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ABSTRACT. For a given finite group G, the homotopy category of Noo G-
operads is equivalent to a finite lattice, and G varies, there are various image
constructions between these lattices. In this paper, we explain how to lift
this algebraic structure back to the operad level. We show that lattice joins
and meets correspond to Noo coproducts and products, and we show that the
image constructions correspond to No induction, restriction, and coinduction
constructions, at least when taken along an injective homomorphism.

We also prove that a N variant of the Boardman-Vogt tensor product
lifts the join. Our result does not resolve Blumberg and Hill’s conjecture that
the ordinary tensor product of suitably cofibrant No, operads models the join,
but it does imply a closely related result. If & and & are operads, then an
algebra over the Boardman-Vogt tensor product ¢ ® & is equipped with a
pair of interchanging ¢ and Z?-actions. We prove that under mild hypotheses
on a N, operad O, every orthogonal &-ring spectrum is weakly equivalent to
a spectrum over an operad 0’ ~ O that interchanges with itself.
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Transfer and norm maps are defining features of equivariant stable homotopy
theory. From a classical standpoint, they arise geometrically, but in more mod-
ern terms, they arise from actions of N, operads on spaces and spectra. Broadly
speaking, such operads represent equivariant enhancements of homotopy commuta-
tive monoid structures. They include Steiner and linear isometries operads, which
parametrize additive and multiplicative structures on spectra over incomplete uni-
verses, but they are strictly more general. Nevertheless, N, algebras are quite
natural from an algebraic standpoint. Localizations of equivariant commutative

ring spectra are generally N, algebras (cf.
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[13] and [17]), and recent work of
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Blumberg and Hill [7] shows how to build various incomplete equivariant stable
categories from various categories of N, spaces.

The study of N, operads and algebras was initiated in [5]. In this paper,
Blumberg and Hill laid much of the foundations for the subject, and they also made
two conjectures. The first [5, p. 4 and Conjecture 5.11] concerned the classification
of N, operads. Over the course of their analysis, Blumberg and Hill proved that the
homotopy category HO(NOO—OPG) of N, G-operads embeds fully and faithfully into
a combinatorially-defined lattice Ind(G) of G-indexing systems. They conjectured
that this embedding was an equivalence, and this was subsequently proven in [4],
[12], and [15].

The second conjecture [5, Conjecture 6.27] concerned the lattice structure of
Ind(G). It is straightforward to show that products of N, operads correspond
to meets of indexing systems under the equivalence Ho(Nuo-Op®) ~ Ind(G). In
analogy to the Dunn additivity theorem [9], Blumberg and Hill conjectured that
Boardman-Vogt tensor products of suitably cofibrant N, operads correspond to
joins. This remains an open problem.

Our present paper grew out of attempts to resolve the second conjecture, and
also to understand how other algebraic operations on the level of indexing systems
translate into topological constructions on the level of Ny, operads. We have in
mind the lattice structure on Ind(G) for individual finite groups G, and also the
analogues to induction, restriction, and coinduction as G varies. Part of this work
was already done in [5]. As mentioned earlier, Blumberg and Hill showed that
products of N, operads correspond to lattice meets, and they also identified the
indexing system associated to a coinduced N, operad [5, §6.2].

The dual problems are trickier. It is not obvious what a coproduct of N, operads
or an induced N, operad even should be, because the usual operadic constructions
do not have the right homotopical properties. One could imagine modifying the
standard topological constructions, but we take a different approach. As explained
in [15], the homotopy theory of N, operads can be modeled using discrete operads
in the category of G-sets, and it is easy to make sense of coproducts and induction
in that setting. Thus, we analyze how the algebra of indexing systems lifts to
combinatorial operads, and then we translate things into topology at the end (cf.
§4.3 and §6.4).

In summary, we prove that joins in Ind(G) lift to N, variants of the usual
operadic coproduct and tensor product, and we define purely algebraic versions of
induction, restriction, and coinduction that correspond to N, operadic induction,
restriction, and coinduction. These N, constructions seem like derived functors,
in the sense that they are homotopically meaningful replacements of the standard
constructions, but they do not appear to fit into the usual formal frameworks (e.g.
as described in [8]). In particular, N, coproducts, tensor products, and inductions
are not computed by resolving N, operads by cofibrant operads and then applying
the usual point-set topological constructions. Instead, we forget down to discrete
operads in the category of G-sets, take a resolution there if necessary, perform the
discrete operadic construction, and then attach cells to make the result a topological
N, operad. The passage to discrete operads allows us to analyze our constructions
in terms of the combinatorics of free discrete operads, and this analysis is the
technical heart of our work.
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We now state our results more precisely. The simplest discrete models for N
operads are operads in G-sets, which are ¥-free and have G-fixed operations of all
arities. We call these objects N operads, and we write A(&) for the indexing system
associated to any such operad &. The following result combines [5, Proposition 5.1]
and Theorems 4.4 and 4.8.

Theorem A. Suppose O and & are N operads. Then:

(1) the product € x & is a N operad and A(O x &) = A(O) N A(P),

(2) the coproduct O % & is a N operad and A(O «+ P) = A(O)V A(Z), and

(3) if O and & are both retracts of free operads, then O @ & is a N operad
and A(C @ ) = A(O)V A(2P).

Part (3) is a precise combinatorial analogue to [5, Conjecture 6.27], but it does
not imply the topological result. The N, operad associated to & is obtained
by attaching cells to make all fixed-point subspaces of & contractible, and this
construction does not preserve colimits. Thus, we can only deduce part of the
conjecture from the combinatorial result (cf. Proposition 4.17). However, we do
conclude that every N, ring spectrum can be equipped with a self-interchanging
operad action, up to weak equivalence.

Theorem 4.18. Let R be an O-algebra orthogonal G-spectrum for some Ny, operad
O, and suppose further that id € (1) is a nondegenerate basepoint, and € (n) is
of the homotopy type of a G X X,-CW complex for every n > 0. Then there is a
weakly equivalent G-spectrum R’ ~ R and a weakly equivalent No, operad 0" ~ O
such that R’ is equipped with a pair of interchanging O’ -actions.

The results for induction, restriction, and coinduction require a bit more setup,
because N operads do not induce up to N operads. Instead, we use marked G-
operads, by which we mean operads & in G-sets, equipped with a chosen unit u €
0(0)¢ and product p € €(2)¢. The N, operad corresponding to a marked operad
0 is obtained by taking a Y-free, free resolution of &, and then attaching cells just as
before. For any homomorphism f : G — G’ between finite groups, pulling back and
Kan extending along f defines change-of-group adjunctions ind; - res; = coindy
for marked operads. The adjunction resy 4 coind; always is Quillen, and the
adjunction indy 4 resy is Quillen if f is injective.

There are direct algebraic analogues to these operadic constructions, but they
are most easily defined using the transfer system formalism from [16]. Informally,
a transfer system — is the set of orbits in an indexing system. The two notions
are logically equivalent, but transfer systems are easier to manage because they are
smaller. We write — ¢ for the transfer system associated to an operad &. Every
homomorphism f : G — G’ between finite groups gives rise to change of group
adjunctions fr - fgl and f;l - fr for transfer systems, and fgl = fgl if f is
injective. The next result is Theorem 6.6.

Theorem B. Suppose f : G — G’ is an arbitrary homomorphism between finite
groups. Then:

(1) —Lres;or = f;l(*)ﬁ/) for every marked G'-operad 0",
(2) —Reoind;e = fr(—6) for every marked G-operad O, and
(3) if f is injective, then —Lina,e = fL(—¢) for every marked G-operad &'
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There are analogues to parts (1) and (2) of Theorem A for marked operads, but
they are easier (cf. §4.2). There are also analogues to parts (1) and (2) of Theorem
B for N operads, but they follow from the results for marked operads (cf. §6.3).

The constructions in this paper are quite explicit, and we have tried to give
examples whenever possible. Moreover, the correspondences in Theorems A and
B have already been applied by Balchin, Barnes, and Roitzheim to interpret their
decomposition of the lattice of Cpn-transfer systems on the operad level [2, Remark
1]. We hope to see further concrete applications.

Organization. This paper uses a handful of ideas from [15] and [16], so we review
the relevant machinery in §2. After that, we get down to work. In §3, we give
a quick description of how meets and joins of transfer systems are calculated, and
then we lift these lattice operations to the operad level in §4. Similarly, we introduce
image and inverse image constructions for transfer systems in §5, and then we lift
these constructions to the operad level in §6. Appendix A describes a method for
identifying quotient operads. It contains the most technical details needed for the
proofs in §4.

Acknowledgements. The first half of this paper is based on work from my dis-
sertation, and it is a pleasure to thank Peter May for his sage advice and support.
The second half of this paper grew out of conversations with Mike Hill, and it is
a pleasure to thank him for continued guidance and inspiration. Finally, we would
like to thank an anonymous referee for their helpful suggestions and commentary.
This work was partially supported by NSF Grant DMS-1803426.

2. COMBINATORIAL N,, OPERADS

We review some preliminaries in this section, with an emphasis on the ways in
which the homotopy theory of N, operads is algebraic. In §2.1, we summarize the
classification of N, operads in terms of transfer systems and indexing systems, and
in §2.2, we recall some basic properties of NV operads and marked G-operads.

2.1. Transfer systems and indexing systems. Let GG be a finite group, and let
O be an operad in the category TopG of compactly generated weak Hausdorff G-
spaces. An O-action is a continuous and equivariant parametrization of operations
by €. The stabilizers of points f € ¢ in the operad determine how commutative
and equivariant the corresponding operations are, and the topology of & imposes
homotopy relations between these operations. A N, operad parametrizes a par-
ticular kind of equivariant homotopy-commutative structure.

Definition 2.1. A N, operad is a operad ¢ in Top® such that
(1) for every n > 0, the space €(n) is X,,-free,
(2) for every n > 0 and subgroup I' C G x X,,, the space &'(n)! is either empty
or contractible, and
(3) for every n > 0, the space €(n)% is contractible.

The first condition ensures that & parametrizes no strict commutativity rela-
tions, and the third condition ensures that ¢ parametrizes a homotopy coherent
commutative monoid structure, in which all data is G-equivariant. The I'-fixed
points give rise to equivariant transfers.

More explicitly, suppose K C H C G is a chain of subgroups with |H : K| = n,
and suppose o : H — %, is a permutation representation of the H-orbit H/K.
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Let T'(H/K) = {(h,o(h))|h € H} C G x X,, be the graph of o, and assume that
f €)' /K Then f represents G-maps

t?g G xpgcoindfres$ X — X and 0l : Gy Ap NEres$E — E

on all O-algebra G-spaces X and G-spectra F. These maps are external transfers
and norms. In the first case, passing to the adjoint coind%res?(X — restX and
then taking H-fixed points yields an internal transfer map X% — XH .

Given any N, G-operad O, there is a corresponding relation on the set Sub(G)
of all subgroups G, which encodes the transfers parametrized by &.

Definition 2.2. Suppose 0 is a Ny, G-operad. Define a binary relation — 4 on
Sub(G) by

K —¢ H ifandonly if K C H and 6(|H : K|)FH/5) £ g,
where I'(H/K) is the graph of some chosen permutation representation of H/K.

The relation — 4 satisfies conditions that reflect the operad structure on &.
These conditions are axiomatized in the next definition, formulated independently
in [2] and [16].

Definition 2.3. A G-transfer system is a partial order — on Sub(G) such that
for any K, H € Sub(G), if the relation K — H holds, then:

(a) the inclusion K C H holds,
(b) the relation gKg~! — gHg~! holds for every g € G, and
(¢) the relation L N K — L holds for every subgroup L C H.

We let Tr(G) denote the lattice of all G-transfer systems, ordered under refinement.

Succinctly, a G-transfer system is a partial order on Sub(G) that refines inclusion
and is closed under conjugation and restriction. We identify a G-transfer system
— with the set of pairs {(K, H) € Sub(G)*?| K — H}, and we visualize — as a
graph, whose nodes are the subgroups of GG, and whose edges represent nontrivial
relations in —.

More generally, if &' is a N, G-operad and f € &(n), then the stabilizer Stab(f)
is a graph subgroup in the following sense.

Definition 2.4. Suppose n > 0 and I' C G x X, is a subgroup. Then I' is a
graph subgroup if there is a subgroup H C G and a n-element H-set T such that
I'={(h,o(h))|h € H} for some permutation representation o : H — 3, of T. In
such a case, we write I' = T'(T).

If the operation f € € satisfies Stab(f) = I'(T), then f represents an external
T-indexed transfer or norm on G-spaces and G-spectra. It is sometimes convenient
to keep track of all such T-indexed operations.

Definition 2.5. Suppose O is a N, G-operad. For any subgroup H C G and
finite H-set T, we say T is admissible for € if O(|T|)*' ") £ @. We write A(0) for
the Sub(G)-graded class of all admissible sets of &.

The class A(0) also satisfies conditions that reflect the operad structure on &.

