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Abstract: Auxins are a class of plant hormones playing crucial roles in plant growth and develop- 9 
ment and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found 10 
widely in plants. Although auxin activity of PAA in plants was identified several decades ago, PAA 11 
homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the 12 
most potent auxin, has been used for most auxin studies. Recent studies have revealed unique fea- 13 
tures of PAA distinctive from IAA and enzymes and intermediates of PAA biosynthesis pathway 14 
have been identified. Here, we summarize the occurrence and function of PAA in plants and high- 15 
light the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and a crosstalk 16 
between IAA and PAA metabolism. 17 
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1. Introduction 20 
Auxins are best known as plant hormones crucial for plant growth and development 21 

and survival. Several endogenous auxins are found in plants [1–3]. Among them, indole- 22 
3-acetic acid (IAA) has been commonly used for studying auxin function and its biosyn- 23 
thesis. Phenylacetic acid (PAA) is a phenylalanine-derived auxin. Although the auxin ac- 24 
tivity of PAA was demonstrated nearly a century ago and has been detected widely in 25 
plants, PAA homeostasis and its function remain poorly understood. Here, we review the 26 
occurrence and function of PAA and recent findings on PAA homeostasis focusing on 27 
PAA biosynthesis. 28 

2. Occurrence of PAA 29 
Auxin activity of PAA was reported in the 1930s, but PAA was first isolated in plants 30 

in the 1960s. Acidic fractions of aqueous extract from etiolated seedlings of Phaseolus were 31 
shown to promote growth of oat coleoptile sections, and further analysis identified that 32 
these acidic fractions contained PAA [4]. Subsequently, PAA was detected in various 33 
plants. Interestingly, most organs and species accumulate PAA to significantly higher lev- 34 
els than IAA [5–7]. In Arabidopsis, PAA contents range from 200 to 3500 pmol/gFW de- 35 
pending on organs, which is higher than IAA in most organs except silique [7–11] (Table 36 
1). Other dicots such as tomato, pea, sunflower, and tobacco accumulate around 600 to 37 
1600 pmol/gFW of PAA in their shoots, which is also several folds greater than IAA con- 38 
tents [5,12]. However, PAA content in Tropaeolum majus (< 16 pmol/gFW) is lower than 39 
IAA (>70 pmol/gFW) [13]. Monocots and non-vascular plants accumulate 300 to 5000 40 
pmol/gFW of PAA similar to other dicots [5,7,11,12,14,15] (Table 1). Taken together, PAA 41 
is widely distributed in the plant kingdom and overall, PAA accumulates more than IAA 42 
in most plants. 43 
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Table 1. Occurrence of PAA in plants, showing plant tissue, PAA and IAA contents (if available) 44 

Species Name Plant tissue (PAA content) Plant tissue (IAA content) Reference 

Arabidopsis (Arabidopsis thaliana) 

Seedling (413 pmol/gFW); 
Dry seed (3,250 pmol/gFW); 
Silique (800 pmol/gFW); 

Inflorescence (1,900 pmol/gFW); 
Cauline leaf (400 pmol/gFW); 
Rosette leaf (250 pmol/gFW); 

Stem (200 pmol/gFW); 
Root (1,100 pmol/gFW) 

Seedling (49 pmol/gFW); 
Dry seed (1,950 pmol/gFW); 
Silique (2,000 pmol/gFW); 

Inflorescence (130 pmol/gFW); 
Cauline leaf (30 pmol/gFW);  
Rosette leaf (33 pmol/gFW); 

Stem (50 pmol/gFW); 
Root (130 pmol/gFW) 

[7–11] 

Bean (Phaseolus vulgaris) Shoot N/A [4] 
Tomato (Lycopersicon esculentum) Shoot (1,616 pmol/gFW) Shoot (211 pmol/gFW) [5,12] 

Pea (Pisum sativum) 

Shoot (632 pmol/gFW); 
Root (347 pmol/gFW); 

Cotyledon (451 pmol/gFW); 
Epicotyl (427 pmol/gFW); 

Shoot (126 pmol/gFW); 
 Root (115 pmol/gFW); 

Cotyledon (13 pmol/gFW); 
Epicotyl (46 pmol/gFW) 

[5,6,12] 

