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Abstract. For a given finite group G, the homotopy category of N∞ G-
operads is equivalent to a finite lattice, and G varies, there are various image
constructions between these lattices. In this paper, we explain how to lift
this algebraic structure back to the operad level. We show that lattice joins

and meets correspond to N∞ coproducts and products, and we show that the
image constructions correspond to N∞ induction, restriction, and coinduction

constructions, at least when taken along an injective homomorphism.
We also prove that a N∞ variant of the Boardman-Vogt tensor product

lifts the join. Our result does not resolve Blumberg and Hill’s conjecture that
the ordinary tensor product of suitably cofibrant N∞ operads models the join,
but it does imply a closely related result. If O and P are operads, then an
algebra over the Boardman-Vogt tensor product O ⊗ P is equipped with a
pair of interchanging O and P-actions. We prove that under mild hypotheses
on a N∞ operad O, every orthogonal O-ring spectrum is weakly equivalent to
a spectrum over an operad O′ ' O that interchanges with itself.
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1. Introduction

Transfer and norm maps are defining features of equivariant stable homotopy
theory. From a classical standpoint, they arise geometrically, but in more mod-
ern terms, they arise from actions of N∞ operads on spaces and spectra. Broadly
speaking, such operads represent equivariant enhancements of homotopy commuta-
tive monoid structures. They include Steiner and linear isometries operads, which
parametrize additive and multiplicative structures on spectra over incomplete uni-
verses, but they are strictly more general. Nevertheless, N∞ algebras are quite
natural from an algebraic standpoint. Localizations of equivariant commutative
ring spectra are generally N∞ algebras (cf. [13] and [17]), and recent work of
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Blumberg and Hill [7] shows how to build various incomplete equivariant stable
categories from various categories of N∞ spaces.

The study of N∞ operads and algebras was initiated in [5]. In this paper,
Blumberg and Hill laid much of the foundations for the subject, and they also made
two conjectures. The first [5, p. 4 and Conjecture 5.11] concerned the classification
ofN∞ operads. Over the course of their analysis, Blumberg and Hill proved that the
homotopy category Ho(N∞-OpG) ofN∞ G-operads embeds fully and faithfully into
a combinatorially-defined lattice Ind(G) of G-indexing systems. They conjectured
that this embedding was an equivalence, and this was subsequently proven in [4],
[12], and [15].

The second conjecture [5, Conjecture 6.27] concerned the lattice structure of
Ind(G). It is straightforward to show that products of N∞ operads correspond

to meets of indexing systems under the equivalence Ho(N∞-OpG) ' Ind(G). In
analogy to the Dunn additivity theorem [9], Blumberg and Hill conjectured that
Boardman-Vogt tensor products of suitably cofibrant N∞ operads correspond to
joins. This remains an open problem.

Our present paper grew out of attempts to resolve the second conjecture, and
also to understand how other algebraic operations on the level of indexing systems
translate into topological constructions on the level of N∞ operads. We have in
mind the lattice structure on Ind(G) for individual finite groups G, and also the
analogues to induction, restriction, and coinduction as G varies. Part of this work
was already done in [5]. As mentioned earlier, Blumberg and Hill showed that
products of N∞ operads correspond to lattice meets, and they also identified the
indexing system associated to a coinduced N∞ operad [5, §6.2].

The dual problems are trickier. It is not obvious what a coproduct ofN∞ operads
or an induced N∞ operad even should be, because the usual operadic constructions
do not have the right homotopical properties. One could imagine modifying the
standard topological constructions, but we take a different approach. As explained
in [15], the homotopy theory of N∞ operads can be modeled using discrete operads
in the category of G-sets, and it is easy to make sense of coproducts and induction
in that setting. Thus, we analyze how the algebra of indexing systems lifts to
combinatorial operads, and then we translate things into topology at the end (cf.
§4.3 and §6.4).

In summary, we prove that joins in Ind(G) lift to N∞ variants of the usual
operadic coproduct and tensor product, and we define purely algebraic versions of
induction, restriction, and coinduction that correspond to N∞ operadic induction,
restriction, and coinduction. These N∞ constructions seem like derived functors,
in the sense that they are homotopically meaningful replacements of the standard
constructions, but they do not appear to fit into the usual formal frameworks (e.g.
as described in [8]). In particular, N∞ coproducts, tensor products, and inductions
are not computed by resolving N∞ operads by cofibrant operads and then applying
the usual point-set topological constructions. Instead, we forget down to discrete
operads in the category of G-sets, take a resolution there if necessary, perform the
discrete operadic construction, and then attach cells to make the result a topological
N∞ operad. The passage to discrete operads allows us to analyze our constructions
in terms of the combinatorics of free discrete operads, and this analysis is the
technical heart of our work.
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We now state our results more precisely. The simplest discrete models for N∞

operads are operads in G-sets, which are Σ-free and have G-fixed operations of all
arities. We call these objects N operads, and we write A(O) for the indexing system
associated to any such operad O. The following result combines [5, Proposition 5.1]
and Theorems 4.4 and 4.8.

Theorem A. Suppose O and P are N operads. Then:

(1) the product O ×P is a N operad and A(O ×P) = A(O) ∧A(P),
(2) the coproduct O ∗P is a N operad and A(O ∗P) = A(O) ∨A(P), and
(3) if O and P are both retracts of free operads, then O ⊗P is a N operad

and A(O ⊗P) = A(O) ∨A(P).

Part (3) is a precise combinatorial analogue to [5, Conjecture 6.27], but it does
not imply the topological result. The N∞ operad associated to O is obtained
by attaching cells to make all fixed-point subspaces of O contractible, and this
construction does not preserve colimits. Thus, we can only deduce part of the
conjecture from the combinatorial result (cf. Proposition 4.17). However, we do
conclude that every N∞ ring spectrum can be equipped with a self-interchanging
operad action, up to weak equivalence.

Theorem 4.18. Let R be an O-algebra orthogonal G-spectrum for some N∞ operad
O, and suppose further that id ∈ O(1)G is a nondegenerate basepoint, and O(n) is
of the homotopy type of a G × Σn-CW complex for every n ≥ 0. Then there is a
weakly equivalent G-spectrum R′ ' R and a weakly equivalent N∞ operad O ′ ' O
such that R′ is equipped with a pair of interchanging O ′-actions.

The results for induction, restriction, and coinduction require a bit more setup,
because N operads do not induce up to N operads. Instead, we use marked G-
operads, by which we mean operads O in G-sets, equipped with a chosen unit u ∈
O(0)G and product p ∈ O(2)G. The N∞ operad corresponding to a marked operad
O is obtained by taking a Σ-free, free resolution of O, and then attaching cells just as
before. For any homomorphism f : G→ G′ between finite groups, pulling back and
Kan extending along f defines change-of-group adjunctions indf a resf a coindf
for marked operads. The adjunction resf a coindf always is Quillen, and the
adjunction indf a resf is Quillen if f is injective.

There are direct algebraic analogues to these operadic constructions, but they
are most easily defined using the transfer system formalism from [16]. Informally,
a transfer system → is the set of orbits in an indexing system. The two notions
are logically equivalent, but transfer systems are easier to manage because they are
smaller. We write →O for the transfer system associated to an operad O. Every
homomorphism f : G → G′ between finite groups gives rise to change of group
adjunctions fL a f

−1
R and f−1

L a fR for transfer systems, and f−1
R = f−1

L if f is
injective. The next result is Theorem 6.6.

Theorem B. Suppose f : G → G′ is an arbitrary homomorphism between finite
groups. Then:

(1) →LresfO′ = f−1
L (→O′) for every marked G′-operad O ′,

(2) →RcoindfO = fR(→O) for every marked G-operad O, and
(3) if f is injective, then →LindfO = fL(→O) for every marked G-operad O.
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There are analogues to parts (1) and (2) of Theorem A for marked operads, but
they are easier (cf. §4.2). There are also analogues to parts (1) and (2) of Theorem
B for N operads, but they follow from the results for marked operads (cf. §6.3).

The constructions in this paper are quite explicit, and we have tried to give
examples whenever possible. Moreover, the correspondences in Theorems A and
B have already been applied by Balchin, Barnes, and Roitzheim to interpret their
decomposition of the lattice of Cpn -transfer systems on the operad level [2, Remark
1]. We hope to see further concrete applications.

Organization. This paper uses a handful of ideas from [15] and [16], so we review
the relevant machinery in §2. After that, we get down to work. In §3, we give
a quick description of how meets and joins of transfer systems are calculated, and
then we lift these lattice operations to the operad level in §4. Similarly, we introduce
image and inverse image constructions for transfer systems in §5, and then we lift
these constructions to the operad level in §6. Appendix A describes a method for
identifying quotient operads. It contains the most technical details needed for the
proofs in §4.

Acknowledgements. The first half of this paper is based on work from my dis-
sertation, and it is a pleasure to thank Peter May for his sage advice and support.
The second half of this paper grew out of conversations with Mike Hill, and it is
a pleasure to thank him for continued guidance and inspiration. Finally, we would
like to thank an anonymous referee for their helpful suggestions and commentary.
This work was partially supported by NSF Grant DMS–1803426.

2. Combinatorial N∞ operads

We review some preliminaries in this section, with an emphasis on the ways in
which the homotopy theory of N∞ operads is algebraic. In §2.1, we summarize the
classification of N∞ operads in terms of transfer systems and indexing systems, and
in §2.2, we recall some basic properties of N operads and marked G-operads.

2.1. Transfer systems and indexing systems. Let G be a finite group, and let
O be an operad in the category TopG of compactly generated weak Hausdorff G-
spaces. An O-action is a continuous and equivariant parametrization of operations
by O. The stabilizers of points f ∈ O in the operad determine how commutative
and equivariant the corresponding operations are, and the topology of O imposes
homotopy relations between these operations. A N∞ operad parametrizes a par-
ticular kind of equivariant homotopy-commutative structure.

Definition 2.1. A N∞ operad is a operad O in TopG such that

(1) for every n ≥ 0, the space O(n) is Σn-free,
(2) for every n ≥ 0 and subgroup Γ ⊂ G×Σn, the space O(n)Γ is either empty

or contractible, and
(3) for every n ≥ 0, the space O(n)G is contractible.

The first condition ensures that O parametrizes no strict commutativity rela-
tions, and the third condition ensures that O parametrizes a homotopy coherent
commutative monoid structure, in which all data is G-equivariant. The Γ-fixed
points give rise to equivariant transfers.

More explicitly, suppose K ⊂ H ⊂ G is a chain of subgroups with |H : K| = n,
and suppose σ : H → Σn is a permutation representation of the H-orbit H/K.
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Let Γ(H/K) = {(h, σ(h)) |h ∈ H} ⊂ G × Σn be the graph of σ, and assume that
f ∈ O(n)Γ(H/K). Then f represents G-maps

tr
H
K : G×H coindHKresGKX → X and nHK : G+ ∧H NH

K resGKE → E

on all O-algebra G-spaces X and G-spectra E. These maps are external transfers
and norms. In the first case, passing to the adjoint coindHKresGKX → resGHX and
then taking H-fixed points yields an internal transfer map XK → XH .

Given any N∞ G-operad O, there is a corresponding relation on the set Sub(G)
of all subgroups G, which encodes the transfers parametrized by O.

Definition 2.2. Suppose O is a N∞ G-operad. Define a binary relation →O on
Sub(G) by

K →O H if and only if K ⊂ H and O(|H : K|)Γ(H/K) 6= ∅,

where Γ(H/K) is the graph of some chosen permutation representation of H/K.

The relation →O satisfies conditions that reflect the operad structure on O.
These conditions are axiomatized in the next definition, formulated independently
in [2] and [16].

Definition 2.3. A G-transfer system is a partial order → on Sub(G) such that
for any K,H ∈ Sub(G), if the relation K → H holds, then:

(a) the inclusion K ⊂ H holds,
(b) the relation gKg−1 → gHg−1 holds for every g ∈ G, and
(c) the relation L ∩K → L holds for every subgroup L ⊂ H.

We let Tr(G) denote the lattice of all G-transfer systems, ordered under refinement.

Succinctly, aG-transfer system is a partial order on Sub(G) that refines inclusion
and is closed under conjugation and restriction. We identify a G-transfer system
→ with the set of pairs {(K,H) ∈ Sub(G)×2 |K → H}, and we visualize → as a
graph, whose nodes are the subgroups of G, and whose edges represent nontrivial
relations in →.

More generally, if O is a N∞ G-operad and f ∈ O(n), then the stabilizer Stab(f)
is a graph subgroup in the following sense.

Definition 2.4. Suppose n ≥ 0 and Γ ⊂ G × Σn is a subgroup. Then Γ is a
graph subgroup if there is a subgroup H ⊂ G and a n-element H-set T such that
Γ = {(h, σ(h)) |h ∈ H} for some permutation representation σ : H → Σn of T . In
such a case, we write Γ = Γ(T ).

If the operation f ∈ O satisfies Stab(f) = Γ(T ), then f represents an external
T -indexed transfer or norm on G-spaces and G-spectra. It is sometimes convenient
to keep track of all such T -indexed operations.

Definition 2.5. Suppose O is a N∞ G-operad. For any subgroup H ⊂ G and
finite H-set T , we say T is admissible for O if O(|T |)Γ(T ) 6= ∅. We write A(O) for
the Sub(G)-graded class of all admissible sets of O.

The class A(O) also satisfies conditions that reflect the operad structure on O.

Definition 2.6. A G-indexing system is a Sub(G)-graded class I, whose H-
component I(H) is class of finite H-sets that contains all trivial actions, and which
is closed under isomorphism, conjugation, restriction, subobjects, coproducts, and
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self-induction, i.e. if T ∈ I(K) and H/K ∈ I(H), then indHKT = H ×K T ∈ I(H).
We write Ind(G) for the lattice of all G-transfer systems, ordered under inclusion.

Every G-indexing system I determines a G-transfer system →I , where

K →I H if and only if K ⊂ H and H/K ∈ I(H).

Moreover, indexing systems and transfer systems are equivalent, essentially because
indexing systems are determined by their orbits.

Theorem 2.7 ([2] and [16]). The map →• : Ind(G)→ Tr(G) is a lattice isomor-
phism for any finite group G.