Definition 2.6. A G-indering system is a Sub(G)-graded class Z, whose H-
component Z(H) is class of finite H-sets that contains all trivial actions, and which
is closed under isomorphism, conjugation, restriction, subobjects, coproducts, and
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self-induction, i.e. if T € Z(K) and H/K € T(H), then indT = H xx T € Z(H).
We write Ind(G) for the lattice of all G-transfer systems, ordered under inclusion.

Every G-indexing system Z determines a G-transfer system —7, where
K -z H ifandonlyif K CH and H/K € Z(H).

Moreover, indexing systems and transfer systems are equivalent, essentially because
indexing systems are determined by their orbits.

Theorem 2.7 ([2] and [16]). The map —,: Ind(G) — Tr(G) is a lattice isomor-
phism for any finite group G.

Every N, G-operad & gives rise to a G-indexing system A(0) and a G-transfer
system — ¢, which are related by the formula — 4(¢) = —¢. Furthermore, these
objects completely determine & up to homotopy. Declare a map ¢ : 6 — &
between N, operads to be a weak equivalence if the map ¢ : O(n)" — 2 ()" is a
weak homotopy equivalence of spaces for every integer n > 0 and graph subgroup
I'cGxX,. Let Ho(Noo—OpG) denote the category of N, G-operads with weak
equivalences inverted. Then we have the following classification theorem.

Theorem 2.8 ([5], [4], [12], and [15]). The functor
Noo-0p¢ -4 Ind(G) = Tr(G)

that sends an operad O to the indexing system A(O), and an operad map O — &P
to the inclusion A(0) C A(P) induces an equivalence Ho(Nao-Op®) ~ Ind(G) =
Tr(G) of 1-categories.

In fact, the mapping spaces in the hammock localization L (Noo-OpG) are
all either empty or contractible [5, Proposition 5.5], so —, also induces a DK
equivalence L (No-Op®) ~ Ind(G) = Tr(G). This is one sense in which the
homotopy theory of N, operads is algebraic.

2.2. Combinatorial models of N,, operads. Another sense in which the ho-
motopy theory of N, operads is algebraic is that there are categories of discrete
G-operads, whose underlying homotopy theories are equivalent to L7 (NOO—OpG).
We review some material from [15, §3 and §8].

Let Op® denote the category of symmetric operads in Set®. The simplest
discrete models for N, operads are their natural analogues in OpG.

Definition 2.9. A N operad is an operad ¢ in Set® such that
(1) for every n > 0, the set €(n) is X,,-free, and
(2) for every n > 0, the set ¢(n)¢ is nonempty.
We let N-Op® denote the full subcategory of Op® spanned by the N operads.
We construct N, operads from N operads by attaching cells. Let sSet denote
the category of simplicial sets, and let
(=)o :sSet = Set : E

be the O-simplices functor and its right adjoint. For any set X and ¢ > 0, the
set of g-simplices of EX is X*9t! and the face and degeneracy maps of EX
are obtained by omitting and repeating coordinates. The simplicial set EX is
contractible whenever X is nonempty, and we have F& = .
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The functor E and geometric realization |-| both preserve finite limits, and there-
fore we obtain a composite functor

E=|-|o E: N-Op® — N,-Op®.

Declare a morphism ¢ : & — & in OpG to be a weak equivalence if the induced map
Byl : |[EO(n)|" — |EZ(n)|" is a weak homotopy equivalence of spaces for every
integer n > 0 and graph subgroup I' C G x ¥,,. This boils down to the condition
that @(n)l' is nonempty whenever 22(n)!" is. Then the functor E preserves weak
equivalences, and we actually obtain an equivalence of homotopy theories.

Theorem 2.10 ([15, Theorem 3.7]). The functor
E: N-Op® — N..-Op%
induces a DK equivalence between the hammock localizations of N—OpG and Noo—OpG.

The category N —OpG is simple and explicit, but it has a number of deficiencies.
In particular, N —OpG is neither complete nor cocomplete, and operadic induction
indfl : OpH — OpG does not preserve N operads. We introduce a model category
of operads in Set® to remedy these issues.

To start, note that the category OpY is complete and cocomplete for formal
reasons. We write & x & for the coproduct in OpG in analogy to the coproduct of
nonabelian groups. The category OpG is also locally finitely presentable. If

F:SymGSOpG:U

is the free-forgetful adjunction from symmetric sequences of G-sets, then the free
operads F(G x ¥,,) form a strong generator for Op“ in the sense of [1].

Let F be the free G-operad on the symmetric sequence % L %, and write
Opf for the slice category F/ Op® of G-operads under F. By adjunction, an
object of Opf is an operad @ € Op® equipped with a marked constant u € 0(0)¢
and binary product p € €(2)%, and a morphism in Opf is a morphism of G-
operads that preserves the marked operations. The category Opf is also complete,
cocomplete, and locally finitely presentable.

The category Opf carries a simplicial enrichment, which is most quickly defined
using the adjunction (=)o 4 E from above. Both of the functors (—)¢ and E
preserve products, and thus we can enrich, tensor, and cotensor Opf over sSet by
using the hom objects

Op¢ (0, 2) = EOp{(0,2),

and setting K © 0 = [[, € and 0% =[]y, O for any K € sSet and & Op§.
Every hom space @f(ﬁ , ) is either empty or contractible.

Declare a morphism ¢ : 6 — & in Opf to be a weak equivalence if it is a weak
equivalence in OpG. Next, let

F, :Sym® = Opf U

be the free-forgetful adjunction, so that F (S) = F(% U % U.S). We take

b

n>0,'CcGxX,a
graph subgroup
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as a set of generating cofibrations, and
G XXy, e GXxX, G x X,
=< F — LJ
S+ { + ( T T T

as a set of generating acyclic cofibrations. These data determine a model category
structure on Opf that is compatible with the simplicial enrichment, and which
presents the homotopy theory of N, operads.

graph subgroup

n>O,FCG><Zna}

Theorem 2.11 ([15]). The category Opﬁ is a right proper, combinatorial, simpli-
cial model category, with weak equivalences and generating (acyclic) cofibrations as
above. Moreover:

(1) every object of Opf is fibrant, and

(2) if O € Op(j is cofibrant, then O is a N operad, and EO is a Ny operad.

Let Q be a cofibrant replacement functor on Opf. Then the composite
LE =EoQ :Op{ — N-Op°
induces a DK equivalence between the hammock localizations of Opf and Noo—OpG.

Not every marked N operad is cofibrant in Opﬁ; such operads are more closely
akin to X-cofibrant operads in the sense of Berger and Moerdijk [3].

The equivalences between the homotopy theories of N —OpG, Opg, and NOO—OpG
enable us to analyze the homotopy theory of N, operads in purely combinatorial
terms. As illustrated in appendix A, interesting questions about N, operads trans-
form into intricate word problems for operads in G-sets.

We end with a small observation. Combining Theorems 2.8, 2.10, and 2.11 yields
equivalences Ho(Opf) ~ Tr(G) ~ Ho(N-Op®) that send an operad & Opf to
the transfer system —|pge| and an operad & € N-0p€ to —ge|- However, for
any graph subgroup I' C G x ¥,,, we have

IEQO(n)|" #2 «— O0(n)' #2 < |EO(n)|" + 2.
Thus, we extend Definitions 2.2 and 2.5.

Definition 2.12. Suppose € is an operad in N-Op® or Opf. Define a binary
relation —¢ on Sub(G) by

K —»¢ H ifandonlyif K C H and O(|H : K|)'H/E) £

where I'(H/K) is the graph of a chosen permutation representation of H/K.
Similarly, for any subgroup H C G and finite H-set T, we say that & admits T
if 0(|T)"™) # @, and we write A(&) for the class of admissible sets of &.

Corollary 2.13. For any operad O in N—OpG or Opf, the relation — ¢4 s a
transfer system, the class A(O) is an indexing system, and the functors

0p¢ 4 Ind(G) 2 Tr(G) and N-Op® - Ind(G) = Tr(G)
induce equivalences Ho(Opf) ~ Ind(G) = Tr(G) ~ Ho(N-Op®) of 1-categories.

Proof. The relations —goe|, —¢, and —|gg| are equal, and the classes A(|EQ0),
A(0), and A(|E0O)) are also equal.
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3. ALGEBRAIC MEETS AND JOINS

In this brief section, we record how to compute meets and joins of transfer
systems, and then we give a few examples. One could also work on the level of
indexing systems, but this makes the mathematics more complicated. For any G-
indexing systems Z and J, the meet Z A J is just the intersection Z N J, but the
join ZV J is the indexing system generated by the union ZU J. It can be obtained
by closing up Z U J under coproducts and self-induction, but this description is
somewhat inexplicit.

In contrast, there is a simple formula for the join of G-transfer systems. It says
that the join — V ~» is obtained by composing the transfers in — and ~-.

Proposition 3.1. Suppose that G is a finite group, and that — and ~ are G-
transfer systems. Then:

(1) the meet — A ~ is the intersection — N ~>, and
(2) the join — V ~ is the transitive closure of — U ~.

Proof. For (1), note that an intersection of transfer systems is still a transfer system.
The same is not true for unions, and therefore — V ~~ is the least transfer system
that contains the union of — and ~». Denote it (— U ~»). By [16, Theorem A.2],
the relation (— U ~») can be obtained by closing up — U ~~ under conjugation
and restriction, and then passing to the reflexive and transitive closure. However,
the relation — U ~~ is already closed under conjugation and restriction, and it is
already reflexive. |

We illustrate these operations below.

Example 3.2. Suppose first that G = Cps for a prime p. The subgroup lattice of
G is the tower C; C C), C Cp2 C Cps, and the lattice Tr(C)s) of all Cps-transfer
systems is isomorphic to the associahedron Ky (cf. [2]). Here are a few meets and
joins in Tr(Cps).

: : o :
1/\6.:: DA =1

vi=0  vi=)

Next, suppose that G = K is the Klein four group. Then G has three proper,
nontrivial subgroups of order 2, which are pairwise incomparable. The lattice
Tr(K,) consists of a pair of stacked 3-cubes, plus a layer of three vertices con-
necting them (cf. [16]). Here are a few meets and joins in Tr(Ky).

AN = O A < = O GeA L =
N A T O OV = 1V L = 4

We have complete knowledge of the lattice Tr(G) when G = Cps or K4, and
therefore these meets and joins may be determined by inspection. In general, the
lattice Tr(G) can be quite intricate, but the formulas in Proposition 3.1 work
regardless.
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4. OPERADIC PRODUCTS, COPRODUCTS, AND TENSOR PRODUCTS

We now relate meets and joins of indexing systems to products, coproducts,
and Boardman-Vogt tensor products of operads in Set®. The case for products is
straightforward and was analyzed in [5], but the cases for coproducts and tensor
products are less so. We begin by recalling the correspondence between products
of N operads and meets of indexing systems (Proposition 4.1), and then we show
that coproducts and tensor products of N operads correspond to joins of indexing
systems, under suitable cofibrancy conditions (Theorems 4.4 and 4.8). We briefly
describe the situation for marked operads in §4.2, and then in §4.3, we discuss how
these discrete constructions translate over to topology.

4.1. Constructions on N operads. We start by lifting meets and joins to the
level of N operads. It is more natural to work with indexing systems instead of
transfer systems in this context, but the identity — 4(¢) = —¢ allows us to convert
between the two formalisms.

Proposition 4.1 ([5, Proposition 5.1)). If & and & are N operads, then their
product 0 x 2 in Op® is a N operad, and A(0 x P) = A(O) N A(DP).

Proof. Products in OpG are computed levelwise, and therefore
(0 x P)(n)= = 0(n)= x P(n)=

for every n > 0 and subgroup = C G x X,,. The left hand side is nonempty if and
only if both factors on the right hand side are, and the result follows. O

Corollary 4.2. For any ¢ € N-Op€, the functor € x (—) : N-Op® — N-Op®
preserves weak equivalences.

We have the following consistency check.

Example 4.3. One standard construction of N operads proceeds by coinducing the
associative operad As in Set up to a G-operad. Explicitly, if X is a nonempty, right
G-set, then Set(X, As) is a N operad in Set®. The operad Set(X, As) admits a
finite H-set T if and only if every h € H that fixes an element of X acts as the
identity on all of T' [15, §3.2]. In particular, the N operad Set(G, As) admits all
finite H-sets for all subgroups H C G. It is isomorphic to the object operad of the
G-Barratt-Eccles operad P (cf. [11]).
For any nonempty, right G-sets X and Y, there is an isomorphism

Set(X, As) x Set(Y, As) = Set(X UY, As),

and the equality A(Set(X LY, As)) = A(Set(X, As)) A A(Set(Y, As)) follows from
the admissibility criterion above and the fact that g € G fixes an element of X LY
if and only if it fixes an element of X or it fixes an element of Y.

A dual result relates operadic coproducts to joins of indexing systems, but it
is harder. Our proof relies on a presentation of the coproduct operad, which is
analogous to the usual presentation for the coproduct of nonabelian groups. We
refer the reader to [15, §5] for further discussion of free and quotient operads.

