ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 55-37 (2022) 369-375

A Failure Identification and Recovery

Framework for a Planar Reconfigurable

Cable Driven Parallel Robot *

Adhiti Raman * Ian Walker * Venkat Krovi*
Matthias Schmid *

* Clemson University, Clemson, SC 29607, USA (e-mail:
adhitir,iwalker, vkrovi,schmidm@clemson. edu,).

Abstract: In cable driven parallel robots (CDPRs), a single cable malfunction usually induces
complete failure of the entire robot. However, the lost static workspace (due to failure) can
often be recovered through reconfiguration of the cable attachment points on the frame. This
capability is introduced by adding kinematic redundancies to the robot in the form of moving
linear sliders that are manipulated in a real-time redundancy resolution controller. The presented
work combines this controller with an online failure detection framework to develop a complete
fault tolerant control scheme for automatic task recovery. This solution provides robustness by
combining pose estimation of the end-effector with the failure detection through the application
of an Interactive Multiple Model (IMM) algorithm relying only on end-effector information.
The failure and pose estimation scheme is then tied into the redundancy resolution approach to
produce a seamless automatic task (trajectory) recovery approach for cable failures.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Robotics, identification and fault detection, parallel robots, identification and
control methods, fault accommodation and reconfiguration strategies.

1. INTRODUCTION

Cable driven parallel robots (CDPRs) are lightweight
mechanisms in which cables replace traditional rigid link
actuators. They can be designed and structured to provide
manipulability over large workspaces, with a high ratio
of stiffness to mass, thus proving useful in application
domains such as painting (Gagliardini et al. (2015)), in-
spection (Izard et al. (2013)), warehousing, and manufac-
turing, including small-scale and large-scale 3D printing
(Chesser et al. (2022); Jamshidifar et al. (2015); Izard
et al. (2017)). Traditional CDPRs have fixed workspace
domains and generally invariant maps of workspace and
performance quality within those domains. Here, the ad-
dition of modularity to the design in the form of geomet-
ric reconfigurability offers the advantageous flexibility to
improve performance at the end-effector or to move the
robot into previously inaccessible workspace domains. This
has been demonstrated in numerous recent approaches
(Rasheed (2019); Zhou et al. (2014); Raman et al. (2020);
Seriani et al. (2016)). In this study, we demonstrate a
new advantage of incorporating modularity by utilizing the
offered kinematic redundancies for failure tolerant control.

Maintaining robot operation despite actuator failure is
a rich field of study, especially in aerospace and space
robotics where mechanical and controller redundancies are
design critical. Despite cable failures being a common
problem in CDPRs, however, research on failure tolerant
control in this domain remains sparse. As cables can only
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exert positive tension at the end-effector, this introduces
a layer of complexity to more traditional forms of control.
The flexibility of the cable introduces unmodeled dynamics
and actuator faults which can lead to large uncontrolled
tensions in the cables and therefore can cause failures.
Here, kinematic redundancy may be employed to overcome
cable or actuator failures by utilizing geometric reconfig-
uration to actively rearrange the attachment points in
the structure. This ensures that the static traversable
workspace lost through cable failure is quickly recovered.
Furthermore, an online-redundancy resolution algorithm
ensures that the static workspace travels with the end-
effector. The basic idea is depicted in Fig. 1.

This study is part of a larger effort that aims at advanc-
ing the development of a cooperative robot (cobot) for
assisting concrete delivery in tasks such as 3D concrete
printing or human directed concrete applications. This
cobot is expected to consist of two subsystems: (i) a cable

(b)

Fig. 1. (a) Cable failure (b) Reconfigurability allows the
trajectory tracking to continue

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.11.211



370 Adhiti Raman et al. / I[FAC PapersOnLine 55-37 (2022) 369375

driven parallel manipulator that controls a payload over
a large workspace (called the macro-manipulator); and
(ii) a continuum robot enclosing a concrete delivery tube
that provides precisely directed control through congested
spaces (called the micro-manipulator) (Srivastava et al.
(2022)). The presented work contributes to the develop-
ment of the first subsystem, for which we have chosen to
utilize a kinematically redundant CDPR. We presented
the modeling and development of kinematically redundant
CDPRs in our previous work (Raman et al. (2021)).