Every N∞ G-operad O gives rise to a G-indexing system A(O) and a G-transfer
system →O , which are related by the formula →A(O) = →O . Furthermore, these
objects completely determine O up to homotopy. Declare a map ϕ : O → P
between N∞ operads to be a weak equivalence if the map ϕ : O(n)Γ →P(n)Γ is a
weak homotopy equivalence of spaces for every integer n ≥ 0 and graph subgroup
Γ ⊂ G × Σn. Let Ho(N∞-OpG) denote the category of N∞ G-operads with weak
equivalences inverted. Then we have the following classification theorem.

Theorem 2.8 ([5], [4], [12], and [15]). The functor

N∞-OpG A
−→ Ind(G) ∼= Tr(G)

that sends an operad O to the indexing system A(O), and an operad map O →P
to the inclusion A(O) ⊂ A(P) induces an equivalence Ho(N∞-OpG) ' Ind(G) ∼=
Tr(G) of 1-categories.

In fact, the mapping spaces in the hammock localization LH(N∞-OpG) are
all either empty or contractible [5, Proposition 5.5], so →• also induces a DK

equivalence LH(N∞-OpG) ' Ind(G) ∼= Tr(G). This is one sense in which the
homotopy theory of N∞ operads is algebraic.

2.2. Combinatorial models of N∞ operads. Another sense in which the ho-
motopy theory of N∞ operads is algebraic is that there are categories of discrete
G-operads, whose underlying homotopy theories are equivalent to LH(N∞-OpG).
We review some material from [15, §3 and §8].

Let OpG denote the category of symmetric operads in SetG. The simplest
discrete models for N∞ operads are their natural analogues in OpG.

Definition 2.9. A N operad is an operad O in SetG such that

(1) for every n ≥ 0, the set O(n) is Σn-free, and
(2) for every n ≥ 0, the set O(n)G is nonempty.

We let N -OpG denote the full subcategory of OpG spanned by the N operads.

We construct N∞ operads from N operads by attaching cells. Let sSet denote
the category of simplicial sets, and let

(−)0 : sSet� Set : E

be the 0-simplices functor and its right adjoint. For any set X and q ≥ 0, the
set of q-simplices of EX is X×q+1, and the face and degeneracy maps of EX
are obtained by omitting and repeating coordinates. The simplicial set EX is
contractible whenever X is nonempty, and we have E∅ = ∅.
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The functor E and geometric realization |·| both preserve finite limits, and there-
fore we obtain a composite functor

E = |·| ◦ E : N -OpG → N∞-OpG.

Declare a morphism ϕ : O →P inOpG to be a weak equivalence if the induced map

|Eϕ| : |EO(n)|
Γ
→ |EP(n)|

Γ
is a weak homotopy equivalence of spaces for every

integer n ≥ 0 and graph subgroup Γ ⊂ G × Σn. This boils down to the condition
that O(n)Γ is nonempty whenever P(n)Γ is. Then the functor E preserves weak
equivalences, and we actually obtain an equivalence of homotopy theories.

Theorem 2.10 ([15, Theorem 3.7]). The functor

E : N -OpG → N∞-OpG

induces a DK equivalence between the hammock localizations of N -OpG and N∞-OpG.

The category N -OpG is simple and explicit, but it has a number of deficiencies.
In particular, N -OpG is neither complete nor cocomplete, and operadic induction
indGH : OpH → OpG does not preserve N operads. We introduce a model category

of operads in SetG to remedy these issues.
To start, note that the category OpG is complete and cocomplete for formal

reasons. We write O ∗P for the coproduct in OpG in analogy to the coproduct of
nonabelian groups. The category OpG is also locally finitely presentable. If

F : SymG
� OpG : U

is the free-forgetful adjunction from symmetric sequences of G-sets, then the free
operads F (G× Σn) form a strong generator for OpG in the sense of [1].

Let F be the free G-operad on the symmetric sequence G×Σ0

G t G×Σ2

G , and write

OpG
+ for the slice category F/OpG of G-operads under F. By adjunction, an

object of OpG
+ is an operad O ∈ OpG equipped with a marked constant u ∈ O(0)G

and binary product p ∈ O(2)G, and a morphism in OpG
+ is a morphism of G-

operads that preserves the marked operations. The category OpG
+ is also complete,

cocomplete, and locally finitely presentable.
The category OpG

+ carries a simplicial enrichment, which is most quickly defined
using the adjunction (−)0 a E from above. Both of the functors (−)0 and E

preserve products, and thus we can enrich, tensor, and cotensor OpG
+ over sSet by

using the hom objects

OpG

+
(O,P) = EOpG

+(O,P),

and setting K ⊗ O =
∐

K0
O and OK =

∏

K0
O for any K ∈ sSet and O ∈ OpG

+.

Every hom space OpG

+
(O,P) is either empty or contractible.

Declare a morphism ϕ : O →P in OpG
+ to be a weak equivalence if it is a weak

equivalence in OpG. Next, let

F+ : SymG
� OpG

+ : U

be the free-forgetful adjunction, so that F+(S) ∼= F (G×Σ0

G t G×Σ2

G t S). We take

I+ =

{

F+

(

∅ −→
G× Σn

Γ

)∣

∣

∣

∣

∣

n ≥ 0, Γ ⊂ G× Σn a
graph subgroup

}
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as a set of generating cofibrations, and

J+ =

{

F+

(

G× Σn

Γ

inc
−→

G× Σn

Γ
t
G× Σn

Γ

)∣

∣

∣

∣

∣

n ≥ 0, Γ ⊂ G× Σn a
graph subgroup

}

as a set of generating acyclic cofibrations. These data determine a model category
structure on OpG

+ that is compatible with the simplicial enrichment, and which
presents the homotopy theory of N∞ operads.

Theorem 2.11 ([15]). The category OpG
+ is a right proper, combinatorial, simpli-

cial model category, with weak equivalences and generating (acyclic) cofibrations as
above. Moreover:

(1) every object of OpG
+ is fibrant, and

(2) if O ∈ OpG
+ is cofibrant, then O is a N operad, and EO is a N∞ operad.

Let Q be a cofibrant replacement functor on OpG
+. Then the composite

LE = E ◦Q : OpG
+ → N∞-OpG

induces a DK equivalence between the hammock localizations of OpG
+ and N∞-OpG.

Not every marked N operad is cofibrant in OpG
+; such operads are more closely

akin to Σ-cofibrant operads in the sense of Berger and Moerdijk [3].

The equivalences between the homotopy theories ofN -OpG, OpG
+, andN∞-OpG

enable us to analyze the homotopy theory of N∞ operads in purely combinatorial
terms. As illustrated in appendix A, interesting questions about N∞ operads trans-
form into intricate word problems for operads in G-sets.

We end with a small observation. Combining Theorems 2.8, 2.10, and 2.11 yields
equivalences Ho(OpG

+) ' Tr(G) ' Ho(N -OpG) that send an operad O ∈ OpG
+ to

the transfer system →|EQO| and an operad O ∈ N -OpG to →|EO|. However, for
any graph subgroup Γ ⊂ G× Σn, we have

|EQO(n)|
Γ
6= ∅ ⇐⇒ O(n)Γ 6= ∅ ⇐⇒ |EO(n)|

Γ
6= ∅.

Thus, we extend Definitions 2.2 and 2.5.

Definition 2.12. Suppose O is an operad in N -OpG or OpG
+. Define a binary

relation →O on Sub(G) by

K →O H if and only if K ⊂ H and O(|H : K|)Γ(H/K) 6= ∅,

where Γ(H/K) is the graph of a chosen permutation representation of H/K.
Similarly, for any subgroup H ⊂ G and finite H-set T , we say that O admits T

if O(|T |)Γ(T ) 6= ∅, and we write A(O) for the class of admissible sets of O.

Corollary 2.13. For any operad O in N -OpG or OpG
+, the relation →O is a

transfer system, the class A(O) is an indexing system, and the functors

OpG
+

A
−→ Ind(G) ∼= Tr(G) and N -OpG A

−→ Ind(G) ∼= Tr(G)

induce equivalences Ho(OpG
+) ' Ind(G) ∼= Tr(G) ' Ho(N -OpG) of 1-categories.

Proof. The relations→|EQO|,→O , and→|EO| are equal, and the classes A(|EQO|),
A(O), and A(|EO|) are also equal. �



OPERADIC LIFTS OF THE ALGEBRA OF INDEXING SYSTEMS 9

3. Algebraic meets and joins

In this brief section, we record how to compute meets and joins of transfer
systems, and then we give a few examples. One could also work on the level of
indexing systems, but this makes the mathematics more complicated. For any G-
indexing systems I and J , the meet I ∧ J is just the intersection I ∩ J , but the
join I ∨J is the indexing system generated by the union I ∪J . It can be obtained
by closing up I ∪ J under coproducts and self-induction, but this description is
somewhat inexplicit.

In contrast, there is a simple formula for the join of G-transfer systems. It says
that the join → ∨ is obtained by composing the transfers in → and  .

Proposition 3.1. Suppose that G is a finite group, and that → and  are G-
transfer systems. Then:

(1) the meet → ∧ is the intersection → ∩ , and
(2) the join → ∨ is the transitive closure of → ∪ .

Proof. For (1), note that an intersection of transfer systems is still a transfer system.
The same is not true for unions, and therefore → ∨ is the least transfer system
that contains the union of → and  . Denote it 〈→ ∪  〉. By [16, Theorem A.2],
the relation 〈→ ∪  〉 can be obtained by closing up → ∪  under conjugation
and restriction, and then passing to the reflexive and transitive closure. However,
the relation → ∪  is already closed under conjugation and restriction, and it is
already reflexive. �

We illustrate these operations below.

Example 3.2. Suppose first that G = Cp3 for a prime p. The subgroup lattice of
G is the tower C1 ⊂ Cp ⊂ Cp2 ⊂ Cp3 , and the lattice Tr(Cp3) of all Cp3 -transfer
systems is isomorphic to the associahedron K5 (cf. [2]). Here are a few meets and
joins in Tr(Cp3).

··
··
∧ ··
··
= ··
··

··
··
∧ ··
··
= ··
··

··
··
∧ ··
··
= ··
··

··
··
∨ ··
··
= ··
··

··
··
∨ ··
··
= ··
··

··
··
∨ ··
··
= ··
··

Next, suppose that G = K4 is the Klein four group. Then G has three proper,
nontrivial subgroups of order 2, which are pairwise incomparable. The lattice
Tr(K4) consists of a pair of stacked 3-cubes, plus a layer of three vertices con-
necting them (cf. [16]). Here are a few meets and joins in Tr(K4).

·· · ·
· ∧ ·· · ·

· = ·· · ·
·

·· · ·
· ∧ ·· · ·

· = ·· · ·
·

·· · ·
· ∧ ·· · ·

· = ·· · ·
·

·· · ·
· ∨ ·· · ·

· = ·· · ·
·

·· · ·
· ∨ ·· · ·

· = ·· · ·
·

·· · ·
· ∨ ·· · ·

· = ·· · ·
·

We have complete knowledge of the lattice Tr(G) when G = Cp3 or K4, and
therefore these meets and joins may be determined by inspection. In general, the
lattice Tr(G) can be quite intricate, but the formulas in Proposition 3.1 work
regardless.
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4. Operadic products, coproducts, and tensor products

We now relate meets and joins of indexing systems to products, coproducts,
and Boardman-Vogt tensor products of operads in SetG. The case for products is
straightforward and was analyzed in [5], but the cases for coproducts and tensor
products are less so. We begin by recalling the correspondence between products
of N operads and meets of indexing systems (Proposition 4.1), and then we show
that coproducts and tensor products of N operads correspond to joins of indexing
systems, under suitable cofibrancy conditions (Theorems 4.4 and 4.8). We briefly
describe the situation for marked operads in §4.2, and then in §4.3, we discuss how
these discrete constructions translate over to topology.

4.1. Constructions on N operads. We start by lifting meets and joins to the
level of N operads. It is more natural to work with indexing systems instead of
transfer systems in this context, but the identity→A(O) = →O allows us to convert
between the two formalisms.

Proposition 4.1 ([5, Proposition 5.1]). If O and P are N operads, then their

product O ×P in OpG is a N operad, and A(O ×P) = A(O) ∧A(P).

Proof. Products in OpG are computed levelwise, and therefore

(O ×P)(n)Ξ ∼= O(n)Ξ ×P(n)Ξ

for every n ≥ 0 and subgroup Ξ ⊂ G× Σn. The left hand side is nonempty if and
only if both factors on the right hand side are, and the result follows. �

Corollary 4.2. For any O ∈ N -OpG, the functor O × (−) : N -OpG → N -OpG

preserves weak equivalences.

We have the following consistency check.

Example 4.3. One standard construction of N operads proceeds by coinducing the
associative operad As in Set up to a G-operad. Explicitly, if X is a nonempty, right
G-set, then Set(X,As) is a N operad in SetG. The operad Set(X,As) admits a
finite H-set T if and only if every h ∈ H that fixes an element of X acts as the
identity on all of T [15, §3.2]. In particular, the N operad Set(G,As) admits all
finite H-sets for all subgroups H ⊂ G. It is isomorphic to the object operad of the
G-Barratt-Eccles operad PG (cf. [11]).

For any nonempty, right G-sets X and Y , there is an isomorphism

Set(X,As)× Set(Y,As) ∼= Set(X t Y,As),

and the equality A(Set(XtY,As)) = A(Set(X,As))∧A(Set(Y,As)) follows from
the admissibility criterion above and the fact that g ∈ G fixes an element of X t Y
if and only if it fixes an element of X or it fixes an element of Y .

A dual result relates operadic coproducts to joins of indexing systems, but it
is harder. Our proof relies on a presentation of the coproduct operad, which is
analogous to the usual presentation for the coproduct of nonabelian groups. We
refer the reader to [15, §5] for further discussion of free and quotient operads.

Theorem 4.4. If O and P are N operads, then their coproduct O ∗P in OpG is
also a N operad, and A(O ∗P) = A(O) ∨A(P).

We single out a special case before going into the proof.
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Example 4.5. Suppose S is a Σ-free symmetric sequence in SetG such that
S(n)G 6= ∅ for n = 0, 2. Now let O = F (S) be the free operad on S. By [15,
Theorem 4.6], the class A(O) is the indexing system generated by A(S).

Now suppose T is another such a symmetric sequence, and let P = F (T ). Then
O ∗P ∼= F (S t T ), and therefore

A(O ∗P) = 〈A(S t T )〉 = 〈A(S) ∪A(T )〉 = 〈A(S)〉 ∨ 〈A(T )〉 = A(O) ∨A(P).

