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Abstract. We study the indexing systems that correspond to equivariant
Steiner and linear isometries operads. When G is a finite abelian group, we
prove that a G-indexing system is realized by a Steiner operad if and only if it
is generated by cyclic G-orbits. When G is a finite cyclic group, whose order
is either a prime power or a product of two distinct primes greater than 3, we
prove that a G-indexing system is realized by a linear isometries operad if and
only if it satisfies Blumberg and Hill’s horn-filling condition.

We also repackage the data in an indexing system as a certain kind of partial
order. We call these posets transfer systems, and we develop basic tools for

computing with them.
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1. Introduction

Commutative ring spectra are of fundamental importance in stable homotopy
theory. They represent cohomology theories, which are equipped with power oper-
ations akin to the usual Steenrod operations. This extra structure is of great value
in explicit calculations.

Equivariantly, genuine commutative ring spectra have even more structure. Sup-
pose G is a finite group. Ignoring multiplication, every genuine G-spectrum is
equipped with a family of twisted sums, which make its homotopy groups into G-
Mackey functors. Every genuine commutative ring G-spectrum R is also equipped
with a family of twisted products. These give rise to RO(G)-degree shifting norms
in homotopy, and in particular, they make π0(R) into a Tambara functor. These
norms have also proven themselves useful in explicit calculations, such as Hill-
Hopkins-Ravenel’s solution to the Kervaire invariant one problem [11].

Accordingly, commutative ring spectra are very rich objects, but they can be
studied locally just like ordinary rings. This approach to stable homotopy theory
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works very well nonequivariantly, but there are pathologies that appear in the pres-
ence of a group action. For example, the Zariski localization of a commutative ring
G-spectrum is typically computed as a telescope, and a fundamental observation,
due to Hill and Hopkins [9], is that such localizations need not be genuine commu-
tative ring G-spectra. The ordinary multiplication survives, but the norms might
not. We recall Hill and Hopkins’ original example.

Example 1.1. Suppose R is a genuine commutative ring G-spectrum, and suppose
we wish to compute its G-geometric fixed points ΦGR. One construction of ΦGR

proceeds as follows. Let ẼP be a space such that ẼPH ' ∗ for all H ( G, and

ẼPG ' S0. Our preferred model is the sequential colimit

S∞ρ = colim

(
S0 Sρ S2ρ S3ρ . . .a Σρa Σ2ρa

)

where ρ = R[G] − 1 is the reduced regular representation, Sρ is the one-point
compactification of ρ, and a : S0 → Sρ is the Euler class, i.e. the inclusion of the
north and south poles. Then ΦGR ' (S∞ρ ∧ R)G, so we may as well study the
spectrum S∞ρ ∧R. However, smashing with R preserves the colimit, and therefore
S∞ρ ∧R ' R[a−1]. Hill and Hopkins’ fundamental observation is that L = R[a−1]
cannot be a genuine commutative ring spectrum, provided L 6' ∗. For if it were,
then the counit of the adjunction NG

H : CommH
� CommG : resGH between

commutative ring H-spectra and G-spectra would be a ring map ε : NG
H resGHL → L.

However, the Euler class a : S0 → Sρ is null once we restrict to H ( G, and
therefore resGHL and NG

H resGHL are null. The existence of a ring map NG
H resGHL → L

then implies L is also null.

Localizing R in other ways produces similar issues, though it is conceivable that
some norms do survive in these cases. Hill and Hopkins ([9] and [10]) and White (cf.
[16]) give precise criteria for when they do. Thus, we are led to study commutative
ring G-spectra equipped with some, but not all norms. These are called N∞-ring
spectra, because of the homotopy coherence enjoyed by the multiplicative structure.
More generally, a N∞ algebra is an object, equipped with a homotopy commutative
monoid structure, and additional transfer maps that are compatible with it. This
notion of algebraic structure can evidently be interpreted in other homotopical
contexts, and Blumberg and Hill have axiomatized the essential features in their
definition of N∞ operads [3].

A N∞ G-operad is a representing object for homotopy commutative monoids,
equipped with additional equivariant transfer maps. When G is the trivial group,
a N∞ operad is an E∞ operad in the usual sense. Though there are many different
point-set models of E∞ operads, all such operads are equivalent, because they are
connected through zig-zags of weak equivalences. This is completely false equiv-
ariantly. As before, there are many different point-set models of N∞ operads, but
there are meaningful distinctions even after we pass to homotopy.

Fortunately, the homotopy category Ho(N∞-OpG) of N∞ G-operads is relatively
simple. It is equivalent to a certain poset Ind(G) of G-indexing systems (cf. [3],
[5], [8], [14]), where the indexing system associated to a N∞ operad is an algebraic
object that encodes the additional transfers. In this sense, the homotopy theory
of N∞ operads is essentially algebraic. One can also model the entire homotopy
theory of N∞ G-operads with discrete operads in the category of G-sets (cf. [14]).
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It follows that all homotopical constructions on N∞ operads can be performed in
pure combinatorics, and then transported into topology after the fact (cf. [15]).
This gives another sense in which N∞ operads are algebraic.

Unfortunately, this point of view completely ignores the naturally occurring ge-
ometry. One of the initial motivations behind the study of N∞ operads was a
desire to understand the relationship between additive and multiplicative struc-
tures on equivariant spectra. From a classical standpoint, such operations arise
for very different reasons. Additive operations are constructed by embedding fi-
nite G-sets into finite dimensional subrepresentations of a universe U , and then
applying the Pontryagin-Thom construction to their tubular neighborhoods. There
are many possible choices, which are neatly parametrized by the colimit D(U) =
colimV⊂UD(V ) of little V -discs operads, where V ranges over finite dimensional
subrepresentations of U . Unfortunately, the operad D(U) has poor point-set level
properties, and does not naturally act on many things. This issue is fixed by thick-
ening D(U) to the Steiner operad K(U), and actions of Steiner operads are the
basis of a recognition principle for equivariant infinite loop spaces (cf. [7]).

In contrast, multiplicative operations on a spectrum E ∈ Sp(U) are classically

constructed by internalizing the external smash product E∧n ∈ Sp(U⊕n) along a
linear isometry f : U⊕n → U , and then mapping back to E. As before, there are
many possible choices for f , and the linear isometries operad L(U) parametrizes
all of the options. From a conceptual standpoint, actions of the linear isometries
operad can be internalized to the smash product of SG-modules (cf. [6] and [13]),
and this construction gave rise to the first symmetric monoidal category of spectra.
Excellent discussions of Steiner and linear isometries operads can be found in [3]
and in [7].

The operads K(U) and L(U) are the natural, geometric examples of N∞ G-
operads. Therefore it is a sensible to examine their properties more closely. When
G is the trivial group, both K(U) and L(U) are E∞ operads, and consequently
they are equivalent. A natural question is whether this remains true equivariantly.
The first surprise is that there are incomplete universes U such that K(U) and
L(U) are inequivalent [3]. In this paper, we shall further quantify just how different
Steiner and linear isometries operads can be, in terms of the corresponding indexing
systems. The asymmetry is stark.

Another natural question, first posed by Blumberg and Hill, is “whether or not all
homotopy types in N∞-OpG are realized by the operads that “arise in nature”, i.e.,
the equivariant Steiner and linear isometries operads” [3, p. 22]. Nonequivariantly,
this is true because there is only one E∞ operad up to equivalence. While one
might suspect this is false equvariantly, our second surprise is just how false it is.
In what follows, we shall give numerous counterexamples, and we shall demonstrate
that the indexing systems that correspond to Steiner and linear isometries operads
are often in the minority.

We take a moment to address Blumberg and Hill’s question. The answer depends
heavily on the ambient group, but it is no in most cases. Given a prime p, the answer
is yes for the cyclic groups Cp and Cp2 , but it is no for Cpn when n ≥ 3, and it is
no for (Cp)

×n when n ≥ 2. Given distinct primes p and q, it is yes for Cpq provided
that p, q > 3, but no otherwise. In general, if G contains a tower 1 ( L ( H ( G,
or if G is a non-cyclic finite abelian group, then there is at least one N∞ G-operad
that is inequivalent to every Steiner and linear isometries operad (Theorems 4.3
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and 4.15). There are often many more. For example, only 9 of the 19 homotopy
types of N∞ K4-operads correspond to Steiner and linear isometries operads. We
fare no better in the non-abelian case. Only 5 of the 9 Σ3-homotopy types and only
22 of the 68 Q8-homotopy types correspond to such operads.

Thus, we refine Blumberg and Hill’s problem. For any given group G, we pose
the following

Question 1.2. What properties characterize the Steiner and linear isometries G-
operads among all N∞ G-operads?

In light of the equivalence Ho(N∞-OpG) ' Ind(G), we seek algebraic properties
that detect when a given G-indexing system I ∈ Ind(G) corresponds to some K(U)
or L(U). In [3, p. 17], Blumberg and Hill observe that every I obtained from a
linear isometries operad satisfies the condition below.1

(Λ) If K ⊂ L ⊂ H ⊂ G and H/K ∈ I, then L/K ∈ I and H/L ∈ I.

Among experts, condition (Λ) was considered the most promising criterion for de-
termining whether an indexing system corresponds to a linear isometries operad.
We began this project hoping to establish sufficiency, but unfortunately, this is not
true. We provide explicit counterexamples when G = K4, Q8, Σ3, and C6 (cf.
§5). Thus, we must continue the search for conditions on indexing systems, which
encode the peculiarities of Steiner and linear isometries operads.

The homotopy types of Steiner and linear isometries G-operads are determined
by the representation theory of G over the reals, but the translation to the algebra
of indexing systems is surprisingly bad. The collection Uni(G) of all isoclasses of
G-universes forms a cube, the poset category Ind(G) is a lattice, and we obtain two
natural functions Uni(G) ⇒ Ind(G) by sending a G-universe U to the indexing
systems corresponding to K(U) and L(U). Neither of these functions are lattice
maps in general (Proposition 2.7). Thus, we eschew a top down approach in favor
of a more direct attack. We elaborate on Blumberg and Hill’s computations, and
then we look for patterns after the fact. We prove the following.

Theorem 4.11. Let G be a finite abelian group and let I be a G-indexing system.
Then I corresponds to a G-Steiner operad if and only if I is generated by a set
of G-orbits {G/H1, . . . , G/Hn} such that each G/Hi is cyclic when regarded as a
quotient group of G.

The key point is that the homotopy type of K(U) ultimately depends on the
isotropy groups of points in the irreducible subrepresentations of U (Theorem 4.6).
One can prove similar theorems for any given finite group G, but the results are
not nearly as uniform.

On the other hand, there is nothing remotely like Theorem 4.6 for L(U), and
we suspect there never will be. The behavior of linear isometries G-operads is just
too dependent on the representation theory of G, and this does not translate well
to indexing systems. Thus, we believe that the most fruitful path forward will be
to analyze linear isometries operads on a case-by-case basis, for small subclasses of
finite groups. The same can also be said for Steiner operads. Theorem 4.11 above is
uncharacteristically simple, and is mostly a reflection of the representation theory
for finite abelian groups.

1Reproduced in this paper as Proposition 5.1.
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We begin our incremental analysis of linear isometries operads by specializing
G to finite cyclic groups. This reduces the problem to a pleasant puzzle in modu-
lar arithmetic (Proposition 5.15), and we ultimately identify two cases where our
original hopes about linear isometries operads are met.

Theorem 5.18 and Theorem 5.20. Let G be a finite cyclic group, whose order
is either a prime power or a product of two distinct primes greater than 3. If I is a
G-indexing system, then I corresponds to a G-linear isometries operad if and only
if I satisfies condition (Λ).

As mentioned above, Blumberg and Hill observed the necessity of (Λ) in [3],
and we prove sufficiency by direct construction. Surprisingly, these constructions
do not work when G = C2q or C3q. This further underscores the disconnect be-
tween the representation theory of Cpq, which varies in p and q, and the algebra
of Cpq-indexing systems, which does not. In general, we believe that (Λ) should
be sufficient for detecting CN -linear isometries operads, provided that the prime
factors of N are sufficiently large relative to the number of distinct factors of N .
However, we do not have a proof, and the direct approach in this paper is unlikely
to extend much further.

We end with a comment on our formalism. Theorems 4.11, 5.18, and 5.20 are
stated in §§4–5 using different, but logically equivalent language. Briefly, an index-
ing system I is completely determined by the orbits it contains, and with a bit of
thought, one can also recast all structure in I in such terms. We call the result
a transfer system (Definition 3.4). Informally, the transfer system associated to a
N∞ G-operad O specifies the additive transfers on O-algebra G-spaces, and the
multiplicative transfers on O-algebra G-spectra. The switch to transfer systems
makes many of our computations easier, and it also streamlines our notation.

The notion of a transfer system was also discovered in independent work of
Balchin, Barnes, and Roitzheim [1]. They use transfer system formalism in their
beautiful proof that Ind(Cpn) is isomorphic to the (n + 1)st Stasheff polytope,
and transfer systems are also used in Balchin-Bearup-Pech-Roitzheim’s subsequent
work on N∞ Cpqr-operads [2]. We are confident that transfer systems will have
further applications.