In this paper, we employ geometric redundancies with
redundancy resolution control to traverse a trajectory in
spite of cable failures. The proposed framework consists
of two parts: (i) a failure detection and identification
(FDI) section that introduces the use of an Interactive
Multiple Model Adaptive Filter; and (ii) a fault tolerant
control (FTC) section that utilizes a switching feedforward
kinematic controller in tandem with the estimator to form
a robust and automatic task recovery scheme.

2. RELATED WORK

The use of kinematic redundancy to allow serial rigid-link
robots to compensate for joint failures has had a long
history (Visinsky et al. (1994); Maciejewski (1990)). Early
studies accounting for cable failures in CDPRs (Roberts
et al. (1998)) showed that a static equilibrium could be
maintained (upon failure) if the end-effector has been
in specific singular configurations. Bosscher and Ebert-
Uphoff (2004) noted that there are two kinds of failure
modes: cable breakage due to excessive positive cable
tensions or slackness due to the lack of any tension. Notash
(2012) looked into additional cable failures, such as stuck
actuators (applying a passive restraint on the end-effector)
or situations in which the actuator moves but the output
is biased. However, these works are limited to kinematic
models and CDPRs with ideal and inelastic cables. Other
approaches (Passarini et al. (2019) and Boumann and
Bruckmann (2022)) presented interesting emergency stop
strategies (upon cable failure) in cable suspended robots
with the focus being on minimizing the safety risk instead
of the continued functioning of the robot.

Although FDI, FTC, or task recovery is a well explored
domain in aerospace applications, literature on the same
topics in the field of cable driven manipulators is almost
non-existent. A fairly popular general technique employed
for FDI in other domains is the use of Multi Model Adap-
tive Estimation (MMAE) filters that assume knowledge of
all the possible failure modes that may occur. In this study,
we use an Interactive MMAE or IMM for short. IMMs have
a rich history in trajectory tracking (Mazor et al. (1998))
and behaviour prediction (Gill et al. (2019)) as well as in
fault detection and identification (Tudoroiu and Khorasani
(2005)). Many of these studies focus on FDI only and
do not attempt to integrate controllers for task recovery.
One of the few exceptions is the work of Hill et al. (2021)
where a nonlinear Model Predictive Controller is applied
to recover from reaction wheel failures that are identified
through an UKF based IMM for satellite maneuvering.
Here, we employ a similar framework for FTC.

For our approach, the cables are modeled as elastic springs.
Furthermore, we assume that the employed dynamic mod-

2 cables fail

No Failures

1 cable fails

Fig. 2. The 3 kinds of failures in a 4 cable kinematically
redundant CDPR

els are erroneous and do not correspond perfectly to phys-
ical reality (e.g., through parametric uncertainties and
process noise). We also assume that encoder readings do
not correspond accurately to the true position of the end-
effector and constitute an unreliable source of information;
a reasonable assumption to make when accounting for elas-
ticity in cables. There are several studies addressing the
ineffectiveness of relying solely on forward kinematics from
cable length measurements to determine end-effector pose,
such as works by Le Nguyen and Caverly (2021); Korayem
et al. (2018); Caverly and Forbes (2016) where techniques
based on Extended (EKF) and Unscented (UKF) Kalman
Filtering based on data from payload mounted IMUs have
been implemented to mitigate this issue.

The IMM applies a parallel bank of filters, each corre-
sponding to one of the various failure modes. The out-
put provides an estimate of model corrected pose to-
gether with an understanding of the current working mode.
Then, the controller computes a mixed joint input to the
plant /environment based on real-time information from
the IMM. This approach simultaneously detects the fault,
provides a corrected estimate, and updates the input, such
that the system can robustly cope with sudden failures.
This paper serves as a proof-of-concept with key contri-
butions as follows: (i) an Interactive Multi Model Filter
is derived and demonstrated as a robust estimator for
cable failure detection and identification (FDI) as well
as for real-time pose estimation in CDPR applications;
and (ii) a first iteration of a proportional-derivative based
fault-tolerant control algorithm for task recovery through
redundancy resolution post FDI is demonstrated.