Sunflower (Helianthus annuus) Shoot (1,484 pmol/gFW) Shoot (245 pmol/gFW) [5,12] 
Tobacco (Nicotiana tabacum) Shoot (1,234 pmol/gFW) Shoot (228 pmol/gFW) [5,12] 
Cotton (Gossypium hirsutum) Cotyledon N/A [16] 

Nasturtium (Tropaeolum majus) 

Root (12 pmol/gFW); 
Hypocotyl (14 ng/gFW); 
Shoot (12 pmol/gFW); 

Leaf stalk (13 pmol/gFW); 
Older leaf (11 pmol/gFW) 

Root (679 pmol/gFW); 
Hypocotyl (166 ng/gFW); 
Shoot (103 pmol/gFW); 

Leaf stalk (74 pmol/gFW); 
Older leaf (86 pmol/gFW) 

[13] 

Sorghum (Sorghum bicolor) Leaf (300 pmol/gFW) N/A [15] 
Maize (Zea mays) Shoot (903 pmol/gFW)     Shoot (143 pmol/gFW); [5,12] 

Barley (Hordeum vulgare) Shoot (514 pmol/gFW); 
Young shoot (4,353 pmol/gFW) 

Shoot (63 pmol/gFW); 
Young shoot (30 pmol/gFW) [5,7,12] 

Oat (Avena sativa) Young shoot (3,860 pmol/gFW) Young shoot (31 pmol/gFW) [7] 

Ostrich fern (Matteuccia struthi-
opteris) 

Crozier (2,790 pmol/gFW); 
Young rachis (1,470 pmol/gFW); 

Immature pinnae (4,860 
pmol/gFW); 

Mature pinnae (2,380 
pmol/gFW); 

Fertile pinnae (2,490 pmol/gFW) 

Crozier (119 pmol/gFW); 
Young rachis (219 pmol/gFW); 

Immature pinnae (161 
pmol/gFW); 

Mature pinnae (67 pmol/gFW); 
Fertile pinnae (70 pmol/gFW) 

[14] 

Moss (Physcomitrella patens) 1,049 pmol/gFW 14 pmol/gFW [7] 
Liverwort (Marchantia polymorpha) 469 pmol/gFW 74 pmol/gFW [7] 
1pmol/gFW is uniformly used as the unit of approximate amount of PAA 45 
N/A ; not available in the same paper 46 

3. Biological Function of PAA 47 
Auxin activity of PAA was identified through three classical auxin activity tests: pea 48 

test, cylinder test, and oat bending test [17]. All three tests revealed PAA has less than 10% 49 
of IAA activity [17]. One of the most representative functions of PAA is the promotion of 50 
root growth and development [6,8,13,18,19]. PAA induced root formation in tomato, sun- 51 
flower, marigold, artichoke, buckwheat, dahlia, and tobacco when applied to the stem 52 
[20]. PAA application promoted the formation of adventitious roots of cress hypocotyls, 53 
sugar-beet seedlings, and pea epicotyls [21]. Furthermore, leaf explants of Ajuga bracteosa 54 
on growth media supplemented with PAA increased frequency of root induction and 55 
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biomass [19]. Arabidopsis seedlings treated with PAA increased the formation of lateral 56 
roots, although PAA showed 10- to 20-fold lower activity than IAA [7]. However, some 57 
studies showed stronger activity of PAA than IAA. In pea seedlings, PAA induced more 58 
lateral root primordia and emerged lateral roots and longer lengths of lateral roots com- 59 
pared to those of IAA [6,18].  60 

PAA impacts aerial parts of plants as well [7,11,22,23]. Daily exogenous application 61 
of PAA on tomato plants for 2 weeks significantly increased tomato height [22]. PAA ap- 62 
plication led to epinastic leaves of artichokes [20], stimulated the elongation of wheat col- 63 
eoptile and moss gametophore [7,23], and promoted elongation of the Phaseolus internode 64 
[24]. Arabidopsis plants with increased PAA production showed elongated hypocotyls 65 
and epinastic leaves, similar to what was observed in high-IAA Arabidopsis plants [11]. 66 
Supplementation of PAA induced callus formation in tobacco, sunflower, chickpea, and 67 
lentil, but the optimal concentration of PAA for tobacco callus induction was 3-4 times 68 
higher than IAA [25,26]. Similar to IAA, PAA application to leafless cotyledon retarded 69 
the petiole abscission in cotton and inhibits ethylene evolution [16].  70 