Theorem 4.4. If 6 and & are N operads, then their coproduct €« & in Op© is
also a N operad, and A(O x P) = A(0O)V A(2).

We single out a special case before going into the proof.
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Example 4.5. Suppose S is a Y-free symmetric sequence in Set® such that
S(n)¢ # @ for n = 0,2. Now let & = F(S) be the free operad on S. By [15,
Theorem 4.6], the class A(€) is the indexing system generated by A(S).

Now suppose T is another such a symmetric sequence, and let & = F(T'). Then
Ox P =F(SUT), and therefore

A6 P) = (A(SUT)) = (A(S) UA(T)) = (A(S)) V (A(T)) = A(0) v A(P).
Therefore Theorem 4.4 is true in this case.

To prove the general case, we reduce to the calculation for frees.

Proof of Theorem 4.4. Let F : Sym® < Op® : U be the free-forgetful adjunction.
In Lemma A.4, we prove that & x &2 is isomorphic to a sub-symmetric sequence
of F(UO UUZ) equipped with a modified operadic composition. It follows that
O+« & is ¥-free, and since there is an operad map & — 0 x &2, it also follows that
(0 x P)(n)¢ # @ for all n > 0. Therefore € * & is a N operad.

The structure maps & — 0 x & + & imply that A(0) C A(C x+ P) D A(P),
and therefore A(0)V A(P) C A(€ x ). On the other hand, the symmetric
sequence map U(0x P) - UF(UOUUZ) implies A(Ox ) C A(F(UOCUU ZP)).
As in Example 4.5, we have

AF(UOLUP)) = (AUOLU D)) = (A(0)) V (A(P)),

and this equals A(0)VA(Z) because A(0) and A(S?) are already indexing systems.
This proves the theorem. ([

Corollary 4.6. For any ¢ € N-Op®, the functor O x (=) : N-Op® — N-Op“
preserves weak equivalences.

We now consider Boardman-Vogt tensor products 0 ® & of operads. Recall that
0 ® & is the quotient of the coproduct & x & operad by the vertical-horizontal
interchange relations

h(f(xlh v axln)a .. '7f(xm1; v 7xm'n)) ~ f(h(xlh .o 7x’ml)7 .. 'ah(xlna v 7xmn))>

for all h € O(m) and f € £(n). When m = n = 2, we recover the usual formula
from the Eckmann-Hilton argument. More formally, we start with the coproduct
1:0 — Ox P + & :j and then take the quotient by the congruence relation
generated by

V((h); (), 3 () ~A(G(f)si(R), ... i(h))a,

where h € O(m), f € P(n), and o is the permutation that reorders mn elements
in reverse lexicographic order. Nullary interchanges are allowed. If f € £2(0), then
Y@(h);5(f)s- - 3(f)) ~ 4(f), and therefore i(h) ~ j(f) if h € €0(0) as well. It
follows that the operad € ® & is reduced if both &(0) and £(0) are nonempty.

The tensor product of N operads is not generally a N operad. For example, if
G is the trivial group and & = & = As is the associativity operad, then 0 ® &
is isomorphic to the commutativity operad [10, Proposition 3.8]. However, the
tensor product does behave well for suitably free N operads. We introduce some
terminology.

Definition 4.7. A N operad € is cofibrant if it is a retract of free operad in Op®.
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This terminology is justified because there is a model category structure on Op®
for which these are the cofibrant operads (cf. [15, §8.1]).

If a cofibrant N operad & is a retract of a free operad F(.S), then S must be -
free because the composite S — F(S) — & of the unit and the retraction is a map
of symmetric sequences. After enlarging S, we may also assume that S(n)% # @ for
all n > 0, because 0 (n)¢ # @ implies F(S)(n)® # @, and therefore the inclusion
F(S) = F(SUTI,>¢ ©%=) has a retraction.

Theorem 4.8. If 0 and & are cofibrant N operads, then their tensor product
0 ® P inOp© is a N operad, and A(C @ P) = A(O)V A(P).

Proof. Admissible sets are preserved under retracts, so it is enough to prove the
result when ¢ = F(S) and & = F(T) are free on X-free symmetric sequences
S and T such that S(n)%,T(n)¢ # @ for all n > 0. In this case, Lemma A.5
implies that F'(S) ® F(T) is isomorphic to a sub-symmetric sequence of F(SUT),
equipped with a modified composition operation. From here, the same argument
used in the proof of Theorem 4.4 shows that F'(S) ® F(T) is a N operad and that
A(F(S)® F(T)) = A(F(S)) v A(F(T)). O

Corollary 4.9. If 0 is a cofibrant N operad, then 0 ® (—) : (N—OpG)COf —
N—OpG preserves weak equivalences between cofibrant N operads.

4.2. Constructions on marked operads. Next, we briefly indicate how the
structure on the lattice Ind(G) of G-indexing systems is reflected on the level
of marked operads. Recall that F is the free operad in Op® on the symmetric
sequence % U %, and Opﬁ = F/OpG.

The relationship between products and meets is the same as before, because
limits in Opf are computed in OpG.

Proposition 4.10. If & and & are operads in Opf, then
A0 x P) = A(O)NA(D).

Consequently, the functor € x (=) : Opf — Opf preserves weak equivalences for
any operad O € Opf.

A dual result holds for derived coproducts in Opf7 with respect to the model
structure discussed in §2.2.

Proposition 4.11. Suppose & and & are cofibrant operads in Opf, and let Oxp P
be their coproduct in Opf. Then O xg & is also cofibrant, and

A0 g P) = A(O)V A(D).

Consequently, the functor O xg (=) : Opf — Opi preserves weak equivalences
between cofibrant operads whenever O is cofibrant in Opf.

Proof. The operad O xg &2 is cofibrant for formal reasons. To compute its indexing
system, note that the maps Fy (& — %) are generating cofibrations for Opf7
and therefore every cofibrant operad is a retract of a free operad F(S) for some
Y-free symmetric sequence S. Indexing systems are preserved under retracts, and
therefore it will suffice to prove that A(0 g &) = A(0)V A(Z) when 0 and &

are free in this sense.
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Suppose that ¢ = F.(S) and & = F,(T) for X-free symmetric sequences S
and T. Then 0 xp &2 = F (SUT), and the identity A(C g P) = A(O) V A(Z)
follows as in Example 4.5. (]

One can also construct Boardman-Vogt tensor products @y in Opf7 but they are
quite pathological. Morphisms in Opf must preserve markings, and therefore the
distinguished binary operation p in the tensor product & @g & must interchange
with itself, i.e. p(p(z,y),p(z,w)) = p(p(x, 2), p(y, w)). Thus, the cycle (23) € 3y
stabilizes ¢ = y(p; p,p), and it follows that the operad & @ & is never E-free or
cofibrant. Moreover, if g € G is an element of order 2 and T' = {(1,id), (g, (23))},
then ¢ is I-fixed, which makes it a (g)/l-norm. In this case, taking & = ¥ = F
yields the inequality A(€ ®@r &) 2 A(0) V A(Z?). For these reasons, we pursue
®¥F no further.

4.3. Topological interpretations. We conclude this section by considering how
constructions on the level of discrete G-operads translate into constructions for
topological N, operads. As observed earlier, the functor E = || o E preserves
products of operads because it preserves finite limits. Unfortunately, it does not
preserve point-set level operadic coproducts or tensor products, and therefore our
constructions in N —OpG and Opf need to be interpreted carefully.

We think of the coproduct in N-Op® and the tensor product of cofibrant op-
erads in N—OpG as the homotopically correct constructions, and we read off their
topological counterparts via the equivalence Ho(N—OpG) ~ Ho(Noo—OpG). Let
(—)*: Noo-Op€ — N-Op% be the forgetful functor that ignores all topology. This
functor preserves admissible sets, and therefore it also preserves weak equivalences.
It is a homotopical inverse to E.

Proposition 4.12. The homotopical functors
E: N-Op® = N,-Op© : (—)"
are inverse up to zig-zags of natural weak equivalences.

Proof. We use the product trick from [14]. Both E and (—)* preserve admissible
sets, and therefore both projections in the diagram E(0%) + E(0%) x € — O are
weak equivalences that are natural in the operad €@ € No-Op®. Similarly for the
other composite. ([l

Accordingly, we define N, coproducts and tensor products by ignoring topology,
performing the combinatorial constructions, and then inserting cells.

Definition 4.13. For any N, operads ¢ and &, define
O+Ne P =R(0"+ ") and OV~ P =E(FO" 2 FP"),

where F is the free operad functor F : Sym® — Op® from the category of sym-
metric sequences in G-sets to the category of operads in G-sets.

We have A(€ N>~ P) = A(O)V A(P) = A(O @V~ &) by Theorems 4.4 and
4.8, so these constructions have the correct behavior. One can also construct an
analogous N, product, but the equivalences

O xN= P =E(0" x P") = (B0") x (BP") ~ 0 x P,

show that it is unnecessary.
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Let us analyze the N, coproduct and tensor product a bit further. The functor
E does not preserve preserve colimits, and as a result, its application in the con-
structions of &N &2 and € @N= 2 spoils the point-set level universal properties
of 0%+ P" and FO" @ FO". Consequently, we do not believe that & *V> &2 and
O @N~ P possess any universal properties beyond representing the coproduct of
0 and 2 in Ho(N4.-Op©).

That being said, the functor [E does preserve point-set level operadic interchange.
Indeed, if p : € — 2 and ¥ : & — 2 are maps of operads in Set® or Top®,
then ¢ and & interchange in 2 (via ¢ and ) if and only if the diagram below
commutes for all j and k.

o) x Py oy 2(j) x 2(ky
id x A Y

o) x P (k) 2(5#)

twist rev. lex.
P() % () 2(k))
id x A Y
P() x ) o 2(k) x 2(5)"

The functor E preserves such diagrams because it preserves finite products. Hence,
if 0 and & are discrete operads that interchange in 2 via ¢ and 1, then E& and
EZ are topological operads that interchange in E2 via E¢ and Eq.

Specializing, we see that if & and & are N, operads, then the N operads
FO" and F 2" interchange in F'O* ® F 2" and hence the N, operads E(FO™)
and E(F 2%) interchange in 0 @V~ 2 = E(FO" @ F%"). Moreover, the operad
E(F0") is equivalent to € because

AE(FOY)) = A(FO") = (A(0")) = (A(0)) = A(0),

though E(F &™) is much larger than &. Similarly considerations apply to E(F27%)
and &, and we arrive at the following conclusion.

Proposition 4.14. Suppose that 0 and & are N, operads. Then € @N>~ &P is
a Noo operad such that A(O @V~ P) = A(O) Vv A(L). Moreover, there are Ny
operads 0" = E(FO") and &' = E(F ") such that

(1) 0"~ 0 and P' ~ P,

(2) there are natural maps 0' — O @N~ P« P’ and

(3) the operads 0" and &' interchange in 0 @N= P via the maps above.

Thus, even though the N4, tensor product & ®@~>~ 2 does not have any apparent
point-set level universal property, it is a target for interchanging actions by the
enlarged operads ¢/ ~ € and £’ ~ Z. Very roughly speaking, we think of
O N> P as a fattened version of ¢’ ®2?', which is obtained by attaching additional
cells between ¢’ and &’. Along the same lines, the N, coproduct & *N~ & does
not have any obvious point-set universal property, but it does fit into a diagram
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E(0%) — O N>~ P + E(2") where E(0%) ~ 0 and E(P*) ~ &. We think of
O «No P as a similarly fattened version of E(0%) x E(27Y).

In light of this discussion, it is natural to ask when a N, coproduct or tensor
product is equivalent to the usual operadic coproduct or tensor product. We do not
believe that N, coproducts are ever equivalent to ordinary ones. As the follow-
ing example illustrates, it is quite difficult construct an action by & *VNe & from
separate actions of & and .

Example 4.15. Suppose that X is a G-space, and that ¢ and & are two N
G-operads. If 0 « & and O «VN> 2 are equivalent, then actions by these operads
should consist of equivalent data. An action of & x & on X is the same thing as
an action by & and an action by &. On the other hand, if we have an action
by €@ +Ne P then for any n > 0 and f € O(n) and h € Z(n), we must have
coherence homotopies between the corresponding operations F and H on X. This
is not obviously part of the given data, because & only parametrizes coherence
homotopies between its operations, and similarly for &2.

There is a bit more hope if we work in a marked setting. Suppose ¢ and & have
distinguished units ug € 0(0)¢ and ugp € 2(0)¢ and distinguished binary prod-
ucts pg € 0(2)% and pyp € Z(2)¢, which represent the same operations U and P
on X. Then & parametrizes a homotopy from F to P(... P(P(x1,%2),%3),...,%x)
and & parametrizes a homotopy from P(...P(P(z1,x2),x3),...,2,) to H. The
issue now is that there should be a Stabgxs, (f) N Stabgxs, (h)-fixed homotopy
from F' to H, and the homotopy above does not necessarily have this property.