Organization. The remainder of this paper is structured as follows. In §2, we
review some background material and give a more leisurely introduction to the
characterization problem. In §3, we introduce transfer systems. We prove that
they are equivalent to indexing systems (Theorem 3.7), and then we give a few
examples (Figures 1–4). From here, we turn to the characterization problem. In
§4, we analyze Steiner operads, starting with general finite groups (Theorem 4.6),
and then we specialize to finite abelian groups (Theorem 4.11). In §5, we do the
same for linear isometries operads. There is not much we can say in general, so we
quickly specialize to finite cyclic groups CN , and then to Cpn and Cpq (Theorems
5.18 and 5.20). Appendix A explains how to compute the transfer system generated
from a prescribed set of relations (Construction A.1), and then examines a few useful
cases. We rely on these calculations throughout the paper.

Convention 1.3. In what follows, G denotes a finite group with unit e. When
G = Cn, we write λ(k) = λn(k) : Cn → SO(2) ∼= S1 for the two-dimensional
real representation of Cn that sends a chosen generator g ∈ Cn to e2πik/n. When
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G is non-cyclic, we use λ to denote the pullback of such a representation along a
quotient G� Cn. We write σ for the sign representation of C2 and its pullbacks.

Acknowledgements. We thank Mike Hill for sharing many of the ideas behind
this work, and for his unflagging encouragement. We also thank Peter May, John
Greenlees, and an anonymous referee for helpful comments on earlier drafts of this
paper. This research was supported by NSF Grant DMS–1803426.

2. The characterization problem

In this section, we describe the characterization problem (Problem 2.5) and
indicate some obstacles towards its solution (Proposition 2.7). The passage from
the real representation theory of a group G to the algebra of G-indexing systems
is less transparent than one might hope, and this is why we take such a hands-on
approach in later sections.

2.1. Overview. We begin by reviewing the basic theory of N∞ operads, with
an eye towards Steiner and linear isometries operads. For further discussion, we
recommend [3] and [7].

Let G be a finite group and let TopG be the category of left G-spaces. Through-
out this paper, we understand G-operads to be symmetric operads in TopG with
respect to the cartesian product. The prototypical example is the endomorphism
G-operad for a G-space X. Its nth level is the G-space TopG(X

×n, X) of all con-
tinuous, but not necessarily equivariant, maps X×n → X. The group G acts by
conjugation. Little discs operads constitute another important class of examples.
Suppose V is a finite dimensional real G-representation and let D(V ) denote the
unit disc in V . A little V -disc is an affine, but not necessarily equivariant, map
of the form av + b : D(V ) → D(V ), and the nth level of the little V -discs operad
D(V ) is the space of all n-tuples of disjoint little V -discs.

A N∞ G-operad is a G-operad O that has the following three properties:

(1) the G× Σn-space O(n) is Σn-free for every n ≥ 0,
(2) the fixed-point subspace O(n)Γ is either empty or contractible for every

n ≥ 0 and subgroup Γ ⊂ G× Σn, and
(3) the fixed-point subspace O(n)G is nonempty for every n ≥ 0.

Such operads parametrize the multiplicative structures that typically remain on lo-
calizations of genuine commutative ring G-spectra. These operads also parametrize
the canonical additive and multiplicative structures on spectra over incomplete uni-
verses. Recall that a G-universe is a countably infinite dimensional real G-inner
product space, which contains each of its subrepresentations infinitely often, and
which contains trivial summands. For any G-universe U , the natural multiplica-
tion on spectra indexed over U is parametrized by the N∞ linear isometries operad
L(U). Its nth level is the space of all linear, but not necessarily equivariant, isome-
tries U⊕n ↪→ U . One would like to say that the natural additive structure is
parametrized by the N∞ operad D(U) = colimV⊂UD(V ), where V ranges over all
finite dimensional subrepresentations of U . Unfortunately, the operad D(U) does
not naturally act on equivariant infinite loop spaces, because the point-set level
colimit that defines D(U) is not compatible with suspension.

The standard workaround is to use Steiner operads K(U) instead. Suppose V is
a finite dimensional real G-representation and let RV be the G-space of distance-
reducing, but not necessarily equivariant, embeddings V ↪→ V . A V -Steiner path
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is a map h : [0, 1] → RV such that h(1) = id, and the nth level of the Steiner
operad K(V ) is the space of all n-tuples (h1, . . . , hn) of V -Steiner paths such that
the images of h1(0), . . . , hn(0) are disjoint. For any G-universe U , we let K(U) =
colimV⊂UK(V ). These Steiner operads do act on equivariant infinite loop spaces.

We declare a map ϕ : O1 → O2 between N∞ operads to be a weak equivalence
if ϕ : O1(n)

Γ → O2(n)
Γ is a weak homotopy equivalence of topological spaces for

every n ≥ 0 and subgroup Γ ⊂ G × Σn. Under mild point-set level conditions, a
weak equivalence between N∞ operads induces a Quillen equivalence between the
associated model categories of algebra G-spectra [3, Theorem A.3]. The Steiner
operad K(U) is equivalent to the infinite little discs operad D(U), but there are
generally universes U such that K(U) and L(U) are inequivalent [3, Theorem 4.22].

By the usual product trick [12, Proposition 3.10], the homotopy type of a N∞ G-
operad O is completely determined by the subgroups Γ ⊂ G×Σn such that O(n)Γ

is nonempty. Moreover, the set of such Γ must be closed under subconjugacy, and
must satisfy additional closure conditions that encode operadic composition. It is
convenient to phrase these conditions in coordinate-free terms. By Σ-freeness, the
relevant subgroups Γ ⊂ G×Σn all intersect {e}×Σn trivially. Such subgroups are
typically called graph subgroups. Every graph subgroup Γ ⊂ G×Σn is the graph of
a permutation representation σ : H → Σn of some subgroup H ⊂ G. Conversely, if
T is a finite H-set, then the graph of a permutation representation of T is a graph
subgroup Γ(T ) ⊂ G × Σ|T |. We say that a N∞ operad O admits T if O(|T |)Γ(T )

is nonempty. The (graded) class of all admissible sets of a N∞ operad forms an
indexing system in the sense below.

Definition 2.1. Let G be a finite group and let Sub(G) denote the set of all
subgroups of G. A class of finite G-subgroup actions is a class X , equipped with
a function X → Sub(G), such that the fiber over each H ∈ Sub(G) is a class of
finite H-sets. Write X (H) for the fiber over H.

A G-indexing system I is a class of finite G-subgroup actions which satisfies the
following closure conditions:

(1) (trivial sets) For any subgroup H ⊂ G, the class I(H) contains all finite,
trivial H-actions.

(2) (isomorphism) For any subgroup H ⊂ G and finite H-sets S and T , if
S ∈ I(H) and S ∼= T , then T ∈ I(H).

(3) (restriction) For any subgroups K ⊂ H ⊂ G and finite H-set T , if T ∈
I(H), then resHKT ∈ I(K).

(4) (conjugation) For any subgroup H ⊂ G, group element g ∈ G, and finite
H-set T , if T ∈ I(H), then cgT ∈ I(gHg−1).

(5) (subobjects) For any subgroup H ⊂ G and finite H-sets S and T , if T ∈
I(H) and S ⊂ T , then S ∈ I(H).

(6) (coproducts) For any subgroup H ⊂ G and finite H-sets S and T , if S ∈
I(H) and T ∈ I(H), then S t T ∈ I(H).

(7) (self-induction) For any subgroups K ⊂ H ⊂ G and finite K-set T , if

T ∈ I(K) and H/K ∈ I(H), then indHKT ∈ I(H).

We call the elements of I(H) the admissible H-sets of I. Let Ind(G) denote the
poset of all G-indexing systems, ordered under inclusion.

For any group G, there is a maximum indexing system Set, whose H-fiber is
the class of all finite H-sets, and there is a minimum indexing system triv, whose
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H-fiber is the class of all finite, trivial H-actions. The meet of two indexing systems
I and J is the levelwise intersection (I ∧ J )(H) = I(H) ∩ J (H), and the join of
two indexing systems is the smallest indexing system that contains the levelwise
union (I ∪ J )(H) = I(H) ∪ J (H). Thus Ind(G) is a lattice. It is finite because
indexing systems are determined by the orbits they contain.

Definition 2.2. A G-indexing system I is a Λ-indexing system if it also satisfies

(Λ) For any subgroups K ⊂ L ⊂ H ⊂ G, if H/K ∈ I(H), then L/K ∈ I(L)
and H/L ∈ I(H).

If I is any indexing system and H/K ∈ I(H), then L/K ∈ I(L) because I is
closed under restriction and subobjects. The extra condition for Λ-indexing systems
is that H/L ∈ I(H). The class of admissible sets of a linear isometries operad is
always a Λ-indexing system [3, p. 17].

Remark 2.3. Condition (Λ) is a kind of horn-filling property. Suppose that we
have a chain of subgroups H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hn, regarded as a n-simplex in
Sub(G). If the orbit Hn/H0 is admissible for a Λ-indexing system I, then every
suborbit Hi/Hj with i ≥ j must also be admissible for I.

Taking admissible sets defines a functor A : N∞-OpG → Ind(G) from the
category of N∞ G-operads to the poset category Ind(G) of G-indexing systems.
The classification theorem states that A induces an equivalence after we invert weak
equivalences.

Theorem 2.4 ([3], [5], [8], [14]). Taking admissible sets induces an equivalence

A : Ho(N∞-OpG) → Ind(G) of 1-categories.

In their pioneering work, Blumberg and Hill proved that the admissible sets
functor A : Ho(N∞-OpG) → Ind(G) is full and faithful [3, Theorem 3.24], and
subsequent, independent work in [5], [8], and [14] established surjectivity. However,
the constructions in [5], [8], and [14] are all essentially algebraic. For example, the
simplest N∞ operads considered in [14] are constructed by generating a free discrete
operad on the desired operations, and then attaching cells to kill all homotopy. All
N∞ operads arise in this way, up to equivalence, which reflects the fact that the
definitions of N∞ operads and indexing systems only axiomatize general features
of equivariant composition. It is natural to ask how the geometry of Steiner and
linear isometries operads is encoded by the algebra of indexing systems.

Problem 2.5. Given a finite group G, identify extra algebraic conditions on index-
ing systems that characterize the images of the Steiner operads and linear isometries
operads under the map A : Ho(N∞-OpG) → Ind(G).

We shall solve this problem in a few, special cases.

2.2. Structural obstacles. Suppose that U is a G-universe, and let K(U) and
L(U) be the corresponding Steiner and linear isometries operads. Problem 2.5 asks
what the possible values of A(K(U)) and A(L(U)) are. One’s first thought might
be to leverage relations between universes into relations between indexing systems.
Unfortunately, this approach does not work as well as one might hope.

To start, note that the admissible sets of K(U) and L(U) depend only on the
isomorphism class of U . Thus, we introduce notation.
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Definition 2.6. Let Uni(G) denote the set of all isomorphism classes [U ] of G-
universes U .

We declare [U ] ≤ [U ′] if there is a G-embedding U ↪→ U ′ for some representatives
U and U ′. The minimum element of Uni(G) is the class of a trivial universe, and
the maximum element is the class of a complete universe. The join of [U ] and [U ′]
is represented by U ⊕ U ′, and the meet [U ] ∧ [U ′] is the universe that contains
infinitely many copies of each irreducible V that embeds into both U and U ′. Thus
Uni(G) is a lattice. It is isomorphic to a n-cube, where n is the number of nontrivial
irreducible real representations of G, up to isomorphism.

The latticeUni(G) carries a right action by the groupAut(G) of automorphisms
of G. Given a class [U ] ∈ Uni(G) and an automorphism σ ∈ Aut(G), we declare

[U ] · σ to be the class represented by the G-universe G
σ
→ G → O(U). On the

other hand, Ind(G) is also a lattice, and it inherits a right Aut(G)-action from the
corresponding action on G. Explicitly, given σ ∈ Aut(G) we declare

(i) g · σ = σ−1(g) for all g ∈ G,
(ii) H · σ = σ−1H for every subgroup H ⊂ G,

(iii) T · σ = [σ−1H
σ
→ H → Perm(T )] for every subgroup H ⊂ G and finite

H-set T , and
(iv) I · σ = {T · σ |T ∈ I} for every G-indexing system I.

These formulas define Aut(G)-actions on G, Sub(G), Set, and Ind(G).
Ideally, the functions

A(K(−)), A(L(−)) : Uni(G)⇒ Ind(G)

would preserve all structure in sight. That is too optimistic.

Proposition 2.7. Neither A(K(−)) nor A(L(−)) is a lattice map in general.

Proof. Example 2.8 below shows that A(K(−)) does not preserve meets when
G = C5, and Example 2.9 below shows that A(L(−)) does not preserve the or-
der when G = C9. The calculations in Examples 5.9, 5.10, and 5.17 provide similar
counterexamples. �

Here is the problem for Steiner operads. By [3, Theorem 4.19], the operad
K(U) ' D(U) admits H/K if and only if there is an H-embedding H/K ↪→ resGHU .
This complicates things when nonisomorphic G-representations decompose into the
same orbits. Recall the Cn-representations λ(k) described in Convention 1.3.

