (Figure 1a). Similarly, it was shown that PAOx is a pre- 166
cursor of PAA in Arabidopsis and monocots [8,11,15] (Figure 1b). Arabidopsis plants 167
overproducing PAOx increase PAA and display altered morphology such as epinasty 168
leaves and elongated hypocotyls similar to shown in plants with increased IAA [8,11,42]. 169
Maize and sorghum plants fed with labeled PAOx produce labeled PAA [11,15]. These 170
findings indicate a wider distribution of the aldoxime-derived auxin biosynthesis path- 171
way throughout the plant kingdom rather than limited to Brassicales. 172

The first step of the aldoxime pathway is the production of IAOx or PAOx by cyto- 173
chrome P450 monooxygenases of the 79 family (CYP79s) [8,11,15,32,66]. In addition to 174
CYP79 enzymes, flavin-containing monooxygenases (FMOs) in two fern species have 175
been shown to catalyze conversion of phenylalanine to PAOx [76]. Aldoximes contribute 176
to auxin pools through two routes (Figure 1a, 1b). In Brassicales plants, both IAOx and 177
PAOx are precursors of family-specific glucosinolates. Glucosinolates and their degrada- 178
tion enzyme beta-thiol-glucosidases known as myrosinases are stored in separate cellular 179
and subcellular compartments [77-80]. Upon herbivore or pathogen attack, however, 180
these compartments are compromised, resulting in glucosinolate hydrolysis by myrosi- 181
nases and the rapid release of toxic metabolites such as isothiocyanates, nitriles and epithi- 182
onitriles [81-83]. Glucosinolate turnover has also been shown to occur in vivo without tis- 183
sue damage or disruption [84-87]. Nitriles such as indole-3-acetonitrile (IAN) and benzyl 184
cyanide are byproducts of glucosinolate degradation. These nitriles can then be acted 185
upon by nitrilase enzymes to generate IAA and PAA [13,88-92]. On the other hand, ald- 186
oximes can be converted to auxins through the aldoxime-derived auxin pathway, which 187
is glucosinolate-independent and is present in both Brassicales and non-Brassicales spe- 188
cies as maize and sorghum [11,15]. A recent study demonstrated that benzyl cyanide 189
serves as an intermediate of PAOx-derived PAA biosynthesis in maize and sorghum [15]. 190
Application of benzyl cyanide increases PAA in maize and sorghum and both species 191
convert labeled benzyl cyanide to labeled PAA [15], suggesting that nitriles may be key 192
intermediates in both routes of the aldoxime pathway (Figure 1a, 1b). Unlike the YUCCA 193
pathway, the aldoxime-derived auxin pathways do not appear to be the main route of 194
auxin biosynthesis under normal growth conditions. For example, the Arabidopsis IAOx 195
deficient mutant, cyp79b2 cyp79b3 (b2b3) double mutant, grows normally under optimal 196
temperatures [73], and the CYP79A2 gene encoding the PAOx production enzyme is 197
barely expressed in the vegetative tissue of Arabidopsis ecotype Col-0 [11]. However, at 198
high temperature and under salt stress, the b2b3 mutant displays a low auxin growth phe- 199
notype [73,93], suggesting that the aldoxime pathway contributes significantly towards 200
stress-induced auxin production. Indeed, many CYP79 enzymes have their expression 201



Plants 2022, 11, x FOR PEER REVIEW 6of 14

induced by stressors such as herbivory or by treatment with stress hormones such as 202
jasmonic acid [31,32,68,72,94]. Given that aldoximes often serve as precursors of defense 203
metabolites, the aldoxime pathway may play a role in modulating plant growth during 204
the defense response. 205