The situation is less clear cut for tensor products. The Dunn additivity theorem
(cf. [9], [10]) asserts that the tensor product of an Ej-operad with an Ej-operad is
Ej, provided that the operads are suitably cofibrant. This motivated [5, Conjec-
ture 6.27], which we reproduce below.

Conjecture 4.16. If & and & are suitably cofibrant N, operads, then & ® & is
also a N, operad, and A(0 ®@ &) = A(0O) vV A(2P).

For such operads, we would have & @V~ & ~ ¢ ® & because both sides would
have the same admissible sets. Theorem 4.8 is a precise combinatorial analogue to
this conjecture, but it does not quite imply the topological result. We can deduce
the following portions though.

Proposition 4.17. If 0 and & are cofibrant N operads, then EO Q EZ is ¥-free,
has G-fized points of all arities, and satisfies A(BC @ EZ) = A(EQ) vV A(EZ).

Proof. By Theorem 4.8, the tensor product ¢ ® 2 in Op® is a N operad such that
A(O® P)=A(0) Vv A(Z). Applying the functor E gives a pair of interchanging
maps EO — E(0 @ &) + EZ of N, operads, which in turn induce a map
EOQREZ — E(C ® &) by universality. Since E(0 ® &) is S-free, so is EO @ EZL.
Since E€(n)Y # @ for all n > 0, the same holds for E¢ @ EZ. The existence of a
map EO @ EZ — E(0 ® &) implies the inclusion

AEO REP) C A(E(0® P)) = A(O)V A(P) = A(EO)V AED),

and the reverse inclusion follows from the maps E0 — E0 @ EZ «+ EZ in the
universal diagram. O

Thus, if one could prove that (E0 @ EZ?)(n)! is either empty or contractible for
every integer n > 0 and graph subgroup I' C G x X,,, then Conjecture 4.16 would
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hold for the N, operads E€ and EZ. That being said, we can already deduce
useful topological results without knowing that E0 @ EZ? is a N, operad.

Theorem 4.18. Let R be an O-algebra orthogonal G-spectrum for some Ny, operad
O, and suppose further that id € 0(1)€ is a nondegenerate basepoint, and € (n) is
of the homotopy type of a G X X,-CW complex for every n > 0. Then there is a
weakly equivalent G-spectrum R’ ~ R and a weakly equivalent No, operad 0" ~ O
such that R’ is equipped with a pair of interchanging O’ -actions.

Proof. Let ¢’ = E(FO") and & = E(FO" ® FO"). Then 0, 0’ and & are
equivalent N, operads. The projections & + 0 x & — & induce a chain of
Quillen equivalences Sp®[0] ~ Sp“[0 ® P] ~ Sp“[ ] between the corresponding
categories of algebra G-spectra by [5, Theorem A.3], and we let R’ be a fibrant
replacement of the image of R in SpG[BZ]. Applying E to the universal diagram
FO* — FO" @ FO" < FO" gives a pair of interchanging maps ¢’ — &2 + 0”,
and pulling back gives a pair of interchanging &’-algebra structures on R'. O

5. ALGEBRAIC IMAGES AND INVERSE IMAGES

In this section, we give purely algebraic definitions of image and inverse image
transfer systems (Definition 5.6), and then we establish their functoriality and ad-
jointness properties (Proposition 5.9). We relate these constructions to operadic
induction, restriction, and coinduction in §6. Much of this theory works as ex-
pected, but there are a few surprises. Most notably, there is an extra inverse image
construction. Every group homomorphism f : G — G’ determines a pair of image
constructions analogous to induction and coinduction, but the map f also deter-
mines two inverse image constructions, which happen to coincide if f is injective
(Proposition 5.13). When f is noninjective, one of these inverse images corresponds
to restriction, but the other one and its adjoint seem to be red herrings, with no
natural operadic interpretation.

5.1. Overview. We sketch the definitions and offer a few examples now, before
giving a more formal treatment in the next section.

Our constructions are loosely inspired by a pair of adjunctions associated to
an arbitrary set map. Suppose X and Y are sets, f : X — Y is a function,
and P(X) and P(Y) are the corresponding power sets, regarded as posets under
inclusion. Then taking images and inverse images determines an order adjunction
[:P(X)SP(Y): f~L. Intersections are not always preserved under images, and
therefore f : P(X) — P(Y) does not always have a left adjoint. However, there
is an adjunction f=! : P(Y) S P(X) : f., where f,A = {y € Y|f 1(y) C A}
for any subset A C X. For comparison, the ordinary image can be expressed as
fA={yeY|f Yy NA# @}. The chain of adjunctions generally stops here
because the right adjoint f, does not always preserve unions.

If f:G — G'is a group homomorphism, then it makes sense to apply f*? and
(f~1)*2 to the relations in a transfer system. The results need not be transfer
systems, but we can close them up. Every binary relation R on Sub(G) generates
a transfer system (R), provided it refines inclusion. Explicitly, the relation (R)
is obtained by closing R under conjugation and restriction, and then passing to
the reflexive and transitive closure [16, Theorem A.2]. Combining (-) with the set-
theoretic maps f*2? and (f~!)*2 gives natural transfer system analogues of f and
f~1. We denote them f; and fL_l.
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Example 5.1. Consider the map f : C4y — X3 that sends the generator of Cy to a
transposition. The subgroup lattice of Cy is the tower Cy C Cy C C4. The proper,
nontrivial subgroups of X3 are three conjugate copies of Cy and a single copy of
C3. We draw them as three dots in a row, and an odd dot off to the side. Here are
some examples of fr, and f, 1

W()-n(i)= R 0)=n()-n(1) -
) =mt )= () =t (D) =
On the other hand, constructing an analogue to f, for transfer systems requires
another approach, because the set-theoretic map f, does not preserve subgroups.

The power set adjunction f~! - f, indicates that f~! and f, should be suitably
dual, which necessitates the next construction.

Proposition 5.2. Suppose that < is a partial order on Sub(G) that refines inclu-
sion. Then

Y< (= {(K, H) € Sub(G)*?

KcCcH,and gKg-'NL<L
forall g e G and L C gHg™!

is the largest G-transfer system contained in <.

Note that if R is any reflexive relation on Sub(G), then there must be maximal
transfer systems contained in R, but there need not be a maximum )R({. Assuming
R is a partial order allows us to construct ) R( directly.

Proof of Proposition 5.2. We begin by showing ) < ( is a transfer system. The
reflexivity of ) < ( follows from that of <. By definition, the relation ) < ( re-
fines C, and therefore it is also antisymmetric. For transitivity, suppose that
(K,J),(J,H) €)<{(. Given g € G and L C gHg™ !, let M = gJg~* N L. Then
M C gJg~*!, and we have

gKg'NL=gKg'NnM<M=gJg'NnL<L,

so that gKg~' N L < L by the transitivity of <. It is clear that ) < ( is closed
under conjugation. For restriction, suppose (K,H) € ) < (and L € H. Then
(KNL,L) € )<{because if g € G and M C gLg~*, then M C gHg~* and hence

gKNLg'NnM=gKg'nM< M.

Therefore ) < ( is a transfer system. It refines < because if (K, H) € ) < (, then
taking g =e€ Gand L = H C eHe ! shows K =eKe 'NH < H.

Finally, suppose that — is a transfer system that refines <, and suppose K — H.
Then K C H because — refines inclusion. Then, for any ¢ € G and L C gHg™*,
we have gKg~' — gHg ! and ¢K¢g~' N L — L, which implies gK¢g~'NL < L.
Therefore — refines ) <(. O

We obtain the transfer system analogue of f, by dualizing the construction of
f;'. TFirst, we take the inverse image along (f~!)*2, and then we apply )- (.
Similarly, one can take the inverse image along f*? and then apply )-(, and this is
where the extra inverse image map comes from. We denote these two constructions

fr and fgl.
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Example 5.3. Consider the homomorphism f : Cy — 33 from Example 5.1 once
more. Here are some examples of fr and fg L

fe( ) =sa(i)=sn(D) =7 () =pa() =
) =gm )= &) =m (D)=

Note the differences between Examples 5.1 and 5.3. The maps f;, and fr should
be distinct, because operadic induction and coinduction are distinct. The maps
fr L and fr ! are both supposed to model restriction, but we are seeing a point-

wise inequality f; < fr ! This occurs for every noninjective map f, and the
operadically correct construction turns out to be f; L

5.2. Definitions and first properties of image and inverse image transfer
systems. For any group G, let
Sub(G)c = {(K,H) € Sub(G)*?*| K C H}

and suppose F' : Sub(G) — Sub(G’) is an order-preserving map. Then F*?
restricts to a set map
FC . Sub(G)C — Sll.b(Gl)C7
and therefore there is an image-inverse image adjunction
Fc : P(Sub(G)c) = P(Sub(G')c) : (Fe)™'.

We can identify the elements of P(Sub(G) ) with binary relations on Sub(G) that
refine inclusion, and similarly for G'. Moreover, if R € P(Sub(G’)c) is a partial
order, then so is (Fc)~'R. This enables us to make the following definitions.

Definition 5.4. Suppose G and G’ are finite groups and F : Sub(G) — Sub(G’)
is an order-preserving map. For any G-transfer system —, define

Fr(=) = (Fc(=))
and for any G’-transfer system ~~, define
Fpt (=) = )(Fo) 7 ().
We summarize a few properties of F7, and Fp 1

Lemma 5.5. Suppose G and G’ are finite groups.

(1) For any inclusion-preserving map F : Sub(G) — Sub(G’), the induced
maps Fr : Tr(G) = Tr(G') : FEl form an adjunction Fp - Flgl. If F-
preserves transfer systems, then Fy = F. If (Fc)™! preserves transfer
systems, then Flgl = (Fo) L.

(2) For any pair of inclusion-preserving maps E : Sub(G) — Sub(G’) and
F : Sub(G’) — Sub(G”), we have refinements

(FE) (=) C FLE (=) and ER'Fp'(~) C (FE)z' (~).

Moreover, if either of the equalities (FE)r = FLEy, or (FE)I_%1 = Egngl
hold, then both of them hold.

(3) If either Ec or (Fc)™' preserves transfer systems, then both (FE)p =
FLEr and (FE)R' = E5'Fi'.
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Proof. For (1), the adjunction Fy, 4 F' follows from the adjunction F- - (Fc)™?
and the adjointness properties of (-) and )-(. If F- preserves transfer systems, then
applying (-) does nothing to F(—), and similarly for (F-)~!.

Now for (2). Suppose E : Sub(G) — Sub(G’) and F : Sub(G’) — Sub(G") are
order-preserving. For any G-transfer system —, we have E-(—) C Fr(—), and
hence (FE)C(—>) C FCEL(_>) C FLEL(—>). It follows (FE)L(—>) C FLEL(—>).
Dually, E;'Fr'(~) C (FE) ' (~) for every G”-transfer system ~.

Suppose further that (FE);, = FrEr. Then by the uniqueness of adjoints, the
functors E'Fr' and (FE)R' are naturally isomorphic maps Tr(G") = Tr(G),
but the codomain is a poset. Therefore Egng 1= (FE)I_{l. The argument when
(FE)R' = Ex'Fy' is dual.

For (3), suppose that E preserves transfer systems. Then

FrEL(=) = (Fc(Ec(=))) = (FcEc(=)) = (FE)L(=)

for every G-transfer system —. The equality (FE),' = E5'F' follows from (2).
The argument when (F-)~! preserves transfer systems is dual. ([l

Specializing Definition 5.4 to the case where F' is the image or inverse image map
associated to a group homomorphism f : G — G’ yields the corresponding image
and inverse image maps for transfer systems.

Definition 5.6. Let f : G — G’ be a homomorphism between finite groups. Taking
F = f:Sub(G) — Sub(G’) in Definition 5.4 determines an adjunction

fr:Tr(G) =2 Te(G) : fz'

and taking F = f~!: Sub(G’) — Sub(G) determines another adjunction.

fpt= e (@) = Te(G) : (F)R = fr

The functoriality of (—)z, (—)r, (=)', and (=)5" does not immediately follow
from Lemma 5.5. These constructions preserve identity morphisms, but for any
pair of composable group homomorphisms
¢a L ar,

and transfer systems — € Tr(G) and ~» € Tr(G”), Lemma 5.5 only implies that

(kh)p(=) Ckrhr(=) (KRR (~) D hp'kz'(~)

(kh)z'(~) C hy kg (~)  (kh)r(=) D krha(=).

We establish the reverse inclusions by analyzing the precise constructions of hy,(—)

and kzl(w). These transfer systems are slightly less complicated than general
theory predicts.

Lemma 5.7. Suppose f : G — G’ is a homomorphism between finite groups.

(1) For any G-transfer system —, the G’ -transfer system fr(—) is the reflexive
and transitive closure of the relation

U {(g(fK)g‘l,g(fH)g‘l) ‘g € G’}.