PAA itself has anti-microbial and anti-fungal activities and exogenous application of 71 
PAA enhances tolerance to pathogen infection, whereas increased IAA in plants enhances 72 
susceptibility to pathogens [27–29]. For example, exogenous application of PAA on citrus 73 
inhibits the incidence of fungus molds caused by Penicillium digitatum and P. italicum [30]. 74 
Herbivore infestation in maize, poplar, and plumeria increases PAA production [31–33]. 75 
Application of  PAA in oilseed rape enhances the prevention of Sclerotinia sclerotiorum and 76 
in vitro treatment with PAA demonstrated adverse effects through the disruption of cell 77 
wall and cytoplasm in mycelia [34]. However, any biological role of PAA in plant defense 78 
remains unknown. 79 

The first step of auxin action starts from auxin sensing by auxin receptors (TIR1 and 80 
AFBs), which results in degradation of transcription repressors Aux/IAAs [35]. Shimizu- 81 
Mitao and Kakimoto showed PAA-dependent degradation of Aux/IAA [35]. Interaction 82 
of Aux/IAAs with auxin receptors TIR1 or AFB2 leads to degradation of Aux/IAA [35]. 83 
They showed that PAA induced Aux/IAA degradation with lower activity than IAA [35]. 84 
Sugawara et al.  showed that PAA application rescued growth defects of IAA deficient 85 
plants yuc quadruple mutants (yucQ) [7]. In the same study, a yeast two-hybrid assay and 86 
a pull-down assay revealed that PAA promoted the interaction of auxin receptors and 87 
Aux/IAA in vitro, suggesting that sensing and signaling modes of PAA are similar to IAA 88 
[7]. 89 

It is noteworthy that PAA does not engage in polar auxin transport [7,16,36–38]. La- 90 
beled PAA transport assay using pea epicotyls revealed that the transport of PAA barely 91 
occurs in both the basipetal and acropetal direction [36]. PAA applied to the apical bud of 92 
intact pea plants did not move in the long-distance basipetal transport [38]. Auxin polar 93 
transport inhibitor naphthylphthalamic acid (NPA) inhibited IAA transport, but NPA did 94 
not affect PAA gradient patterns in cotton, pea, and maize [7,16,37]. Unlike IAA, PAA did 95 
not form concentration gradients in response to gravitropic stimulation via active and di- 96 
rectional transport in maize [7]. However, PAA inhibited IAA polar transport in internode 97 
segments and long-distance movement of the pea apical bud [38]. 98 

4. PAA Homeostasis 99 
As auxins regulate a vast array of processes, changes in content or distribution of 100 

auxins can have profound effects on plant growth and development and in extreme cases 101 
can lead to severe dwarfism or sterility [39–42]. Auxin homeostasis refers to the spatio- 102 
temporal distribution of auxin throughout plant tissues and organs which governs plant 103 
growth and development. Although several processes, including auxin transport, conju- 104 
gation and degradation influence auxin homeostasis, de novo biosynthesis directly affects 105 
local concentration of auxins.  106 

                                                      4.1 PAA Biosynthesis 107 



Plants 2022, 11, x FOR PEER REVIEW 4 of 14 
 

 

The main route of IAA biosynthesis from tryptophan in plants is the YUCCA path- 108 
way [43–52] (Figure 1a). The first step of this pathway is the conversion of tryptophan to 109 
indole-3-pyruvate (IPA) by enzymes belonging to the Tryptophan Aminotransferase of 110 
Arabidopsis (TAA) family [53–56]. Then, flavin-containing monooxygenases belonging 111 
the YUCCA (YUC) family convert IPA to IAA [42,55,57–60]. This pathway is also believed 112 
to contribute towards PAA biosynthesis (Figure 1b), as several studies have shown that 113 
TAA and YUC enzymes can convert phenylalanine to phenylpyruvate (PPA) and PPA to 114 
PAA in vitro, respectively [7,54,59,61,62]. YUCCA overexpression increases endogenous 115 
PAA or PAA conjugate content [7]. However, TAA and YUC mutants sometimes show 116 
little or no change in PAA content despite significant alterations to IAA content. For ex- 117 
ample, the maize YUC1-deficient mutant de18 has an over 90% reduction in free and total 118 
IAA contents while PAA content is not significantly affected, and the tar2-1 pea mutant 119 
displays a near complete loss of free IAA but no change in PAA levels [61]. Similarly in 120 
Arabidopsis the yuc1yuc2yuc6 triple and yuc3yuc5yuc7yuc8yuc9 quintuple mutants have 121 
wild-type levels of PAA but 40-50% reductions in IAA content [7]. However the TAA1 122 
deficient mutant wei8-1 displays a 20% and 80% reduction in PAA and IAA, respectively 123 
[7]. These findings suggest that these enzymes may function in PAA biosynthesis in 124 
plants, but may not be major players in PAA biosynthesis in some species [35]. 125 