Therefore Theorem 4.4 is true in this case.

To prove the general case, we reduce to the calculation for frees.

Proof of Theorem 4.4. Let F : SymG
� OpG : U be the free-forgetful adjunction.

In Lemma A.4, we prove that O ∗P is isomorphic to a sub-symmetric sequence
of F (UO t UP) equipped with a modified operadic composition. It follows that
O ∗P is Σ-free, and since there is an operad map O → O ∗P, it also follows that
(O ∗P)(n)G 6= ∅ for all n ≥ 0. Therefore O ∗P is a N operad.

The structure maps O → O ∗P ← P imply that A(O) ⊂ A(O ∗P) ⊃ A(P),
and therefore A(O) ∨ A(P) ⊂ A(O ∗ P). On the other hand, the symmetric
sequence map U(O ∗P)→ UF (UO tUP) implies A(O ∗P) ⊂ A(F (UO tUP)).
As in Example 4.5, we have

A(F (UO t UP)) = 〈A(UO t UP)〉 = 〈A(O)〉 ∨ 〈A(P)〉,

and this equals A(O)∨A(P) because A(O) and A(P) are already indexing systems.
This proves the theorem. �

Corollary 4.6. For any O ∈ N -OpG, the functor O ∗ (−) : N -OpG → N -OpG

preserves weak equivalences.

We now consider Boardman-Vogt tensor products O⊗P of operads. Recall that
O ⊗P is the quotient of the coproduct O ∗P operad by the vertical-horizontal
interchange relations

h(f(x11, . . . , x1n), . . . , f(xm1, . . . , xmn)) ∼ f(h(x11, . . . , xm1), . . . , h(x1n, . . . , xmn)),

for all h ∈ O(m) and f ∈ P(n). When m = n = 2, we recover the usual formula
from the Eckmann-Hilton argument. More formally, we start with the coproduct
i : O → O ∗P ← P : j, and then take the quotient by the congruence relation
generated by

γ(i(h); j(f), . . . , j(f)) ∼ γ(j(f); i(h), . . . , i(h))σ,

where h ∈ O(m), f ∈ P(n), and σ is the permutation that reorders mn elements
in reverse lexicographic order. Nullary interchanges are allowed. If f ∈P(0), then
γ(i(h); j(f), . . . , j(f)) ∼ j(f), and therefore i(h) ∼ j(f) if h ∈ O(0) as well. It
follows that the operad O ⊗P is reduced if both O(0) and P(0) are nonempty.

The tensor product of N operads is not generally a N operad. For example, if
G is the trivial group and O = P = As is the associativity operad, then O ⊗P
is isomorphic to the commutativity operad [10, Proposition 3.8]. However, the
tensor product does behave well for suitably free N operads. We introduce some
terminology.

Definition 4.7. A N operad O is cofibrant if it is a retract of free operad in OpG.
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This terminology is justified because there is a model category structure on OpG

for which these are the cofibrant operads (cf. [15, §8.1]).
If a cofibrant N operad O is a retract of a free operad F (S), then S must be Σ-

free because the composite S → F (S)→ O of the unit and the retraction is a map
of symmetric sequences. After enlarging S, we may also assume that S(n)G 6= ∅ for
all n ≥ 0, because O(n)G 6= ∅ implies F (S)(n)G 6= ∅, and therefore the inclusion
F (S) ↪→ F (S t

∐

n≥0
G×Σn

G ) has a retraction.

Theorem 4.8. If O and P are cofibrant N operads, then their tensor product
O ⊗P in OpG is a N operad, and A(O ⊗P) = A(O) ∨A(P).

Proof. Admissible sets are preserved under retracts, so it is enough to prove the
result when O = F (S) and P = F (T ) are free on Σ-free symmetric sequences
S and T such that S(n)G, T (n)G 6= ∅ for all n ≥ 0. In this case, Lemma A.5
implies that F (S)⊗ F (T ) is isomorphic to a sub-symmetric sequence of F (S t T ),
equipped with a modified composition operation. From here, the same argument
used in the proof of Theorem 4.4 shows that F (S)⊗ F (T ) is a N operad and that
A(F (S)⊗ F (T )) = A(F (S)) ∨A(F (T )). �

Corollary 4.9. If O is a cofibrant N operad, then O ⊗ (−) : (N -OpG)cof →

N -OpG preserves weak equivalences between cofibrant N operads.

4.2. Constructions on marked operads. Next, we briefly indicate how the
structure on the lattice Ind(G) of G-indexing systems is reflected on the level

of marked operads. Recall that F is the free operad in OpG on the symmetric
sequence G×Σ0

G t G×Σ2

G , and OpG
+ = F/OpG.

The relationship between products and meets is the same as before, because
limits in OpG

+ are computed in OpG.

Proposition 4.10. If O and P are operads in OpG
+, then

A(O ×P) = A(O) ∧A(P).

Consequently, the functor O × (−) : OpG
+ → OpG

+ preserves weak equivalences for

any operad O ∈ OpG
+.

A dual result holds for derived coproducts in OpG
+, with respect to the model

structure discussed in §2.2.

Proposition 4.11. Suppose O and P are cofibrant operads in OpG
+, and let O∗FP

be their coproduct in OpG
+. Then O ∗F P is also cofibrant, and

A(O ∗F P) = A(O) ∨A(P).

Consequently, the functor O ∗F (−) : OpG
+ → OpG

+ preserves weak equivalences

between cofibrant operads whenever O is cofibrant in OpG
+.

Proof. The operad O ∗F P is cofibrant for formal reasons. To compute its indexing
system, note that the maps F+(∅ →

G×Σn

Γ ) are generating cofibrations for OpG
+,

and therefore every cofibrant operad is a retract of a free operad F+(S) for some
Σ-free symmetric sequence S. Indexing systems are preserved under retracts, and
therefore it will suffice to prove that A(O ∗F P) = A(O)∨A(P) when O and P
are free in this sense.
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Suppose that O = F+(S) and P = F+(T ) for Σ-free symmetric sequences S
and T . Then O ∗F P ∼= F+(S t T ), and the identity A(O ∗F P) = A(O) ∨ A(P)
follows as in Example 4.5. �

One can also construct Boardman-Vogt tensor products ⊗F inOpG
+, but they are

quite pathological. Morphisms in OpG
+ must preserve markings, and therefore the

distinguished binary operation p in the tensor product O ⊗F P must interchange
with itself, i.e. p(p(x, y), p(z, w)) = p(p(x, z), p(y, w)). Thus, the cycle (23) ∈ Σ4

stabilizes q = γ(p; p, p), and it follows that the operad O ⊗F P is never Σ-free or
cofibrant. Moreover, if g ∈ G is an element of order 2 and Γ = {(1, id), (g, (23))},
then q is Γ-fixed, which makes it a 〈g〉/1-norm. In this case, taking O = P = F

yields the inequality A(O ⊗F P) ) A(O) ∨ A(P). For these reasons, we pursue
⊗F no further.

4.3. Topological interpretations. We conclude this section by considering how
constructions on the level of discrete G-operads translate into constructions for
topological N∞ operads. As observed earlier, the functor E = |·| ◦ E preserves
products of operads because it preserves finite limits. Unfortunately, it does not
preserve point-set level operadic coproducts or tensor products, and therefore our
constructions in N -OpG and OpG

+ need to be interpreted carefully.

We think of the coproduct in N -OpG and the tensor product of cofibrant op-
erads in N -OpG as the homotopically correct constructions, and we read off their
topological counterparts via the equivalence Ho(N -OpG) ' Ho(N∞-OpG). Let

(−)u : N∞-OpG → N -OpG be the forgetful functor that ignores all topology. This
functor preserves admissible sets, and therefore it also preserves weak equivalences.
It is a homotopical inverse to E.

Proposition 4.12. The homotopical functors

E : N -OpG
� N∞-OpG : (−)u

are inverse up to zig-zags of natural weak equivalences.

Proof. We use the product trick from [14]. Both E and (−)u preserve admissible
sets, and therefore both projections in the diagram E(Ou)← E(Ou)× O → O are

weak equivalences that are natural in the operad O ∈ N∞-OpG. Similarly for the
other composite. �

Accordingly, we define N∞ coproducts and tensor products by ignoring topology,
performing the combinatorial constructions, and then inserting cells.

Definition 4.13. For any N∞ operads O and P, define

O ∗N∞ P = E(Ou ∗Pu) and O ⊗N∞ P = E(FOu ⊗ FPu),

where F is the free operad functor F : SymG → OpG from the category of sym-
metric sequences in G-sets to the category of operads in G-sets.

We have A(O ∗N∞ P) = A(O) ∨ A(P) = A(O ⊗N∞ P) by Theorems 4.4 and
4.8, so these constructions have the correct behavior. One can also construct an
analogous N∞ product, but the equivalences

O ×N∞ P = E(Ou ×Pu) ∼= (EOu)× (EPu) ' O ×P,

show that it is unnecessary.
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Let us analyze the N∞ coproduct and tensor product a bit further. The functor
E does not preserve preserve colimits, and as a result, its application in the con-
structions of O ∗N∞ P and O⊗N∞ P spoils the point-set level universal properties
of Ou ∗Pu and FOu ⊗ FOu. Consequently, we do not believe that O ∗N∞ P and
O ⊗N∞ P possess any universal properties beyond representing the coproduct of
O and P in Ho(N∞-OpG).

That being said, the functor E does preserve point-set level operadic interchange.
Indeed, if ϕ : O → Q and ψ : P → Q are maps of operads in SetG or TopG,
then O and P interchange in Q (via ϕ and ψ) if and only if the diagram below
commutes for all j and k.

P(k)× O(j)k

P(k)× O(j)

O(j)×P(k)

O(j)×P(k)j

Q(k)×Q(j)k

Q(kj)

Q(jk)

Q(j)×Q(k)j

id×∆

twist

id×∆

ψ × ϕk

γ

rev. lex.

γ

ϕ× ψj

The functor E preserves such diagrams because it preserves finite products. Hence,
if O and P are discrete operads that interchange in Q via ϕ and ψ, then EO and
EP are topological operads that interchange in EQ via Eϕ and Eψ.

Specializing, we see that if O and P are N∞ operads, then the N operads
FOu and FPu interchange in FOu ⊗ FPu and hence the N∞ operads E(FOu)
and E(FPu) interchange in O ⊗N∞ P = E(FOu ⊗ FPu). Moreover, the operad
E(FOu) is equivalent to O because

A(E(FOu)) = A(FOu) = 〈A(Ou)〉 = 〈A(O)〉 = A(O),

though E(FOu) is much larger than O. Similarly considerations apply to E(FPu)
and P, and we arrive at the following conclusion.

Proposition 4.14. Suppose that O and P are N∞ operads. Then O ⊗N∞ P is
a N∞ operad such that A(O ⊗N∞ P) = A(O) ∨ A(P). Moreover, there are N∞

operads O ′ = E(FOu) and P ′ = E(FPu) such that

(1) O ′ ' O and P ′ 'P,
(2) there are natural maps O ′ → O ⊗N∞ P ←P ′, and
(3) the operads O ′ and P ′ interchange in O ⊗N∞ P via the maps above.

Thus, even though the N∞ tensor product O⊗N∞ P does not have any apparent
point-set level universal property, it is a target for interchanging actions by the
enlarged operads O ′ ' O and P ′ ' P. Very roughly speaking, we think of
O⊗N∞P as a fattened version of O ′⊗P ′, which is obtained by attaching additional
cells between O ′ and P ′. Along the same lines, the N∞ coproduct O ∗N∞ P does
not have any obvious point-set universal property, but it does fit into a diagram
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E(Ou) → O ∗N∞ P ← E(Pu) where E(Ou) ' O and E(Pu) ' P. We think of
O ∗N∞ P as a similarly fattened version of E(Ou) ∗ E(Pu).

In light of this discussion, it is natural to ask when a N∞ coproduct or tensor
product is equivalent to the usual operadic coproduct or tensor product. We do not
believe that N∞ coproducts are ever equivalent to ordinary ones. As the follow-
ing example illustrates, it is quite difficult construct an action by O ∗N∞ P from
separate actions of O and P.

Example 4.15. Suppose that X is a G-space, and that O and P are two N∞

G-operads. If O ∗P and O ∗N∞ P are equivalent, then actions by these operads
should consist of equivalent data. An action of O ∗P on X is the same thing as
an action by O and an action by P. On the other hand, if we have an action
by O ∗N∞ P, then for any n ≥ 0 and f ∈ O(n) and h ∈ P(n), we must have
coherence homotopies between the corresponding operations F and H on X. This
is not obviously part of the given data, because O only parametrizes coherence
homotopies between its operations, and similarly for P.

There is a bit more hope if we work in a marked setting. Suppose O and P have
distinguished units uO ∈ O(0)G and uP ∈ P(0)G and distinguished binary prod-
ucts pO ∈ O(2)G and pP ∈P(2)G, which represent the same operations U and P
on X. Then O parametrizes a homotopy from F to P (. . . P (P (x1, x2), x3), . . . , xn)
and P parametrizes a homotopy from P (. . . P (P (x1, x2), x3), . . . , xn) to H. The
issue now is that there should be a StabG×Σn

(f) ∩ StabG×Σn
(h)-fixed homotopy

from F to H, and the homotopy above does not necessarily have this property.

The situation is less clear cut for tensor products. The Dunn additivity theorem
(cf. [9], [10]) asserts that the tensor product of an Ek-operad with an El-operad is
Ek+l, provided that the operads are suitably cofibrant. This motivated [5, Conjec-
ture 6.27], which we reproduce below.

Conjecture 4.16. If O and P are suitably cofibrant N∞ operads, then O ⊗P is
also a N∞ operad, and A(O ⊗P) = A(O) ∨A(P).

For such operads, we would have O ⊗N∞ P ' O ⊗P because both sides would
have the same admissible sets. Theorem 4.8 is a precise combinatorial analogue to
this conjecture, but it does not quite imply the topological result. We can deduce
the following portions though.

Proposition 4.17. If O and P are cofibrant N operads, then EO⊗EP is Σ-free,
has G-fixed points of all arities, and satisfies A(EO ⊗ EP) = A(EO) ∨A(EP).