Besides PPA, PAOXx, and benzyl cyanide, several other metabolites have been impli- 206
cated in PAA biosynthesis, although where they fit within the known biosynthetic path- 207
ways is unclear. Several labeled feeding experiments have demonstrated that phenyla- 208
cetaldehyde (PAAId) is derived from phenylalanine metabolism and produced along with 209
labeled PAA [5,95]. PAAId biosynthesis from PPA has been shown to occur in rose 210
through the actions of phenylpyruvate decarboxylases [96]. Also, in rose as well as other 211
species PAAId has been shown to be directly synthesized from phenylalanine by the ac- 212
tion of aromatic aldehyde synthases or aromatic amino acid decarobylases [96-100]. Once 213
PAAId is synthesized, it can potentially be acted upon by aldehyde oxidases to generate 214
PAA which have been demonstrated to have activity for PAAld in maize [101]. Another 215
metabolite, 4-phenylbutyric acid (4PBA), was recently shown to display an auxin-like ef- 216
fect during plant regeneration via conversion to PAA using a mechanism independent of 217
IBR3-catalyzed oxidation [102]. Further study showing altered PAA contents upon re- 218
moval of intermediate biosynthesis enzymes may reveal the role(s) that these metabolites 219

play in PAA biosynthesis. 220
221
4.2 PAA Inactivation 222

Another major facet of auxin homeostasis is the conversion of active auxins to inac- 223
tive forms. Inactivation of auxin not only supports the formation of auxin gradients and 224
maintenance of auxin levels but is also necessary to prevent cytotoxic levels of auxins from 225
accumulating in cells. IAA inactivation proceeds through two pathways: reversible IAA 226
conjugation (to glucose, methyl, or amino acids) and irreversible IAA conjugation (to 227
amino acids) and oxidation, with recent findings demonstrating that amino acid-conju- 228
gated IAA is oxidized and then subsequently hydrolyzed to form oxidized IAA [103,104]. 229
As with biosynthesis, knowledge of PAA inactivation is limited compared to our under- 230
standing of IAA inactivation. Multiple studies have demonstrated that some Gretchen 231
Hagen 3 IAA-amido synthetase (GH3) and UDP-glucuronosyltransferase (UGT) enzymes 232
have activity towards PAA to generate PAA conjugates such as PAA-asp and PAA-glu 233

and PAA-glucose, respectively [7,105-108] (Figure 1b). 234
235
4.3 Metabolic Interaction between IAA and PAA 236

More recent studies have shown a link between IAA and PAA metabolism. The ho- 237
meostasis of IAA and PAA was shown to be maintained through modulation of auxin 238
conjugation, with the accumulation of PAA resulting in the induction of GH3 or UGT 239
genes that preferentially act upon IAA and vice versa [8,9]. Lynch et al. showed that PPA 240
can, in addition to its previously defined and proposed impacts of PAA biosynthesis, im- 241
pact IAA biosynthesis by serving as amino acceptor in the TAA-catalyzed conversion of 242
tryptophan to IPA [109]. This interaction not only promotes the production of IAA but 243
may also impact PAA biosynthesis, as increasing flux through the PPA route of phenylal- 244
anine biosynthesis was shown to decrease steady state levels of phenylalanine [109] (Fig- 245
ure 1c). Perez et al. demonstrated that accumulation of PAA results in transcriptional 246
downregulation of genes related to tryptophan and IAA biosynthesis in Arabidopsis [11], 247
demonstrating a complex regulatory network for maintaining auxin homeostasis. 248

5. Conclusions 249

In the past decades, several biochemical and genetic studies have identified key me- 250
tabolites, enzymes and pathways that contribute towards IAA metabolism. While many 251
questions remain regarding PAA homeostasis, recent studies have greatly expanded our 252
understanding on how PAA is synthesized and inactivated. The role of PPA as a metabo- 253
lite linking together phenylalanine, IAA and PAA biosynthesis has been supported by 254
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genetic studies and suggests that PPA-derived PAA biosynthesis is more complex than
the corresponding IAA biosynthetic pathway. Meanwhile, the occurrence of PAOx as a
PAA precursor in Brassicales and monocots suggests that this hidden pathway may be
distributed widely in the plant kingdom and contribute towards PAA homeostasis wher-
ever PAOx is produced. Additionally, the identification of PAA-amino acid and PAA-
glucose conjugates within Arabidopsis has provided mechanisms for PAA inactivation
which may be shared among other species, and may employ similar pathways used in
IAA inactivation. Future investigation is needed to reveal other potential PAA biosynthe-
sis and inactivation pathways as well as the physiological roles of these pathways.
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