Example 2.8. Suppose G = C5. The C5-universes U1 = (R ⊕ λ(1))∞ and U2 =
(R⊕λ(2))∞ are incomparable, but the free orbit C5/C1 embeds into both of them.
Hence A(K(U1)) = A(K(U2)) = Set, and hence A(K(U1)) ∧ A(K(U2)) = Set. On
the other hand, we have [U1] ∧ [U2] = [R∞], and thus A(K([U1] ∧ [U2])) = triv.
Therefore A(K(−)) does not preserve meets.

As for linear isometries operads, [3, Theorem 4.18] states that the operad L(U)

admits an orbit H/K if and only if there is an H-embedding indHKresGKU ↪→ resGHU .
This complicates things because we cannot analyze the problem one irreducible
subrepresentation of U at a time.

Example 2.9. Let G = C9 and consider the incomplete universes U1 = (R⊕λ(3))∞

and U2 = (R ⊕ λ(1) ⊕ λ(3))∞. Then [U1] < [U2], but we shall see that A(L(U1))
and A(L(U2)) are incomparable.
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First, consider the admissibles of L(U1). The restriction resC9

C3
U1 is a trivial C3-

universe and indC9

C3
resC9

C3
U1

∼= U1. Hence L(U1) admits C9/C3. On the other hand,

indC3

C1
resC9

C1
U1 is a complete C3-universe, and thus L(U1) does not admit C3/C1.

Now consider the admissibles of L(U2). The restriction resC9

C3
U2 is a complete

C3-universe, and hence L(U2) admits C3/C1. On the other hand, indC9

C3
resC9

C3
U2 is

a complete C9-universe, and therefore L(U2) does not admit C9/C3.

That being said, we can salvage the situation to some extent.

Proposition 2.10. The function AK = A(K(−)) : Uni(G) → Ind(G) is Aut(G)-
equivariant, and it preserves the order, the maximum element, the minimum ele-
ment, and joins. It is not always order-reflecting, meet-preserving, or injective.

Proof. Composing embeddings of orbits with embeddings of universes proves that
AK is order-preserving, and applying (−) · σ and (−) · σ−1 shows that T embeds
into resGHU if and only if T · σ embeds into U · σ. It follows that AK preserves
the Aut(G)-action. We have AK([R

∞]) = triv because the only orbits that embed
in R∞ are trivial, and AK([R[G]∞]) = Set because every orbit embeds in R[G].
By Proposition 4.5, AK preserves joins, and Example 2.8 shows that AK need not
reflect the order, preserve meets, or be injective. �

Proposition 2.11. The function AL = A(L(−)) : Uni(G) → Ind(G) is Aut(G)-
equivariant, and it preserves maximum and minimum elements. It is not always
order-preserving, order-reflecting, join-preserving, meet-preserving, or injective.

Proof. We begin with the Aut(G)-equivariance. Right multiplication (−) · σ pre-
serves embeddings, and it commutes with restriction and induction. Therefore

indHKresGHU embeds into resGHU if and only if indσ
−1H

σ−1KresGσ−1H(Uσ) embeds into

resGσ−1H(Uσ). It follows H/K ∈ AL([U ]) if and only if (H/K)σ ∈ AL([U ]σ), and
passing to coproducts shows AL([U ])σ = AL([U ]σ). The map AL preserves min-
imum and maximum elements because no nontrivial universe embeds in a trivial
one, and every universe embeds into a complete one.

Consider the universes in Example 2.8 once more. Keeping the same notation, we
have AL(U1) = AL(U2) = triv, and therefore AL is not injective or order-reflecting
for G = C5. Example 2.9 shows that AL is not order-preserving for G = C9, and
therefore AL does not preserve all joins and meets in that case, either. �

The failure of AK to preserve meets is a nuisance, but it is counterbalanced by
the fact that AK preserves joins. The failure of AL to preserve the order is more
serious. It precludes a clean, structural approach to Problem 2.5 for linear isome-
tries operads. To move forward, we elaborate on Blumberg and Hill’s calculations
of AK and AL, and then we study the formulas that fall out.

3. Transfer systems

In this section, we take a detour to introduce formalism that simplifies our dis-
cussion of Problem 2.5. Indexing systems are proper class-sized objects, but they
are determined by finite sets of orbits. Reformulating Definition 2.1 in these terms
leads to our notion of a transfer system (Definition 3.4). We prove that trans-
fer systems are equivalent to indexing systems (Theorem 3.7) and to the indexing
categories of [4] (Corollary 3.9). We also give a handful of examples in §3.2. We
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reiterate that Balchin, Barnes, and Roitzheim [1] have independently developed the
same formalism.

3.1. The data in an indexing system. There are several ways to think of index-
ing systems. From an operadic standpoint, they are equivalent to homotopy types
of N∞ operads (Theorem 2.4). From an algebraic standpoint, they are equivalent
to indexing categories in the sense below [4, Theorem 3.17].

Definition 3.1. Let SetGfin denote the category of finite G-sets. A G-indexing
category is a wide, pullback stable, finite coproduct complete subcategory D ⊂
SetGfin. We write IndCat(G) for the poset of all G-indexing categories.

Such categories naturally parametrize the transfers on incomplete Mackey func-
tors and the norms on incomplete Tambara functors.

We now introduce transfer systems, which encode generating data in indexing
systems and indexing categories. Informally, a transfer system is a diagram of the
orbits in an indexing system, or the intersection of an indexing category D ⊂ SetGfin
with the orbit category OG. We consider the relationship to indexing systems first.

Definition 3.2. Suppose I is a G-indexing system. We define the graph of I to
be the set Sub(G), equipped with the binary relation →I below:

K →I H if and only if K ⊂ H and H/K ∈ I.

We think of subgroups H ⊂ G as vertices, and relations K →I H as directed
edges. The indexing system axioms imply the following properties of →I .

Proposition 3.3. Suppose that I is a G-indexing system. Then → = →I is:

(a) a partial order,
(b) a refinement of the subset relation: if K → H, then K ⊂ H,
(c) closed under conjugation: if K → H, then (gKg−1) → (gHg−1) for every

group element g ∈ G, and
(d) closed under restriction: if K → H and L ⊂ H, then (K ∩ L) → L.

If I is a Λ-indexing system, then → also is:

(e) saturated: if K → H and K ⊂ L ⊂ H, then K → L and L → H.

Proof. Part (b) holds by fiat. For (a), reflexivity holds because I contains all trivial
actions, and antisymmetry follows from (b). For transitivity, suppose K → L and

L → H. Then L/K ∈ I and H/L ∈ I, and hence H/K ∼= indHL L/K ∈ I because
I is closed under isomorphism and self-induction. Condition (c) holds because
if K → H, then H/K ∈ I, and hence gHg−1/gKg−1 ∼= cgH/K ∈ I because
I is closed under isomorphism and conjugation. Condition (d) holds because we
have an embedding L/(L ∩K) ↪→ resHLH/K, and I is closed under restriction and
subobjects. Condition (e) is a restatement of condition (Λ). �

Thus, we make a definition.

Definition 3.4. Let G be a finite group. A G-transfer system is a partial order on
Sub(G), which refines the subset relation, and which is closed under conjugation
and restriction in the sense of Proposition 3.3. We use arrows → to denote transfer
systems. A transfer system → is saturated if it also satisfies condition (e) above.
Let Tr(G) denote the poset of all G-transfer systems → ordered under refinement,
i.e. declare →1 ≤→2 if and only if K →1 H implies K →2 H for all K,H ⊂ G.
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Remark 3.5. We explain the terminology. Suppose O is a N∞ G-operad. The
transfer system →O corresponding to the class of O-admissible sets satisfies

K →O H if and only if K ⊂ H and O(|H : K|)Γ(H/K) 6= ∅.

We shall see that a relation K →O H gives rise to a transfer map on O-algebras.
Suppose K and H are subgroups such that K →O H, and write n = |H : K|.

Order H/K as {r1K < · · · < rnK}, let Γ = Γ(H/K) be graph of the the corre-
sponding permutation representation σ : H → Σn, and choose a Γ-fixed operation
f ∈ O(n). If X is an O-algebra G-space, then there is a transfer map

trHK(x) = f(r1x, . . . , rnx) : X
K → XH .

On the other hand, if we regard f as a map G×Σn

Γ → O(n), then we obtain a G-map

tr
H
K : G×H X×H/K ∼=

G× Σn

Γ
×
Σn

X×n f×id
−→ O(n) ×

Σn

X×n −→ X.

Here X×H/K is the space X×n equipped with the H-action

h(x1, . . . , xn) = (hxσ(h)−11, . . . , hxσ(h)−1n)

and the isomorphism G ×H X×H/K ∼= G×Σn

Γ ×Σn
X×n identifies [g, (x1, . . . , xn)]

with [[g, 1], (gx1, . . . , gxn)]. The map tr
H
K is an external version of trHK : XK → XH .

We recover trHK by taking H-fixed points of the adjoint X×H/K → resGHX, and then

composing with the map XK ∼= (X×H/K)H that identifies x with (r1x, . . . , rnx).
Similarly, if E is an O-algebra G-spectrum, then by [3, Construction 6.5], we

obtain an external norm map

nHK : G+ ∧H NH
K resGKE ∼=

G× Σn

Γ
+ ∧

Σn

E∧n f+∧id
−→ O(n)+ ∧

Σn

E∧n −→ E.

Thus, relations in →O give rise to external additive and multiplicative transfers on
O-algebra G-spaces and G-spectra.

The construction of a transfer system from an indexing system is reversible,
because indexing systems are determined by their orbits.

Proposition 3.6. If → is a G-transfer system, then there is a unique G-indexing
system I = I→ such that →I = →. More specifically, I→(H) is the class of all
finite coproducts of H-orbits H/K such that K → H. The transfer system → is
saturated if and only if I→ is a Λ-indexing system.

Proof. Fix a transfer system →. If I is an indexing system such that →I = →,
then the orbits of I must be those H/K such that K → H, and I must be the
class of all finite coproducts of such orbits. Therefore I is unique if it exists.

We check that this recipe works. Define

I→(H) :=

{
finite H-sets T

∣∣∣∣∣
there exist n ≥ 0 and K1, . . . ,Kn ⊂ H such that
T ∼=

∐n
i=1 H/Ki and Ki → H for i = 1, . . . , n

}
,

where empty coproducts are understood to be ∅. We must check that I = I→ is a
G-indexing system, and that →I = →.

We verify the axioms in Definition 2.1. Condition (1) holds because → is reflex-
ive. Condition (2) holds because coproducts are only defined up to isomorphism.
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Condition (3) holds because if T ∼=
∐n

i=1 H/Ki with Ki → H, then for any L ⊂ H,

resHL T ∼=

n∐

i=1

resHLH/Ki
∼=

n∐

i=1

∐

a∈L\H/Ki

L/(L ∩ aKia
−1).

The right hand side is a finite coproduct, and if Ki → H, then for any a ∈ L\H/Ki,
we have (aKia

−1) → (aHa−1) = H and also (L ∩ aKia
−1) → L, because →

is closed under conjugation and restriction. Condition (4) holds because if T ∼=∐n
i=1 H/Ki, then cgT ∼=

∐n
i=1 gHg−1/gKig

−1, and → is closed under conjugation.
Condition (5) holds because every subobject of T ∼=

∐
i H/Ki ∈ I, is still just a

finite coproduct of orbits H/K with K → H. Similarly for condition (6).
Suppose that H/K ∈ I. Then H/K ∼= H/K ′ for some K ′ → H. Therefore

K = hK ′h−1 for some h ∈ H, and thus K = hK ′h−1 → hHh−1 = H. Condition
(7) follows, because if T ∼=

∐n
i=1 K/Li ∈ I for some Li → K and H/K ∈ I, then

K → H, and therefore Li → H by transitivity. Thus, indHKT ∼=
∐n

i=1 H/Li ∈ I.
This proves that I is an indexing system, and it is easy to see that →I =→.

Suppose the transfer system → is saturated. If H/K ∈ I and K ⊂ L ⊂ H, then
K → H as above, and therefore K → L → H. Hence L/K,H/L ∈ I, and hence I
is a Λ-indexing system. The converse is similar. �

In summary, we obtain the following result.

Theorem 3.7. The maps →• : Ind(G) � Tr(G) : I• are inverse order isomor-
phisms, and they restrict to an isomorphism between the subposet of Λ-indexing
systems and the subposet of saturated transfer systems.

Proof. The set maps →• and I• are inverse by Propositions 3.3 and 3.6. We must
check that they are order-preserving. Suppose that I ⊂ J . If K →I H, then
H/K ∈ I ⊂ J , and therefore K →J H. Thus →I refines →J . Conversely, if →I

refines →J , then every orbit in I is also contained in J . Therefore I ⊂ J , because
I is generated by its orbits. �

This makes precise the intuition that transfer systems are the sets of orbits in
indexing systems.

