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Abstract—In this work, we propose a two-stage multi-agent
deep deterministic policy gradient (TS-MADDPG) algorithm for
communication-free, multi-agent reinforcement learning (MARL)
under partial states and observations. In the first stage, we
train prototype actor-critic networks using only partial states at
actors. In the second stage, we incorporate partial observations
resulting from prototype actions as side information at actors
to enhance actor-critic training. This side information is useful
to infer the unobserved states and hence, can help reduce the
performance gap between a network with fully observable states
and a partially observable one. Using a case study of building
energy control in the power distribution network, we successfully
demonstrate that the proposed TS-MADDPG can greatly improve
the performance of single-stage MADDPG algorithms that use
partial states only. This is the first work that utilizes partial local
voltage measurements as observations to improve the MARL
performance for a distributed power network.

Index Terms—Multi Agent Reinforcement Learning, Policy
Gradient, Partially Observable, Actor-Critic

I. INTRODUCTION

Multi-Agent reinforcement learning (MARL) [1]–[4] has
been applied to a variety of applications including traffic
control [5], energy distribution [6], robots [7], and the analysis
of economic and social problems [8]. In MARL, agents
learn collaboratively to find optimal policies. Policy gradient
based MARL algorithms [2], [4], in particular, have been
proposed to directly optimize policy parameters along the
gradient direction. For continuous action space and deter-
ministic policies, multi-agent deep deterministic policy gra-
dient (MADDPG) [4] applies model-free, off-policy actor-
critic algorithm to compute policy gradient. It adopts the
framework of centralized training with decentralized execution
to overcome the challenge of non-stationarity in MARL. Note
that in MADDPG, while the critic is augmented with full state
information and other agents’ policies to enhance training,
each agent often has access to partially available states under
partially observable environments. This causes performance
degradation of MADDPG compared to the case with full state.

In this work, to tackle the challenge of partial observability,
we propose a two stage MADDPG algorithm, termed as TS-
MADDPG, to improve the performance of the existing one-
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stage MADDPG by utilizing side information. This work is
motivated from the study of a power network, where each
agent has access to not only local state (baseline demand), but
also local voltage measurements, which is a function of both
globe states and actions (power consumption). We propose
the use of side information (voltages in the case of power
network) to improve the performance of MADDPG. In the first
stage of the proposed TS-MADDPG, we train prototype actor-
critic networks assuming actors only have access to local state
information. Once the prototype networks are trained, we train
the second stage actor-critic networks assuming actors now
have access to not only local state information, but also local
voltage measurements. The latter result from actions generated
using the first stage prototype networks. We show performance
enhancement of TS-MADDGE over that the one-stage version
using the power network as a case study.

While the use of MADDPG has been investigated in the
literature for power networks [9], to the best of our knowledge,
this is the first work that utilizes voltage measurements and
the two stage design to improve its performance. We note that
the proposed TS-MADDPG has a lower training complexity
than those based on the recursive structure [10], [11]. This
is because the two stage training is done in a sequential
manner, which provides better training stability than that of
the recursive based structure. In addition, in TS-MADDPG,
we do not require any communication among agents. This
saves the communication overhead required for the MAML
algorithms in [1].

The remainder of the paper is organized as follows: Section
II provides the background of MARL. Section III presents
the architecture and algorithm of the proposed TS-MADDPG.
Section IV introduces a case study of power distribution
network. In Section V, we present simulation studies of
TS-MADDPG and compare with other existing algorithms.
Section VI includes conclusions and future work.