3. FAILURE MODES

The loss of cables in a CDPR reduces the degrees of
freedom (DOF's) or the quality of the DOF available at the
end-effector. We consider 2 DOF's at the end-effector for
the four-cable planar CDPR model in this paper. The total
working modes considered can be described by 3 motion
models: (i) an over-constrained CDPR with 4 cables; (ii) a
fully constrained CDPR with 3 cables; and (iii) an under-
constrained CDPR with two cables (Fig 2).

Therefore there is a total of 7 working modes: no cables
have failed (mode 1), only cable A, B, C, or D fail (modes
2-5), cables A and B have failed (mode 6), or cables C and
D have failed (mode 7). If any other failure combination
occurs, the robot becomes non-navigable for significant
areas of the workspace.
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Fig. 3. The kinematically redundant 4 cable CDPR
4. CDPR DYNAMICS

This section discusses the dynamic model of a planar
kinematically redundant CDPR with a 2-DOF platform
that is driven by 4 cables and 4 linear actuators housing
the cable winch mechanism. The full kinematic model
has been presented in our previous work (Raman et al.
(2021)). Typical CDPRs require a greater number of cables
than the degrees of freedom at the end-effector to be
fully constrained. In our model, the cable elements are
considered as linear springs with the specific stiffness
(stiffness per unit free cable length) of the cable given by
ko,;. Each cable link forms a prismatic joint between the
end-effector {F'}; and the base {S3}; attachment points.
The joint length is then given by I, ; which is actuated by
a motor-encoder whose position is given by ;. This term
should ideally be r6; where r is the motor winch radius,
but since r is a constant, we subsume the entire term under
a generic notation ¢;. Due to the elasticity, {,;  0;. The
cable stiffness at the current time step is given by k; =
koi/lp.i, where [, ; is determined from inverse kinematics
under the assumption of an available end-effector pose
(for the controller this comes from forward kinematics).
The tension in the cables is given by k;(l,; — 6;), where
lpi > 0; to prevent cable sag. The geometric attachment
points, {S2};, are not constant as in traditional CDPRs,
but instead move along linear actuators along the x-axis of
the base frames {51 };. The longitudinal positions of these
attachment points with respect to the base frame are given
by ls;. For our model, the linear sliders are considered
to be perfect without providing any additional dynamic
effects (subject only to limits on velocity). The complete
joint input vector can then be expressed as q = [l5 ).
Note that the lower level control signals translating joint
inputs to actuator torque occur independent of the CDPR
control loop and are therefore not modeled here.

The cable failure is modeled as a sudden drop in the cable
stiffness of the failed joint, i.e., k; — 0 over a small time
interval of At = 0.1s. The full dynamic model of the
system can then be derived via the Lagrangian approach
as

M, + Dk = P(xe, 1) Ky [L(xe, 1) = 6] (1)

where x. = [z, vy, ¢] is the end-effector pose. P(x., 1) is the
pulling map or wrench Jacobian. The prismatic length 1,
comes from inverse kinematics. Both are dependent on the
current pose X, and geometric attachment points 1; while

—p
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e—n
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Likelihood Wn

Markov Transition
Probability Matrix

Fig. 4. The Interactive Multiple Model (IMM) filter

the joint state stiffness matrix K is a diagonal matrix with
the elements (k1, ..., ks). The mass and damping matrices
are M and D respectively. This formulation ignores the
effects of gravity (as the system is planar).

5. MOTION MODELS

Three motion models are employed to describe the seven
working modes. For each working mode, the effect of the
corresponding cable failure is incorporated in the dynamic
model. The states of the end-effector are given by x =

[xe Xe]T. The resulting non-linear system model is given
by
X(t) = f(x(t), u(t),t) + w

y =h(x(t),t) +v (2)
where w and v are zero mean Gaussian vector processes
accounting for model and measurement noise. The input
u(t) to the system is given by the joint input position
vector q(t). The non-linear vector functions f and h emerge
as

Xe

f(x,u) = |:M—1P(xe7ls)Kq 1 (xe, 1) —
) = 5 Y

where the explicit dependence on time has been dropped
for ease of notation. The measurement model assumes that
noisy position data is directly available, for instance by
separately pre-processing and filtering information from
an on-board IMU.