We now consider the relationship between transfer systems and indexing cat-
egories, starting with a review of Blumberg and Hill’s isomorphism Ind(G) ∼=
IndCat(G). For any indexing system I, let SetGI ⊂ SetGfin be the indexing cate-
gory consisting of those f : S → T such that Gf(s)/Gs ∈ I for every s ∈ S. Con-

versely, given any indexing category D ⊂ SetGfin, let ID be the indexing system

whose admissible H-sets are those T such that T = p−1(eH) for some p : S → G/H
in D .2

Theorem 3.8 ([4, Theorem 3.17]). The maps SetG• : Ind(G) � IndCat(G) : I•
are inverse lattice isomorphisms.

We obtain a composite isomorphism Tr(G) ∼= Ind(G) ∼= IndCat(G). Un-
winding the definitions and simplifying yields the following formulas. For any
transfer system  ∈ Tr(G), let SetG

 
∈ IndCat(G) consist of those morphisms

2The indexing system ID is obtained from the construction in [4, Lemma 3.18] by composing

with the equivalence Set
G
/G/H ' Set

H , and then taking object classes.
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f : S → T in SetGfin such that Gs  Gf(s) for every s ∈ S. Conversely, for any
D ∈ IndCat(G), let →D ∈ Tr(G) be the transfer system defined by

K →D H if and only if K ⊂ H and (π : G/K → G/H) ∈ D ,

where π is the canonical projection map π(gK) = gH.

Corollary 3.9. The lattice maps SetG• : Tr(G)� IndCat(G) : →• are inverse.

This makes precise the intuition that transfer systems are the intersection of
indexing categories with the orbit category OG.

There is a chain of equivalences

Ho(N∞-OpG) ' Ind(G) ∼= IndCat(G) ∼= Tr(G),

and therefore these structures all contain the same information. It is easy to identify
the essential group-theoretic data from the standpoint of transfer systems.

Corollary 3.10. The lattices Ind(G), IndCat(G), and Tr(G), and the 1-category

Ho(N∞-OpG) are determined by the lattice Sub(G), together with the orbit space
of the G-set

⊂G = {(K,H) ∈ Sub(G)×2 |K ⊂ H}

under the diagonal conjugation G-action.

In particular, the lattice Sub(G) determines everything if G is finite abelian, or
if all subgroups of G are normal (e.g. if G = Q8). In general, we must remember
⊂G/G and not just the set Sub(G)/G of conjugacy classes of subgroups, because
the actions on the fibers of ⊂G � (Sub(G)/G)×2 need not be transitive.

Example 3.11. Let G = Σ4. There are three conjugate copies of D8 in Σ4,
obtained by ordering the vertices of a square, and then taking the images of the
associated permutation representations. There are three double-transpositions in
Σ4, which generate three conjugate copies of C2. These subgroups determine a copy
of the bipartite graph

C2 C ′
2 C ′′

2

D8 D′
8 D′′

8

in Sub(Σ4). For each copy of D8, one inclusion of C2 corresponds to the rotation by
π, and the other two inclusions correspond to reflections. Without loss of generality,
we may assume that the vertical inclusions above are the rotations. We obtain two
conjugacy classes of edges:

C2 C ′
2 C ′′

2

D8 D′
8 D′′

8

C2 C ′
2 C ′′

2

D8 D′
8 D′′

8

and

.

Thus, to specify a Σ4-transfer system, it is not enough to declare [C2] → [D8]. We
must also know which copies of C2 are related to which copies of D8.
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3.2. Examples of transfer systems. We now describe the lattice Tr(G) for a
few small groups G. These examples illustrate how our formalism works, and they
will be useful in the upcoming discussion of Steiner and linear isometries operads.

The lattice Tr(G) is determined by Sub(G), equipped with the conjugation G-
action. Thus, we focus on groups with small subgroup lattices. We start with the
case of a tower. Balchin, Barnes, and Roitzheim have proven a marvelous theorem.
Using a clever inductive argument, they show that Tr(Cpn) is isomorphic to the
(n + 1)st associahedron for any prime p and integer n ≥ 0. To give the idea, we
draw Tr(Cpn) for 0 ≤ n ≤ 3 in Figure 1 (p. 16), but we heartily recommend their
paper for the general argument.

Next, we generalize orthogonally. The lattice Sub(Cp2) is a three-tiered tower,
and in Figure 2 (p. 17), we show what happens as the number of intermediate
subgroups increases. We start with Cpq, where p < q are prime, and the Klein four
group K4. Write K4 = {1, a, b, c}, where 1 is the identity and ab = c.

The pentagons that show up in Tr(Cpq) and Tr(K4) are copies of the pentagon
that appears in Tr(Cp2). More generally, suppose that G is a finite abelian group
with n proper, nontrivial subgroups that are pairwise incomparable. Then Tr(G)
decomposes as a stacked pair of n-cubes with a layer of n transfer systems between
them. Thus, if G = (Cp)

×2 for a prime p, then there are p + 1 intermediate
subgroups and 2p+2 + p+ 1 transfer systems.

Now consider the quaternion group Q8 = {±1,±i,±j,±k}. Its subgroup lattice
is obtained from the tower Sub(Cp3) by widening the upper two links into a copy
of Sub(K4). Accordingly, the lattice Tr(Q8) exhibits features of both Tr(Cp3) and
Tr(K4), but the mixing is nontrivial. There are 68 total Q8-transfer systems, and
the group Out(Q8) ∼= Σ3 acts on Tr(Q8) because all subgroups of Q8 are normal.
As a Σ3-poset, Tr(Q8) is a sum Σ3/1+17 ·Σ3/〈(12)〉+11 ·Σ3/Σ3 of 29 orbits, and
we draw the quotient in Figure 3 (p. 18).

There is an evident copy of Tr(K4)/Σ3 on the left edge of Tr(Q8)/Σ3. As we
move to the right, partially grown copies sprout up from the bottom, and we end
with another fully grown copy of Tr(K4)/Σ3 on the right. There is also a copy of
the associahedron Tr(Cp3) in Tr(Q8), spanned by the Q8-transfer systems below.

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

So far, we have only studied groups for which every subgroup is normal. We
consider G = Σ3 in Figure 4 (p. 19) for a change.

The group Σ3 has four proper, nontrivial subgroups, generated by the transpo-
sitions and a three cycle. The former copies of C2 are conjugate, and the latter
copy of C3 is normal. In some respects, this allows us to treat all copies of C2

as the same subgroup. For example, if 1 → 〈(12)〉, then 1 → 〈τ〉 for every trans-
position τ , and dually if 〈(12)〉 → Σ3. However, we must remember that 〈(12)〉,
〈(13)〉, and 〈(23)〉 are distinct subgroups. The Σ3-transfer system generated by
〈(12)〉 → Σ3 contains 1 → Σ3 because it contains 〈(23)〉 → Σ3 by conjugating, and
1 = 〈(12)〉 ∩ 〈(23)〉 → 〈(12)〉 by restricting (cf. Example A.3). This is in sharp
contrast to the Cpq-transfer system generated by Cp → Cpq or the (C3)

×2-transfer
system generated by a single relation of the form C3 → (C3)

×2.
More generally, if G = D2p for a prime p > 2, then the set of proper nontrivial

subgroups of G consists of p conjugate copies of C2, and one normal copy of Cp.
One finds that Tr(D2p) ∼= Tr(Σ3), by the same count.
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Figure 1. Transfer systems for Cp0 , Cp1 , Cp2 , and Cp3 .

C1

Cp

··

··

Sub(Cp1) Tr(Cp1)

C1 ·

Sub(Cp0) Tr(Cp0)

C1

Cp

Cp2

··
·

··
·

··
·

··
·

··
·

Sub(Cp2) Tr(Cp2)

··
··

··
··

··
··

··
··

··
··

··
··

··
··

··
··

··
··

··
··

··
··

··
··

··
··

··
··

C1

Cp

Cp2

Cp3

Sub(Cp3) Tr(Cp3)

4. Steiner operads

In this section, we continue Blumberg and Hill’s analysis of equivariant Steiner
operads. We identify the G-transfer systems that arise from Steiner operads in
general (Theorem 4.6), and then we specialize to finite abelian groups (Theorem
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Figure 2. Transfer systems for Cpq and K4.

C1

Cpq

Cp Cq
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·
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K4

〈b〉〈a〉 〈c〉

1

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

Tr(K4)Sub(K4) Sub(K4)/Σ3
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Figure 3. Transfer systems for Q8.
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Sub(Q8) Tr(Q8)/Σ3
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Figure 4. Transfer systems for Σ3.
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Tr(Σ3)Sub(Σ3)

4.11). In the latter case, we show how to construct a minimal universe U such that
K(U) parametrizes a specified transfer map (Proposition 4.17).

4.1. General finite groups. Suppose that U is a G-universe and consider the
Steiner operad K(U). If K ⊂ H ⊂ G are subgroups, then by [3, Theorem 4.19],

K →K(U) H if and only if H/K H-embeds into resGHU.

We begin our analysis by showing → = →K(U) is completely determined by transfer
relations K → G such that the target is all of G.

Identify a binary relation R on a set X with the set {(x, y) ∈ X×2 |xRy} of all
R-related pairs. Thus xRy means (x, y) ∈ R, and R refines S if and only if R ⊂ S.
If R is any binary relation on Sub(G) that refines inclusion, then there is minimum
transfer system → = 〈R〉 that contains R. Abstractly, → is the intersection of all
transfer systems that contain R, but we give an explicit construction in Appendix
A. We call 〈R〉 the transfer system generated by R.

Lemma 4.1. Suppose that U is a G-universe, and let → = →K(U). Then → is
generated by {(K,G) |K ⊂ G and K → G}.

Proof. Let be the G-transfer system generated by {(K,G) |K ⊂ G and K → G}.
Then  refines → by definition. We must establish the other refinement.

Suppose K → H, choose an H-embedding ϕ : H/K ↪→ resGHU , and let x =
ϕ(eK) ∈ U . Then K = Hx = Gx ∩ H, and there is a G-embedding G/Gx ↪→ U .
Therefore Gx → G, which implies Gx  G, and restricting along H ⊂ G shows
that K = Gx ∩H  H. Therefore → refines  . �
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Example 4.2. There are plenty of transfer systems → such that the refinement
〈(K,G) |K ⊂ G and K → G〉 ≤→ is an equality, and plenty such that it is not. If
G = K4, then we have an equality for the Σ3 = Out(K4)-orbits of

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

and an inequality for the orbits of

·· · ·
·

·· · ·
·

·· · ·
· .

Lemma 4.1 and Proposition 5.1 imply that a large class of transfer systems are
not realized by Steiner or linear isometries operads.

Theorem 4.3. Suppose G is a finite group, K C G is a normal subgroup, and
K ( L ( H ( G is a chain in Sub(G). Then the G-transfer system 〈(K,H)〉
generated by (K,H) is not realized by a G-Steiner or a G-linear isometries operad.

Proof. Let H = H1, . . . , Hn be the conjugates of H in G and let → = 〈(K,H)〉 =
〈(K,Hi) | 1 ≤ i ≤ n〉. Then → = {(M,M) |M ⊂ G}∪

⋃n
i=1{(M ∩K,M) |M ⊂ Hi}

by Proposition A.5.
If J → G, then J = G, and therefore 〈(J,G) | J → G〉 = ∆Sub(G) < →. Lemma

4.1 implies that → is not realized by any Steiner operad.
On the other hand, L 6→ H because L 6= H and M ∩K ⊂ K ( L for all M ⊂ G.

Hence → is not saturated, and Proposition 5.1 implies that → is not realized by
any linear isometries operad. �

Example 4.4. The Cp3 -transfer system ··
··

and the Q8-transfer system ··
··· · are

not realized by any Steiner or linear isometries operads.

We can hone our description of →K(U) further. For any G-representation V , let

Orb(V ) = {(K,G) |K ( G and G/K G-embeds into V }.

Proposition 4.5. Let U be a G-universe, and suppose that U ∼=
⊕

i∈I Vi for
some G-representations Vi, indexed over a possibly infinite set I. Then →K(U) is
generated by

⋃
i∈I Orb(Vi).

Proof. Let → = →K(U) and let  = 〈
⋃

i∈I Orb(Vi)〉. If (K,G) ∈ Orb(Vi) for some
i ∈ I, then there is a composite G-embedding G/K ↪→ Vi ↪→ U , and therefore
(K,G) ∈ →. Therefore  refines →.

Conversely, suppose K → G and choose a G-embedding ϕ : G/K ↪→
⊕

i∈I Vi.
Since G/K is finite, the map ϕ factors through some finite sum Vi1 ⊕ · · ·⊕Vin . Let
(x1, . . . , xn) = ϕ(eK) ∈ Vi1 ⊕ · · · ⊕ Vin . Then K = G(x1,...,xn) = Gx1

∩ · · · ∩ Gxn
.