Proof. By Theorem 4.8, the tensor product O⊗P in OpG is a N operad such that
A(O ⊗P) = A(O) ∨ A(P). Applying the functor E gives a pair of interchanging
maps EO → E(O ⊗ P) ← EP of N∞ operads, which in turn induce a map
EO ⊗EP → E(O ⊗P) by universality. Since E(O ⊗P) is Σ-free, so is EO ⊗EP.
Since EO(n)G 6= ∅ for all n ≥ 0, the same holds for EO ⊗ EP. The existence of a
map EO ⊗ EP → E(O ⊗P) implies the inclusion

A(EO ⊗ EP) ⊂ A(E(O ⊗P)) = A(O) ∨A(P) = A(EO) ∨A(EP),

and the reverse inclusion follows from the maps EO → EO ⊗ EP ← EP in the
universal diagram. �

Thus, if one could prove that (EO⊗EP)(n)Γ is either empty or contractible for
every integer n ≥ 0 and graph subgroup Γ ⊂ G× Σn, then Conjecture 4.16 would
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hold for the N∞ operads EO and EP. That being said, we can already deduce
useful topological results without knowing that EO ⊗ EP is a N∞ operad.

Theorem 4.18. Let R be an O-algebra orthogonal G-spectrum for some N∞ operad
O, and suppose further that id ∈ O(1)G is a nondegenerate basepoint, and O(n) is
of the homotopy type of a G × Σn-CW complex for every n ≥ 0. Then there is a
weakly equivalent G-spectrum R′ ' R and a weakly equivalent N∞ operad O ′ ' O
such that R′ is equipped with a pair of interchanging O ′-actions.

Proof. Let O ′ = E(FOu) and P = E(FOu ⊗ FOu). Then O, O ′ and P are
equivalent N∞ operads. The projections O ← O ×P → P induce a chain of
Quillen equivalences SpG[O] ' SpG[O⊗P] ' SpG[P] between the corresponding
categories of algebra G-spectra by [5, Theorem A.3], and we let R′ be a fibrant

replacement of the image of R in SpG[P]. Applying E to the universal diagram
FOu → FOu ⊗ FOu ← FOu gives a pair of interchanging maps O ′ → P ← O ′,
and pulling back gives a pair of interchanging O ′-algebra structures on R′. �

5. Algebraic images and inverse images

In this section, we give purely algebraic definitions of image and inverse image
transfer systems (Definition 5.6), and then we establish their functoriality and ad-
jointness properties (Proposition 5.9). We relate these constructions to operadic
induction, restriction, and coinduction in §6. Much of this theory works as ex-
pected, but there are a few surprises. Most notably, there is an extra inverse image
construction. Every group homomorphism f : G → G′ determines a pair of image
constructions analogous to induction and coinduction, but the map f also deter-
mines two inverse image constructions, which happen to coincide if f is injective
(Proposition 5.13). When f is noninjective, one of these inverse images corresponds
to restriction, but the other one and its adjoint seem to be red herrings, with no
natural operadic interpretation.

5.1. Overview. We sketch the definitions and offer a few examples now, before
giving a more formal treatment in the next section.

Our constructions are loosely inspired by a pair of adjunctions associated to
an arbitrary set map. Suppose X and Y are sets, f : X → Y is a function,
and P(X) and P(Y ) are the corresponding power sets, regarded as posets under
inclusion. Then taking images and inverse images determines an order adjunction
f : P(X)� P(Y ) : f−1. Intersections are not always preserved under images, and
therefore f : P(X) → P(Y ) does not always have a left adjoint. However, there
is an adjunction f−1 : P(Y ) � P(X) : f∗, where f∗A = {y ∈ Y | f−1(y) ⊂ A}
for any subset A ⊂ X. For comparison, the ordinary image can be expressed as
fA = {y ∈ Y | f−1(y) ∩ A 6= ∅}. The chain of adjunctions generally stops here
because the right adjoint f∗ does not always preserve unions.

If f : G→ G′ is a group homomorphism, then it makes sense to apply f×2 and
(f−1)×2 to the relations in a transfer system. The results need not be transfer
systems, but we can close them up. Every binary relation R on Sub(G) generates
a transfer system 〈R〉, provided it refines inclusion. Explicitly, the relation 〈R〉
is obtained by closing R under conjugation and restriction, and then passing to
the reflexive and transitive closure [16, Theorem A.2]. Combining 〈·〉 with the set-
theoretic maps f×2 and (f−1)×2 gives natural transfer system analogues of f and
f−1. We denote them fL and f−1

L .
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Example 5.1. Consider the map f : C4 → Σ3 that sends the generator of C4 to a
transposition. The subgroup lattice of C4 is the tower C1 ⊂ C2 ⊂ C4. The proper,
nontrivial subgroups of Σ3 are three conjugate copies of C2 and a single copy of
C3. We draw them as three dots in a row, and an odd dot off to the side. Here are
some examples of fL and f−1

L .

fL

(

··
·
)

= fL

(

··
·
)

= ·
· · ·
·· fL

(

··
·
)

= fL

(

··
·
)

= fL

(

··
·
)

= ·
· · ·
··

f−1
L

(

·
· · ·
··
)

= f−1
L

(

·
· · ·
··
)

= ··
·

f−1
L

(

·
· · ·
··
)

= f−1
L

(

·
· · ·
··
)

= ··
·

On the other hand, constructing an analogue to f∗ for transfer systems requires
another approach, because the set-theoretic map f∗ does not preserve subgroups.
The power set adjunction f−1 a f∗ indicates that f−1 and f∗ should be suitably
dual, which necessitates the next construction.

Proposition 5.2. Suppose that ≤ is a partial order on Sub(G) that refines inclu-
sion. Then

〉≤〈 :=

{

(K,H) ∈ Sub(G)×2

∣

∣

∣

∣

∣

K ⊂ H, and gKg−1 ∩ L ≤ L
for all g ∈ G and L ⊂ gHg−1

}

is the largest G-transfer system contained in ≤.

Note that if R is any reflexive relation on Sub(G), then there must be maximal
transfer systems contained in R, but there need not be a maximum 〉R〈. Assuming
R is a partial order allows us to construct 〉R〈 directly.

Proof of Proposition 5.2. We begin by showing 〉 ≤ 〈 is a transfer system. The
reflexivity of 〉 ≤ 〈 follows from that of ≤. By definition, the relation 〉 ≤ 〈 re-
fines ⊂, and therefore it is also antisymmetric. For transitivity, suppose that
(K, J), (J,H) ∈ 〉 ≤ 〈. Given g ∈ G and L ⊂ gHg−1, let M = gJg−1 ∩ L. Then
M ⊂ gJg−1, and we have

gKg−1 ∩ L = gKg−1 ∩M ≤M = gJg−1 ∩ L ≤ L,

so that gKg−1 ∩ L ≤ L by the transitivity of ≤. It is clear that 〉 ≤ 〈 is closed
under conjugation. For restriction, suppose (K,H) ∈ 〉 ≤ 〈 and L ⊂ H. Then
(K ∩ L,L) ∈ 〉≤〈 because if g ∈ G and M ⊂ gLg−1, then M ⊂ gHg−1 and hence

g(K ∩ L)g−1 ∩M = gKg−1 ∩M ≤M.

Therefore 〉 ≤ 〈 is a transfer system. It refines ≤ because if (K,H) ∈ 〉 ≤ 〈, then
taking g = e ∈ G and L = H ⊂ eHe−1 shows K = eKe−1 ∩H ≤ H.

Finally, suppose that→ is a transfer system that refines ≤, and suppose K → H.
Then K ⊂ H because → refines inclusion. Then, for any g ∈ G and L ⊂ gHg−1,
we have gKg−1 → gHg−1 and gKg−1 ∩ L → L, which implies gKg−1 ∩ L ≤ L.
Therefore → refines 〉≤〈. �

We obtain the transfer system analogue of f∗ by dualizing the construction of
f−1
L . First, we take the inverse image along (f−1)×2, and then we apply 〉 · 〈.
Similarly, one can take the inverse image along f×2 and then apply 〉·〈, and this is
where the extra inverse image map comes from. We denote these two constructions
fR and f−1

R .
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Example 5.3. Consider the homomorphism f : C4 → Σ3 from Example 5.1 once
more. Here are some examples of fR and f−1

R .

fR

(

··
·
)

= fR

(

··
·
)

= fR

(

··
·
)

= ·
· · ·
·· fR

(

··
·
)

= fR

(

··
·
)

= ·
· · ·
··

f−1
R

(

·
· · ·
··
)

= f−1
R

(

·
· · ·
··
)

= ··
·

f−1
R

(

·
· · ·
··
)

= f−1
R

(

·
· · ·
··
)

= ··
·

Note the differences between Examples 5.1 and 5.3. The maps fL and fR should
be distinct, because operadic induction and coinduction are distinct. The maps
f−1
L and f−1

R are both supposed to model restriction, but we are seeing a point-

wise inequality f−1
L < f−1

R . This occurs for every noninjective map f , and the

operadically correct construction turns out to be f−1
L .

5.2. Definitions and first properties of image and inverse image transfer

systems. For any group G, let

Sub(G)⊂ = {(K,H) ∈ Sub(G)×2 |K ⊂ H}

and suppose F : Sub(G) → Sub(G′) is an order-preserving map. Then F×2

restricts to a set map

F⊂ : Sub(G)⊂ → Sub(G′)⊂,

and therefore there is an image-inverse image adjunction

F⊂ : P(Sub(G)⊂)� P(Sub(G
′)⊂) : (F⊂)

−1.

We can identify the elements of P(Sub(G)⊂) with binary relations on Sub(G) that
refine inclusion, and similarly for G′. Moreover, if R ∈ P(Sub(G′)⊂) is a partial
order, then so is (F⊂)

−1R. This enables us to make the following definitions.

Definition 5.4. Suppose G and G′ are finite groups and F : Sub(G)→ Sub(G′)
is an order-preserving map. For any G-transfer system →, define

FL(→) := 〈F⊂(→)〉

and for any G′-transfer system  , define

F−1
R ( ) := 〉(F⊂)

−1( )〈.

We summarize a few properties of FL and F−1
R .

Lemma 5.5. Suppose G and G′ are finite groups.

(1) For any inclusion-preserving map F : Sub(G) → Sub(G′), the induced
maps FL : Tr(G) � Tr(G′) : F−1

R form an adjunction FL a F
−1
R . If F⊂

preserves transfer systems, then FL = F⊂. If (F⊂)
−1 preserves transfer

systems, then F−1
R = (F⊂)

−1.
(2) For any pair of inclusion-preserving maps E : Sub(G) → Sub(G′) and

F : Sub(G′)→ Sub(G′′), we have refinements

(FE)L(→) ⊂ FLEL(→) and E−1
R F−1

R ( ) ⊂ (FE)−1
R ( ).

Moreover, if either of the equalities (FE)L = FLEL or (FE)−1
R = E−1

R F−1
R

hold, then both of them hold.
(3) If either E⊂ or (F⊂)

−1 preserves transfer systems, then both (FE)L =
FLEL and (FE)−1

R = E−1
R F−1

R .
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Proof. For (1), the adjunction FL a F
−1
R follows from the adjunction F⊂ a (F⊂)

−1

and the adjointness properties of 〈·〉 and 〉·〈. If F⊂ preserves transfer systems, then
applying 〈·〉 does nothing to F⊂(→), and similarly for (F⊂)

−1.
Now for (2). Suppose E : Sub(G)→ Sub(G′) and F : Sub(G′)→ Sub(G′′) are

order-preserving. For any G-transfer system →, we have E⊂(→) ⊂ EL(→), and
hence (FE)⊂(→) ⊂ F⊂EL(→) ⊂ FLEL(→). It follows (FE)L(→) ⊂ FLEL(→).
Dually, E−1

R F−1
R ( ) ⊂ (FE)−1

R ( ) for every G′′-transfer system  .
Suppose further that (FE)L = FLEL. Then by the uniqueness of adjoints, the

functors E−1
R F−1

R and (FE)−1
R are naturally isomorphic maps Tr(G′′) ⇒ Tr(G),

but the codomain is a poset. Therefore E−1
R F−1

R = (FE)−1
R . The argument when

(FE)−1
R = E−1

R F−1
R is dual.

For (3), suppose that E⊂ preserves transfer systems. Then

FLEL(→) = 〈F⊂〈E⊂(→)〉〉 = 〈F⊂E⊂(→)〉 = (FE)L(→)

for every G-transfer system →. The equality (FE)−1
R = E−1

R F−1
R follows from (2).

The argument when (F⊂)
−1 preserves transfer systems is dual. �

Specializing Definition 5.4 to the case where F is the image or inverse image map
associated to a group homomorphism f : G → G′ yields the corresponding image
and inverse image maps for transfer systems.

Definition 5.6. Let f : G→ G′ be a homomorphism between finite groups. Taking
F = f : Sub(G)→ Sub(G′) in Definition 5.4 determines an adjunction

fL : Tr(G)� Tr(G′) : f−1
R

and taking F = f−1 : Sub(G′)→ Sub(G) determines another adjunction.

f−1
L := (f−1)L : Tr(G′)� Tr(G) : (f−1)−1

R =: fR.

The functoriality of (−)L, (−)R, (−)
−1
L , and (−)−1

R does not immediately follow
from Lemma 5.5. These constructions preserve identity morphisms, but for any
pair of composable group homomorphisms

G
h
−→ G′ k

−→ G′′,

and transfer systems → ∈ Tr(G) and  ∈ Tr(G′′), Lemma 5.5 only implies that

(kh)L(→) ⊂ kLhL(→) , (kh)−1
R ( ) ⊃ h−1

R k−1
R ( )

(kh)−1
L ( ) ⊂ h−1

L k−1
L ( ) , (kh)R(→) ⊃ kRhR(→).

We establish the reverse inclusions by analyzing the precise constructions of hL(→)
and k−1

L ( ). These transfer systems are slightly less complicated than general
theory predicts.

Lemma 5.7. Suppose f : G→ G′ is a homomorphism between finite groups.

(1) For any G-transfer system→, the G′-transfer system fL(→) is the reflexive
and transitive closure of the relation

⋃

K→H

{

(g(fK)g−1, g(fH)g−1)
∣

∣

∣
g ∈ G′

}

.
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(2) For any G′-transfer system  , the G-transfer system f−1
L ( ) is the reflex-

ive and transitive closure of the relation
⋃

K′
 H′

{

(f−1K ′ ∩ L,L)
∣

∣

∣
L ⊂ f−1H ′

}

.