II. BACKGROUND

We consider multi-agent reinforcement learning (MARL)
with a decentralized markov decision process (MDP) and
partially observable states, denoted as (M,S,A,P,R). Here,
M is a set of m agents, S = ×iS(i) is the set of joint
state space, A = ×iA(i) is the joint action space, R is the
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reward function. Each agent i executes action a(i) ∈ A(i). The
joint action a = (a(1), · · · , a(m)) causes state transition from
s ∈ S to s′ ∈ S with probability P (s′|s; a) = P(s, a; s′).
Each agent i only has access to its local state s(i) and has its
own policy µ(i) : S(i) → A(i). The joint policy is denoted
as µ = (µ(1), · · · , µ(m)). The agents receive a shared joint
reward of rt+1 = R(st, at) at each time t+ 1. The goal is to
maximize the expected return, J = E(

∑∞
t=0 γ

trt+1), where γ
is the discount factor.

While the MADDPG algorithm can be applied to an MDP
with partially observable states, the performance loss can be
significant compared to that with full states. Hence, in this
work, we propose to compensate this loss by the use of local
observations. Specifically, at each time t, we assume that
each agent also has access to local observations o(i)t ∈ Ω(i),
which are determined by the joint action at−1 and joint state
st−1 from time t − 1. We propose to incorporate this side
information in our RL algorithm design such that the agents
can take advantage of these to find better policies. We note that
our MARL formulation is different from that of the standard
decentralized partially observable MDP (Dec-POMDP). The
latter assumes that each agent takes an action based on local
observations only. However, in our setting, local observations
are used as side information besides the local states to help
generate better policies. Furthermore, the states considered in
our MDP formulation cannot be thought of observations in the
Dec-POMDP because they are not necessary a consequence of
the actions.

III. TWO-STAGE MULTI-AGENT DDPG (TS-MADDPG)

In this section, we present the proposed TS-MADDPG. We
will begin with a brief description of the one-stage MADDPG,
followed by the proposed two-stage design.

One-stage MADDPG: We can apply the MADDPG algo-
rithm to optimize the multi-agent policies. This gives the one-
stage MADDPG. Each policy is parameterized by weights θ.
To handle nonstationarity in the multi-agent framework, each
agent’s critic uses all agents’ states and actions for training,
while each actor uses only its partial states. The policy gradient
with respect to agent i’s policy parameterization is

∇
θ
(i)
µ
J(µ(i)) =Es,a∼D

[
∇
θ
(i)
µ
µ(i)(a(i)|s(i))

∇a(i)Q(i)
µ (s, a)|a(i)=µ(i)(s(i))

]
,

where D is replay buffer.
We modify the actor critic network proposed in DDPG [12]

for the One-stage MADDPG. The one-stage MADDPG actor
network consists of three fully connected layers, each of which
has layer normalization and ReLU, the final output layer of
the actor is a tanh layer. Critic network has two separate
inputs(states, actions). states input is through 2 fully connected
layer with Layer normalization and ReLU and actions are not
included until the second fully connected layer of the critic
network. The last fully connected layer is attached to the critic
network output.

Two-stage MADDPG: While one can directly apply the
one-stage MADDPG to train actor-critic networks, we find
that, due to the partial state input s(i), the performance of the
trained networks is much inferior to that of the case where
each agent has access to the full state s. Thus, to overcome
this issue, we propose a novel two-stage MADDPG algorithm,
termed TS-MADDPG. We employ a novel actor-critic design
that allows the networks trained in the first stage to interact
with the environment and generate partial observations. The
resulting partial observations, together with the partial actions
that led to these observations, are used as the input of the new
actor network in the second stage. This approach allows the
network to implicitly learn the unobserved states from the past
experience.

Figure 1a shows a diagram of the sample generation in
the training of TS-MADDPG with two agents. The actor
networks in stage 1, denoted by µ̃(1) and µ̃(2), are obtained
by a one-stage MADDPG algorithm with partial state inputs
s(1) and s(2), respectively. The outputs of the stage 1 actor
networks produce initial actions a = (ã(1), ã(2)). By applying
joint action a to the environment, we obtain observations
o = (o(1), o(2)). The action-observation pair (ã(i), o(i)) and
s(i) are inputs to the second stage actor network for each
agent i. In Figure 1b, we show the actor and critic updates
in TS-MADDPG training. Note that the mini-batches are
taken from the replay buffer that are filled with samples
generated as shown in Figure 1a. A detailed description of
the TS-MADDPG is shown in Algorithm 1 at the end of this
document.