K—H
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(2) For any G'-transfer system ~, the G-transfer system f; *(~) is the reflex-
we and transitive closure of the relation
U {(f*lK’ NL,L) \ Lc f*lH'}.
K'~sH'

Proof. The relation fr,(—) is obtained by closing f-(—) under conjugation and re-
striction, and then taking the reflexive and transitive closure, but f-(—) is already
closed under restriction. If (fK, fH) € f-(—) for some K — H, and L' C fH,
then for L = f~'L' N H we have K N L — L, and therefore (fK N L', L") =
(f(KNL),fL) € fc(—). Claim (1) follows.

For claim (2), it is enough to show (f~1)c(~) is closed under conjugation.
If (f'K',ftH') € (fYc(~) for some K’ ~ H’', and o € G, then we have
fl@)K'f(a)™r ~ f(a)H'f(a)~t, and therefore (a(f~'K')a ' a(f~*H)a™ 1) =
U () K (@) ), FA @) B fa) ™)) € (FDe (=), o

These simplifications buy us just enough room to establish functoriality.

Proposition 5.8. Suppose that h : G — G' and k : G’ — G" are homomorphisms
between finite groups, and — € Tr(G) and ~~ € Tr(G") are transfer systems. Then.:

(1) k’LhL(—)) = (kh)L(—)) and thR(—>) = (/{h)R(—>), and

(2) hp'kp'(~) = (kh)L' (~) and hiy'kz' (~) = (kh)R! (~).
Proof. Tt will be enough to show that kphy(—) C (kh)r(—) and hy 'k ' (~) C
(kh);*'(~). For the former inclusion, suppose (K’, H') € hy(—). By Lemma 5.7,
there is a sequence of subgroups HY,...,H] C G’ such that K’ = Hj, H = H},,
and if 0 < ¢ < n, then

(H,Hi 1) = (9i(hEi)g; ', gi(hHi)g; )

for some g; € G’ and K, H; C G that satisfy K; — H;. Apply k: G’ — G” to the
subgroups H/. Then, since conjugation is preserved under images, we have

(K(H}), k(H{ 1)) = (k(g:) (kK )k(gi) ™", k(gi) (khHi)k(9:) ") € (kh) (=),
and thus (kK',kH') € (kh)L(—) by transitivity. This shows that kc(hr(—)) C
(kh)r(—), and the inclusion kr(hr(—)) = (kc(hr(—=))) C (kh)r(—) follows.

The proof of the inclusion h;'k;*(~) C (kh);'(~) is similar. The inclusion
(A" Y (k' (~)) C (kh);*(~) holds because h~! preserves intersections, and then
hit(kp ' (~)) C (kh);*(~) follows as before.

Thus (kh), = kphr and (kh);* = h;'k;!, and the analogous equations for
(—=)r and (=)' hold by part (2) of Lemma 5.5. O

In summary, we obtain the following result.

Proposition 5.9. Let FinGrp and FinPos denote the categories of finite groups
and finite posets. Then the constructions in Definition 5.6 determine functors
(-)r, (-)r : FinGrp = FinPos and (—)Z1 , (—)1}1 : FinGrp°® = FinPos

such that for any homomorphism f : G — G’ in FinGrp, there are order adjunc-
tions fr fgl and fL_l - fr.

We now examine the relationship between fL_1 and fp ! As illustrated in Ex-
amples 5.1 and 5.3, the transfer systems f;l(%) and fgl(%) need not be equal.
In fact, they can be maximally far apart.
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Example 5.10. Let ! : G — 1 be the unique morphism. There is only one transfer
system — € Tr(1), and it is both initial and terminal. Applying !} L yields the
initial G-transfer system, because !Zl is a left adjoint, and applying !gl yields the
terminal transfer system.

This sort of inequality holds in general.

Proposition 5.11. Suppose that f : G — G’ is a homomorphism between finite
groups. Then for any ~ € Tr(G'), we have f;*(~) C fr'(~).

Proof. For any ~ € Tr(G"), we claim that (f~1)c(~) C )(fc) ' (~){. For sup-
pose (K,H) € (f~Y)c(~). Then (K,H) = (f~*K’, f~"'H’) for some K’ ~~ H'.
Given g € G and L C gHg ™', we must check that (¢Kg~*NL,L) € (fc) t(~). We
have f(gKg~'N\L) = f(g)K"f(g)"'NfL, where f(g) € G' and [L C f(g)H'f(g)~".
Since K’ ~» H' and ~ is a transfer system, we also have f(g)K'f(g)"*NfL ~ fL.
Therefore (f~1)c(~) C )(fc) 7 (~)(, and f; ' (~) C fr'(~) follows. O

Moreover, we can completely characterize when f, 1 - fgl. First, a lemma.

Lemma 5.12. Suppose that m : G — G’ is an injective homomorphism between
finite groups. Then for every ~ € Tr(G"), the relation (mc)~t(~) is a G-transfer
system, and there is an equality (mc)~(~) = (m™ ) c(~).

Proof. As observed just prior to Definition 5.4, the relation (mc)~!(~) is a partial
order on Sub(G) that refines inclusion. It is closed under conjugation because
conjugation is preserved under images, and it is closed under restriction because if
(K,H) € (mc)"Y(~)and L C H, then (m(KNL),m(L)) = (m(K)nm(L),m(L)) €
~ because m is injective. Thus (mc)~1(~) is a G-transfer system.

The inclusion (mc)~t(~) C (m™1)c(~) also follows from the injectivity of m,
because if (mK,mH) € ~, then (K,H) (m=ImK, m™ImH) € (m™1)c(~).
The other inclusion (mc)~t(~) D (m™!)c(~) holds because if (K', H') € ~,
then (mm ™K', mm™1H") = (m(G)NK',m(G)NH') € ~ since ~ is closed under
restriction along m(G) N H' C H'. O

Proposition 5.13. Suppose that f : G — G’ is a homomorphism between finite
groups. Then the following are equivalent:

(1) f is injective.

(2) fh=fr'

(3) fgl has a left adjoint.
Moreover, if f is noninjective, then there is a strict inequality f;'(~) C fr'(~)
for every G'-transfer system ~.

Proof. (1 = 2) follows from Lemma 5.12 and (2 = 3) is immediate from the
adjunction fr fgl. Now for (3 = 1). Assume that f is not injective. We shall
show that f; ' does not preserve all limits. For any ~» € Tr(G’) and (K, H) €
(f Y (~), we have ker(f) C K. By part (2) of [16, Proposition A.4], it follows
that H ¢ ker(f) for every nontrivial relation (K,H) € f;*(~). On the other
hand, if K € H C ker(f), then (K, H) € )(fc)"*(~){ = fp'(~) because for any
g € Gand L C gHg™ !, we have f(gHg ' N L) ~ fL since both sides are the
trivial subgroup. It follows that (1,ker(f)) € fp'(~)\ f;'(~), which means the
inclusion f;'(~) C fp'(~) of Proposition 5.11 is strict. Therefore f; ' does not
preserve the terminal transfer system. ([
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Corollary 5.14. If m : G — G’ is an injective homomorphism between finite
groups, then there is a chain of order adjunctions my, - m]_%1 = mzl “+mpg.

If the homomorphism f : G — G’ is non-injective, then the inequality fL_1 <f }gl
reflects a pathology of the operadic ind - res adjunction (cf. part (2) of Proposition
6.3). Going forward, we shall only consider f;, only when f is injective.

6. OPERADIC INDUCTION, RESTRICTION, AND COINDUCTION

In this section, we relate images and inverse images of transfer systems to model
categorical derived induction, restriction, and coinduction for marked operads. An
important precedent to this work appears in [5, §6.2], where Blumberg and Hill
show how to calculate the admissible sets of a coinduced N, operad coindgﬁ in
terms of the admissible sets of &. We generalize to coinduction along a non-injective
map, and we also analyze how restriction and induction behave for combinatorial
operads. For any homomorphism f : G — G’ between finite groups, we show that
the adjunction f, L'+ fr of Definition 5.6 always lifts to derived restriction and
coinduction for marked operads, and if f is injective, we show that the adjunction
fr fgl = f;l also lifts to derived induction and restriction (Theorem 6.6). On
the other hand, if f is noninjective, then we do not know how to make induction
along f homotopically meaningful because it is not a left Quillen functor (Propo-
sition 6.3). We briefly describe the situation for N operads in §6.3, and then we
conclude by giving topological interpretations of our constructions in §6.4.

6.1. Induction, restriction, and coinduction for marked operads. A G-
symmetric sequence S € Sym® is the same thing as a nonequivariant symmetric
sequence S € Sym equipped with a G-action through Y-equivariant maps. Analo-
gously, a marked G-operad & € Opi is the same thing as a nonequivariant marked
operad & € Op, equipped with a G-action that preserves the operad structure
and the markings. More formally, we have isomorphisms

Sym® = Fun(BG, Sym) and Opf = Fun(BG,Op, ),

where BG is the one-object category whose morphisms are the group G. This
means we can define induction, restriction, and coinduction for marked operads
and symmetric sequences using the usual Kan extension and pullback functors.

Definition 6.1. Suppose that f : G — G’ is a homomorphism between finite
groups, and let Bf : BG — BG’' for the corresponding functor on one-object
categories. Define operadic induction, restriction, and coinduction functors by

indy := Lanpgy : Opf — Opf/
Op{ «— Op{ : (Bf)" =:resy
coindy := Ranpy : Opf — Opf/,

and similarly for symmetric sequences. The adjunctions ind; - res; + coind; follow
formally from the universal properties of left and right Kan extension.

The end and coend formulas imply that coind; and ind; are given by the familiar
equalizers and coequalizers

coinde%eq<HX:§HHX> and inde%coeq(HHXZHX),
feZ @ G G G o
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where X is either an object of SymG or Opf, and all products and coproducts
are taken in the corresponding category. In particular, the coproduct in Opf is an
operadic wedge, which is analogous to an amalgamated free product of groups.

We shall derive the adjunctions indy - resy - coind; using the model category
structure for marked operads described in §2. To that end, we must understand
how ind; and res; interact with the generating cofibrations Fly (& — %) and
F+(GXFE" — GXFZ" U GXFE"). Regarding Sym® and Opf as functor categories
clarifies the matter. Let Iy : Sym = Op, : U be the free-forgetful adjunction
between nonequivariant symmetric sequences and marked operads. Then for any
finite group G, the induced adjunction

Fy o (=) : Fun(BG,Sym) = Fun(BG,Op, ) : U o (-)

is isomorphic to the usual free-forgetful adjunction F : SymG = Opf : U,
because the right adjoint forgets the operad structure in both cases. This implies
the following commutation relations.

Lemma 6.2. For any homomorphism f : G — G’ between finite groups, there are
natural isomorphisms
indfo Fy 2 Fyoindy , resyoFy = Fy oress
coindgoU = Uocoindy , respolU =ZU oresy,
where Fy 4 U denotes the free-forgetful adjunction between symmetric sequences

and marked operads for either the group G or the group G'.

Proof. The functor res; commutes with F and U because pre-composition com-
mutes with post-composition, and the commutation relations for ind; and coindy
follow from the uniqueness of adjoints. O

Thus, we are reduced to studying indy and resy on symmetric sequences. Think-
ing of the components of a G-symmetric sequence as (G x ¥,,)-sets, we have
(resgS’), 2 resfxiaS, and (indfS), = indfyiaSn
for every homomorphism f: G — G', S € Sym®, and S’ € SymGl. We arrive at
the following result.
Proposition 6.3. Suppose that f : G — G’ is an arbitrary homomorphism between
finite groups. Then:
(1) The adjunction resy : Opf/ = Opf : coindy is a Quillen adjunction.
(2) The adjunction indy : Opf = Opf s resy is a Quillen adjunction if and
only if the homomorphism f is injective.
Proof. We begin with (1). Suppose that the morphism i = F, (& — %) is a
generating cofibration of Opf/. By Lemma 6.2, there is an isomorphism resy (i) =

F (o — resfxid%), and the pulled back G x ¥,-set resfxiq Gl;,z" is still X,,-

free. Therefore there is a splitting

G x 3, TG XY,
resfxid (F’) =~ H T

k=1

for some graph subgroups I'y,...,I';, C G x X,,. Since F : SymG — Opf pre-
serves coproducts, we deduce that resy(7) is a coproduct of generating cofibrations,
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and hence a cofibration in Opf. Inducting up relative cell complexes and pass-
ing to retracts proves that resy preserves all cofibrations. An analogous argument
shows that res; also preserves acyclic cofibrations, and therefore resy - coindy is a
Quillen adjunction.

Now for (2). Suppose first that f is injective. Then we may assume f : G — G’
is the inclusion of a subgroup, and that indyyiq = indgxxzzn" is induction in the
usual sense. Arguing as above proves that ind; is left Quillen, because it preserves
generating (acyclic) cofibrations.