Proof. The relation fL(→) is obtained by closing f⊂(→) under conjugation and re-
striction, and then taking the reflexive and transitive closure, but f⊂(→) is already
closed under restriction. If (fK, fH) ∈ f⊂(→) for some K → H, and L′ ⊂ fH,
then for L = f−1L′ ∩ H we have K ∩ L → L, and therefore (fK ∩ L′, L′) =
(f(K ∩ L), fL) ∈ f⊂(→). Claim (1) follows.

For claim (2), it is enough to show (f−1)⊂( ) is closed under conjugation.
If (f−1K ′, f−1H ′) ∈ (f−1)⊂( ) for some K ′  H ′, and α ∈ G, then we have
f(α)K ′f(α)−1  f(α)H ′f(α)−1, and therefore (α(f−1K ′)α−1, α(f−1H ′)α−1) =
(f−1(f(α)K ′f(α)−1), f−1(f(α)H ′f(α)−1)) ∈ (f−1)⊂( ). �

These simplifications buy us just enough room to establish functoriality.

Proposition 5.8. Suppose that h : G→ G′ and k : G′ → G′′ are homomorphisms
between finite groups, and→ ∈ Tr(G) and ∈ Tr(G′′) are transfer systems. Then:

(1) kLhL(→) = (kh)L(→) and kRhR(→) = (kh)R(→), and
(2) h−1

L k−1
L ( ) = (kh)−1

L ( ) and h−1
R k−1

R ( ) = (kh)−1
R ( ).

Proof. It will be enough to show that kLhL(→) ⊂ (kh)L(→) and h−1
L k−1

L ( ) ⊂

(kh)−1
L ( ). For the former inclusion, suppose (K ′, H ′) ∈ hL(→). By Lemma 5.7,

there is a sequence of subgroups H ′
0, . . . , H

′
n ⊂ G′ such that K ′ = H ′

0, H
′ = H ′

n,
and if 0 ≤ i < n, then

(H ′
i, H

′
i+1) = (gi(hKi)g

−1
i , gi(hHi)g

−1
i )

for some gi ∈ G
′ and Ki, Hi ⊂ G that satisfy Ki → Hi. Apply k : G′ → G′′ to the

subgroups H ′
i. Then, since conjugation is preserved under images, we have

(k(H ′
i), k(H

′
i+1)) = (k(gi)(khKi)k(gi)

−1, k(gi)(khHi)k(gi)
−1) ∈ (kh)L(→),

and thus (kK ′, kH ′) ∈ (kh)L(→) by transitivity. This shows that k⊂(hL(→)) ⊂
(kh)L(→), and the inclusion kL(hL(→)) = 〈k⊂(hL(→))〉 ⊂ (kh)L(→) follows.

The proof of the inclusion h−1
L k−1

L ( ) ⊂ (kh)−1
L ( ) is similar. The inclusion

(h−1)⊂(k
−1
L ( )) ⊂ (kh)−1

L ( ) holds because h−1 preserves intersections, and then

h−1
L (k−1

L ( )) ⊂ (kh)−1
L ( ) follows as before.

Thus (kh)L = kLhL and (kh)−1
L = h−1

L k−1
L , and the analogous equations for

(−)R and (−)−1
R hold by part (2) of Lemma 5.5. �

In summary, we obtain the following result.

Proposition 5.9. Let FinGrp and FinPos denote the categories of finite groups
and finite posets. Then the constructions in Definition 5.6 determine functors

(−)L , (−)R : FinGrp⇒ FinPos and (−)−1
L , (−)−1

R : FinGrpop
⇒ FinPos

such that for any homomorphism f : G → G′ in FinGrp, there are order adjunc-
tions fL a f

−1
R and f−1

L a fR.

We now examine the relationship between f−1
L and f−1

R . As illustrated in Ex-

amples 5.1 and 5.3, the transfer systems f−1
L (→) and f−1

R (→) need not be equal.
In fact, they can be maximally far apart.
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Example 5.10. Let ! : G→ 1 be the unique morphism. There is only one transfer
system → ∈ Tr(1), and it is both initial and terminal. Applying !−1

L yields the

initial G-transfer system, because !−1
L is a left adjoint, and applying !−1

R yields the
terminal transfer system.

This sort of inequality holds in general.

Proposition 5.11. Suppose that f : G → G′ is a homomorphism between finite
groups. Then for any  ∈ Tr(G′), we have f−1

L ( ) ⊂ f−1
R ( ).

Proof. For any  ∈ Tr(G′), we claim that (f−1)⊂( ) ⊂ 〉(f⊂)
−1( )〈. For sup-

pose (K,H) ∈ (f−1)⊂( ). Then (K,H) = (f−1K ′, f−1H ′) for some K ′  H ′.
Given g ∈ G and L ⊂ gHg−1, we must check that (gKg−1∩L,L) ∈ (f⊂)

−1( ). We
have f(gKg−1∩L) = f(g)K ′f(g)−1∩fL, where f(g) ∈ G′ and fL ⊂ f(g)H ′f(g)−1.
Since K ′  H ′ and is a transfer system, we also have f(g)K ′f(g)−1∩fL fL.
Therefore (f−1)⊂( ) ⊂ 〉(f⊂)

−1( )〈, and f−1
L ( ) ⊂ f−1

R ( ) follows. �

Moreover, we can completely characterize when f−1
L = f−1

R . First, a lemma.

Lemma 5.12. Suppose that m : G → G′ is an injective homomorphism between
finite groups. Then for every  ∈ Tr(G′), the relation (m⊂)

−1( ) is a G-transfer
system, and there is an equality (m⊂)

−1( ) = (m−1)⊂( ).

Proof. As observed just prior to Definition 5.4, the relation (m⊂)
−1( ) is a partial

order on Sub(G) that refines inclusion. It is closed under conjugation because
conjugation is preserved under images, and it is closed under restriction because if
(K,H) ∈ (m⊂)

−1( ) and L ⊂ H, then (m(K∩L),m(L)) = (m(K)∩m(L),m(L)) ∈
 because m is injective. Thus (m⊂)

−1( ) is a G-transfer system.
The inclusion (m⊂)

−1( ) ⊂ (m−1)⊂( ) also follows from the injectivity of m,
because if (mK,mH) ∈  , then (K,H) = (m−1mK,m−1mH) ∈ (m−1)⊂( ).
The other inclusion (m⊂)

−1( ) ⊃ (m−1)⊂( ) holds because if (K ′, H ′) ∈  ,
then (mm−1K ′,mm−1H ′) = (m(G)∩K ′,m(G)∩H ′) ∈  since  is closed under
restriction along m(G) ∩H ′ ⊂ H ′. �

Proposition 5.13. Suppose that f : G → G′ is a homomorphism between finite
groups. Then the following are equivalent:

(1) f is injective.
(2) f−1

L = f−1
R .

(3) f−1
L has a left adjoint.

Moreover, if f is noninjective, then there is a strict inequality f−1
L ( ) ( f−1

R ( )
for every G′-transfer system  .

Proof. (1 ⇒ 2) follows from Lemma 5.12 and (2 ⇒ 3) is immediate from the
adjunction fL a f

−1
R . Now for (3 ⇒ 1). Assume that f is not injective. We shall

show that f−1
L does not preserve all limits. For any  ∈ Tr(G′) and (K,H) ∈

(f−1)⊂( ), we have ker(f) ⊂ K. By part (2) of [16, Proposition A.4], it follows
that H 6⊂ ker(f) for every nontrivial relation (K,H) ∈ f−1

L ( ). On the other

hand, if K ⊂ H ⊂ ker(f), then (K,H) ∈ 〉(f⊂)
−1( )〈 = f−1

R ( ) because for any
g ∈ G and L ⊂ gHg−1, we have f(gHg−1 ∩ L)  fL since both sides are the
trivial subgroup. It follows that (1, ker(f)) ∈ f−1

R ( ) \ f−1
L ( ), which means the

inclusion f−1
L ( ) ⊂ f−1

R ( ) of Proposition 5.11 is strict. Therefore f−1
L does not

preserve the terminal transfer system. �
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Corollary 5.14. If m : G → G′ is an injective homomorphism between finite
groups, then there is a chain of order adjunctions mL a m

−1
R = m−1

L a mR.

If the homomorphism f : G→ G′ is non-injective, then the inequality f−1
L < f−1

R

reflects a pathology of the operadic ind a res adjunction (cf. part (2) of Proposition
6.3). Going forward, we shall only consider fL only when f is injective.

6. Operadic induction, restriction, and coinduction

In this section, we relate images and inverse images of transfer systems to model
categorical derived induction, restriction, and coinduction for marked operads. An
important precedent to this work appears in [5, §6.2], where Blumberg and Hill

show how to calculate the admissible sets of a coinduced N∞ operad coindGHO in
terms of the admissible sets of O. We generalize to coinduction along a non-injective
map, and we also analyze how restriction and induction behave for combinatorial
operads. For any homomorphism f : G → G′ between finite groups, we show that
the adjunction f−1

L a fR of Definition 5.6 always lifts to derived restriction and
coinduction for marked operads, and if f is injective, we show that the adjunction
fL a f

−1
R = f−1

L also lifts to derived induction and restriction (Theorem 6.6). On
the other hand, if f is noninjective, then we do not know how to make induction
along f homotopically meaningful because it is not a left Quillen functor (Propo-
sition 6.3). We briefly describe the situation for N operads in §6.3, and then we
conclude by giving topological interpretations of our constructions in §6.4.

6.1. Induction, restriction, and coinduction for marked operads. A G-
symmetric sequence S ∈ SymG is the same thing as a nonequivariant symmetric
sequence S ∈ Sym equipped with a G-action through Σ-equivariant maps. Analo-
gously, a marked G-operad O ∈ OpG

+ is the same thing as a nonequivariant marked
operad O ∈ Op+ equipped with a G-action that preserves the operad structure
and the markings. More formally, we have isomorphisms

SymG ∼= Fun(BG,Sym) and OpG
+
∼= Fun(BG,Op+),

where BG is the one-object category whose morphisms are the group G. This
means we can define induction, restriction, and coinduction for marked operads
and symmetric sequences using the usual Kan extension and pullback functors.

Definition 6.1. Suppose that f : G → G′ is a homomorphism between finite
groups, and let Bf : BG → BG′ for the corresponding functor on one-object
categories. Define operadic induction, restriction, and coinduction functors by

indf := LanBf : OpG
+ −→ OpG′

+

OpG
+ ←− OpG′

+ : (Bf)∗ =: resf

coindf := RanBf : OpG
+ −→ OpG′

+ ,

and similarly for symmetric sequences. The adjunctions indf a resf a coindf follow
formally from the universal properties of left and right Kan extension.

The end and coend formulas imply that coindf and indf are given by the familiar
equalizers and coequalizers

coindfX ∼= eq
(

∏

G′

X ⇒
∏

G′

∏

G

X
)

and indfX ∼= coeq
(

∐

G′

∐

G

X ⇒
∐

G′

X
)

,
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where X is either an object of SymG or OpG
+, and all products and coproducts

are taken in the corresponding category. In particular, the coproduct in OpG
+ is an

operadic wedge, which is analogous to an amalgamated free product of groups.
We shall derive the adjunctions indf a resf a coindf using the model category

structure for marked operads described in §2. To that end, we must understand
how indf and resf interact with the generating cofibrations F+(∅ →

G×Σn

Γ ) and

F+(
G×Σn

Γ → G×Σn

Γ t G×Σn

Γ ). Regarding SymG and OpG
+ as functor categories

clarifies the matter. Let F+ : Sym � Op+ : U be the free-forgetful adjunction
between nonequivariant symmetric sequences and marked operads. Then for any
finite group G, the induced adjunction

F+ ◦ (−) : Fun(BG,Sym)� Fun(BG,Op+) : U ◦ (−)

is isomorphic to the usual free-forgetful adjunction F+ : SymG
� OpG

+ : U ,
because the right adjoint forgets the operad structure in both cases. This implies
the following commutation relations.

Lemma 6.2. For any homomorphism f : G→ G′ between finite groups, there are
natural isomorphisms

indf ◦ F+
∼= F+ ◦ indf , resf ◦ F+

∼= F+ ◦ resf

coindf ◦ U ∼= U ◦ coindf , resf ◦ U ∼= U ◦ resf ,

where F+ a U denotes the free-forgetful adjunction between symmetric sequences
and marked operads for either the group G or the group G′.

Proof. The functor resf commutes with F+ and U because pre-composition com-
mutes with post-composition, and the commutation relations for indf and coindf
follow from the uniqueness of adjoints. �

Thus, we are reduced to studying indf and resf on symmetric sequences. Think-
ing of the components of a G-symmetric sequence as (G× Σn)-sets, we have

(resfS
′)n ∼= resf×idS

′
n and (indfS)n ∼= indf×idSn

for every homomorphism f : G → G′, S ∈ SymG, and S′ ∈ SymG′

. We arrive at
the following result.

Proposition 6.3. Suppose that f : G→ G′ is an arbitrary homomorphism between
finite groups. Then:

(1) The adjunction resf : OpG′

+ � OpG
+ : coindf is a Quillen adjunction.

(2) The adjunction indf : OpG
+ � OpG′

+ : resf is a Quillen adjunction if and
only if the homomorphism f is injective.

Proof. We begin with (1). Suppose that the morphism i = F+(∅ →
G′×Σn

Γ′
) is a

generating cofibration of OpG′

+ . By Lemma 6.2, there is an isomorphism resf (i) ∼=

F+(∅ → resf×id
G′×Σn

Γ′
), and the pulled back G× Σn-set resf×id

G′×Σn

Γ′
is still Σn-

free. Therefore there is a splitting

resf×id

(

G′ × Σn

Γ′

)

∼=

m
∐

k=1

G× Σn

Γk

for some graph subgroups Γ1, . . . ,Γm ⊂ G × Σn. Since F+ : SymG → OpG
+ pre-

serves coproducts, we deduce that resf (i) is a coproduct of generating cofibrations,
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and hence a cofibration in OpG
+. Inducting up relative cell complexes and pass-

ing to retracts proves that resf preserves all cofibrations. An analogous argument
shows that resf also preserves acyclic cofibrations, and therefore resf a coindf is a
Quillen adjunction.

Now for (2). Suppose first that f is injective. Then we may assume f : G ↪→ G′

is the inclusion of a subgroup, and that indf×id = indG
′×Σn

G×Σn
is induction in the

usual sense. Arguing as above proves that indf is left Quillen, because it preserves
generating (acyclic) cofibrations.