Since we have G-embeddings G/Gxi
↪→ Vi, it follows that Gxi

 G, and hence
K = Gx1

∩ · · · ∩Gxn
 G by Lemma A.6. Therefore 〈(K,G) |K → G〉 ⊂  , and

the left hand side equals → by Lemma 4.1. This proves that → refines  . �

In particular, we may calculate →K(U) in terms of the irreducible subrepresen-
tations V ⊂ U . The next result follows easily.

Theorem 4.6. Suppose G is a finite group and → is a G-transfer system. The
following are equivalent:

(1) There is a G-universe U such that → = →K(U).



DETECTING STEINER AND LINEAR ISOMETRIES OPERADS 21

(2) There is an integer n ≥ 0 and nontrivial, irreducible real G-representations
V1, V2, . . . , Vn such that → = 〈

⋃n
i=1 Orb(Vi)〉.

When n = 0 in (2), we understand → to be the minimum transfer system.

Proof. If → = 〈
⋃n

i=1 Orb(Vi)〉 for some sequence of nontrivial, irreducible real G-
representations Vi, then → = →K(U) for U = [R⊕

⊕n
i=1 Vi]

∞, by Proposition 4.5.
The converse is similar. �

Thus, we can identify the image of AK : Uni(G) → Tr(G) by computing orbit
decompositions of all irreducible real G-representations, and then enumerating the
transfer systems generated by combinations of these data. We illustrate by example.

Example 4.7. Let G = K4 once more, and keep notation as in §3.2. We shall
further winnow down the candidates found in Example 4.2. There are three non-
trivial, irreducible real K4-representations. We have a sign representation σa :

K4 � K4/〈a〉
σ
→ O(1), which satisfies Orb(σa) = {(〈a〉,K4)}, and similarly for

b, c ∈ K4. Thus, there are eight K4-universes, which form four orbits under the
Σ3-action. We give orbit representatives and their transfer systems below.

U →K(U)

R∞
·· · ·
·

(R⊕ σc)
∞

·· · ·
·

(R⊕ σb ⊕ σc)
∞

·· · ·
·

(R⊕ σa ⊕ σb ⊕ σc)
∞

·· · ·
·

Example 4.8. If G = Q8, then there are four nontrivial, irreducible real represen-

tations. There is a sign representation σi : Q8 � Q8/〈i〉
σ
→ O(1), and analogous

representations σj and σk for j, k ∈ Q8. There is also a four-dimensional represen-
tation H, obtained by letting Q8 ⊂ H act on the quaternions by left multiplication.
We have Orb(H) = {(1, Q8)}, Orb(σi) = {(〈i〉, Q8)}, and similarly for j and k.
Thus, there are sixteen Q8-universes, which form eight Σ3-orbits. We give orbit
representatives and their transfer systems below.

U →K(U) U →K(U)

R∞
··
··· · (R⊕H)∞ ··

··· ·

(R⊕ σk)
∞

··
··· · (R⊕ σk ⊕H)∞ ··

··· ·

(R⊕ σj ⊕ σk)
∞

··
··· · (R⊕ σj ⊕ σk ⊕H)∞ ··

··· ·

(R⊕ σi ⊕ σj ⊕ σk)
∞

··
··· · (R⊕ σi ⊕ σj ⊕ σk ⊕H)∞ ··

··· ·

Example 4.9. If G = Σ3, then the nontrivial, irreducible real representations are

the sign representation σ : Σ3 � Σ3/〈(123)〉
σ
→ O(1) and the representation ∆ :

Σ3 → O(2) of Σ3 as the symmetries of a triangle. We have Orb(σ) = {(〈(123)〉,Σ3)}
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and Orb(∆) = {(〈(12)〉,Σ3), (〈(13)〉,Σ3), (〈(23)〉,Σ3), (1,Σ3)}, and hence the trans-
fer systems for Σ3-Steiner operads are

U →K(U)

R∞
·

· · ·
··

(R⊕ σ)∞ ·
· · ·
··

(R⊕∆)∞ ·
· · ·
··

(R⊕ σ ⊕∆)∞ ·
· · ·
··

4.2. Finite abelian groups. Theorem 4.6 gives a reasonable procedure for com-
puting the image of AK : Uni(G) → Tr(G), but it is another matter to find a clean
description of im(AK) purely in terms of the algebra of transfer systems. We do not
believe there is a uniform solution for all finite groups. However, there is a uniform
solution if we restrict to finite abelian groups.

Definition 4.10. Suppose that G is a finite group and that H ⊂ G is a subgroup
of G. We say that H is G-cocyclic if H is a normal subgroup of G and the quotient
group G/H is cyclic.

Theorem 4.11. Suppose G is a finite abelian group and → is a G-transfer system.
Then → corresponds to a G-Steiner operad if and only if there is an integer n ≥ 0
and G-cocyclic subgroups H1, . . . , Hn ⊂ G such that → = 〈(Hi, G) | 1 ≤ i ≤ n〉.

Proof. There are two kinds of irreducible real G-representations. There are one-
dimensional representations, where each g ∈ G acts as multiplication by +1 or
−1, and there are two-dimensional representations, where each g ∈ G acts as a
rotation by θ(g) ∈ [0, 2π), and at least one θ(g) is not 0 or π. In the former case,
we obtain a map V : G → O(1) ∼= C2, and in the latter case we obtain a map
V : G → C|G| ↪→ SO(2), where C|G| embeds in SO(2) as the rotations by multiples
of 2π/|G|. Therefore G/kerV embeds into C2 or C|G|, and therefore kerV is G-
cocyclic. Now consider the orbit decomposition of V . The actions of C2 on R and
C|G| on R2 are free away from the origin. Pulling back to G, we see that G0 = G,
Gx = kerV for every x 6= 0, and therefore Orb(V ) = {(kerV,G)}.

Now suppose → is a G-transfer system. If → = →K(U) for some G-universe

U ∼= [R ⊕
⊕n

i=1 Vi]
∞, where each of the the representations Vi is nontrivial and

irreducible, then → = 〈(kerVi, G) | 1 ≤ i ≤ n〉 by Proposition 4.5. As noted above,
each of the subgroups kerVi is G-cocyclic.

Conversely, suppose → = 〈(Hi, G) | 1 ≤ i ≤ n〉 for some G-cocyclic subgroups
H1, . . . , Hn ⊂ G. For each i, choose an embedding G/Hi ↪→ O(2) of G/Hi as
the rotations by multiples of 2π/|G : Hi|, and let λi : G � G/Hi ↪→ O(2) be the
pullback to G. Then Orb(λi) = {(Hi, G)}. Thus, if U = [R ⊕

⊕n
i=1 λi]

∞, then
→K(U) = 〈(Hi, G) | 1 ≤ i ≤ n〉 = → by Proposition 4.5 again. �

This simplifies further for finite cyclic groups.

Corollary 4.12. Let n > 0 be a natural number. A Cn-transfer system → cor-
responds to a Steiner operad if and only if → = 〈(Hi, Cn) | 1 ≤ i ≤ m〉 for some
subgroups H1, . . . , Hm ⊂ Cn.
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Example 4.13. The Cp3 -transfer systems corresponding to Steiner operads are

··
··

··
··

··
··

··
··

··
··

··
··

··
··

··
··
.

The Cpq-transfer systems corresponding to Steiner operads are

·· ·
·

·· ·
·

·· ·
·

·· ·
·

·· ·
·

·· ·
·

·· ·
· .

Requiring Hi ⊂ G to be G-cocyclic is a nontrivial constraint. The next example
generalizes Example 4.7.

Example 4.14. Suppose that G = (Cp)
×n for a prime p and integer n > 0. A

proper subgroup H ⊂ G is G-cocyclic if and only if it is a codimension 1 subspace of
Fn
p under the identification (Cp)

×n ∼= (Fn
p ,+). Therefore a (Cp)

×n-transfer system
→ arises from a Steiner operad if and only if it is generated by relations of the form
(Cp)

×n−1 → (Cp)
×n, for some embedded copies of (Cp)

×n−1 in (Cp)
×n.

We can also combine Theorem 4.11 with Proposition 5.1 to exclude transfer
systems from the images of AK and AL. The next result generalizes the fact that

no K4-Steiner or linear isometries operad realizes the transfer system ·· · ·
· .

Theorem 4.15. Suppose that G is a non-cyclic finite abelian group. Then the G-
transfer system → = 〈(0, G)〉 generated by (0, G) alone is not realized by a G-Steiner
or a G-linear isometries operad.

Proof. We have → = {(M,M) |M ⊂ G} ∪ {(0,M) |M ⊂ G}, by Corollary A.8 or
by inspection. Thus, if H → G, then either H = 0 or H = G.

On the other hand, suppose U is a G-universe such that 0 →K(U) G. Then
by Theorem 4.11, →K(U) = 〈(Hi, G) | 1 ≤ i ≤ n〉 for some G-cocyclic subgroups
Hi ⊂ G. Since →K(U) is nontrivial, some Hi must be a proper subgroup of G, and
since G is noncyclic, the subgroup Hi must also be nontrivial. Thus 0 ( Hi ( G
and Hi →K(U) G. It follows that →K(U) 6= → for every G-universe U .

Finally, suppose U is a G-universe such that 0 →L(U) G. Then H →L(U) G for
every H ⊂ G because →L(U) is saturated. Since G is non-cyclic, any non-identity
element x ∈ G generates a proper, nontrivial subgroup 0 ( 〈x〉 ( G such that
〈x〉 →L(U) G. Therefore →L(U) 6= → for every G-universe U . �

4.3. Parametrizing a transfer map. The previous two sections explain how to
compute the transfers parametrized by K(U), for any given universe U . In this
section, we turn the problem around. When G is finite abelian, we construct
minimal universes U such that K(U) parametrizes a given transfer K → H.

For any finite abelian group G and proper, G-cocyclic subgroup H ( G, let λH

be a two-dimensional real G-representation G � G/H ∼= Cn ↪→ SO(2), obtained
by choosing an isomorphism G/H ∼= Cn for some n ≥ 2, and then embedding Cn

into SO(2) as the rotations by multiples of 2π/n.

Lemma 4.16. Suppose that V ⊂ λH is an irreducible G-representation. Then
Gx = H for every nonzero x ∈ V .

Proof. Every nonzero x ∈ λH has Gx = H, as explained in the proof of Theorem
4.11. This proves the lemma when λH is irreducible. If λH is reducible, then it has
an invariant one-dimensional subspace. Therefore G/H ∼= C2 and λH

∼= σH ⊕ σH ,
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where σH is G � G/H ∼= C2
σ
↪→ O(1). In this case, V ⊂ λH is isomorphic to σH ,

and Gx = H for every nonzero x ∈ σH . �

We use the representations λH to construct the desired universes.

Proposition 4.17. Suppose that G is a finite abelian group and that K ( H ⊂ G
are subgroups. Choose distinct, proper, G-cocyclic subgroups H1, . . . , Hm ( G such
that H ∩H1 ∩ · · · ∩Hm = K, and let

U = [R⊕ λH1
⊕ · · · ⊕ λHm

]∞.

Then K →K(U) H, and [U ] ∈ Uni(G) is minimal with this property if and only if
H ∩H1 ∩ · · · ∩Hi−1 ∩Hi+1 ∩ · · · ∩Hm ) K for every i = 1, . . . ,m.

Proof. Let U be as above. Then →K(U) = 〈(Hi, G) | 1 ≤ i ≤ m〉 by Lemma 4.16
and Proposition 4.5, and Proposition A.7 implies K →K(U) H because we have
assumed H ∩H1 ∩ · · · ∩Hm = K.

Next, let λi = λHi
and Ui = [R ⊕

⊕
j 6=i λj ]

∞. Then there is no G-embedding
λi ↪→ Ui. For if there were an embedding, then an irreducible subrepresentation
V ⊂ λi would embed in R or λj for some j 6= i, but Lemma 4.16 implies this
is impossible because the subgroups G,H1, . . . , Hm are all distinct. Therefore Ui

is a proper subuniverse of U , and it is maximal proper because each λi is either
irreducible, or splits as λHi

∼= σHi
⊕ σHi

.
We now consider the minimality of U . First, note that →K(Ui)= 〈(Hj , G) | j 6= i〉.

Thus, if H∩H1∩· · ·∩Hi−1∩Hi+1∩· · ·∩Hm = K for some i, then K →K(Ui) H by
Proposition A.7. In this case, [U ] is not minimal among the classes [U ′] ∈ Uni(G)
such that K →K(U ′) H.