Now suppose that f is not injective. We shall show that ind; does not preserve
all cofibrant operads. By [15, Theorem 8.10], it will be enough to find a cofibrant
operad O € Opf such that ind ;& is not X-free. Suppose |G| = n, and let I" be the
graph of a permutation representation o : G — X, for G/e. Counsider the operad
0 = F, (9%En), so that indy 0 = Fy (indyy;q €%Z=). The symmetric sequence

. GXZp\ G x3,
S—lndfxld (1_‘) = (G X Z'IL) G;En ( T )

is not X-free because the class [(id,id), T is fixed by o(kerf) C ¥,,, and this sub-
group is nontrivial because kerf is nontrivial and G acts faithfully on G/e. The
operad ind¢ & also is not ¥-free, because there is a unit map 7 : S — ind;&. ([l

Remark 6.4. Every object of Opf is fibrant by [15, Theorem 8.10]. Therefore
coindy preserves all weak equivalences, which implies that Rcoindy = Ho(coindy)
and Lresy 4 Ho(coindy). If f is injective, then the functor res; also preserves all
weak equivalences. In this case, we have isomorphisms Lresy = Ho(resy) = Rresy
and a chain Lindy 4 Ho(resy) 4 Ho(coindy) of derived adjunctions.

6.2. The connection to transfer systems. In this section, we relate derived
operadic induction, restriction, and coinduction to image and inverse image con-
structions for transfer systems. Our strategy is to show that Lres; and f, ! corre-
spond under the equivalence Ho(Opf) ~ Tr(G), and then to deduce the remaining
correspondences from the uniqueness of adjoints.

Given that the left derived functor Lresy can be computed on free resolutions,
and that resy commutes with F : SymG — Opf7 we are reduced to understanding
the behavior of res; on symmetric sequences.

Lemma 6.5. Suppose that f : G — G’ is a homomorphism between finite groups,
let HC G’ be a subgroup, and let T be a H-set of finite cardinality n. Write T'(T')
for the graph of a permutation representation of T'. Then

oS G x¥, E]_[ GxY,
f><1d F(T) - - F(f*reSTH T))

r—1
rHr*lﬁim(f)c"‘

where:
(1) r ranges over a set of representatives for im(f) x £,\G" x ¥,,/T(T), taken
in the subgroup G’ x {id},
(2) ¢, T is the conjugate rHr~'-action to T, and
(3) f*res:g:jmm(f)cTT is the f~1(rHr~1)-action obtained by pulling back the

rHr=! nim(f)-action on res;gﬁjmm(f)ch along f.
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Proof. Compute resyxiq by first restricting to the subgroup im(f) x X,, C G' x X,
and applying the double-coset formula, and then pulling back along the surjective
homomorphism f xid : G x ¥, — im(f) x X,,.

The first step yields

im(f) x X,
H rTD(T)r=1 N (im(f) x X,,)’

T

where r ranges over a set of representatives for im(f) x X,\G’ x £,,/T(T"). We may
assume r € G’ x {id} because we are taking im(f) x 3,-orbits. Moroever, we have

rD(T)r~' =T(c,T), and T'(¢,T) N (im(f) x B) = D(vest 7, e T).
The second step yields

. im(f) x X,
H(f x ld) (1“( wHr—1 C7T)>’

r I‘ezb'rHr*lﬁim(f) )

and each summand is a transitive (G x £,,)-set because f xid : Gx%,, — im(f)x %,
is surjective. Since stabilizers pull back, it follows

. im(f) x X, -~ GxX,
o - |

D(res 77 () Cr (f xid) 710 (ves) 7" i pyer D)

and (f x id)_lI‘(res;g::mmmCTT) = F(f*resrg::mm(f)ch). O

,
From here, we can calculate the transfer system associated to Lress&'.

Theorem 6.6. Suppose that f : G — G’ is an arbitrary homomorphism between
finite groups. Then the squares

Lres , Ho(coind ,
Ho(Op%) ! Ho(Op§) Ho(OpY) ( /) Ho(Op)
| RO -
Tr(G) ——— Tr(@) Tr(G) —— Tr(G)
it fr

commute. Suppose additionally that the map f is injective. Then the squares

Lind , o(resy) = Lres ,
Ho(Op%) ! Ho(Opy ) HO(OP% ! P{O(OPE )
N A .
Tr(G) ———— Tr(G) Tr(G) Tr(G)
i fat =11

also commute.

Proof. We begin by checking the equation —, o Lresy = f;l o —4 ON operads.
Suppose that & € Opf, and let

. G/XZ‘H:K|
or-nf T i)

H/KEA(6)
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where H/K ranges over all orbits in A(€’). Then Q& is a cofibrant replacement for
O, because choosing I'( H/ K)-fixed operations in & determines a map Q& — €, and
this map is a weak equivalence because A(Q0) = (H/K |H/K € A(0)) = A(0)
by [15, Theorem 4.6]. By Lemmas 6.2 and 6.5, we conclude that

N G x 2|H:K|
res(Q0) = F*( H H D(f*restHr—] )CTH/K))

H/KcA(O) T rHr=1Nim(f

where r ranges over the representatives specified in Lemma 6.5 for each orbit H/K.
By [15] once more, the class of admissible sets of res;(Q) is the indexing system

H/K € A(0) and
r€im(f) x Bjg:x\G' X Xk /T(H/K)

* r1
<f res:flrflﬂim(f)c”’H/K
Since indexing systems are closed under conjugation, this simplifies to
< ferest o H/K ] HIK € A(ﬁ)>,

and since indexing systems are closed under restriction and subobjects, and f*
commutes with coproducts, this simplifies further to

<f*H/K ] H/K € A(6) and H C im(f)> - <f*1H/f*1K ‘ H/K € A(ﬁ)>.

This computes A(resy(Q0)). Applying the isomorphism —,: Ind(G) — Tr(G)
and [16, Proposition A.9] shows that the transfer system associated to resy(Q0) is
(f'K,f'H)| K —¢ H), which equals f;'(—¢) by definition. This proves that
—Lres; 0 = fL_l(%ﬁ) for every operad & € Opf, and the equality — o Lresy =
fr 1o —, of functors follows because parallel morphisms in Tr(G) are equal.

Now let H:l be a pseudoinverse to —,. The equation —, o Lresy = fL_1 O —Se
implies an isomorphism Ho(coindf) o —;! 22 =1 o fg of right adjoints, and hence
—¢ 0 Ho(coindy) = fr o —4 as well. Since Tr(G’) is a poset, this is an equality.

Suppose further that the morphism f : G — G’ is injective. Then fgl = fgl by
Proposition 5.13, and Lresy = Ho(res;) = Rres; by Remark 6.4. Our calculation
of —Lres; o Now reads —o o Ho(resy) = fgl 0 —>,, and the equality —, o Lindy =
f1r o =4 for left adjoints follows as above. O

The functor resy is already homotopical when f is injective (cf. Remark 6.4), but
even when f is not, the next result shows that resy still preserves weak equivalences
in the most interesting cases. Thus res; barely needs to be derived.

Corollary 6.7. Suppose [ : G — G’ is an arbitrary homomorphism between finite
groups. Then the functor resy : Opf — Opf preserves weak equivalences between

N operads. Moreover, if O € Opf/ is a N operad, then so is resy0, and the
equality —res;0 = fL_l(—m) holds.

Proof. Suppose 0, % € Opf/ are N operads and that ¢ : 6 — & is a weak
equivalence. Then for any n > 0 and any subgroup £ C G’ x X,, whatsoever,
the set €' (n)= is nonempty if and only if the set £?(n)= is nonempty. When = is
a graph subgroup, this follows from the definition of a weak equivalence. When
E is not, both sides are empty. The restricted operads resy& and resy %’ have
the same property because (res;0)(n)= = 0(n)*IVE " and therefore the map

respyp :resp O — resy P is also a weak equivalence.
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Now suppose 0 € Opf/ is a N operad. Then res; & is ¥-free because it has the
same Y-action, and for any n > 0, we have (res;0)(n)% = 0(n)f (@) > 0(n)¢ # @.
Therefore resy & is also a N operad. Choose a cofibrant replacement ¢ : Q0 — O.
Then res¢(q) : Lresy 0 ~ resy(QO) — resy 0 is a weak equivalence by the preceding
paragraph, and hence —es;6 = —Lres; 0 = f;l(*)ﬁ). O

We also have the following consistency check for Theorem 6.6.

Example 6.8. Suppose that f : G — G’ is a homomorphism between finite groups,
that 0 € Opf is a marked G-operad, and that —4 is the terminal G-transfer
system. Then —coind; & = fr(—e) is also terminal, because fr is a right adjoint.
When f is the unique map ! : 1 — G, and & = As, we conclude that the transfer
system for coind{’ (As) & Set(G, As) is terminal, just as in Example 4.3.

More generally, Theorem 6.6 says that the transfer system — associated to
Set(H\G, As) = coind%(As) equals ig(=), where ¢ : H < G is the inclusion
and = is the trivial H-transfer system. By definition, J — K if and only if
gJg ' NLNH = LNH for every g € G and L C gKg~!, which is equivalent
to requiring K NU,cq 9™ "Hg C J. Since K and U, 9~ Hg are stable under
conjugation by elements of K, this is equivalent to the inclusion

| Stabk (Hg € H\G) = | J(Kng™'Hg) € (]| kJk™" = () Stabg (kJ € K/.J),
geG geG keK keK

which says that every element of K that fixes an element of H\G acts as the identity
on K/J. This recovers the description of the A(Set(H\G, As)) in Example 4.3.

6.3. The unmarked case. If G is a finite group and H C G is a subgroup, then
we also have adjoint functors indg  res$ H coindg between the categories Op’
and OpG of unmarked operads. Unfortunately, the previous discussion does not
entirely carry over, because the functor indg : Opfl — Op® does not preserve N
operads. For example, if 0 = F(% L %), then ind$ & = F(% U %),
and this operad does not have any G-fixed operations. Replacing the category OpG
with Opf fixes this problem because we change the coproduct.

That being said, there are no issues with using unmarked operads if one is only
concerned with restriction and coinduction.

Lemma 6.9. Suppose [ : G — G’ is a homomorphism between finite groups, and
consider the adjunction resy : OpGI = OpG : coindy. Both adjoints preserve N
operads and weak equivalences between N operads, and therefore there is an induced
adjunction Ho(resy) : Ho(N—OpG,) = Ho(N-Op®) : Ho(coindy).

Proof. The proof of Corollary 6.7 shows that res; preserves /N operads and weak
equivalences between them. We must show that coind ¢ has the same two properties.

Suppose O is a N G-operad. Then coind;&(n) is the set of G-equivariant maps
a: G — O(n), where G acts on G’ on the left through f: G — G’. The G’ x %,-
action is given by (a-0)(z) = a(z) -0 and (¢'-a)(z) = a(z - ¢'), for any o € X, and
g’ € G'. Thus, the X-freeness of ¢ implies the X-freeness of coindy & by evaluating
at some z € G, and the constant function ¢, : G’ — &(n) valued at any y € 0(n)%
is a G'-fixed element of coind ;&' (n). Therefore coind;& is a N G'-operad.

Now suppose ¢ : 0 — £ is a weak equivalence between N G-operads and con-
sider coind ¢ : coindy & — coindy . We must show that for any n > 0 and graph
subgroup I' C G’ x %,,, if coind; 2 (n)" # @, then coind; 0 (n)' # @. An element
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of coind;Z(n)' is represented by a G’ x ¥,-map < E" — coindy & (n), which
is adjoint to a G x X,-map resf(G XZu) 5 P(n). As in the proof of Proposi-
tion 6.3, the G x X,,-set rebf(G XZu) splits as a coproduct [[}L, fo" for some

graph subgroups I'y,...,I'y, C G x ¥,,. Thus, for each k£ = 1,...,m, we obtain a
component map xy : G;ikz — P(n), and hence Z(n)'* # o for each k. Since

p: 0 — P is a weak equivalence, it follows that &'(n)'* # & for all k, and thus

there are maps yy : G;kE" — O(n) for all k. Summing up the y;’s gives a map
resf(G XZn) — O(n), and applying the resy 1 coindy adjunction gives a I'-fixed

point of coind¢ O (n).

It follows that there is an adjunction resy : N—OpG/ = N—OpG : coindy, and
since both adjoints are homotopical, the adjunction descends to homotopy cate-
gories (e.g. through a trivial application of [8, §44.2]). O

We obtain an unmarked analogue to Theorem 6.6.

Proposition 6.10. Suppose that f : G — G’ is an arbitrary homomorphism be-
tween finite groups. Then the squares below commute.

. Ho(resy) , e Ho(coindy) /
Ho(N-Op“) Ho(N-Op“) Ho(N-Op“) Ho(N-Op©)
| R -
Tr(G) Tr(G") Tr(G) Tr(G")
fr R

Proof. As in the proof of Theorem 6.6, it is enough to show —es,0 = f;l(*)ﬁ)
for any ¢ € N-Op® . Choose markings v € €(0)¢ and ¢(2)¢" and regard € as a
N operad in Opf/. Then Corollary 6.7 gives the desired result. d

6.4. Topological interpretations. As in §4.3, we think of induction, restriction,
and coinduction for IV operads and marked G-operads as the homotopically correct
constructions, and then we use the functor E : Set — Top from §2 to push things
into topology. This section describes the results.