Now suppose that f is not injective. We shall show that indf does not preserve
all cofibrant operads. By [15, Theorem 8.10], it will be enough to find a cofibrant

operad O ∈ OpG
+ such that indfO is not Σ-free. Suppose |G| = n, and let Γ be the

graph of a permutation representation σ : G → Σn for G/e. Consider the operad
O = F+(

G×Σn

Γ ), so that indfO ∼= F+(indf×id
G×Σn

Γ ). The symmetric sequence

S = indf×id

(

G× Σn

Γ

)

∼= (G′ × Σn) ×
G×Σn

(

G× Σn

Γ

)

is not Σ-free because the class [(id, id),Γ] is fixed by σ(kerf) ⊂ Σn, and this sub-
group is nontrivial because kerf is nontrivial and G acts faithfully on G/e. The
operad indfO also is not Σ-free, because there is a unit map η : S → indfO. �

Remark 6.4. Every object of OpG
+ is fibrant by [15, Theorem 8.10]. Therefore

coindf preserves all weak equivalences, which implies that Rcoindf ∼= Ho(coindf )
and Lresf a Ho(coindf ). If f is injective, then the functor resf also preserves all
weak equivalences. In this case, we have isomorphisms Lresf ∼= Ho(resf ) ∼= Rresf
and a chain Lindf a Ho(resf ) a Ho(coindf ) of derived adjunctions.

6.2. The connection to transfer systems. In this section, we relate derived
operadic induction, restriction, and coinduction to image and inverse image con-
structions for transfer systems. Our strategy is to show that Lresf and f−1

L corre-

spond under the equivalence Ho(OpG
+) ' Tr(G), and then to deduce the remaining

correspondences from the uniqueness of adjoints.
Given that the left derived functor Lresf can be computed on free resolutions,

and that resf commutes with F+ : SymG → OpG
+, we are reduced to understanding

the behavior of resf on symmetric sequences.

Lemma 6.5. Suppose that f : G → G′ is a homomorphism between finite groups,
let H ⊂ G′ be a subgroup, and let T be a H-set of finite cardinality n. Write Γ(T )
for the graph of a permutation representation of T . Then

resf×id

(

G′ × Σn

Γ(T )

)

∼=
∐

r

G× Σn

Γ(f∗resrHr−1

rHr−1∩im(f)crT )
,

where:

(1) r ranges over a set of representatives for im(f)×Σn\G
′ ×Σn/Γ(T ), taken

in the subgroup G′ × {id},
(2) crT is the conjugate rHr−1-action to T , and

(3) f∗resrHr−1

rHr−1∩im(f)crT is the f−1(rHr−1)-action obtained by pulling back the

rHr−1 ∩ im(f)-action on resrHr−1

rHr−1∩im(f)crT along f .
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Proof. Compute resf×id by first restricting to the subgroup im(f)×Σn ⊂ G
′ ×Σn

and applying the double-coset formula, and then pulling back along the surjective
homomorphism f × id : G× Σn → im(f)× Σn.

The first step yields

∐

r

im(f)× Σn

rΓ(T )r−1 ∩ (im(f)× Σn)
,

where r ranges over a set of representatives for im(f)×Σn\G
′×Σn/Γ(T ). We may

assume r ∈ G′ × {id} because we are taking im(f)×Σn-orbits. Moroever, we have

rΓ(T )r−1 = Γ(crT ), and Γ(crT ) ∩ (im(f)× Σn) = Γ(resrHr−1

rHr−1∩im(f)crT ).

The second step yields

∐

r

(f × id)∗

(

im(f)× Σn

Γ(resrHr−1

rHr−1∩im(f)crT )

)

,

and each summand is a transitive (G×Σn)-set because f×id : G×Σn → im(f)×Σn

is surjective. Since stabilizers pull back, it follows

(f × id)∗

(

im(f)× Σn

Γ(resrHr−1

rHr−1∩im(f)crT )

)

∼=
G× Σn

(f × id)−1Γ(resrHr−1

rHr−1∩im(f)crT )
,

and (f × id)−1Γ(resrHr−1

rHr−1∩im(f)crT ) = Γ(f∗resrHr−1

rHr−1∩im(f)crT ). �

From here, we can calculate the transfer system associated to LresfO.

Theorem 6.6. Suppose that f : G → G′ is an arbitrary homomorphism between
finite groups. Then the squares

Tr(G)

Ho(OpG
+)

Tr(G′)

Ho(OpG′

+ )

f−1
L

Lresf

→• →•

Tr(G)

Ho(OpG
+)

Tr(G′)

Ho(OpG′

+ )

fR

Ho(coindf )

→• →•

commute. Suppose additionally that the map f is injective. Then the squares

Tr(G)

Ho(OpG
+)

Tr(G′)

Ho(OpG′

+ )

fL

Lindf

→• →•

Tr(G)

Ho(OpG
+)

Tr(G′)

Ho(OpG′

+ )

f−1
R = f−1

L

Ho(resf ) ∼= Lresf

→• →•

also commute.

Proof. We begin by checking the equation →• ◦ Lresf = f−1
L ◦ →• on operads.

Suppose that O ∈ OpG′

+ , and let

QO = F+

(

∐

H/K∈A(O)

G′ × Σ|H:K|

Γ(H/K)

)

,
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where H/K ranges over all orbits in A(O). Then QO is a cofibrant replacement for
O, because choosing Γ(H/K)-fixed operations in O determines a mapQO → O, and
this map is a weak equivalence because A(QO) = 〈H/K |H/K ∈ A(O)〉 = A(O)
by [15, Theorem 4.6]. By Lemmas 6.2 and 6.5, we conclude that

resf (QO) ∼= F+

(

∐

H/K∈A(O)

∐

r

G× Σ|H:K|

Γ(f∗resrHr−1

rHr−1∩im(f)crH/K)

)

,

where r ranges over the representatives specified in Lemma 6.5 for each orbit H/K.
By [15] once more, the class of admissible sets of resf (QO) is the indexing system
〈

f∗resrHr−1

rHr−1∩im(f)crH/K

∣

∣

∣

∣

∣

H/K ∈ A(O) and
r ∈ im(f)× Σ|H:K|\G

′ × Σ|H:K|/Γ(H/K)

〉

.

Since indexing systems are closed under conjugation, this simplifies to
〈

f∗resHH∩im(f)H/K
∣

∣

∣
H/K ∈ A(O)

〉

,

and since indexing systems are closed under restriction and subobjects, and f∗

commutes with coproducts, this simplifies further to
〈

f∗H/K
∣

∣

∣
H/K ∈ A(O) and H ⊂ im(f)

〉

=
〈

f−1H/f−1K
∣

∣

∣
H/K ∈ A(O)

〉

.

This computes A(resf (QO)). Applying the isomorphism →• : Ind(G) → Tr(G)
and [16, Proposition A.9] shows that the transfer system associated to resf (QO) is

〈(f−1K, f−1H) |K →O H〉, which equals f−1
L (→O) by definition. This proves that

→LresfO = f−1
L (→O) for every operad O ∈ OpG′

+ , and the equality →• ◦ Lresf =

f−1
L ◦ →• of functors follows because parallel morphisms in Tr(G) are equal.

Now let →−1
• be a pseudoinverse to →•. The equation →• ◦ Lresf = f−1

L ◦ →•

implies an isomorphism Ho(coindf ) ◦ →
−1
•
∼= →−1

• ◦ fR of right adjoints, and hence
→• ◦ Ho(coindf ) ∼= fR ◦ →• as well. Since Tr(G′) is a poset, this is an equality.

Suppose further that the morphism f : G→ G′ is injective. Then f−1
L = f−1

R by
Proposition 5.13, and Lresf ∼= Ho(resf ) ∼= Rresf by Remark 6.4. Our calculation

of →LresfO now reads →• ◦ Ho(resf ) = f−1
R ◦ →•, and the equality →• ◦ Lindf =

fL ◦ →• for left adjoints follows as above. �

The functor resf is already homotopical when f is injective (cf. Remark 6.4), but
even when f is not, the next result shows that resf still preserves weak equivalences
in the most interesting cases. Thus resf barely needs to be derived.

Corollary 6.7. Suppose f : G→ G′ is an arbitrary homomorphism between finite

groups. Then the functor resf : OpG′

+ → OpG
+ preserves weak equivalences between

N operads. Moreover, if O ∈ OpG′

+ is a N operad, then so is resfO, and the

equality →resfO = f−1
L (→O) holds.

Proof. Suppose O,P ∈ OpG′

+ are N operads and that ϕ : O → P is a weak
equivalence. Then for any n ≥ 0 and any subgroup Ξ ⊂ G′ × Σn whatsoever,
the set O(n)Ξ is nonempty if and only if the set P(n)Ξ is nonempty. When Ξ is
a graph subgroup, this follows from the definition of a weak equivalence. When
Ξ is not, both sides are empty. The restricted operads resfO and resfP have

the same property because (resfO)(n)Ξ = O(n)(f×id)Ξ, and therefore the map
resfϕ : resfO → resfP is also a weak equivalence.
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Now suppose O ∈ OpG′

+ is a N operad. Then resfO is Σ-free because it has the

same Σ-action, and for any n ≥ 0, we have (resfO)(n)G = O(n)f(G) ⊃ O(n)G
′

6= ∅.
Therefore resfO is also a N operad. Choose a cofibrant replacement q : QO → O.
Then resf (q) : LresfO ' resf (QO)→ resfO is a weak equivalence by the preceding

paragraph, and hence →resfO = →LresfO = f−1
L (→O). �

We also have the following consistency check for Theorem 6.6.

Example 6.8. Suppose that f : G→ G′ is a homomorphism between finite groups,
that O ∈ OpG

+ is a marked G-operad, and that →O is the terminal G-transfer
system. Then →coindfO = fR(→O) is also terminal, because fR is a right adjoint.
When f is the unique map ! : 1 → G, and O = As, we conclude that the transfer
system for coindG1 (As) ∼= Set(G,As) is terminal, just as in Example 4.3.

More generally, Theorem 6.6 says that the transfer system → associated to
Set(H\G,As) ∼= coindGH(As) equals iR(=), where i : H ↪→ G is the inclusion
and = is the trivial H-transfer system. By definition, J → K if and only if
gJg−1 ∩ L ∩ H = L ∩ H for every g ∈ G and L ⊂ gKg−1, which is equivalent
to requiring K ∩

⋃

g∈G g
−1Hg ⊂ J . Since K and

⋃

g∈G g
−1Hg are stable under

conjugation by elements of K, this is equivalent to the inclusion
⋃

g∈G

StabK(Hg ∈ H\G) =
⋃

g∈G

(K∩g−1Hg) ⊂
⋂

k∈K

kJk−1 =
⋂

k∈K

StabK(kJ ∈ K/J),

which says that every element ofK that fixes an element ofH\G acts as the identity
on K/J . This recovers the description of the A(Set(H\G,As)) in Example 4.3.

6.3. The unmarked case. If G is a finite group and H ⊂ G is a subgroup, then
we also have adjoint functors indGH a resGH a coindGH between the categories OpH

and OpG of unmarked operads. Unfortunately, the previous discussion does not
entirely carry over, because the functor indGH : OpH → OpG does not preserve N

operads. For example, if O = F (H×Σ0

H t H×Σ2

H ), then indGHO ∼= F (G×Σ0

H t G×Σ2

H ),

and this operad does not have any G-fixed operations. Replacing the category OpG

with OpG
+ fixes this problem because we change the coproduct.

That being said, there are no issues with using unmarked operads if one is only
concerned with restriction and coinduction.

Lemma 6.9. Suppose f : G → G′ is a homomorphism between finite groups, and

consider the adjunction resf : OpG′

� OpG : coindf . Both adjoints preserve N
operads and weak equivalences between N operads, and therefore there is an induced

adjunction Ho(resf ) : Ho(N -OpG′

)� Ho(N -OpG) : Ho(coindf ).

Proof. The proof of Corollary 6.7 shows that resf preserves N operads and weak
equivalences between them. We must show that coindf has the same two properties.

Suppose O is a N G-operad. Then coindfO(n) is the set of G-equivariant maps
α : G′ → O(n), where G acts on G′ on the left through f : G→ G′. The G′ × Σn-
action is given by (α ·σ)(x) = α(x) ·σ and (g′ ·α)(x) = α(x ·g′), for any σ ∈ Σn and
g′ ∈ G′. Thus, the Σ-freeness of O implies the Σ-freeness of coindfO by evaluating
at some x ∈ G′, and the constant function cy : G′ → O(n) valued at any y ∈ O(n)G

is a G′-fixed element of coindfO(n). Therefore coindfO is a N G′-operad.
Now suppose ϕ : O →P is a weak equivalence between N G-operads and con-

sider coindfϕ : coindfO → coindfP. We must show that for any n ≥ 0 and graph
subgroup Γ ⊂ G′ × Σn, if coindfP(n)Γ 6= ∅, then coindfO(n)Γ 6= ∅. An element
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of coindfP(n)Γ is represented by a G′ × Σn-map G′×Σn

Γ → coindfP(n), which

is adjoint to a G × Σn-map resf (
G′×Σn

Γ ) → P(n). As in the proof of Proposi-

tion 6.3, the G × Σn-set resf (
G′×Σn

Γ ) splits as a coproduct
∐m

k=1
G×Σn

Γk
for some

graph subgroups Γ1, . . . ,Γm ⊂ G × Σn. Thus, for each k = 1, . . . ,m, we obtain a
component map xk : G×Σn

Γk
→ P(n), and hence P(n)Γk 6= ∅ for each k. Since

ϕ : O → P is a weak equivalence, it follows that O(n)Γk 6= ∅ for all k, and thus
there are maps yk : G×Σn

Γk
→ O(n) for all k. Summing up the yk’s gives a map

resf (
G′×Σn

Γ ) → O(n), and applying the resf a coindf adjunction gives a Γ-fixed
point of coindfO(n).

It follows that there is an adjunction resf : N -OpG′

� N -OpG : coindf , and
since both adjoints are homotopical, the adjunction descends to homotopy cate-
gories (e.g. through a trivial application of [8, §44.2]). �

We obtain an unmarked analogue to Theorem 6.6.

Proposition 6.10. Suppose that f : G → G′ is an arbitrary homomorphism be-
tween finite groups. Then the squares below commute.