Now suppose that H∩H1∩· · ·∩Hi−1∩Hi+1∩· · ·∩Hm ) K for each i = 1, . . . ,m.
Then K 6→K(Ui) H for every i, by Proposition A.7. Therefore [U ] is minimal,
because any proper subuniverse U ′ ↪→ U of U G-embeds into one of the Ui, and
hence K 6→K(U ′) H as well. �

Example 4.18. We indicate how this works for G = K4. Keep notation as in
Example 4.7. The proper, K4-cocyclic subgroups are 〈a〉, 〈b〉, and 〈c〉, and the
corresponding λ representations are λ〈a〉

∼= σa⊕σa, λ〈b〉
∼= σb⊕σb, and λ〈c〉

∼= σc⊕σc.
Suppose we wish to parametrize 〈a〉 → K4 with a Steiner operad. Following

Proposition 4.17, we need a set of K4-cocyclic subgroups that intersect to 〈a〉. The
singleton {〈a〉} works, and U = [R⊕λ〈a〉]

∞ ∼= [R⊕σa]
∞ is a minimal universe such

that 〈a〉 →K(U) K4.
Now suppose we wish to parametrize 1 → 〈a〉. We need K4-cocyclic subgroups

H1, H2, . . . such that 〈a〉 ∩H1 ∩H2 ∩ · · · = 1. This holds as long as we include one
of 〈b〉 or 〈c〉. Therefore 1 →K(U) 〈a〉 holds whenever σb or σc embed in U , and the
universes U = [R⊕ σb]

∞ and [R⊕ σc]
∞ are minimal for this transfer.

Finally, suppose we wish to parametrize 1 → K4. Since any two of 〈a〉, 〈b〉, and
〈c〉 intersect trivially, we have 1 →K(U) K4 for any U = [R ⊕ σx ⊕ σy]

∞ such that
x 6= y, or for U = [R⊕ σa ⊕ σb ⊕ σc]

∞. The former are minimal.

In general, if 0 →K(U) G for a non-cyclic finite abelian group G, then we should
expect U to be reasonably large. The next example illustrates.

Example 4.19. Let G = (Cp)
×n ∼= (Fn

p ,+) and suppose V ( Fn
p is a proper

subspace. Choose lines `1, . . . , `m such that Fn
p = V ⊕ `1 ⊕ · · · ⊕ `m, let Wi =

V ⊕ `1 ⊕ · · · ⊕ `i−1 ⊕ `i+1 ⊕ · · · ⊕ `m, and let λi = λWi
be the pullback of the
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representation λ : Cp ↪→ SO(2) along the quotient πi : F
n
p � Fn

p/Wi
∼= Cp. Then

U = [R⊕ λ1 ⊕ · · · ⊕ λm]∞ is a minimal universe such that V →K(U) F
n
p .

Remark 4.20. Thus, Steiner operads have difficulty parametrizing a transferK → G
when K is low in Sub(G), at least when G is finite abelian and has many cyclic
summands. This is a representation-theoretic issue, which is not at all suggested
by the general algebra of transfer systems.

5. Linear isometries operads

In this section, we continue Blumberg and Hill’s analysis of equivariant linear
isometries operads. We begin with some generalities, and then we restrict our
ambient group G to finite cyclic groups. When the order of G is a prime power or
a product of two distinct primes, we obtain a complete description of the image of
AL : Uni(G) → Tr(G) (Theorems 5.18 and 5.20).

5.1. General results. Suppose that U is a G-universe, and consider the linear
isometries operad L(U). If K ⊂ H ⊂ G are subgroups, then by [3, Theorem 4.18],

K →L(U) H if and only if indHKresGKU H-embeds into resGHU.

Such H-embeddings may be constructed one subrepresentation at a time because
ind and res preserve direct sums, and U is a universe. In particular, it is enough to
show that for every irreducible H-representation V ⊂ resGHU and every irreducible

W ⊂ indHKresHKV , there is an H-embedding of W into resGHU .
The condition above always determines if a relationK →L(U) H holds or not, but

checking it for every possible inclusion K ⊂ H is recipe for boredom. We review
a few general constraints on the transfer systems associated to linear isometries
operads, following Blumberg and Hill.

Proposition 5.1 ([3, p. 17]). The transfer system →L(U) is saturated for every
G-universe U .

Briefly, if K ⊂ L ⊂ H, then indHL resHL V embeds into indHKresHKV because the

unit of the adjunction resLK a coindLK
∼= indLK is injective, and the right adjoint

indHL preserves monomorphisms.
Saturation is a tight constraint, and as mentioned in the introduction, it was

the best guess for a necessary and sufficient condition to detect linear isometries
operads. We had hoped to verify this, but those hopes were dashed by the coun-
terexamples below. Nevertheless, we shall carry out our original goal when G = Cpn

for a prime p and n ≥ 0 (Theorem 5.18), and when G = Cpq for distinct primes,
provided that p, q > 3 (Theorem 5.20).

Remark 5.2. In light of Corollary 3.10, the cardinality condition on p and q for Cpq-
transfer systems should come as a surprise. The lattices Tr(Cpq) are isomorphic for
all distinct primes and have trivial conjugation actions, and therefore their algebra
is indistinguishable. The issue when p ≤ 3 or q ≤ 3 is representation-theoretic.
In these cases, there are not enough real Cpq-representations to distinguish all
saturated transfer systems. We reiterate that the map

AL : Uni(G) → Ind(G) ∼= Tr(G)

of Proposition 2.11 has laughably poor properties.
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Our results for Cpn and Cpq are established by direct computation, and this
approach is not likely to extend because the lattices Tr(CN ) become unmanage-
ably large as the number of prime factors of N = pr11 · · · prkk grows. There are
already hundreds of possibilities when N is a product of three distinct primes [2,
§5]. Nevertheless, we suspect that saturation is enough to detect CN -linear isome-
tries operads, provided that the primes p1, . . . , pk are sufficiently large relative to k.
Indeed, as p1, . . . , pk → ∞, the lattice Tr(CN ) remains the same, but the number
of available CN -representations increases.

We continue reviewing the general properties of the transfer systems →L(U).

Proposition 5.3 ([3, Corollary 4.20]). The transfer system →L(U) is a refinement
of →K(U) for any G-universe U .

The transfer system →K(U) can be computed using Proposition 4.5, which gives
an easy upper bound on →L(U). From here, we can start ruling out relations
K →L(U) H on a case-by-case basis.

Proposition 5.4. Suppose U is a G-universe and assume K ⊂ H ⊂ G are
subgroups such that K →L(U) H. Then resGHU contains every irreducible H-
representation with nonzero K-fixed points.

Proof. The trivial G-representation R embeds into U , and therefore there is a chain
of H-embeddings indHKR ↪→ indHKresGKU ↪→ resGHU . If W is an irreducible H-
representation such that WK 6= {0}, then any nonzero x ∈ WK determines a

nonzero map indHKR → W . Therefore W H-embeds into indHKR and resGHU . �

The following special case is used in the proof of [3, Theorem 4.22].

Corollary 5.5. Keep notation as above. If 1 →L(U) G, then U is complete.

These tricks will only take us so far, because they are based on one-way implica-
tions. There are saturated transfer systems that are not realized by linear isometries
operads (cf. Examples 5.9–5.11), there are universes U such that →L(U) strictly
refines →K(U) (cf. [3, Theorem 4.22]), and as the next example shows, the relation

K →L(U) H need not hold even if resGHU contains all irreducible H-representations
with nonzero K-fixed points.

Example 5.6. Suppose G = K4 is the Klein four-group and keep notation as in
Example 4.7. Let K = 〈a〉, H = K4, and consider the universe U = [R⊕σa⊕σb]

∞.
Then every irreducible K4-representation with nonzero 〈a〉-fixed points embeds into

U . However, 〈a〉 6→L(U) K4 because indK4

{1,a}res
K4

{1,a}σb
∼= indK4

{1,a}σ
∼= σb ⊕ σc, and

σc does not embed into U .

Ultimately, we need to start checking relations K →L(U) H individually, i.e.

we need to compute the universe resGHU and, if it is not complete, the universe

indHKresGKU . Fortunately, saturation implies we do not need to consider all possible
inclusions K ⊂ H. It is sometimes simpler to study the longest possible transfer
relations, and it is sometimes simpler to study the shortest possible relations. The
next result will be useful in our analysis of Cpn -linear isometries operads.

Definition 5.7. Suppose G is a finite group and K ⊂ H ⊂ G are subgroups. We
say that the pair (K,H) is irreducible if K is a maximal, proper subgroup of H.
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Proposition 5.8. If → is a saturated G-transfer system, then → is generated by
the relation {(K,H) |K → H and (K,H) is irreducible}.

Proof. Let  = 〈(K,H) |K → H and (K,H) is irreducible〉. Then  refines →
by definition. For the other refinement, suppose that K → H for some subgroups
K ⊂ H ⊂ G. Since G is a finite group, we can choose a (nonunique) chain of
subgroups K = K0 ( K1 ( · · · ( Kn = H such that (Ki,Ki+1) is irreducible
for every i. Since K0 → Kn and → is saturated, we have Ki → Ki+1, and hence
Ki  Ki+1 for all i. The chain K = K0  · · · Kn = H implies K  H. �

There is not much more we can say about →L(U) at this level of generality. We
give a few examples, and then specialize to finite cyclic groups.

Example 5.9. Let G = K4 and keep notation as in Example 4.7. The next table
depicts →L(U) for a set of Σ3-orbit representatives of Uni(K4).

U →L(U)

R∞
·· · ·
·

(R⊕ σc)
∞

·· · ·
·

(R⊕ σb ⊕ σc)
∞

·· · ·
·

(R⊕ σa ⊕ σb ⊕ σc)
∞

·· · ·
·

Thus, the saturated K4-transfer systems

·· · ·
· and ·· · ·

·

are not realized by K4-linear isometries operads, and the inclusion of the second
universe into the third is not preserved. Combined with Example 4.7, we see that
the Σ3-orbits of the K4-transfer systems

·· · ·
·

·· · ·
·

·· · ·
·

·· · ·
·

are not realized by Steiner or linear isometries operads.

Example 5.10. Let G = Q8 and keep notation as in Example 4.8. The next table
depicts →L(U) for a set of Σ3-orbit representatives of Uni(Q8).

U →L(U) U →L(U)

R∞
··
··· · (R⊕H)∞ ··

··· ·

(R⊕ σk)
∞

··
··· · (R⊕ σk ⊕H)∞ ··

··· ·

(R⊕ σj ⊕ σk)
∞

··
··· · (R⊕ σj ⊕ σk ⊕H)∞ ··

··· ·

(R⊕ σi ⊕ σj ⊕ σk)
∞

··
··· · (R⊕ σi ⊕ σj ⊕ σk ⊕H)∞ ··

··· ·

Thus, the saturated Q8-transfer systems

··
··· ·

··
··· ·

··
··· ·

··
··· ·

are not realized by Q8-linear isometries operads, and the inclusions of the universes
on the second line into the universes on the third are not preserved. Combined
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with Example 4.8, we see that the Σ3-orbits of the Q8-transfer systems

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

··
··· ·

are not realized by Steiner or linear isometries operads.

Example 5.11. Let G = Σ3 and keep notation as in Example 4.9. The transfer
systems for Σ3-linear isometries operads are

U →L(U)

R∞
·

· · ·
··

(R⊕ σ)∞ ·
· · ·
··

(R⊕∆)∞ ·
· · ·
··

(R⊕ σ ⊕∆)∞ ·
· · ·
··

Thus, the saturated Σ3-transfer systems

·
· · ·
·· and ·

· · ·
··

are not realized by Σ3-linear isometries operads. Combined with Example 4.9, we
see that the Σ3-transfer systems

·
· · ·
··

·
· · ·
··

·
· · ·
··

·
· · ·
··

are not realized by Steiner or linear isometries operads.

In Examples 5.9–5.11, every saturated transfer system not realized by a linear
isometries operad also is not realized by a Steiner operad. We see no reason why
this should be true in general, but we also do not know any counterexamples.

5.2. Finite cyclic groups. Let G = Cn for some natural number n. We shall
describe an arithmetic method for computing the transfer systems of Cn-linear
isometries operads, in terms of two-dimensional rotation representations.

Notation 5.12. For any finite cyclic group Cn with chosen generator g, let

λn(m) : Cn → S1 ∼= SO(2)

be the Cn-representation that sends g to e2πim/n. The character of λn(m) is

χ(gj) = 2cos(2πmj/n) = e2πimj/n + e−2πimj/n.

Suppose d and n are natural numbers such that d | n. We write resnd and indnd
for restriction and induction along the inclusion Cd ↪→ Cn that sends the chosen
generator of Cd to the n

d th power of the chosen generator of Cn.

The representations λn(m) have the following properties.

Lemma 5.13. Suppose m, m′, n, and d are natural numbers.

(1) If m ≡ m′ mod n, then λn(m) = λn(m
′).

(2) There are isomorphisms λn(m) ∼= λn(−m) for all m and n.
(3) If d | n, then resndλn(m) = λd(m).

(4) If d | n, then indndλd(m) ∼=
⊕n/d−1

a=0 λn(m+ da).
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Proof. The first three statements are clear. For the fourth statement, we compute
characters. The character of indndλd(m) is

χ(gj) =

{
n
d (e

2πimj/n + e−2πimj/n) if n
d | j

0 otherwise
,

and the character of
⊕n/d−1

a=0 λn(m+ da) is

χ(gj) =
[
e2πimj/n ·

n/d−1∑

a=0

(e2πidj/n)a
]
+
[
e−2πimj/n ·

n/d−1∑

a=0

(e−2πidj/n)a
]
.