We begin with restriction and coinduction. In this case, it is simplest to model
N, operads as N operads via the functors E : N-Op® = N.-Op© : (—)* from
Proposition 4.12. We temporarily introduce the following definitions.

Definition 6.11. Let f : G — G’ be a homomorphism between finite groups, and
suppose that & is a N, G-operad and that ¢’ is a N, G’-operad. Define N
restriction and coinduction by

resﬁcvoo 0" =E(resg(0™)) and coindj‘\-l‘x’ﬁ = E(coind (")),
where res; and coindy denote ordinary operadic restriction and coinduction.

These N constructions agree with the ordinary ones.

Proposition 6.12. Suppose f : G — G’ is a homomorphism between finite groups.
(1) For any Noo G'-operad O', there is an equivalence resy 0’ ~ 1res§cv°c 0, and
therefore —ies, 60 = fL_l(—mw).
(2) For any No G-operad O, there is an equivalence coind;& ~ coindjcv"" 0,
and therefore —coind;0 = frR(—6)-
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Proof. We begin with restriction. The functor (—)* commutes with restriction, and
resy preserves No, operads. Therefore res]fv“’ 0" = E((res;0')*) ~resy 0’ and

—res; 0 = _>]E(resjv(ﬁ/“)) = _>resjv(ﬁ/“) = f]jl(_>@”“’) = f£1<_>ﬁ')
by Proposition 6.10. For part (2), note that the functor (—)* commutes with
coinduction because the forgetful functor U : Top — Set from the category of
compactly generated weak Hausdorff spaces preserves limits. Coinduction also pre-
serves N, operads, and now we may argue as before. O

The situation for N, induction is more complicated. To make sense of the
construction, we model N,, G-operads as marked G-operads in Opf. There is
a DK equivalence LE = Eo Q : Opf — No-Op®, where Q denotes cofibrant
replacement in Opf, and the functor F o (—)% : Noo-Op© — Opf is inverse to
LE up to zig-zags of natural weak equivalences. This justifies the next definition.

Definition 6.13. Suppose f : G < G’ is an injective homomorphism between
finite groups. For any N,, G-operad O, let

ind}> ¢ = E(ind;F (60")),
where indy denotes induction for marked operads.

The operad indﬁcv > ¢ has the desired homotopy type, because the cofibrancy of
Fy (0") implies there is an equivalence

E(ind; Fy (6")) ~ LE(Lind; F. (6™)),
and therefore —, e fr(—=g) by Theorem 6.6. Unfortunately, the operad

indﬁcV >0 is quite far from the ordinary induced operad ind; &, and it seems difficult
to induce an action by a N, H-operad up to an action by a N, G-operad in
general. The basic issue is illustrated below.

Example 6.14. Induction is an indexed coproduct, so we shall elaborate on Ex-
ample 4.15. Suppose i : H < G is the inclusion of a subgroup, X is a G-space, and
O is a N, H-operad. An action of ind;& on X is equivalent to an action of & on
res; X, and if f € &(n) represents an operation F' on X, then & parametrizes coher-
ence homotopies between all H x ¥,,-conjugates of F'. On the other hand, an action
of indév * ¢ must parametrize coherence homotopies between all G x 3,,-conjugates
of F. The O-action gives homotopies between sets of g(H x X, )-conjugates for
each g € G, but nothing between (g,0) - F and (¢’,0") - F if (g,0) and (¢’,0’) are
in different H x X, -cosets of G x X,,.

As before, there is more hope if we work in a marked setting. If & has a distin-
guished unit v € ¢(0)* and product p € &(2) that represent G-fixed operations
over X, then & specifies a homotopy between F' and P(... P(P(z1,22),23),...,Zn),
which conjugates to a homotopy between g- F to P(... P(P(z1,22),x3),...,%,) for
any g € G. We can concatenate these two homotopies just as we did in Example
4.15, but this composite might not have the right equivariance.

APPENDIX A. QUOTIENT OPERADS

If 0 is an operad and ~ is a congruence relation on & (cf. [15, §5.2]), then
identifying & = &/ ~ typically amounts to solving a word problem. In general,
these problems can be quite complicated, but we can gain traction in a few cases
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by introducing a “direction” to the relation ~. In this appendix, we explain how
to use this technique to identify quotient operads (Propositions A.2 and A.3), and
then we analyze the coproduct & * & of N operads (Lemma A.4) and the tensor
product & ® & of free G-operads (Lemma A.5).

A.1. Solving operadic word problems. Throughout this section, we assume
that ¢ is an operad in Set®, ¢ : [L,50 @ (n) = N is a function, and R = (R;,)nen
is a graded binary relation on & such that for any integer n > 0 and operations
f,f € O(n), if fRf’, then c(f) > c(f’). We think of ¢ as a complexity function
and R as a complexity-reducing relation. In practice, & will be a free operad whose
operations f € 0 are formal composites, ¢(f) will be a weighted count of the terms
in a composite f € &, and R will indicate a reduction of one composite f into
another composite f’. Accordingly, we introduce some terminology.

Definition A.1. An operation f € & is reduced if there is no f’ € € such that
fRf'. An operation h is a reduced form of the operation f if:

(a) the operation h is reduced, and
(b) there is a chain f = foRfiR--- Rf, = h of R-relations connecting f to h.

The case n = 0 is allowed, in which case the chain reads f = fo = h.

Given 0, ¢, and R as above, we would like to say that:

(1) every operation f € ¢ has a unique reduced form f, and
(2) the reduced operations in & are a set of representatives for the congruence
relation (R) that R generates.

For our purposes, it will also be convenient if

(3) the set r& of reduced operations forms a sub-G-symmetric sequence of €.
If these three conditions hold, then we can easily identify the quotient & = 0'/(R).
Proposition A.2. Assume that € is a N operad, and that conditions (1)-(3) hold.

Then the underlying symmetric sequence of € = O /(R) is isomorphic to r€, and
equipping 1O with the operad structure

Yo (fihi, ... hn) =v6(f;h1,...,hy) and id,s = idg.

makes 10 and O isomorphic as operads. It follows that € is a N operad with the
same admissible sets as O.

Proof. Consider the composite ¢ : r& — U0 — UGO of the inclusion and the
quotient. By (3), this is a map of symmetric sequences. By (1) and (2), the unique
reduced representative of a class [f] € € is f, and therefore ¢ has an inverse given
by the formula ¢~'[f] = f. Therefore r& = U0, and we translate the operad
structure from € to 7€ using ¢ and ¢!,

We have a sequence U0 — U0 = r& — UO of maps of symmetric sequences.
The quotient map U& — U ensures that €(n)¢ is nonempty for all n > 0, and
the inclusion map U& < U ensures that € is X-free. Therefore € is a N operad.
As for its admissible sets, the quotient map implies A(¢) C A(€), and the inclusion
map implies A(0) C A(0). O

Conditions (1)—(3) are not automatic, but we can enforce them by placing a few
assumptions on the relation R.

Proposition A.3. Assume that R has the following four properties:
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(i) For any integer n > 0 and operations f,h,h’' € O(n), if fRh and fRN,
then there is an operation k € O(n) and a pair of coterminal chains h =
hoRh1R -+ Rhy, =k and b/ = h{RR{R--- Rh! , = k with m,m’ > 0.

(ii) For any integer n > 0, operations f, f' € O(n), and group elements g € G
and o € %, if fRf’, then (gfo)R(gf o).

(iii) For any integers n,myi,...,m, > 0, and operations f,f € O(n), ki €
O(mi), ..., kn € O(my), if fRf', then v(f;k1,..., ko) Ry(f';k1,-.., kn).
(iv) For any integers n,my,...,my, > 0 and 1 < i < n, and operations [ €
On), kv € O(ma), ..., ki, kl € O(my),..., ky, € O(my,), if kiRE], then

(k1o ki k) RY(fi 1y KL o k).
Then conditions (1), (2), and (3) hold.

Proof. First of all, if f € &(n) is unreduced and (g,0) € G x X, then (ii) implies
that gfo is unreduced, and conversely. Condition (3) follows.

Next, we prove condition (1). First, observe that if f is reduced and f is a
reduced form of f, then any chain f = foRfiR---Rf, = f must degenerate to
f = fo = f. Therefore f is its own, unique reduced form.

Now we argue by induction on the complexity of f € &. Suppose first that
¢(f) = 0. Then f is reduced, because R strictly reduces ¢ and ¢ is nonnegative.
Therefore f is its own, unique reduced form. Next, suppose inductively that every
f" with ¢(f’) < N has a unique reduced form, and assume c(f) = N+ 1. If f
is reduced, then we are done. If not, then there is h € & such that fRh, and
since N + 1 = ¢(f) > c(h), the operation h has a unique reduced form h. We
claim that h is also the unique reduced form of f. For suppose f is reduced and
we have a chain f = foRfiR---Rf, = f. We must show that h = f. The
inequality n > 0 holds because f is unreduced, and it follows that f is the unique
reduced form of f;. By (i), there are coterminal chains h = hoR - -+ Rh,, = k and
fi =hoR---Rhl,, =k, and the operation k has a unique reduced form k because
N > ¢(h) > ¢(k). Concatenating the chains hR--- Rk and fiR--- Rk with a chain
kR --- Rk exhibits k as the unique reduced form of h and f,. Therefore h = k = f,
which proves that f has a unique reduced form. Condition (1) follows by induction.

Finally, we prove condition (2) by giving an explicit description of the congruence
relation generated by R. Let (=) : & — @ be the function that sends an operation
f to its unique reduced form f, and declare f ~ h if and only if f = h. Then ~
is a graded equivalence relation. We shall show it is a congruence relation. Given
any n-ary operation f and (g,0) € G x %, there is a chain f = foR---Rf, = f,
and applying (ii) gives another chain (gfo) = (g9fo0)R--- R(gfno) = (gfo). Since
gfo is reduced, this shows that ¢gfo = gfo. Thus, if f ~ h, then gfo = gfoc =
gho = gho, and hence gfo ~ gho. Now suppose f,hi,...,h, are operations,
where n is the arity of f, and consider the composite v(f;h1,...,h,). There is a
R-chain connecting f to f, and applying (iii) gives a R-chain from v(f;h1,...,hy,)
to v(f; h1, ..., hy). Applying (iv) to the R-chains for hq,...,h, and concatenating
the results gives a R-chain from v(f;hi,...,hn) to Y(f;h1,. .., hyn), which we then

may concatenate with a chain from y(f;hy,...,h,) to y(f;hy,...,hy,). This shows
that v(f; h1,.--,hn) = Y(f;h1,..., hy). Thus, if f ~ f', hy ~ kY, ..., hy ~ b,

then y(f; k..., ko) = y(Fihe, ... he) = (3R, .. B) = A(f's kY, ... k), and

* n
-y hn)

hence Y(f;h1,..., hy) ~~(f'; b, ..., h.). Tt follows that ~ is a congruence relation.
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Now suppose = is any congruence relation on & that contains R. Given any
operation f € €, the existence of a R-chain f = fyR---Rf, = f implies that
f~ f. Thus, if f ~ h, then f ~ f = h = h, and hence f ~ h. This shows that ~
is the least congruence relation containing R. To find representatives for ~ = (R),
note that if f € € is reduced, then f = f. It follows that f ~ f, because f = f,
and if h is any reduced operation such that h ~ f, then h = h = f. Therefore every
f € O is ~-equivalent to a unique reduced operation, namely f € r&. This proves
condition (2). O

One can often restrict the chains in (i) to equalities h = k = h/ or to individual R-
relations h Rk and h' Rk, but we will use more general chains in our analysis of tensor
products. The consequent clauses in (ii)—(iv) can also be weakened to allow for R-
chains rather than just R-relations, but Propositions A.2 and A.3 seem to apply as
stated in many interesting examples. For example, we used them implicitly in [15,
§5, §7] to identify the associative N operad Asy, and the underlying nonequivariant
operad of the free G-operad F'(S) on a X-free symmetric sequence S.

A.2. Free operads. In preparation for our analysis of coproducts and tensor prod-
ucts, we briefly recall a description of the free operad F'(S) on a X-free symmetric
sequence S. The following is taken from [15, §5].
Suppose S is a Y-free symmetric sequence in SetG, and think of the elements
f € S(n) as formal n-ary operations. Just as the free monoid on a set X is a
collection of formal products of elements of X, the free symmetric operad on S
is a collection of formal composites of operations in S. The wrinkle is that we
can restrict our operations to a set of X-orbit representatives for S by using the
Y-equivariance of composition.
For each n > 0, choose a set S(n) C S(n) of ¥,-orbit representatives. Now
consider formal words w, such that each letter of w is either:
(a) a element of []°7, S(n),
(b) a variable symbol z; for some integer ¢ > 0,
(c) a left or right parenthesis, or
(d) a comma.

Such a word is a term if it is built at some stage of the following recursion:

(1) every variable z; is a term, and
(2) if f € S(n) and ty,...,t, are terms, then f(t1,...,t,) is also a term.