Tr(G)

Ho(N -OpG)

Tr(G′)

Ho(N -OpG′

)

f−1
L

Ho(resf )

→• →•

Tr(G)

Ho(N -OpG)

Tr(G′)

Ho(N -OpG′

)

fR

Ho(coindf )

→• →•

Proof. As in the proof of Theorem 6.6, it is enough to show →resfO = f−1
L (→O)

for any O ∈ N -OpG′

. Choose markings u ∈ O(0)G
′

and O(2)G
′

and regard O as a

N operad in OpG′

+ . Then Corollary 6.7 gives the desired result. �

6.4. Topological interpretations. As in §4.3, we think of induction, restriction,
and coinduction for N operads and marked G-operads as the homotopically correct
constructions, and then we use the functor E : Set→ Top from §2 to push things
into topology. This section describes the results.

We begin with restriction and coinduction. In this case, it is simplest to model
N∞ operads as N operads via the functors E : N -OpG

� N∞-OpG : (−)u from
Proposition 4.12. We temporarily introduce the following definitions.

Definition 6.11. Let f : G→ G′ be a homomorphism between finite groups, and
suppose that O is a N∞ G-operad and that O ′ is a N∞ G′-operad. Define N∞

restriction and coinduction by

resN∞

f O ′ = E(resf (O
′u)) and coindN∞

f O = E(coindf (O
u)),

where resf and coindf denote ordinary operadic restriction and coinduction.

These N∞ constructions agree with the ordinary ones.

Proposition 6.12. Suppose f : G→ G′ is a homomorphism between finite groups.

(1) For any N∞ G′-operad O ′, there is an equivalence resfO ′ ' resN∞

f O ′, and

therefore →resfO′ = f−1
L (→O′).

(2) For any N∞ G-operad O, there is an equivalence coindfO ' coindN∞

f O,

and therefore →coindfO = fR(→O).
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Proof. We begin with restriction. The functor (−)u commutes with restriction, and

resf preserves N∞ operads. Therefore resN∞

f O ′ ∼= E((resfO ′)u) ' resfO ′ and

→resfO′ = →E(resf (O′u)) = →resf (O′u) = f−1
L (→O′u) = f−1

L (→O′)

by Proposition 6.10. For part (2), note that the functor (−)u commutes with
coinduction because the forgetful functor U : Top → Set from the category of
compactly generated weak Hausdorff spaces preserves limits. Coinduction also pre-
serves N∞ operads, and now we may argue as before. �

The situation for N∞ induction is more complicated. To make sense of the
construction, we model N∞ G-operads as marked G-operads in OpG

+. There is

a DK equivalence LE = E ◦ Q : OpG
+ → N∞-OpG, where Q denotes cofibrant

replacement in OpG
+, and the functor F+ ◦ (−)

u : N∞-OpG → OpG
+ is inverse to

LE up to zig-zags of natural weak equivalences. This justifies the next definition.

Definition 6.13. Suppose f : G ↪→ G′ is an injective homomorphism between
finite groups. For any N∞ G-operad O, let

indN∞

f O = E(indfF+(O
u)),

where indf denotes induction for marked operads.

The operad indN∞

f O has the desired homotopy type, because the cofibrancy of

F+(Ou) implies there is an equivalence

E(indfF+(O
u)) ' LE(LindfF+(O

u)),

and therefore →indN∞

f
O

= fL(→O) by Theorem 6.6. Unfortunately, the operad

indN∞

f O is quite far from the ordinary induced operad indfO, and it seems difficult
to induce an action by a N∞ H-operad up to an action by a N∞ G-operad in
general. The basic issue is illustrated below.

Example 6.14. Induction is an indexed coproduct, so we shall elaborate on Ex-
ample 4.15. Suppose i : H ↪→ G is the inclusion of a subgroup, X is a G-space, and
O is a N∞ H-operad. An action of indiO on X is equivalent to an action of O on
resiX, and if f ∈ O(n) represents an operation F on X, then O parametrizes coher-
ence homotopies between all H×Σn-conjugates of F . On the other hand, an action
of indN∞

i O must parametrize coherence homotopies between all G×Σn-conjugates
of F . The O-action gives homotopies between sets of g(H × Σn)-conjugates for
each g ∈ G, but nothing between (g, σ) · F and (g′, σ′) · F if (g, σ) and (g′, σ′) are
in different H × Σn-cosets of G× Σn.

As before, there is more hope if we work in a marked setting. If O has a distin-
guished unit u ∈ O(0)H and product p ∈ O(2)H that represent G-fixed operations
overX, then O specifies a homotopy between F and P (. . . P (P (x1, x2), x3), . . . , xn),
which conjugates to a homotopy between g ·F to P (. . . P (P (x1, x2), x3), . . . , xn) for
any g ∈ G. We can concatenate these two homotopies just as we did in Example
4.15, but this composite might not have the right equivariance.

Appendix A. Quotient operads

If O is an operad and ∼ is a congruence relation on O (cf. [15, §5.2]), then
identifying O = O/ ∼ typically amounts to solving a word problem. In general,
these problems can be quite complicated, but we can gain traction in a few cases



30 JONATHAN RUBIN

by introducing a “direction” to the relation ∼. In this appendix, we explain how
to use this technique to identify quotient operads (Propositions A.2 and A.3), and
then we analyze the coproduct O ∗P of N operads (Lemma A.4) and the tensor
product O ⊗P of free G-operads (Lemma A.5).

A.1. Solving operadic word problems. Throughout this section, we assume
that O is an operad in SetG, c :

∐

n≥0 O(n) → N is a function, and R = (Rn)n∈N

is a graded binary relation on O such that for any integer n ≥ 0 and operations
f, f ′ ∈ O(n), if fRf ′, then c(f) > c(f ′). We think of c as a complexity function
and R as a complexity-reducing relation. In practice, O will be a free operad whose
operations f ∈ O are formal composites, c(f) will be a weighted count of the terms
in a composite f ∈ O, and R will indicate a reduction of one composite f into
another composite f ′. Accordingly, we introduce some terminology.

Definition A.1. An operation f ∈ O is reduced if there is no f ′ ∈ O such that
fRf ′. An operation h is a reduced form of the operation f if:

(a) the operation h is reduced, and
(b) there is a chain f = f0Rf1R · · ·Rfn = h of R-relations connecting f to h.

The case n = 0 is allowed, in which case the chain reads f = f0 = h.

Given O, c, and R as above, we would like to say that:

(1) every operation f ∈ O has a unique reduced form f , and
(2) the reduced operations in O are a set of representatives for the congruence

relation 〈R〉 that R generates.

For our purposes, it will also be convenient if

(3) the set rO of reduced operations forms a sub-G-symmetric sequence of O.

If these three conditions hold, then we can easily identify the quotient O = O/〈R〉.

Proposition A.2. Assume that O is a N operad, and that conditions (1)–(3) hold.

Then the underlying symmetric sequence of O = O/〈R〉 is isomorphic to rO, and
equipping rO with the operad structure

γrO(f ;h1, . . . , hn) = γO(f ;h1, . . . , hn) and idrO = idO .

makes rO and O isomorphic as operads. It follows that O is a N operad with the
same admissible sets as O.

Proof. Consider the composite ϕ : rO ↪→ UO � UO of the inclusion and the
quotient. By (3), this is a map of symmetric sequences. By (1) and (2), the unique

reduced representative of a class [f ] ∈ O is f , and therefore ϕ has an inverse given

by the formula ϕ−1[f ] = f . Therefore rO ∼= UO, and we translate the operad
structure from O to rO using ϕ and ϕ−1.

We have a sequence UO � UO ∼= rO ↪→ UO of maps of symmetric sequences.
The quotient map UO � UO ensures that O(n)G is nonempty for all n ≥ 0, and

the inclusion map UO ↪→ UO ensures that O is Σ-free. Therefore O is a N operad.
As for its admissible sets, the quotient map implies A(O) ⊂ A(O), and the inclusion

map implies A(O) ⊂ A(O). �

Conditions (1)–(3) are not automatic, but we can enforce them by placing a few
assumptions on the relation R.

Proposition A.3. Assume that R has the following four properties:
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(i) For any integer n ≥ 0 and operations f, h, h′ ∈ O(n), if fRh and fRh′,
then there is an operation k ∈ O(n) and a pair of coterminal chains h =
h0Rh1R · · ·Rhm = k and h′ = h′0Rh

′
1R · · ·Rh

′
m′ = k with m,m′ ≥ 0.

(ii) For any integer n ≥ 0, operations f, f ′ ∈ O(n), and group elements g ∈ G
and σ ∈ Σn, if fRf

′, then (gfσ)R(gf ′σ).
(iii) For any integers n,m1, . . . ,mn ≥ 0, and operations f, f ′ ∈ O(n), k1 ∈

O(m1), . . . , kn ∈ O(mn), if fRf
′, then γ(f ; k1, . . . , kn)Rγ(f

′; k1, . . . , kn).
(iv) For any integers n,m1, . . . ,mn ≥ 0 and 1 ≤ i ≤ n, and operations f ∈

O(n), k1 ∈ O(m1), . . . , ki, k
′
i ∈ O(mi),. . . , kn ∈ O(mn), if kiRk

′
i, then

γ(f ; k1, . . . , ki, . . . , kn)Rγ(f ; k1, . . . , k
′
i, . . . , km).

Then conditions (1), (2), and (3) hold.

Proof. First of all, if f ∈ O(n) is unreduced and (g, σ) ∈ G× Σn, then (ii) implies
that gfσ is unreduced, and conversely. Condition (3) follows.

Next, we prove condition (1). First, observe that if f is reduced and f is a
reduced form of f , then any chain f = f0Rf1R · · ·Rfn = f must degenerate to
f = f0 = f . Therefore f is its own, unique reduced form.

Now we argue by induction on the complexity of f ∈ O. Suppose first that
c(f) = 0. Then f is reduced, because R strictly reduces c and c is nonnegative.
Therefore f is its own, unique reduced form. Next, suppose inductively that every
f ′ with c(f ′) ≤ N has a unique reduced form, and assume c(f) = N + 1. If f
is reduced, then we are done. If not, then there is h ∈ O such that fRh, and
since N + 1 = c(f) > c(h), the operation h has a unique reduced form h. We
claim that h is also the unique reduced form of f . For suppose f is reduced and
we have a chain f = f0Rf1R · · ·Rfn = f . We must show that h = f . The
inequality n > 0 holds because f is unreduced, and it follows that f is the unique
reduced form of f1. By (i), there are coterminal chains h = h0R · · ·Rhm = k and
f1 = h′0R · · ·Rh

′
m′ = k, and the operation k has a unique reduced form k because

N ≥ c(h) ≥ c(k). Concatenating the chains hR · · ·Rk and f1R · · ·Rk with a chain
kR · · ·Rk exhibits k as the unique reduced form of h and f1. Therefore h = k = f ,
which proves that f has a unique reduced form. Condition (1) follows by induction.

Finally, we prove condition (2) by giving an explicit description of the congruence

relation generated by R. Let (−) : O → O be the function that sends an operation
f to its unique reduced form f , and declare f ∼ h if and only if f = h. Then ∼
is a graded equivalence relation. We shall show it is a congruence relation. Given
any n-ary operation f and (g, σ) ∈ G × Σn, there is a chain f = f0R · · ·Rfn = f ,
and applying (ii) gives another chain (gfσ) = (gf0σ)R · · ·R(gfnσ) = (gfσ). Since
gfσ is reduced, this shows that gfσ = gfσ. Thus, if f ∼ h, then gfσ = gfσ =
ghσ = ghσ, and hence gfσ ∼ ghσ. Now suppose f, h1, . . . , hn are operations,
where n is the arity of f , and consider the composite γ(f ;h1, . . . , hn). There is a
R-chain connecting f to f , and applying (iii) gives a R-chain from γ(f ;h1, . . . , hn)
to γ(f ;h1, . . . , hn). Applying (iv) to the R-chains for h1, . . . , hn and concatenating
the results gives a R-chain from γ(f ;h1, . . . , hn) to γ(f ;h1, . . . , hn), which we then

may concatenate with a chain from γ(f ;h1, . . . , hn) to γ(f ;h1, . . . , hn). This shows

that γ(f ;h1, . . . , hn) = γ(f ;h1, . . . , hn). Thus, if f ∼ f ′, h1 ∼ h′1, . . . , hn ∼ h′n,

then γ(f ;h1, . . . , hn) = γ(f ;h1, . . . , hn) = γ(f ′;h′1, . . . , h
′
n) = γ(f ′;h′1, . . . , h

′
n), and

hence γ(f ;h1, . . . , hn) ∼ γ(f
′;h′1, . . . , h

′
n). It follows that∼ is a congruence relation.
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Now suppose ≈ is any congruence relation on O that contains R. Given any
operation f ∈ O, the existence of a R-chain f = f0R · · ·Rfn = f implies that
f ≈ f . Thus, if f ∼ h, then f ≈ f = h ≈ h, and hence f ≈ h. This shows that ∼
is the least congruence relation containing R. To find representatives for ∼ = 〈R〉,

note that if f ∈ O is reduced, then f = f . It follows that f ∼ f , because f = f ,
and if h is any reduced operation such that h ∼ f , then h = h = f . Therefore every
f ∈ O is ∼-equivalent to a unique reduced operation, namely f ∈ rO. This proves
condition (2). �

One can often restrict the chains in (i) to equalities h = k = h′ or to individual R-
relations hRk and h′Rk, but we will use more general chains in our analysis of tensor
products. The consequent clauses in (ii)–(iv) can also be weakened to allow for R-
chains rather than just R-relations, but Propositions A.2 and A.3 seem to apply as
stated in many interesting examples. For example, we used them implicitly in [15,
§5, §7] to identify the associative N operadAsT , and the underlying nonequivariant
operad of the free G-operad F (S) on a Σ-free symmetric sequence S.

A.2. Free operads. In preparation for our analysis of coproducts and tensor prod-
ucts, we briefly recall a description of the free operad F (S) on a Σ-free symmetric
sequence S. The following is taken from [15, §5].

Suppose S is a Σ-free symmetric sequence in SetG, and think of the elements
f ∈ S(n) as formal n-ary operations. Just as the free monoid on a set X is a
collection of formal products of elements of X, the free symmetric operad on S
is a collection of formal composites of operations in S. The wrinkle is that we
can restrict our operations to a set of Σ-orbit representatives for S by using the
Σ-equivariance of composition.