6] — M~'Dx,

6. INTERACTIVE MULTIPLE MODEL ESTIMATION

An interactive multiple model filter (IMM) is a dynamic
estimator (Blom and Bar-Shalom (1988)) which can be
used when model changes appear suddenly or gradually
over time, thus providing means for failure detection. The
process flow of an IMM is shown in Fig. 4. In general, the
bank of filters in an IMM can be realized by a variety of es-
timation approaches, i.e., Kalman Filters (KF), Extended
Kalman Filters (EKF), Unscented Kalman Filters (UKF),
Particle Filters (PF), et cetera. In this initial study, we
employ an EKF formulation in which the error dynamics
are approximated by a first order Taylor series expansion
about the estimated state, x, i.e.

of(x, u) _ Oh(x)
ox Iz H= ox Iz

F= (4)
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Here, ' and H can be determined numerically by a
complex step derivative approximation. In this study, the
EKF is applied in the discrete time domain; hence, the
FEuler-Maruyama discretization of the motion model yields

Xp = Xp—1 + f(xXp_1,q5_1) At Fwp VAL

A(Xk—1,9p_1)
Yi = h(xg) + v (5)

where y € R™ is the measurement vector, wy, ~ N (0, Q)
denotes the process noise with covariance @ € R™*™ and
v ~ N (0, Rg) is the measurement noise with covariance
Ry, € R™*™ The sampling time is denoted by At, and k
is the current time step.

Let M be the number of all working modes in a CDPR
at the k*" time step. Then, the input to the filter is the
current measurement and mixed state estimate x°. The
algorithm broadly consists of four stages (Gill (2019)):

(1) Interaction and Mixing: The weights and the esti-
mates from the last cycle are mixed as per their asso-
ciated Markov transition probabilities. The predicted
probability for the filter to end up in mode j in each
cycle, given that it was in the mode i during the
previous cycle is given by

wlil?) — 1 L wfpyy
e

. M .
&= wpy (6)
i=1

with &, being the normalization factor, and where p;;
is the Markov transition probability from mode 7 to
mode j. This matrix is tuning factor and is deter-
mined heuristically. The mixed initial state estimate
at the start of the current time step is provided by

M
o405 _ (il3) o+
Xk _Zwk X
=1

PO = Zw I (== %)
. N\ T .
(- 4| @

(2) Model Specific Filtering: The mixed initial estimates
are fed into the EKF and processed in two steps, i.e.
e Propagation:

)A(;j — A-‘rO] + f(x +OJ7 a,) At
P = ‘I’iPJOJq’iT + Qk
O =T+ F/At ®)
e And update:
KD = PHITIHI P HIT + Ry
%07 = %7 + Ki[yy — h(x,)]
Pl =[I - K Hi]P,? 9)

Here,
3

‘+’ denotes the a posteriori estimate whereas
—’ denotes the a priori quantity before the update.
The likelihood of a measurement is then given by

PFR) =
b [det (27 B, 7)]1/2

exp [—fe,;]TEk_]_le;]
with E 7 = H P77 HI" + Ry,

e =¥ — ¥’
and where e,:j is the estimation error.
(3) Model Probability Update: Now, the model probabil-
ities are updated via the likelihood with subsequent
normalization, i.e.

wy, = wy_p(¥el%;”)
J
Wi,
—k 11)
M (
Dic1 Wi
(4) Combination: Finally, the updated estimate is given
by

& = Zwk'A-H
. . . T .
P = Zwi [(xzﬂ -xf) (37 - %)+ P,jﬂ}
j=1

(12)

J
wy, <

The final estimate of X is not integrated into the overall
controller but the Weight vector, w, plays an important
role. The weight vector wj, displays the importance (proba-
bility) associated with each model in the bank. If there are
no cables failures, for example, the IMM will determine the
first model (mode 1) to have the largest weight. This vector
also informs the balance of joint inputs to the controller
as described in the next section.