Figure 1. Schematic diagrams of IAA biosynthesis (a), PAA biosynthesis (b), and a link be- 126 
tween IAA and PAA metabolism in plants (c). The pathways only include steps and enzymes that 127 
are demonstrated via genetic evidence. Solid arrows represent single reactions catalyzed by known 128 
enzymes, and dotted arrows represent predicted single or multiple steps. Blue arrows and metabo- 129 
lites represent pathways and metabolites present only in Brassicales species. IAA, indole-3-acetic 130 
acid; IAA-AA, amino acid-conjugated IAA; IAN, indole-3-acetonitrile; IAOx, indole-3-acetaldox- 131 
ime; IPA, indole-3-pyruvate; MeIAA, methyl-conjugated IAA; oxIAA, 2-oxindole-3-acetic acid; ox- 132 
IAA-AA, amino-acid conjugated oxIAA; PAA, phenylacetic acid; PAA-AA, amino-acid conjugated 133 
PAA; PAOx, phenylacetaldoxime; Phe, phenylalanine; PPA, phenylpyruvate; Trp, tryptophan; AT, 134 
amino transferase; CYP79, cytochrome P450 monooxygenase of the 79 family; DAO, dioxygenase 135 
for auxin oxidation; FMO, flavin-containing monooxygenase; GH3, Gretchen Hagen 3 auxin-amido 136 
synthetase; ILR, IAA-Leu Resistant IAA-Amino hydrolase; IAMT, IAA carboxymethyltransferase; 137 
NIT, nitrilase; PAT, prephenate aminotransferase; PDT, prephenate dehydratase; PPA-AT, phe- 138 
nylpyruvate aminotransferase; TAA, tryptophan aminotransferase of Arabidopsis; TS, tryptophan 139 
synthase; UGT, UDP-glucuronosyltransferase; YUC, YUCCA family of flavin-containing monooxy- 140 
genase; VAS; methionine aminotransferase 141 

In plants and prokaryotes, phenylalanine biosynthesis from prephenate occurs 142 
through two routes: transamination of prephenate to arogenate which is subsequently de- 143 
carboxylated and dehydrated into phenylalanine, or decarboxylation and dehydration of 144 
prephenate to form phenylpyruvate (PPA) which is converted to phenylalanine through 145 
transamination [63–65] (Figure 1c). Generally, the PPA pathway is more commonly found 146 
in prokaryotes while the arogenate pathway is the major route of phenylalanine 147 
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biosynthesis in plants; however, there is evidence for both pathways existing and making 148 
significant contributions in several plant and bacterial species [63–65]. Thus, modification 149 
of PPA metabolism may impact PAA biosynthesis not only directly by being converted to 150 
PAA but also indirectly by affecting phenylalanine pools in plants (Figure 1c). 151 

Aoi et al. demonstrated that arogenate dehydratase (ADT), the enzyme that catalyzes 152 
the conversion of arogenate to phenylalanine, affects PAA biosynthesis, as overexpression 153 
or knockout of ADTs results in increased or decreased PAA content, respectively [10]. As 154 
arogenate serves as a precursor of phenylalanine, increased ADT activity results in in- 155 
creases in phenylalanine-derived metabolites such as PAA. They also detected changes in 156 
PPA levels upon modulation of ADT activity that followed the trends measured for PAA 157 
content (i.e. ADT overexpression resulted in increased levels of PAA and PPA) [10], sup- 158 
porting the role of PPA as a precursor of PAA. 159 