IV. A CASE STUDY OF DECENTRALIZED BUILDING
ENERGY CONTROL IN POWER DISTRIBUTION NETWORK

To evaluate the proposed TS-MADDPG in practical appli-
cations, we conduct a case study by considering a building
energy control problem in a power distribution network for
reliable and low-cost grid operation. To simplify the discussion
and better illustrate the proposed TS-MADDPG, assume each
node of the distribution network is connected to only one
building complex whose real and reactive power consumption
and generation can be controlled through charging and dis-
charging onsite energy storage systems, setpoint adjustment of
HVAC units, and generation adjustment of power generation
units. Each building is an agent and the whole power distribu-
tion network is the environment. The radial power distribution
network (the environment) used here is a simplified single-
phase IEEE-13 Node Test Feeder, as shown in Figure 2.

Let the 13 nodes indexed by i = 0, . . . , 12, where Node
i = 0 is the feeder head with a constant voltage V0. To ensure
reliable grid operation, voltage magnitudes at all nodes should
be maintained within a certain range. Let V ∈ R12 denote the
vector containing the squared voltage magnitude p.u. of all the
remaining 12 nodes. Then based on the LinDistFlow model,
at any time instant, we have

V = V0112 − 2RP − 2XQ, (1)
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(a) Replay buffer sample generation

(b) Actor-critic updates

Fig. 1: Illustration of TS-MADDPG training with two agents
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Fig. 2: Case study: Building energy control in a power distribution
network.

where P = P b + P c ∈ R12 and Q = Qb + Qc ∈ R12 are
the net real and reactive power consumption at all 12 nodes
with positive indicating consumption and negative indicating
generation, and matrices R ∈ R12×12 and X ∈ R12×12

are constant matrices derived from the distribution network
topology and configuration. In the proposed TS-MADDPG
framework, P b and Qb are the baseline net real and reactive
power consumption vectors, which are regarded as state, P c

and Qc are the controllable net real and reactive power
consumption, which are considered as action. We note that the
actions here are continuous valued. The voltage magnitude Vi,
at the ith node, is considered as local observation. Similarly,
by using the LinDistFlow model, the total power loss of the
entire distribution network at any time instant can be calculated
as

L(P ,Q) = P TR̃P + QTX̃Q, (2)

where R̃ ∈ R12 and X̃ ∈ R12 are constant matrices derived
from the distribution network topology and configuration. The
local generation function ci(p, q) of each building i can take
the form as

ci(p, q) = αi,P ·p2 +βi,P ·p+γi,P +αi,Q ·q2 +βi,Q ·q+γi,Q,
(3)

where αi,P > 0 and αi,Q > 0.
Moreover, at any time, the negative total power loss

of the distribution network −L(P ,Q) is regarded as the
global reward, and the negative generation/consumption cost
−ci(Pc,i, Qc,i) of each building i is regarded as the local
reward. The goal is to minimize the total power loss plus
all the local generation/consumption costs, which can be
formulated as the following optimal power flow problem.

min
P c,Qc

L(P ,Q) +
12∑
i=1

ci(P c(i),Qc(i))

s. t. P c ≤ P c ≤ P c

Q
c
≤ Qc ≤ Qc

V ≤ V ≤ V ,

(4)

where P c, P c, Q
c
, and Qc are vectors containing local

physical limits of all buildings’ energy units, and V and V
are vectors denoting the nodal voltage bounds.