7. TASK RECOVERY

We wish to describe a proof-of-concept controller for a
CDPR performing 3D printing. Therefore, the primary
objective is to maintain end-effector trajectory tracking
along a predefined path within the operational workspace
of the redundant CDPR despite cable failure. The oper-
ational workspace is different from the static workspace.
The static workspace is the instantaneous wrench feasible
workspace of the CDPR if all the sliders were fixed. The
operational workspace is the overall traversable workspace
of the CDPR that lies within the total geometric con-
straints of the system. For the reconfigurable CDPR, the
operational workspace lies within the bounds of the blue
box in Fig. 1 (geometric limits of the joints), but we cannot
make declarations about the quality and existence of the
static workspace (for all redundant configurations) within
it with equal ease. However, it is sufficient to state that if
the next pose in the trajectory is manipulable and wrench
feasible, then it is realizable through the controller.

The desired trajectory of the end-effector is known. The
corresponding joint velocities are determined through re-
dundancy resolution. The primary motivation of the task
recovery controller is to reduce the tracking error as a pri-
mary constraint while maintaining the manipulability and
wrench feasibility (i.e., avoiding infeasibility and singular-
ity) of the joint space solutions. In general, this process
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can be separated into: (i) a task space controller; (ii) a
redundancy resolution scheme to maximize manipulabil-
ity and wrench feasibility; and (iii) a joint level velocity
controller.

7.1 Trajectory Tracking

The first iteration for the task recovery task space con-
troller was a straightforward discrete-time Proportional-
Derivative (PD) based trajectory tracking algorithm, i.e.

= (xt, —xt )

el = (e — e’pffl)/At

p
k+1
Xe

k k k
=X 51T 8p€) T 8484 (13)

k is the trajectory point at current time step

where x. .
and x’;f comes from forward kinematics. The forward
kinematics are determined from a Levenberg-Marquardt
minimization of potential energy in the system given the
joint states at the current time step. The next desired
position for the end-effector, x**1, is employed to calculate
the required joint states. The control gains g, and g, are

selected as [0.6 0.6 0] and [0.1 0.1 0], respectively. We do
not control motion in the third DOF.

7.2 Redundancy Resolution

For a given end-effector pose, there is an infinite amount of
solutions in the joint space for a kinematically redundant
CDPR. The optimal joint slider positions are determined
from an objective function that seeks to maximize the
manipulability ellipsoid at the end-effector. This aids in
avoiding singularities as the sliders travel. When a cable
fails (second motion model), the manipulability in the
third DOF is ignored. The joint sliders are velocity limited
to Umaz and vUm,i, in either direction in order to avoid
discontinuous motions i.e.,
I = max K

1M — 18 L Al

Al, = min(max(1 — 1¥ 000 AL), Upin At) (14)
where x is a measure of the sensitivity of the pulling
map at the desired pose. This is an equivalent property
to the measure of manipulability. This value is given by
k = 2 where z = null(P). The closer « is to 1,
the better conditioned the pulling map is. For the final
motion model, the DOF at the end-effector reduces to one
and the manipulability ellipse reduces to a line making
singularity avoidance a non-issue. For this case, since
the cables can control only once DOF, the sliders utilize
the same controller for trajectory error minimization to
determine actuation that will manipulate the end effector
in the remaining DOF.

The joint angles 8 are determined by first extracting the
desired tensions in the cables, i.e., given the desired end-
effector position together with l?“, we determine the
minimum positive tensions required to maintain this pose:
k+1 k41

e LI (15)

™ =minT’ T 3 P(x T=0
T

The joint angles are then determined in a straightforward
fashion by

=11 — K ' (16)
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Fig. 5. Automatic task recovery through open-loop kine-
matic control

7.8 Feedforward Kinematic Control

The task recovery algorithm has a parallel bank of trajec-
tory tracking controllers, each corresponding to a working
mode. The controllers use simple kinematic models for the
different redundant CDPR motion modes. These inputs
are mixed and normalized with the weight vector arising
from the IMM, giving precedence to the input correspond-
ing to the detected failure mode. The bank of task- and
joint-space controllers each accept the mixed joint state
input of the previous time-step and propagate it forward
to the next input for each failure mode. The mixed joint
inputs are then applied to the dynamic simulation model
(plant), and the resulting (noisy) measurements of the end-
effector state inform again the state estimation and weight
vector of the IMM.

The dynamic simulation of the plant and IMM state esti-
mation utilize a sampling rate different from the controller.
The mixing process results in a gradual change of the joint
inputs to the plant, thus allowing for recovery if a failure
mode is incorrectly detected. The complete algorithmic
framework is shown in Fig. 5.