Another PAA biosynthesis pathway is the aldoxime pathway using phenylalanine- 160 
derived aldoxime, phenylacetaldoxime (PAOx), as an intermediate [8,10,11,15,66]. Aldox- 161 
imes such as indole-3-acetaldoxime (IAOx) and PAOx as well as aldoximes derived from 162 
other amino acids are well characterized as precursors of various specialized metabolites 163 
such as glucosinolates, cyanogenic glycosides, and camalexin as well as nitrogenous vol- 164 
atiles [31,33,67–72]. Several studies have shown that IAA can be made from IAOx in Bras- 165 
sicales and monocots [11,73–75] (Figure 1a). Similarly, it was shown that PAOx is a pre- 166 
cursor of PAA in Arabidopsis and monocots [8,11,15] (Figure 1b). Arabidopsis plants 167 
overproducing PAOx increase PAA and display altered morphology such as epinasty 168 
leaves and elongated hypocotyls similar to shown in plants with increased IAA [8,11,42]. 169 
Maize and sorghum plants fed with labeled PAOx produce labeled PAA [11,15]. These 170 
findings indicate a wider distribution of the aldoxime-derived auxin biosynthesis path- 171 
way throughout the plant kingdom rather than limited to Brassicales.  172 

The first step of the aldoxime pathway is the production of IAOx or PAOx by cyto- 173 
chrome P450 monooxygenases of the 79 family (CYP79s) [8,11,15,32,66]. In addition to 174 
CYP79 enzymes, flavin-containing monooxygenases (FMOs) in two fern species have 175 
been shown to catalyze conversion of phenylalanine to PAOx [76]. Aldoximes contribute 176 
to auxin pools through two routes (Figure 1a, 1b). In Brassicales plants, both IAOx and 177 
PAOx are precursors of family-specific glucosinolates. Glucosinolates and their degrada- 178 
tion enzyme beta-thiol-glucosidases known as myrosinases are stored in separate cellular 179 
and subcellular compartments [77–80]. Upon herbivore or pathogen attack, however, 180 
these compartments are compromised, resulting in glucosinolate hydrolysis by myrosi- 181 
nases and the rapid release of toxic metabolites such as isothiocyanates, nitriles and epithi- 182 
onitriles [81–83]. Glucosinolate turnover has also been shown to occur in vivo without tis- 183 
sue damage or disruption [84–87]. Nitriles such as indole-3-acetonitrile (IAN) and benzyl 184 
cyanide are byproducts of glucosinolate degradation. These nitriles can then be acted 185 
upon by nitrilase enzymes to generate IAA and PAA [13,88–92]. On the other hand, ald- 186 
oximes can be converted to auxins through the aldoxime-derived auxin pathway, which 187 
is glucosinolate-independent and is present in both Brassicales and non-Brassicales spe- 188 
cies as maize and sorghum [11,15]. A recent study demonstrated that benzyl cyanide 189 
serves as an intermediate of PAOx-derived PAA biosynthesis in maize and sorghum [15]. 190 
Application of benzyl cyanide increases PAA in maize and sorghum and both species 191 
convert labeled benzyl cyanide to labeled PAA [15], suggesting that nitriles may be key 192 
intermediates in both routes of the aldoxime pathway (Figure 1a, 1b). Unlike the YUCCA 193 
pathway, the aldoxime-derived auxin pathways do not appear to be the main route of 194 
auxin biosynthesis under normal growth conditions. For example, the Arabidopsis IAOx 195 
deficient mutant, cyp79b2 cyp79b3 (b2b3) double mutant, grows normally under optimal 196 
temperatures [73], and the CYP79A2 gene encoding the PAOx production enzyme is 197 
barely expressed in the vegetative tissue of Arabidopsis ecotype Col-0 [11]. However, at 198 
high temperature and under salt stress, the b2b3 mutant displays a low auxin growth phe- 199 
notype [73,93], suggesting that the aldoxime pathway contributes significantly towards 200 
stress-induced auxin production. Indeed, many CYP79 enzymes have their expression 201 
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induced by stressors such as herbivory or by treatment with stress hormones such as 202 
jasmonic acid [31,32,68,72,94]. Given that aldoximes often serve as precursors of defense 203 
metabolites, the aldoxime pathway may play a role in modulating plant growth during 204 
the defense response. 205 