These two functions are equal. �

The representation λn(m) is irreducible, unless

(a) m ≡ 0 mod n, in which case λn(m) ∼= R⊕ R, or
(b) n is even and m ≡ n/2 mod n, in which case λn(m) ∼= σ ⊕ σ.

By parts (1) and (2) of Lemma 5.13, it follows that the irreducible, real Cn-
representations are

n odd n even
R R

λn(1) ∼= λn(n− 1) λn(1) ∼= λn(n− 1)
λn(2) ∼= λn(n− 2) λn(2) ∼= λn(n− 2)

...
...

λn(
n−1
2 ) ∼= λn(

n+1
2 ) λn(

n
2 − 1) ∼= λn(

n
2 + 1)

σ

We may treat both cases simultaneously, because every Cn-universe contains
infinitely many copies of its irreducible subrepresentations.

Lemma 5.14. Every Cn-universe U is of the form U ∼=
⊕

i∈I λn(i)
∞, where I is a

subset of Z/n ∼= {0, 1, . . . , n−1} that contains 0, and which is closed under additive
inversion.

Proof. The representation λn(i) is well-defined for every [i] ∈ Z/n, by Lemma 5.13.
Given an arbitrary Cn-universe U , rewrite the R∞-summand of U as λn(0)

∞, and
rewrite each λn(i)

∞-summand as λn(i)
∞ ⊕ λn(n − i)∞. If n is even, rewrite any

σ∞-summand as λn(
n
2 )

∞. �

The next result computes the transfer system corresponding to L(
⊕

i∈I λn(i)
∞)

in terms of the translation invariance of I and its reductions. Requiring I to be
closed under additive inversion eliminates an ambiguity arising from the isomor-
phism λn(m) ∼= λn(−m).

Proposition 5.15. Let U =
⊕

i∈I λn(i)
∞, where I ⊂ Z/n contains 0 and is closed

under additive inversion. Then for any natural numbers d | e | n

Cd →L(U) Ce if and only if (I mod e) + d = (I mod e).

Proof. By [3, Theorem 4.18] and Lemma 5.13, we have Cd →L(U) Ce if and only if
there is a Ce-equivariant embedding

⊕

i∈I

e/d−1⊕

a=0

λe(i+ da)∞ ∼= indedres
n
dU ↪→ resneU

∼=
⊕

i∈I

λe(i)
∞.
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We unwind this condition. First, note that we have a Ce-equivariant embedding
as above if and only if we have Ce-embedding λe(i+ da) ↪→

⊕
i∈I λe(i)

∞ for every
λe(i + da) on the left hand side. In turn, we have such embeddings if and only if
every such λe(i+ da) is isomorphic to some λe(j) with j ∈ I, regardless of whether
these representations are irreducible or not.

Now λe(a) ∼= λe(b) if and only if a ≡ ±b mod e. Since I is closed under additive
inversion, it follows Cd →L(U) Ce if and only if for every i ∈ I and a = 0, . . . , e/d−1,
there is some j ∈ I such that i+ da ≡ j mod e. By induction, it is enough to check
when a = 1. Therefore Cd →L(U) Ce if and only if (I mod e) + d ⊂ (I mod e),
which is equivalent to (I mod e) + d = (I mod e) because I is finite. �

Thus, the characterization problem for Cn-linear isometries operads is a problem
in modular arithmetic.

Example 5.16. The transfer systems for C4-linear isometries operads are

U →L(U)

λ4(0)
∞

··
·

(λ4(0)⊕ λ4(1)⊕ λ4(3))
∞

··
·

(λ4(0)⊕ λ4(2))
∞

··
·

(λ4(0)⊕ λ4(1)⊕ λ4(2)⊕ λ4(3))
∞

··
·

These are precisely the saturated C4-transfer systems. Since the Steiner operad

K(λ4(0)⊕λ4(1)⊕λ4(3))
∞ realizes ··

·
, every C4-transfer system is realized by some

K(U) or L(U). The analogous statement for Cp2 is true in general (Corollary 5.19).

Example 5.17. The transfer systems for C6-linear isometries operads are

U →L(U)

λ6(0)
∞

·· ·
·

(λ6(0)⊕ λ6(1)⊕ λ6(5))
∞

·· ·
·

(λ6(0)⊕ λ6(2)⊕ λ6(4))
∞

·· ·
·

(λ6(0)⊕ λ6(3))
∞

·· ·
·

(λ6(0)⊕ λ6(1)⊕ λ6(2)⊕ λ6(4)⊕ λ6(5))
∞

·· ·
·

(λ6(0)⊕ λ6(1)⊕ λ6(3)⊕ λ6(5))
∞

·· ·
·

(λ6(0)⊕ λ6(2)⊕ λ6(3)⊕ λ6(4))
∞

·· ·
·

(λ6(0)⊕ λ6(1)⊕ λ6(2)⊕ λ6(3)⊕ λ6(4)⊕ λ6(5))
∞

·· ·
·

We miss the saturated C6-transfer systems ·· ·
· and ·· ·

· , and many inclusions of

(λ6(0)⊕λ6(1)⊕λ6(5))
∞ and (λ6(0)⊕λ6(3))

∞ into larger universes are not preserved.

5.3. Two special cases. In this section, we assume G is a finite cyclic group whose
order is either a prime power or a product of two distinct primes, and we identify
when every saturated G-transfer system is realized by a linear isometries operad.
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First, suppose |G| is a prime power. Write Gk = Cpk for k = 0, . . . , n, so that
the subgroup lattice of Cpn is

{1} = G0 ↪→ G1 ↪→ · · · ↪→ Gn−1 ↪→ Gn = Cpn .

We choose generators such that each inclusion Gj ↪→ Gj+1 above sends the gener-
ator of Gj to the pth power of the generator of Gj+1.

Theorem 5.18. Let → be a Cpn-transfer system, where p is a prime and n > 0 is
a natural number. Then → is realized by a linear isometries operad if and only if
→ is saturated.

Proof. The “only if” direction is Proposition 5.1. We prove the “if” direction by
direct construction. Suppose → is saturated. By Proposition 5.8, → is generated
by its irreducible relations. Thus, there are integers 0 ≤ k1 < · · · < km < n such
that → = 〈(Gki

, Gki+1
) | 1 ≤ i ≤ m〉. Let I ⊂ Z/pn be the set

I =
{
±(a1p

k1 + · · ·+ ampkm)
∣∣∣ 0 ≤ a1, . . . , am < p

}
,

and let U =
⊕

i∈I λpn(i)∞. We shall prove that → = →L(U). To start, note that
→L(U) is saturated by [3, p. 17], and therefore Proposition 5.8 implies →L(U) =
〈(K,H) |K →L(U) H and (K,H) is irreducible〉. Thus, it will be enough to show
that the irreducible relations in →L(U) are precisely the pairs (Gki

, Gki+1
) for →.

Suppose (Gki
, Gki+1

) is an irreducible generator of →. The set (I mod pki+1)

consists of all residues of the form ±(a1p
k1 + · · · + aip

ki) with 0 ≤ a1, . . . , ai < p,
and this subset of Z/pki+1 is closed under (−) + pki . Therefore Gki

→L(U) Gki+1
.

Now consider an irreducible pair (Gj , Gj+1) for some j 6= k1, . . . , km. We shall
show Gj 6→L(U) Gj+1. We study the cases j < k1, ki < j < ki+1, and km < j

separately. In each case, it will be enough to show pj /∈ (I mod pj+1). If j < k1,
then (I mod pj+1) = {0} ⊂ Z/pj+1, which does not contain pj . If ki < j < ki+1,
then (I mod pj+1) = {±(a1p

k1+· · · aip
ki)} as above, and 0 ≤ a1p

k1+· · ·+aip
ki < pj

for all 0 ≤ a1, . . . , ai < p. Therefore 0 < pj ∓ (a1p
k1 + · · · + aip

ki) < pj+1, and
hence pj /∈ (I mod pj+1). The case where km < j is similar. �

Corollary 5.19. Suppose that p is a prime and that n > 0 is a natural number.
If n = 1 or 2, then every Cpn-transfer system is realized by some Steiner or linear
isometries operad. If n ≥ 3, then there are Cpn-transfer systems that are not realized
by any such operad.

Proof. The result for Cp is trivial, because the minimum and maximum transfer
systems are always realized by Steiner and linear isometries operads. For Cp2 ,

Theorem 4.6 ensures that ··
·
, ··

·
, ··

·
, and ··

·
are realized by Steiner operads, and

Theorem 5.18 ensures that ··
·
, ··

·
, ··

·
, and ··

·
are realized by linear isometries

operads. These transfer systems exhaust Tr(Cp2). If n ≥ 3, then Theorem 4.3
implies the Cpn -transfer system 〈(1, Cp2)〉 is not realized by any Steiner or linear
isometries operad. �

Finally, suppose |G| = pq for primes p < q, and recall the notational conventions
from Figure 2. In the remainder of this section, we shall prove the following result
for Cpq-linear isometries operads.

Theorem 5.20. Suppose p and q are primes such that p < q.
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(1) If p = 2 and q = 3, then every saturated Cpq-transfer system except ·· ·
·

and ·· ·
· is realized by a linear isometries operad.

(2) If p = 2 or 3 and q > 3, then every saturated Cpq-transfer system except

·· ·
· is realized by a linear isometries operad.

(3) If p, q > 3, then a Cpq-transfer system is realized by a linear isometries
operad if and only if it is saturated.

Combining this result with Example 4.13 shows the unrealized transfer systems
in (1)–(3) also are not realized by Steiner operads.

Proof. Part (1) is just Example 5.17, and Lemmas 5.21 and 5.22 below handle parts
(2) and (3). �

We fix notation. For any set I ⊂ Z/pq that contains 0 and is closed under
additive inversion, let →I be the transfer system for L(

⊕
i∈I λpq(i)

∞).

Lemma 5.21. Suppose p and q are prime, p < q, and q > 3. Then we have the
following transfer systems.

I ⊂ Z/pq →I

{0} ·· ·
·

{0,±1,±2, . . . ,±bp/2c} ·· ·
·

{0,±1,±2, . . . ,±bq/2c} ·· ·
·

{0, p, 2p, . . . , p(q − 1)} ·· ·
·

{0, q, 2q, . . . , (p− 1)q} ·· ·
·

{0, 1, 2, . . . , pq − 1} ·· ·
·

Proof. We apply Proposition 5.15 repeatedly. The computations for I = {0} and
I = {0, 1, . . . , pq − 1} are clear, because these index sets correspond to a trivial
universe and a complete universe.

If I = {0, 1, . . . , bp/2c, pq − bp/2c, . . . , pq − 1}, then the inequalities bp/2c <
bp/2c + 1, p, q < pq − bp/2c imply (I mod pq) has no translation invariance. We
obtain bp/2c < bp/2c+ 1 < q− bp/2c using the assumption q > 3, and this implies
(I mod q) also has no translation invariance. Finally, (I mod p) = {0, 1, . . . , p− 1}
is invariant under (−) + 1. Thus, the only nontrivial transfer is C1 →I Cp.

If I = {0, 1, . . . , bq/2c, pq − bq/2c, . . . , pq − 1}, then the inequalities bq/2c <
bq/2c+1, bq/2c+ p, q < pq− bq/2c imply that I has no translation invariance. We
have (I mod p) = {0, 1, . . . , p − 1} and (I mod q) = {0, 1, . . . , q − 1}, which both
are invariant under (−) + 1. Thus, the transfers are C1 →I Cp and C1 →I Cq.

If I = {0, p, 2p, . . . , p(q − 1)}, then 0 < 1 < p and q /∈ I. Therefore I is
only invariant under (−) + p. Next, (I mod p) = {0}, so it has no translation
invariance. Finally, (I mod q) = {0, 1, . . . , q− 1}, which is invariant under (−)+ 1.
Thus, the transfers are Cp →I Cpq and C1 →I Cq. A similar argument works for
I = {0, q, 2q, . . . , (p− 1)q}. �
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Lemma 5.22. Suppose that p and q are prime and p < q. If p = 2 or 3, then ·· ·
·

is not realized by any Cpq-linear isometries operad. If p > 3, then it is realized by
the Cpq-linear isometries operad over U

(
±1, 0, p, 2p, . . . , p(q − 1)

)
.

Proof. Suppose first that p > 3, and let I = {0, 1, p, 2p, . . . , p(q − 1), pq − 1}. Then
I ⊂ Z/pq has no translation invariance because p < p + 1 < 2p and q /∈ I. Next,
(I mod p) = {0, 1, p− 1} also has no translation invariance because 1 < 2 < p− 1.
Finally, (I mod q) = {0, 1, . . . , q − 1}, which is invariant under (−) + 1. Therefore
C1 →I Cq is the only nontrivial transfer.