V. NUMERICAL RESULTS

In this section, we present numerical results of the proposed
TS-MADDPG using the case study of building energy control
in a power distribution network. The following hyper param-
eters are adopted in the simulations.
• Actor and critic learning rate: 2.5× 10−4

• Soft target update τ : 0.001
• Dimension of the 1st, 2nd hidden layers in actor and critic

network: 64
• Action-observation pair (ã(i), o(i)) and s(i) are concate-

nated for the inputs to the second stage actor network for
each agent i

• Exploration noise process: Gaussian with µ = 0 and σ =
0.05

• Replay buffer size: 105, Batch size: 1024
The training and testing data are generated in the following

way: The feeder head voltage v0 is 2.97 kV. 50,000 sets
of data were generated for training and another 10,000 sets
were generated for testing. In each set of data, P b was
generated randomly by following a uniform distribution in
±210 kW to mimic real power generation and consumption,
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Qb was generated accordingly to maintain 0.9 power factor,
the optimal P c and Qc were obtained by directly solving
Eqn. (4) using quadratic programming with ±105 kW (kVar)
real (reactive) power bounds and [0.95, 1.05] p.u. voltage
magnitude bounds, the optimal local and global rewards were
generated accordingly and were used as benchmark.

In Figure 3, using the power distribution network described
in Section IV, we show performance comparisons of the
proposed TS-MADDPG with two versions of MADDPG (one-
stage only) and MA-RDPG, in which DDPG of MADDPG [4]
is replaced with RDPG [10]. We divide the 12 nodes (see Fig.
2) into two groups of six nodes each and treat each group as
an agent. Each agent has access to only the local states and
observations of the six nodes in the group. The MA-RDPG
and two versions of one-stage MADDPG have partial states
as inputs, but one (MADDPG-1) has a shared critic for both
agents, and the other (MADDPG-2) has a separate critic for
each agent. The Figure 3a shows a histogram of the evaluation
results of the trained networks using the three methods. The
x−axis is the reward percentage error rate (PER), defined as
Er = (r∗ − r)/r∗, where r∗ is the optimal reward obtained
by a conventional centralized optimization algorithm, and r is
the reward obtained by applying the generated actions using
each of the three RL algorithms. Here, the expectation is
calculated over a total of 6·104 independently generated states.
Here, the states denote the nodal baseline power consump-
tion/generation, which are in nature independent of each other
and over time. This corresponds to T = 1 and a discount factor
γ = 0 in Algorithm 1. We assume that components of each
state vector follow a Gaussian distribution with zero mean and
a variance of 106. We note that the conventional algorithm is
centralized and assumes full knowledge of the states and the
distribution network. It has to be re-run for each new state to
compute r∗. The four RL algorithms, on the other hand, do not
assume any prior knowledge of the power network topology
and configuration.

From Figure 3, we see that the histogram of TS-MADDPG
has a peak that is noticeably higher and located closer to the
left side of the graph. This shows that for a higher percentage
of states, TS-MADDPG can generate near optimal actions
with rewards that are closer to those of the optimal values
(corresponding to a smaller reward PER). We also observe
that, with the one-stage MADDPG-1 and MADDPG-2, the
histograms show a heavier tail. This means the probability that
the one-stage MADDPG algorithms fail to generate a near
optimal action is higher than that of TS-MADDPG. These
observations are further confirmed in Figure 3b. We note
that TS-MADDPG consistently achieves a lower reward PER
with higher probabilities. MA-RDPG shows relatively lower
PER than the two MADDPGs, but it requires more training
episodes to achieve the optimized performance as depicted in
Figure 3c. TS-MADDPG’s first stage training time is similar
to MADDPG but the second stage can be trained with a much
smaller number of episodes.