8. IMPLEMENTATION AND RESULTS
8.1 Simulation Framework

The plant is a dynamic model created in MATLAB which
is perturbed with process noise to mimic unmodeled dy-
namics. The measurements are simulated though a mea-
surement noise perturbation as well. The cables are con-
sidered as linear springs (where stiffness is a function of
free cable length) with no mass and no sag while all other
model parameters are constants. Cable failure is modeled
as a drop in cable stiffness to zero. If the stiffness is zero,
the cable will have no tension and thus have no impact on
the platform dynamics. The plant and estimation run at
100 Hz while the kinematic controller runs at 10 Hz.

8.2 Task Recovery

Figure 6 illustrates the application of the automatic task
recovery algorithm for a case when a first cable breaks
at 5 seconds and an additional cable fails at 10 seconds.
The red trajectory shows the true path of the end-effector
while the blue trajectory depicts the expected path. The
red line exhibits a clear break away from the trajectory
and subsequent recovery with three cables as the systems
returns to and continues from the point of first failure. The
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Fig. 6. Trajectory tracking and recovery
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Fig. 9. Trajectory error correction during task recovery

second cable failure and subsequent recovery then demon-
strates similar behavior further down the trajectory. When
the cables break, the IMM responds instantly, identifying
the correct model and mixing the inputs accordingly, thus
leading to recovery. In Fig. 7, the weights vector correctly
assigns the largest values to the current working mode. At
the five second mark, we can see that the weight vector
has correctly identified the cable A failure, followed by
the correct identification of the cable C failure at the
ten second mark. The slider positions change in time to
reflect the redundancy resolution during task recovery in
Fig. 8 while the robustness of the task recovery can be
seen in Fig. 9 as the real and desired trajectories converge.

Working in simulation provides us with access to the
ground truth and thus, the estimation error (e = x, —X,),
therefore allowing for insight into the stability of the IMM.
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Fig. 10. Estimation Error
8.8 Drawbacks

When the desired trajectory lies outside of the new static
workspace that forms just after cable failure, the robot
sometimes struggles to recover the trajectory tracking.
This is because the robot may move close to singularity
while attempting to minimize the trajectory error too
quickly. Sometimes cable failure can also lead to cable
slackness. While this property is not explicitly modeled in
the system dynamics, the destabilizing effect of this can be
identified when the value of spool angles, 6, is too high (at
the instant of failure) to converge to a forward kinematics
solution that lies within the new static workspace. For 3D
printing tasks, we also require the end-effector to return
to the point of break. These drawbacks will be addressed
in our next work.

9. CONCLUSION

In this study, we demonstrate for the first time a proof-
of-concept approach to failure detection and identifica-
tion (FDI) with fault tolerant control (FTC) for kine-
matically redundant CDPRs by automating the cycle of
detection and recovery. CDPRs offer a unique advan-
tage by being able to utilize geometric reconfiguration
in overcoming the consequences of cable failure. Failure
modes are detected/estimated via an Interactive Multiple
Model (IMM) algorithm that relies on a bank of parallel
Extended Kalman Filters. The actual joint state inputs
are accomplished by mixing the simultaneously calculated
inputs from a parallel bank of pre-developed trajectory
tracking controllers utilizing the IMM weight vector. While
IMM approaches have been employed in dynamic fault
detection and identification for aerospace applications, its
use for fault detection in the robotics domain in general is
sparse and truly unique for the cable driven robotics com-
munity. Furthermore, the recovery strategy incorporating
both redundancy resolution and geometric reconfiguration
for task recovery with the utilization of the IMM weights
for control mixing is a first in this domain. In addition
to providing a novel research idea, this also serves as a
vehicle demonstrating the powerful advantage of adding
kinematic redundancies to CDPRs. This work is meant to
be a first study of a concept that requires advancement and
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refinement in future work, for instance by incorporating
a closed loop dynamic controller together with a motion
planning strategy to recover the trajectory immediately
from the point of failure. Further exploration is suggested
on how to incorporate redundant actuation to minimize
dynamic effects of cable failure to avoid cable and object
collision.
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