Now suppose that p = 2 or 3. We shall prove that ·· ·
· cannot be realized by a

linear isometries operad. Suppose I ⊂ Z/pq is such that C1 →I Cq but C1 6→I Cp.
Then I ⊂ p(Z/pq), because if (I mod p) 6= {0}, then respqp U(I) is complete. The
reduction map π : Z/pq → Z/q induces a bijection π : p(Z/pq) → Z/q, and since
C1 →I Cq, we must have π(I) = Z/q. Therefore I = p(Z/pq), and therefore

Cp →I Cpq. Thus, no Cpq-linear isometries operad L(U(I)) can realize ·· ·
· . �

Appendix A. Generating transfer systems

This appendix explains how to generate a transfer system from a prescribed set
of relations. We describe the basic technique (Construction A.1), calculate a few
general cases (Propositions A.5 and A.7), and then reinterpret our construction in
terms of indexing systems and indexing categories (Propositions A.9 and A.11).

Construction A.1. Suppose G is a finite group, and R is binary relation on
Sub(G) that refines inclusion, i.e. if KRH, then K ⊂ H. Define

R0 := R,

R1 :=
⋃

(K,H)∈R0

{(gKg−1, gHg−1) | g ∈ G}

R2 :=
⋃

(K,H)∈R1

{(L ∩K,L) |L ⊂ H}

R3 :=

{
(K,H)

∣∣∣∣∣
there is n ≥ 0 and subgroups H0, H1, · · · , Hn ⊂ G

such that K = H0R2H1R2 · · ·R2Hn = H

}
.

Thus, we close R under conjugation to get R1, we close R1 under restriction to get
R2, and we take the reflexive and transitive closure of R2 to get R3.

Theorem A.2. Suppose R is a binary relation on Sub(G) that refines inclusion.
Then 〈R〉 := R3 is the transfer system generated by R, i.e. R3 the smallest transfer
system that contains R.

Proof. Let R be a binary relation on Sub(G) that refines inclusion. Then R =
R0 ⊂ R1 ⊂ R2 ⊂ R3, and if S is any G-transfer system that contains R, then its
closure properties imply that it must also contain R3. Thus, the argument will be
complete once we prove that R3 is a transfer system.

To start, observe that R2 is closed under conjugation and restriction, and that it
refines inclusion. Now consider R3. It is a preorder by construction, and it refines
inclusion because R2 does. Therefore R3 is also antisymmetric. Conjugating R2-
chains proves that R3 is closed under conjugation. To see that R3 is closed under
restriction, suppose that the chain K = H0R2H1R2 · · ·R2Hn = H witnesses the
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relation KR3H, and that L ⊂ H. Let Li = L ∩ Hi. Restricting the relation
HiR2Hi+1 to Li+1 yields Li = (Li+1∩Hi)R2Li+1 for 0 ≤ i < n. We obtain a chain
(L ∩K) = L0R2L1R2 · · ·R2Ln = L that witnesses (L ∩K)R3L. �

Here is how Construction A.1 works in practice.

Example A.3. We compute the Σ3-transfer system generated by C2 → Σ3, where
C2 = 〈(12)〉. Recall the notation from Figure 4.

R0 R1 R2 R3

·
· · ·

·
·

·
· · ·

·
·

·
· · ·

·
·

·
· · ·

·
·

Strictly speaking, each dot · above represents a relation H → H, and

R0 = {(H,H) |H ⊂ Σ3} ∪ {(C2,Σ3)}.

This distinction is irrelevant because 〈R0〉 = 〈(C2,Σ3)〉. We produced Figures 1–4
by performing calculations like these ad nauseum, and then analyzing the results.

There are a few things we can say about the transfer system 〈R〉 on general
grounds. To start, Theorem A.2 implies the following rough bounds. Say that a
relation K → H nontrivial if K 6= H.

Proposition A.4. Let R be a binary relation on Sub(G) that refines inclusion,
and let N ⊂ G be a normal subgroup.

(1) Suppose that for every relation KRH, we have H ⊂ N . Then H ⊂ N for
every nontrivial relation (K,H) ∈ 〈R〉.

(2) Suppose that for every relation KRH, we have N ⊂ K. Then H 6⊂ N for
every nontrivial relation (K,H) ∈ 〈R〉.

Proof. We start with (1). Assume that KR0H implies H ⊂ N . Then KR1H
implies H ⊂ N , because N is normal, and KR2H implies H ⊂ N from the
transitivity of ⊂. Finally, if (K,H) ∈ R3 is nontrivial, then there is a chain
K = H0R2H1R2 · · ·R2Hn = H with n > 0, and Hn−1R2Hn implies H = Hn ⊂ N .

Now consider (2). Assume that KR0H implies N ⊂ K. Then KR1H implies
N ⊂ K because N is normal. Now suppose that KR2H. We shall prove that if
H ⊂ N , then K = H. For in this case, there are subgroups K ′ ⊂ H ′ ⊃ L′ such
that K ′R1H

′ and (K,H) = (L′ ∩K ′, L′). If H ⊂ N , then L′ = H ⊂ N ⊂ K ′ and
therefore K = L′ ∩K ′ = L′ = H. Finally, we prove that for every (K,H) ∈ R3, if
H ⊂ N , then K = H. For suppose K = H0R2H1R2 · · ·R2Hn = H ⊂ N for n ≥ 0.
If n = 0, there is nothing to check. If n > 0, then since R2 refines inclusion, we
have Hi+1 ⊂ N and HiR2Hi+1 for every 0 ≤ i < n. It follows from the above that
K = H0 = H1 = · · · = Hn = H. �

We now identify 〈R〉 in a two simple cases. We assume that all relations in R
have a shared, normal source or a shared, normal target.

Proposition A.5. Suppose G is a finite group, K CG is a normal subgroup, and
K ⊂ H1, . . . , Hn ⊂ G are subgroups such that the set {H1, . . . , Hn} is closed under
conjugation by elements of G. Then 〈(K,Hi) | 1 ≤ i ≤ n〉 is equal to the relation

→ = {(M,M) |M ⊂ G} ∪

n⋃

i=1

{(M ∩K,M) |M ⊂ Hi}.
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Proof. Let R = {(K,Hi) | 1 ≤ i ≤ n} and keep notation as in Construction A.1.
Then R = R0 = R1, and R2 =

⋃n
i=1{(L ∩K,L) |L ⊂ Hi}.

Suppose that LR3M . Then either L = M , or there is a chain of relations
L = L0R2L1R2 · · ·R2Lm = M for some m > 0. The relation L → M is trivial in
the former case, so assume the latter is true. Then for each 1 ≤ j ≤ m, we have
Lj−1 = Lj ∩ K and Lj ⊂ Hij for some 1 ≤ ij ≤ n. Therefore L0 = L1 ∩ K =
L2 ∩ K = · · · = Lm ∩ K, so that (L,M) = (M ∩ K,M) and M ⊂ Hi for some
1 ≤ i ≤ n. Therefore R3 refines →.

Conversely, suppose L → M and write  = 〈R〉 = R3. If L = M , then L M
by reflexivity. Now suppose L = M ∩K, where M ⊂ Hi for some i. The relation
K  Hi holds by definition, and hence L M holds by restriction. Therefore →
refines  = R3. �

If the set {H1, . . . , Hn} is not closed under conjugation, we close up and then
apply Proposition A.5. This computes 〈(K,H)〉 for any normal subgroup K CG.

The next observation is useful in the dual computation, and in Proposition 4.5.

Lemma A.6. Suppose → is a G-transfer system and K1, . . . ,Kn ⊂ H ⊂ G are
subgroups such that Ki → H for every i = 1, . . . , n. Then K1 ∩ · · · ∩Kn → H.

Proof. We have K1 → H, and for any i = 1, . . . , n− 1, restricting Ki+1 → H along⋂i
j=1 Kj ⊂ H gives

⋂i+1
j=1 Kj →

⋂i
j=1 Kj . Therefore there is a chain

⋂n
j=1 Kj →

⋂n−1
j=1 → · · · → K1 → H, and

⋂n
j=1 Kj → H follows by transitivity. �

Proposition A.7. Suppose G is finite group, H C G is a normal subgroup, and
K1, . . . ,Kn ⊂ H are subgroups such that the set {K1, . . . ,Kn} is closed under
conjugation by elements of G. Then 〈(Ki, H) | 1 ≤ i ≤ n〉 is equal to the relation

→ =

{
(M,M)

∣∣∣∣∣M ⊂ G

}
∪

{
(M ∩Ki1 ∩ · · · ∩Kim ,M)

∣∣∣∣∣
M ⊂ H and

1 ≤ i1, . . . , im ≤ n

}
.

Proof. Let R = {(Ki, H) | 1 ≤ i ≤ n} and keep notation as in Construction A.1.
Then R = R0 = R1, and R2 =

⋃n
i=1{(L ∩Ki, L) |L ⊂ H}.

Suppose that LR3M . As in Proposition A.5, we may assume there is a chain of
relations L = L0R2L1R2 · · ·R2Lm = M for some m > 0. For every 1 ≤ j ≤ m, we
have Lj−1 = Lj ∩Kij for some 1 ≤ ij ≤ n and Lj ⊂ H. Therefore L0 = L1∩Ki1 =

L2 ∩ Ki1 ∩Ki2 = · · · = Lm ∩
⋂m

j=1 Kij , so that (L,M) = (M ∩
⋂m

j=1 Kij ,M) for
some M ⊂ H. Therefore R3 refines →.

Conversely, suppose L → M and write  = 〈R〉 = R3. The relation L  M is
trivial if L = M , so assume L = M ∩Ki1 ∩ · · · ∩Kim for some M ⊂ H and indices
1 ≤ i1, . . . , im ≤ n. The relation Kij  H holds for all j by definition, hence⋂m

j=1 Kij  H by Lemma A.6, and hence L = M ∩
⋂m

j=1 Kij  M by restriction.
Therefore → refines  = R3. �

If the set {K1, . . . ,Kn} is not closed under conjugation, we close up and then
apply Proposition A.7. This computes 〈(K,H)〉 for any normal subgroup H CG.

If K,H CG are both normal, then Propositions A.5 and A.7 have the following
common specialization.

Corollary A.8. Suppose G is a finite group, K,H C G are normal subgroups of
G, and K ⊂ H. Then 〈(K,H)〉 = {(M,M) |M ⊂ G} ∪ {(M ∩K,M) |M ⊂ H}.
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The transfer system → = 〈(K,H)〉 can be quite complicated when neither K
nor H is normal in G, but we can say the following for certain. Recall that the
normal closure of H is the join of all conjugates of H in G, and dually, the normal
core of K is the intersection of all conjugates of K in G. Proposition A.4 bounds
〈(K,H)〉 above and below by these subgroups. Additionally, Lemma A.6 implies
that for any g1, . . . , gn ∈ NH, we have

⋂n
i=1 giKg−1

i → H.
We conclude by recasting Construction A.1 in terms of indexing systems and

indexing categories. We start with indexing systems. Suppose that O is a set of
orbits H/K, for some subgroups H ⊂ G. Define the graph →O of O exactly as in
Definition 3.2:

K →O H if and only if K ⊂ H and H/K ∈ O.

Thus →O is a binary relation on Sub(G) that refines inclusion, and the transfer
system 〈→O〉 is well-defined. Recall the isomorphism →• : Ind(G) � Tr(G) : I•
of Theorem 3.7.

Proposition A.9. Suppose that O is a set of orbits. Then I〈→O〉 is the indexing
system generated by O. Equivalently, →〈O〉= 〈→O〉.

Proof. For any indexing system I, we have:

O ⊂ I ⇐⇒ →O refines →I ⇐⇒ 〈→O〉 refines →I ⇐⇒ I〈→O〉 ⊂ I.

Taking I = I〈→O〉 proves that O is contained in the indexing system I〈→O〉, and
the equivalences above prove that I〈→O〉 is the least such indexing system. �

Corollary A.10. Suppose that O is a set of orbits, and let 〈O〉 be the indexing
system that it generates. Then H/K ∈ 〈O〉 if and only if (K,H) ∈ 〈→O〉.

Now for indexing categories, let Oπ
G be the wide subcategory of OG that consists

of all projection maps of the form π(gK) = gH : G/K → G/H, for some subgroups
K ⊂ H ⊂ G. Suppose G ⊂ Oπ

G is a wide subgraph, by which we mean a sub-
directed graph of Oπ

G that contains all objects of Oπ
G. We define a relation →G on

Sub(G) by

K →G H if and only if K ⊂ H and (π : G/K → G/H) ∈ G .

Thus, →G is a binary relation on Sub(G) that refines inclusion, and the transfer

system 〈→G 〉 is well-defined. Recall the isomorphism SetG• : Tr(G)� IndCat(G) :
→• of Corollary 3.9. The next result is proven the same way as Proposition A.9.

Proposition A.11. Suppose G is a wide subgraph of Oπ
G. Then SetG〈→G 〉 is the

indexing category generated by G . Equivalently, →〈G 〉= 〈→G 〉.

Corollary A.12. Suppose G is a wide subgraph of Oπ
G and let 〈G 〉 be the indexing

category that it generates. Then a morphism f : S → T is in 〈G 〉 if and only if
(Gs, Gf(s)) ∈ 〈→G 〉 for every s ∈ S.
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