We comment that while TS-MADDPG shows improved
performance compared to the one-stage algorithms, the av-

(a) Histograms of reward percentage error rate (PER)

(b) Er denotes reward PER achieved by the RL algorithm

(c) The number of episodes for training over various algorithms

Fig. 3: Performance comparisons over different MARL architectures.

erage reward PER remains about 17.5%, which is higher than
the 8% PER of a centralized MADDPG algorithm with full
states. This occurs likely because the large variance of the
states causes some unresolved uncertainty in the actor network
training due to partial states, even with the help of local
observations. We plan to extend TS-MADDPG to multiple
stages (≥ 3) or take into account additional past action-
observations pairs in order to further reduce this gap.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel two-stage MADDPG
algorithm that can effectively improve the agents’ collabo-
ration without the need for communications among agents.
The use of local observations as side information to enhance
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the learning performance of a one-stage MADDPG with
partial states is a main novelty of this work. We demonstrate
substantial improvements of TS-MADDPG using a case study
of the power distribution network. In prior studies of RL
for power networks, only partial states were used to train
the optimal control policies. This work is the first to use
voltage observations in additional to partial states to train
actor-critic networks and show improved performance. As a
continuation of this work, we plan to investigate multi-stage
MADDPG (MS-MADDPG) to examine the impact of having
a greater number of stages (≥ 3) on the RL performance. It is
expected that the performance of MS-MADDPG will continue
to improve as the number of stage increases. Furthermore, we
note that the training time of the later stage networks decreases
greatly as the trained networks from previous stage continue to
improve. We also plan to explore the possibility of designing
a fixed actor network for each agent that it can be applied
iteratively under the same environment, using refined action
and observation pairs from previous iterations as inputs.
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Algorithm 1: Two-Stage Multi-Agent DDPG
under Partial States and Observations
Stage 1: Train the first stage actor-critic network
µ̃(i)(s(i)) and Q̃(i)(s, a) by MADDPG algorithm,
i = 1, · · · ,m;
Stage 2: Load pre-trained first stage actor-critic
networks µ̃(i), Q̃(i), i = 1, · · · ,m
Randomly initialize all agents’ second stage actor
network µ(i)(s(i), ã(i), o(i)) with weight θ(i)µ ,
i = 1, · · · ,m

Initialize replay buffer D
for episode=1 to M2 do

Initialize a random process N for action
exploration

Start with a new state s
for t=1 to max-episode-length do

for each agent i, select action ã(i) = µ̃(i)(s(i))
according to the current policy

Execute actions ã =
(
ã(1), · · · , ã(m)

)
and

obtain local observation o =
(
o(1), · · · , o(m)

)
for each agent i, select action
a(i) = µ(i)(s(i), ã(i), o(i)) +Nt w.r.t the
current policy and exploration noise

Execute actions a =
(
a(1), · · · , a(m)

)
and

observe reward r and the new state s′ and the
new observation o′

Store (s, ã, o, a, r, s′, o′) in replay buffer D
s← s′

for agent i = 1 to m do
Sample a random mini-batch of S samples
(sj , ãj , oj , aj , rj , s

′
j , o
′
j) from D, j is the

sample index
Set
yj =r

(i)
j +γQ

′(i)
µ′ (s′, a′(1), · · · , a′(m))|a′(i) ,

where a′(i) = µ(i)(s′j
(i), a

(i)
j , o′j

(i))
Update critic by minimizing the loss

L = 1
S

∑
j

(
yj −Q(i)

µ (sj , aj)
)2

Update actor using the sampled policy
gradient:

∇
θ
(i)
µ
J ≈ 1

S

∑
j

[
∇
θ
(i)
µ
µ
(i)
j ·

∇a(i)Q
(i)
µ

(
sj , a

(1)
j ,· · ·,a

(i)
j , · · ·, a(m)

j

)∣∣∣∣
a
(i)
j =µ

(i)
j

]
where µ(i)

j = µ(i)(s
(i)
j , ã

(i)
j , o

(i)
j )

end
Update target network parameters for each
agent i:
θ
′(i)
µ ← τθ

(i)
µ + (1− τ)θ

′(i)
µ

θ
′(i)
Q ← τθ

(i)
Q + (1− τ)θ

′(i)
Q

end
end
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