In particular, if f € S(0), then f() is a term. The arity of a term is the number of
distinct variable symbols that occur in it, and a n-ary term t is operadic if each of
the variables z1, ..., z, appears exactly once in t. The nth level of the free operad
F(S) is the set of all n-ary operadic terms.

If ¢t is a n-ary operadic term and o € 3,, then the term ¢ - o is obtained by
replacing each variable x; in ¢ with the variable x,-1;.

If t is a k-ary operadic term, and s; is a j;-ary operadic term for i = 1,...,k,
then the (j1 + -+ + ji)-ary operadic term ~v(¢;s1,..., ;) is obtained by adding
J1+ -+ ji—1 to the subscript of each variable in s; — call the result s, — and then
substituting the (non-operadic) terms si,..., s}, for the variables z1,...,z% in t.
The term z; is the identity for ~.

The G-action on F'(S) is defined recursively. For any g € G, declare

(1) g*x; = x; for every ¢ > 0, and
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(2) g*f(tr,.. . tn) = f'(gxto-11,...,g*ts-1,), where g- f = f'- o for unique
elements f' € S(n) and o € X,,.
These data make F(S) into a symmetric operad in Set®, which is free on
the G-symmetric sequence S. The unit map n : S — F(S) sends f € S(n) to
f(x1,...,2,), and the rest is determined by ¥-equivariance.

A.3. Coproducts and tensor products. This section analyzes two specific pre-
sentations of the coproduct of N operads and the tensor product of free G-operads.
We use Propositions A.2 and A.3 to solve the associated word problems, and thus
determine the underlying symmetric sequences of these operads.

We begin with coproducts. For motivation, suppose F' : Set < Grp : U is the
free-forgetful adjunction for nonabelian groups. Given G, H € Grp, the coproduct
G« H may be constructed as a subset of the free group F(UGUU H ), equipped with
a reduced concatenation product. This construction generalizes to operads. The
next result is standard, but we include it as an example of how the assumptions in
Proposition A.3 work.

Lemma A.4. Suppose O and & are N operads, and let O x P be their coproduct
n OpG. Then O x & is isomorphic to a sub-symmetric sequence of F(UOUU ),
equipped with a modified composition operation.

Proof. Suppose F' : SymG = OpG : U is the free-forgetful adjunction, and form
the free operad F = F(UOUUZ). Let i : U0 - UFUO — UF(UO UUZ) be
the composite of the unit and the map induced by the inclusion U0 — U6 UU 2,
and let j: UL — UF(UC UUZP) be defined similarly. Then & % &2 is isomorphic
to the quotient of % by the congruence relation generated by

i(idg) = idg , i(h)oxi(f) = i(hoy f)
jlde) =idz . jh)erj(f) = j(hox f),

where o;, denotes partial composition, and the operations h and f are taken from
O in the first line and &2 in the second line. We analyze this quotient using the
model for .# described in §A.2.

Let X and Y be sets of Y-orbit representatives for & and &2. Then the elements
of .F are formal composites of operations in X UY. Given two such composites ¢
and ', declare tRt’ if we can obtain ' from ¢ by replacing a subterm of ¢ in one of
the following ways:

(a) idg(t1) ~ t1,
(b) ido(t1) ~ t1,
(€) Altrs ooy f(thy e s tiqif=1)s -+ s Bnpalpi—1) ~ Lto-11, - to=1(nl41f1-1))s
where h, f € X and hog f=/{-0 for £ € X and 0 € X4 |5—1, OF
(d) A(trs ooy f(ths e s tiqif=1)s -« s Bl pi—1) ~ o115 to=1(nl4151-1))s
where h, f € Y and hoy f ={-o for £ €Y and 0 € B 4|5 -1-
Here, the t; are not necessarily operadic terms. The relation R generates the same
congruence relation as =.
For any formal composite ¢ € %, let ¢(t) be the number of operation symbols in
t. Then R reduces c¢. The relation R satisfies conditions (iii) and (iv) in Proposition
A.3 because it is defined in terms of substitutions of subterms. It satisfies the X-
equivariance portion of (ii) for the same reason. As for the G-equivariance, if g € G,
then multiplication g * (—) preserves (a)-substitutions because ids is G-fixed, and
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similarly for (b)-substitutions. For (c)-substitutions, we use the G-operad axioms
and the Y-freeness of .%. Suppose g-h=h'-Tandg-f = f -v, for b/, f/ € X and
permutations 7,v. Then g * h(ty, ..., f(tk, .- togf|=1)s- - Lnj+|f|—1) equals

h/(81, R f/(s’rkv e '787'k+\f|—1)7 . '7s|h\+|f|—1)

where s; = gxt,—1; for the permutation « = 7(1,...,|f],...,1)-(idU- - -Uol- - -Lid).
If i o p f/ =m -7 for m € X and m a permutation, then

W (s15 s f (Srhs s Seht|fl=1) - > S|l1f=1) ~ M(Sr115 5 Se=1(|hl+|f]-1))

is a (c¢)-substitution. On the other hand, suppose g-¢ = ¢ - v for ¢/ € X and a
permutation v. Then

g * g(to.—ll, ce 7t0*1(\h|+\f\—1)) = gl(g * to.flufll, e, g% ta*1V*1(|h|+\f|—1))-

We claim that m = ¢ and s,-1; = g *t,-1,-1;. To see this, note that

m-m-a=(g-hjor(g-f)=g-(horf)=g-L-o=L"v-o
Now, since m, ¢ € X are X-orbit representatives and & is X-free, it follows that
m = /¢ and 7-a = v - o, and therefore s, 1, = g*to-1,-1; = g *to—1,-1;. Thus
g x (—) preserves (c)-substitutions, and similarly for (d)-substitutions. This shows
that R satisfies condition (ii) of Proposition A.3.

To verify that R satisfies condition (i), we must analyze the degree to which
substitutions (a)—(d) commute. There are 10 cases to consider, but most are unin-
teresting. For example, suppose tRs via an (a)-substitution idg(t1) ~~ t; and tRs’
via a (b)-substitution idg(¢;) ~ ;. Then these substitutions are disjoint, in the
sense that they either occur in non-overlapping subwords of ¢, or one substitution
occurs inside the ¢;-term of the other. Thus, we obtain a term r such that sRr
and s’ Rr via the complementary substitutions. Similar reasoning applies for paired
((a),(d)), ((b),(c)), and ((c),(d))-substitutions. Likewise, if tRs and tRs’ via two
(a)-substitutions, then either we have made the same substitution and s = s, or
they are disjoint and there is a term r such that sRr and s’ Rr. Similarly for pairs
of (b)-substitutions.

The interesting cases are those in which the substitutions can interact. For
example, suppose tRs and tRs’ via non-disjoint (a) and (c)-substitutions. Then
either h = idg or f = idg, and the operadic identity axiom implies that s = s'.
Therefore condition (i) of Proposition A.3 holds for paired (a) and (c¢)-substitutions.
Similarly for paired (b) and (d)-substitutions.

Now suppose that tRs and tRs’ via unequal and non-disjoint (c¢)-substitutions

hi(trs oo filths s tiq g —1)s -+ o> tnppl=1) ~ Lilto=115 -+ s to-1 ()41 f1-1))
for ¢+ = 1,2. There are three possibilities: either hy = fi, or hy = fa, or hy = hy
and f1 and f occur in different positions. In any case, by using the associativity
and Y-equivariance axioms for partial composition, we can find an r such that sRr
and s’ Rr. Therefore condition (i) holds for pairs of (c¢)-substitutions, and similarly
for pairs of (d)-substitutions.

By Proposition A.3, we deduce that conditions (1)—(3) of §A.1 hold for the R-
reduced operations in .%. Since .% is a N operad, Proposition A.2 implies that
Ox P =2 F/(=) = %/(R) is isomorphic to the sub-symmetric sequence of R-
reduced operations in %, equipped with a modified composition operation. ([l

Lastly, we consider tensor products of free operads.
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Lemma A.5. Suppose S and T are X-free symmetric sequences in Set® such that
the sets S(n)¢ and T(n)® are nonempty for all n > 0. Then the tensor product
F(S)® F(T) is isomorphic to a sub-symmetric sequence of F(SUT), equipped with
a modified composition operation.

Proof. The tensor product F'(S)® F(T) is the coproduct F(S)* F(T) = F(SUT)
modulo the congruence relation ~ generated by the set of interchange relations.
We shall analyze it using a different set of relations to avoid issues that arise from
nullary interchanges. Let X and Y be sets of ¥-orbit representatives for S and
T, and choose an element z € T(0)¢ C Y(0). As in §A.2, we model F(S UT)
as a collection of formal composites of operations in X UY. Given two elements
t,t' € F(SUT), declare tRt’ if we can obtain ' from ¢ by replacing a subterm of ¢
in one of the following ways:

(@) h(f(t11, - t1n)s- -y f(tm1s ey tmn)) ~ f(R(t11, - s tm1)s ooy R(E1n, -« o s Emn))

for h € X(m) and f € Y(n) with m,n > 0, or
(b) one of the substitutions below, for h € X(m) and f € Y (n) with m,n > 0:

]’L(Z()7 (t21, - .,tgn), .. .7f(tm17 .. 7tmn)) > f(h(z(),tzl, e 7tm1)7 .. .,h(z(),t%, e 7t7nn))

and similarly for z()’s in the 2nd through mth positions, or
h(Z(), Z(), f(t31’ v 7t3n)7 SRR f(tml, oo ,tmn)) ~ f(h(z()v Z()v 31, .. 7tm1)7 ceey h(ZO7 Z()’ lan, ... 7tmn))

and similarly for pairs of z()’s in any other positions, or

h(z()y. s 20, f(tmiy -« s tmn)) ~ F(R(20), ... 20, tm1), -« -, h(20), ..., 20), tmn))
and similarly for m — 1 copies of z() in any other positions, or

(c) £(2(),2(),...,2() ~ 2() for £ € X(n) Y (n) and n > 0, or

(d) e() ~ 2() for € € [X(0) UY(0)] \ {=1.
As before, the t; are not necessarily operadic terms. The congruence relation ~
contains all (a)-substitutions by design. Then, since the operad F(S) @ F(T) =
F(SUT)/~ is reduced, it follows that ~ also contains all (c) and (d)-substitutions.
The (b)-substitutions are generated by (a) and (c)-substitutions. Therefore (R) C
~. To establish the other inclusion, it is enough to show that (R) contains all
interchange relations

h(f<xlla v axln)a .. '7f(xm1; o 7xmn)) ~ f(h(xlh s 7.’17m1), .. '7h(x1n7 cee awmn))>

where h € X and f € Y are possibly nullary. If h and f have positive arity, this is
an (a)-substitution. If either h or f is nullary, then both sides of the relation are
nullary operations in F(S UT). The operad F(S UT)/(R) is reduced, because (c)
and (d)-substitutions can reduce any nullary operation to z(). Therefore all nullary
interchange relations are also contained in (R), and therefore ~ C (R).

For any t € F(SUT) and operation symbol f in ¢, define the depth d(f) of f
to be the number of nested pairs of parentheses that contain f. For example, the
fin f(x1,...,2z,) has depth 0, while the f in h(f(z1,22), k(x3,24)) has depth 1.
We define the complexity of a term ¢ by

_ operation symbols in ¢ .
oft) = #< not equal to z ) + Z d(f) - 111,

Y -operation
symbols f in ¢t
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where |f| denotes the arity of f. The relation R reduces this complexity function.
In (a) and (b)-substitutions, the right summand decreases by at least |f|, but the
left summand cannot increase by more than |f| — 1. In (c) and (d)-substitutions,
the left summand decreases and the right summand does not increase.

The relation R satisfies conditions (ii), (iii), and (iv) of Proposition A.3 by the
same arguments used in Lemma A.4. To verify condition (i), we consider the
possible interactions between substitutions. Suppose tRs and tRs’. In almost all
cases, the substitutions that yield s and s’ must either be equal or disjoint, in which
case s = &' or there is a term r such that sRr and s'Rr via the complementary
substitutions. The only interesting scenario is when s is obtained by an (a) or (b)-
substitution, s’ is obtained by a (c)-substitution, and the subterm #(z(),...,z())
for the (c)-substitution is equal to one of the f(ti1,...,tn) blocks in the (a) or
(b)-substitution. Suppose for simplicity that s is obtained by an (a)-substitution,
and the block f(t11,...,t1n) equals £(2(),...,2()). Then s'Rs via the very first (b)-
substitution. The same reasoning applies when ¢(z2(), ..., z()) is another block, or if
s is obtained by a (b)-substitution that contains at least two f(¢;1, . . ., tin)-blocks on
the left side. If s is obtained from a (b)-substitution with only one f(t;1,. .., tin)-
block, then collapsing the entire subterm down to z() yields a term r such that
s'Rr and sR--- Rr via (c)-substitutions. Therefore R satisfies condition (i), and
Propositions A.3 and A.2 identify the tensor product F(S)®@ F(T) = F(SUT)/~ =
F(SUT)/{R) with the sub-symmetric sequence of R-reduced operations in F(SUT),
equipped with a modified composition operation. ([
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