Besides PPA, PAOx, and benzyl cyanide, several other metabolites have been impli- 206 
cated in PAA biosynthesis, although where they fit within the known biosynthetic path- 207 
ways is unclear. Several labeled feeding experiments have demonstrated that phenyla- 208 
cetaldehyde (PAAld) is derived from phenylalanine metabolism and produced along with 209 
labeled PAA [5,95]. PAAld biosynthesis from PPA has been shown to occur in rose 210 
through the actions of phenylpyruvate decarboxylases [96]. Also, in rose as well as other 211 
species PAAld has been shown to be directly synthesized from phenylalanine by the ac- 212 
tion of aromatic aldehyde synthases or aromatic amino acid decarobylases [96–100]. Once 213 
PAAld is synthesized, it can potentially be acted upon by aldehyde oxidases to generate 214 
PAA which have been demonstrated to have activity for PAAld in maize [101]. Another 215 
metabolite, 4-phenylbutyric acid (4PBA), was recently shown to display an auxin-like ef- 216 
fect during plant regeneration via conversion to PAA using a mechanism independent of 217 
IBR3-catalyzed oxidation [102]. Further study showing altered PAA contents upon re- 218 
moval of intermediate biosynthesis enzymes may reveal the role(s) that these metabolites 219 
play in PAA biosynthesis. 220 

 221 
4.2 PAA Inactivation 222 
Another major facet of auxin homeostasis is the conversion of active auxins to inac- 223 

tive forms. Inactivation of auxin not only supports the formation of auxin gradients and 224 
maintenance of auxin levels but is also necessary to prevent cytotoxic levels of auxins from 225 
accumulating in cells. IAA inactivation proceeds through two pathways: reversible IAA 226 
conjugation (to glucose, methyl, or amino acids) and irreversible IAA conjugation (to 227 
amino acids) and oxidation, with recent findings demonstrating that amino acid-conju- 228 
gated IAA is oxidized and then subsequently hydrolyzed to form oxidized IAA [103,104]. 229 
As with biosynthesis, knowledge of PAA inactivation is limited compared to our under- 230 
standing of IAA inactivation. Multiple studies have demonstrated that some Gretchen 231 
Hagen 3 IAA-amido synthetase (GH3) and UDP-glucuronosyltransferase (UGT) enzymes 232 
have activity towards PAA to generate PAA conjugates such as PAA-asp and PAA-glu 233 
and PAA-glucose, respectively [7,105–108] (Figure 1b).  234 

 235 
4.3 Metabolic Interaction between IAA and PAA 236 
More recent studies have shown a link between IAA and PAA metabolism. The ho- 237 

meostasis of IAA and PAA was shown to be maintained through modulation of auxin 238 
conjugation, with the accumulation of PAA resulting in the induction of GH3 or UGT 239 
genes that preferentially act upon IAA and vice versa [8,9]. Lynch et al. showed that PPA 240 
can, in addition to its previously defined and proposed impacts of PAA biosynthesis, im- 241 
pact IAA biosynthesis by serving as amino acceptor in the TAA-catalyzed conversion of 242 
tryptophan to IPA [109]. This interaction not only promotes the production of IAA but 243 
may also impact PAA biosynthesis, as increasing flux through the PPA route of phenylal- 244 
anine biosynthesis was shown to decrease steady state levels of phenylalanine [109] (Fig- 245 
ure 1c). Perez et al. demonstrated that accumulation of PAA results in transcriptional 246 
downregulation of genes related to tryptophan and IAA biosynthesis in Arabidopsis [11], 247 
demonstrating a complex regulatory network for maintaining auxin homeostasis. 248 

5. Conclusions 249 
In the past decades, several biochemical and genetic studies have identified key me- 250 

tabolites, enzymes and pathways that contribute towards IAA metabolism. While many 251 
questions remain regarding PAA homeostasis, recent studies have greatly expanded our 252 
understanding on how PAA is synthesized and inactivated. The role of PPA as a metabo- 253 
lite linking together phenylalanine, IAA and PAA biosynthesis has been supported by 254 
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genetic studies and suggests that PPA-derived PAA biosynthesis is more complex than 255 
the corresponding IAA biosynthetic pathway. Meanwhile, the occurrence of PAOx as a 256 
PAA precursor in Brassicales and monocots suggests that this hidden pathway may be 257 
distributed widely in the plant kingdom and contribute towards PAA homeostasis wher- 258 
ever PAOx is produced. Additionally, the identification of PAA-amino acid and PAA- 259 
glucose conjugates within Arabidopsis has provided mechanisms for PAA inactivation 260 
which may be shared among other species, and may employ similar pathways used in 261 
IAA inactivation. Future investigation is needed to reveal other potential PAA biosynthe- 262 
sis and inactivation pathways as well as the physiological roles of these pathways.  263 
 264 
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