For each n ≥ 0, choose a set S(n) ⊂ S(n) of Σn-orbit representatives. Now
consider formal words w, such that each letter of w is either:

(a) a element of
∐∞

n=0 S(n),
(b) a variable symbol xi for some integer i > 0,
(c) a left or right parenthesis, or
(d) a comma.

Such a word is a term if it is built at some stage of the following recursion:

(1) every variable xi is a term, and
(2) if f ∈ S(n) and t1, . . . , tn are terms, then f(t1, . . . , tn) is also a term.

In particular, if f ∈ S(0), then f() is a term. The arity of a term is the number of
distinct variable symbols that occur in it, and a n-ary term t is operadic if each of
the variables x1, . . . , xn appears exactly once in t. The nth level of the free operad
F (S) is the set of all n-ary operadic terms.

If t is a n-ary operadic term and σ ∈ Σn, then the term t · σ is obtained by
replacing each variable xi in t with the variable xσ−1i.

If t is a k-ary operadic term, and si is a ji-ary operadic term for i = 1, . . . , k,
then the (j1 + · · · + jk)-ary operadic term γ(t; s1, . . . , sk) is obtained by adding
j1 + · · ·+ ji−1 to the subscript of each variable in si – call the result s′i – and then
substituting the (non-operadic) terms s′1, . . . , s

′
k for the variables x1, . . . , xk in t.

The term x1 is the identity for γ.
The G-action on F (S) is defined recursively. For any g ∈ G, declare

(1) g ∗ xi = xi for every i > 0, and
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(2) g ∗ f(t1, . . . , tn) = f ′(g ∗ tσ−11, . . . , g ∗ tσ−1n), where g · f = f ′ · σ for unique
elements f ′ ∈ S(n) and σ ∈ Σn.

These data make F (S) into a symmetric operad in SetG, which is free on
the G-symmetric sequence S. The unit map η : S → F (S) sends f ∈ S(n) to
f(x1, . . . , xn), and the rest is determined by Σ-equivariance.

A.3. Coproducts and tensor products. This section analyzes two specific pre-
sentations of the coproduct of N operads and the tensor product of free G-operads.
We use Propositions A.2 and A.3 to solve the associated word problems, and thus
determine the underlying symmetric sequences of these operads.

We begin with coproducts. For motivation, suppose F : Set � Grp : U is the
free-forgetful adjunction for nonabelian groups. Given G,H ∈ Grp, the coproduct
G∗H may be constructed as a subset of the free group F (UGtUH), equipped with
a reduced concatenation product. This construction generalizes to operads. The
next result is standard, but we include it as an example of how the assumptions in
Proposition A.3 work.

Lemma A.4. Suppose O and P are N operads, and let O ∗P be their coproduct
in OpG. Then O ∗P is isomorphic to a sub-symmetric sequence of F (UO tUP),
equipped with a modified composition operation.

Proof. Suppose F : SymG
� OpG : U is the free-forgetful adjunction, and form

the free operad F = F (UO t UP). Let i : UO ↪→ UFUO → UF (UO t UP) be
the composite of the unit and the map induced by the inclusion UO ↪→ UO tUP,
and let j : UP → UF (UO tUP) be defined similarly. Then O ∗P is isomorphic
to the quotient of F by the congruence relation generated by

i(idO) ≡ idF , i(h) ◦k i(f) ≡ i(h ◦k f)

j(idP) ≡ idF , j(h) ◦k j(f) ≡ j(h ◦k f),

where ◦k denotes partial composition, and the operations h and f are taken from
O in the first line and P in the second line. We analyze this quotient using the
model for F described in §A.2.

Let X and Y be sets of Σ-orbit representatives for O and P. Then the elements
of F are formal composites of operations in X t Y . Given two such composites t
and t′, declare tRt′ if we can obtain t′ from t by replacing a subterm of t in one of
the following ways:

(a) idO(t1) t1,
(b) idP(t1) t1,
(c) h(t1, . . . , f(tk, . . . , tk+|f |−1), . . . , t|h|+|f |−1)  `(tσ−11, . . . , tσ−1(|h|+|f |−1)),

where h, f ∈ X and h ◦k f = ` · σ for ` ∈ X and σ ∈ Σ|h|+|f |−1, or
(d) h(t1, . . . , f(tk, . . . , tk+|f |−1), . . . , t|h|+|f |−1)  `(tσ−11, . . . , tσ−1(|h|+|f |−1)),

where h, f ∈ Y and h ◦k f = ` · σ for ` ∈ Y and σ ∈ Σ|h|+|f |−1.

Here, the ti are not necessarily operadic terms. The relation R generates the same
congruence relation as ≡.

For any formal composite t ∈ F , let c(t) be the number of operation symbols in
t. Then R reduces c. The relation R satisfies conditions (iii) and (iv) in Proposition
A.3 because it is defined in terms of substitutions of subterms. It satisfies the Σ-
equivariance portion of (ii) for the same reason. As for the G-equivariance, if g ∈ G,
then multiplication g ∗ (−) preserves (a)-substitutions because idO is G-fixed, and
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similarly for (b)-substitutions. For (c)-substitutions, we use the G-operad axioms
and the Σ-freeness of F . Suppose g · h = h′ · τ and g · f = f ′ · υ, for h′, f ′ ∈ X and
permutations τ, υ. Then g ∗ h(t1, . . . , f(tk, . . . , tk+|f |−1), . . . , t|h|+|f |−1) equals

h′(s1, . . . , f
′(sτk, . . . , sτk+|f |−1), . . . , s|h|+|f |−1)

where si = g∗tα−1i for the permutation α = τ(1, . . . , |f |, . . . , 1)·(idt· · ·tυt· · ·tid).
If h′ ◦τk f

′ = m · π for m ∈ X and π a permutation, then

h′(s1, . . . , f
′(sτk, . . . , sτk+|f |−1), . . . , s|h|+|f |−1) m(sπ−11, . . . , sπ−1(|h|+|f |−1))

is a (c)-substitution. On the other hand, suppose g · ` = `′ · ν for `′ ∈ X and a
permutation ν. Then

g ∗ `(tσ−11, . . . , tσ−1(|h|+|f |−1)) = `′(g ∗ tσ−1ν−11, . . . , g ∗ tσ−1ν−1(|h|+|f |−1)).

We claim that m = `′ and sπ−1i = g ∗ tσ−1ν−1i. To see this, note that

m · π · α = (g · h) ◦k (g · f) = g · (h ◦k f) = g · ` · σ = `′ · ν · σ.

Now, since m, `′ ∈ X are Σ-orbit representatives and O is Σ-free, it follows that
m = `′ and π · α = ν · σ, and therefore sπ−1i = g ∗ tα−1π−1i = g ∗ tσ−1ν−1i. Thus
g ∗ (−) preserves (c)-substitutions, and similarly for (d)-substitutions. This shows
that R satisfies condition (ii) of Proposition A.3.

To verify that R satisfies condition (i), we must analyze the degree to which
substitutions (a)–(d) commute. There are 10 cases to consider, but most are unin-
teresting. For example, suppose tRs via an (a)-substitution idO(t1) t1 and tRs′

via a (b)-substitution idP(t1)  t1. Then these substitutions are disjoint, in the
sense that they either occur in non-overlapping subwords of t, or one substitution
occurs inside the t1-term of the other. Thus, we obtain a term r such that sRr
and s′Rr via the complementary substitutions. Similar reasoning applies for paired
((a),(d)), ((b),(c)), and ((c),(d))-substitutions. Likewise, if tRs and tRs′ via two
(a)-substitutions, then either we have made the same substitution and s = s′, or
they are disjoint and there is a term r such that sRr and s′Rr. Similarly for pairs
of (b)-substitutions.

The interesting cases are those in which the substitutions can interact. For
example, suppose tRs and tRs′ via non-disjoint (a) and (c)-substitutions. Then
either h = idO or f = idO , and the operadic identity axiom implies that s = s′.
Therefore condition (i) of Proposition A.3 holds for paired (a) and (c)-substitutions.
Similarly for paired (b) and (d)-substitutions.

Now suppose that tRs and tRs′ via unequal and non-disjoint (c)-substitutions

hi(t1, . . . , fi(tk, . . . , tk+|f |−1), . . . , t|h|+|f |−1) `i(tσ−11, . . . , tσ−1(|h|+|f |−1))

for i = 1, 2. There are three possibilities: either h2 = f1, or h1 = f2, or h1 = h2
and f1 and f2 occur in different positions. In any case, by using the associativity
and Σ-equivariance axioms for partial composition, we can find an r such that sRr
and s′Rr. Therefore condition (i) holds for pairs of (c)-substitutions, and similarly
for pairs of (d)-substitutions.

By Proposition A.3, we deduce that conditions (1)–(3) of §A.1 hold for the R-
reduced operations in F . Since F is a N operad, Proposition A.2 implies that
O ∗P ∼= F/〈≡〉 = F/〈R〉 is isomorphic to the sub-symmetric sequence of R-
reduced operations in F , equipped with a modified composition operation. �

Lastly, we consider tensor products of free operads.
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Lemma A.5. Suppose S and T are Σ-free symmetric sequences in SetG such that
the sets S(n)G and T (n)G are nonempty for all n ≥ 0. Then the tensor product
F (S)⊗F (T ) is isomorphic to a sub-symmetric sequence of F (StT ), equipped with
a modified composition operation.

Proof. The tensor product F (S)⊗F (T ) is the coproduct F (S) ∗F (T ) ∼= F (S t T )
modulo the congruence relation ∼ generated by the set of interchange relations.
We shall analyze it using a different set of relations to avoid issues that arise from
nullary interchanges. Let X and Y be sets of Σ-orbit representatives for S and
T , and choose an element z ∈ T (0)G ⊂ Y (0). As in §A.2, we model F (S t T )
as a collection of formal composites of operations in X t Y . Given two elements
t, t′ ∈ F (S t T ), declare tRt′ if we can obtain t′ from t by replacing a subterm of t
in one of the following ways:

(a) h(f(t11, . . . , t1n), . . . , f(tm1, . . . , tmn)) f(h(t11, . . . , tm1), . . . , h(t1n, . . . , tmn))
for h ∈ X(m) and f ∈ Y (n) with m,n > 0, or

(b) one of the substitutions below, for h ∈ X(m) and f ∈ Y (n) with m,n > 0:

h(z(), f(t21, . . . , t2n), . . . , f(tm1, . . . , tmn)) f(h(z(), t21, . . . , tm1), . . . , h(z(), t2n, . . . , tmn))

and similarly for z()’s in the 2nd through mth positions, or

h(z(), z(), f(t31, . . . , t3n), . . . , f(tm1, . . . , tmn)) f(h(z(), z(), t31, . . . , tm1), . . . , h(z(), z(), t3n, . . . , tmn))

and similarly for pairs of z()’s in any other positions, or

...

h(z(), . . . , z(), f(tm1, . . . , tmn)) f(h(z(), . . . , z(), tm1), . . . , h(z(), . . . , z(), tmn))

and similarly for m− 1 copies of z() in any other positions, or
(c) `(z(), z(), . . . , z()) z() for ` ∈ X(n) t Y (n) and n > 0, or
(d) e() z() for e ∈ [X(0) t Y (0)] \ {z}.

As before, the ti are not necessarily operadic terms. The congruence relation ∼
contains all (a)-substitutions by design. Then, since the operad F (S) ⊗ F (T ) ∼=
F (StT )/∼ is reduced, it follows that ∼ also contains all (c) and (d)-substitutions.
The (b)-substitutions are generated by (a) and (c)-substitutions. Therefore 〈R〉 ⊂
∼. To establish the other inclusion, it is enough to show that 〈R〉 contains all
interchange relations

h(f(x11, . . . , x1n), . . . , f(xm1, . . . , xmn)) ∼ f(h(x11, . . . , xm1), . . . , h(x1n, . . . , xmn)),

where h ∈ X and f ∈ Y are possibly nullary. If h and f have positive arity, this is
an (a)-substitution. If either h or f is nullary, then both sides of the relation are
nullary operations in F (S t T ). The operad F (S t T )/〈R〉 is reduced, because (c)
and (d)-substitutions can reduce any nullary operation to z(). Therefore all nullary
interchange relations are also contained in 〈R〉, and therefore ∼ ⊂ 〈R〉.

For any t ∈ F (S t T ) and operation symbol f in t, define the depth d(f) of f
to be the number of nested pairs of parentheses that contain f . For example, the
f in f(x1, . . . , xn) has depth 0, while the f in h(f(x1, x2), k(x3, x4)) has depth 1.
We define the complexity of a term t by

c(t) = #

(

operation symbols in t
not equal to z

)

+
∑

Y -operation

symbols f in t

d(f) · |f |,
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where |f | denotes the arity of f . The relation R reduces this complexity function.
In (a) and (b)-substitutions, the right summand decreases by at least |f |, but the
left summand cannot increase by more than |f | − 1. In (c) and (d)-substitutions,
the left summand decreases and the right summand does not increase.

The relation R satisfies conditions (ii), (iii), and (iv) of Proposition A.3 by the
same arguments used in Lemma A.4. To verify condition (i), we consider the
possible interactions between substitutions. Suppose tRs and tRs′. In almost all
cases, the substitutions that yield s and s′ must either be equal or disjoint, in which
case s = s′ or there is a term r such that sRr and s′Rr via the complementary
substitutions. The only interesting scenario is when s is obtained by an (a) or (b)-
substitution, s′ is obtained by a (c)-substitution, and the subterm `(z(), . . . , z())
for the (c)-substitution is equal to one of the f(ti1, . . . , tin) blocks in the (a) or
(b)-substitution. Suppose for simplicity that s is obtained by an (a)-substitution,
and the block f(t11, . . . , t1n) equals `(z(), . . . , z()). Then s

′Rs via the very first (b)-
substitution. The same reasoning applies when `(z(), . . . , z()) is another block, or if
s is obtained by a (b)-substitution that contains at least two f(ti1, . . . , tin)-blocks on
the left side. If s is obtained from a (b)-substitution with only one f(ti1, . . . , tin)-
block, then collapsing the entire subterm down to z() yields a term r such that
s′Rr and sR · · ·Rr via (c)-substitutions. Therefore R satisfies condition (i), and
Propositions A.3 and A.2 identify the tensor product F (S)⊗F (T ) ∼= F (StT )/∼ =
F (StT )/〈R〉 with the sub-symmetric sequence of R-reduced operations in F (StT ),
equipped with a modified composition operation. �
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