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Abstract:

The growing need for autonomous vehicles in the offroad space raises certain complexities that
need to be considered more rigorously in comparison to onroad vehicle automation. Popular
path control frameworks in onroad autonomy deployments such as the pure-pursuit controller use
geometric and kinematic motion models to generate reference trajectories. However in the offroad
settings these controllers, despite their merits (low design and computation requirements), could
compute dynamically infeasible trajectories as several of the nominal assumptions made by these
models don’t hold true when operating in a 2.5D terrain. Outside of the notable challenges such
as uncertainties and non-linearities/disturbances introduced by the unknown/unmapped 2.5D
terrains, additional complexities arise from the use of vehicle architectures such as the skid-
steer that experience lateral skidding for achieving simple curvilinear motion. Additionally,
linear models of skid-steer vehicles often consist of high modeling uncertainty which renders
traditional linear optimal and robust control techniques inadequate given their sensitivity to
modeling errors. Nonlinear MPC has emerged as an upgrade, but needs to overcome real-
time deployment challenges (including slow sampling time, design complexity, and limited
computational resources). This provides an unique opportunity to utilize data-driven adaptive
control methods in tailored application spaces to implicitly learn and hence compensate for
the unmodeled aspects of the robot operation. In this study, we build an adaptive control
framework called Deep Reinforcement Learning based Adaptive Pure Pursuit (DRAPP) where
the base structure is that of a geometric Pure-Pursuit (PP) algorithm which is adapted
through a policy learned using Deep Reinforcement Learning (DRL). An additional law
that enforces a mechanism to account for the rough terrain is added to the DRL policy to
prioritize smoother reference-trajectory generation (and thereby more feasible trajectories for
lower-level controllers). The adaptive framework converges quickly and generates smoother
references relative to a pure 2D-kinematic path tracking controller. This work includes extensive
simulations and a bench marking of the DRAPP framework against Nonlinear Model Predictive
Control (NMPC) that is an alternate popular choice in literature for this application.
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1. INTRODUCTION

The design-simplicity and physical robustness of 4-wheel
skid-steer systems coupled with its high maneuverability
make it very desirable for a range of military and civilian
off-road applications (Khan et al., 2020). At a kinematic-
level, this design simplicity is a massive advantage, how-
ever path control frameworks that utilize these models

global path planner) and creates a trajectory reference for
lower-level dynamic controllers. Despite its merits, such
controllers often assume nominal operating conditions and
idealistic motion models that don’t hold true during highly
dynamic operations in an unmapped/uncertain 2.5D ter-
rain.

System identification and accurate modeling of the system

could often generate dynamically infeasible trajectories
during high speed operations due to unmodelled /uncertain
dynamics. Consider the exemplary case-study of a geomet-
ric Pure-Pursuit (PP) controller that is commonly used
in autonomous vehicle applications. Such a path-tracking
vehicle controller takes input waypoints (provided by a
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aided by robust control laws are often used to tackle un-
certainties. However, despite best efforts towards modeling
the system (Aguilera-Marinovic et al., 2017; Economou
et al.,, 2002) additional challenges arise due to factors
like non-permanent wheel-ground contact, loss of traction
and ground deformation. Popular modern linear optimal
and robust control techniques are extremely sensitive to
these modeling-, parameter uncertainties and nonlinear-
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ities/disturbances. As a result, model-dependency is a
crucial limiting factor to successful deployments in varied
application spaces (on-road, off-road and manufacturing
shop floor). However, systems with parameter uncertainty
and complex nonlinearities in some areas of the operating
domain are prime applications for adaptive control meth-
ods that can effectively cope with such issue sets (Slotine
and Li, 2005; Srinivasan et al., 2021).

In this setting, end-to-end data-driven machine learning-
based methods such as Deep Reinforcement Learning
(DRL) have emerged as a popular approach to gener-
ate a control law that learns from real world conditions
(Chen and Chan, 2020; Gheisarnejad and Khooban, 2021;
Goel and Chauhan, 2021). While an end-to-end learning
approach can potentially elevate path tracking control,
learning decent policies in a large state-action space can
increase training time and add heavy dependency on com-
plex and sporadic reward functions. Thus, fusing learning
based approaches with traditional controllers (geometric,
kinematic, dynamic) lends itself to methodical formula-
tions with the ability to provide baseline guarantees. Suc-
cessful deployments of the same in planar path tracking
problems have been demonstrated by Park et al. (2014);
Sukhil and Behl (2021) and Joglekar et al. (2021).

In this study, we advance the geometric pure-pursuit
controller by auto-tuning appropriate control parame-
ters adaptively using the optimal policy generated by
a DRL framework. We call this modified framework
DRAPP (Deep Reinforcement Learning based Adaptive
Pure-Pursuit) and henceforth we will refer to it as such.
To demonstrate these capabilities, scenarios were built
wherein a skid steer robot has to accurately follow a
geometric path in 2.5D environment while traversing over
perturbations in form of bumps along the way. In order to
benchmark the performance of our proposed framework we
choose the popular Nonlinear Model Predictive Control
(NMPC) approach that has been tried and tested for
this application (Kim et al., 2017; Zhao et al., 2019).The
strength of this study is that despite the geometric na-
ture of the DRAPP’s explicit formulation, it possesses the
ability to implicitly gather an intuitive understanding of
the vehicle dynamics upon which it trains. This ability is
lost on methods such as NMPC where explicit modeling of
the vehicle dynamics is required if dynamics considerations
need to be made.

The contributions of this study are as follows: contribu-
tions:

(1) A novel reinforcement learning based controller ca-
pable of augmenting traditional path tracking con-
troller’s performance by adapting the look ahead dis-
tance and linear velocity. Our hybrid controller im-
plicitly captures and handle system dynamics in off-
road setting via experience based learning enabling
accurate path tracking.

(2) Ilustration of the ability to use reinforcement learn-
ing techniques to deploy a platform-agnostic con-
troller tailored to serve metrics that are most impor-
tant for a particular application without adding mon-
umental design, formulation and tuning complexities
to the controller. This is demonstrated by the ability
of DRAPP to adapt to 2.5D terrain despite bumps
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Fig. 1. Geometric tracking using pure-pursuit controller

and perturbations by simple additions to the reward
function. This is further juxtaposed with the tuning
and design complexities involved in successfully de-
ploying an NMPC controller for the same application.

The remainder of the paper is organized as follows: Section
2 briefly summarizes the geometric model of a skid-steered
vehicle followed by the derivation of the pure-pursuit
controller hence setting up the problem for our study.
Section 3 presents the background, design, training and
deployment approach of the employed DRL scheme. In
order to setup a comparison/benchmarking metric, we
describe the NMPC framework design aspects in section 4.
In terms of results, section 5 introduces the simulation and
software tools equipped in this study followed by section 6
where the results of the testing and validation performed
are presented.

2. PURE-PURSUIT CONTROLLER

In our study, we use the seminal pure-pursuit algorithm
(Coulter (1992)) as a baseline to impose a feedback law
which is governed by a DRL agent

Traditional pure-pursuit: Let the waypoints that the
robot needs to track be represented by

Consider a general skid-steer drive robot, R, whose initial
pose is defined in map coordinates as (zo, yo,%o) (longi-
tudinal position, lateral position and orientation respec-
tively). We define /4 to be the look ahead distance param-
eter for the pure-pursuit controller. Let this look ahead
intercept the waypoints at some (x;,y;). In our DRAPP
controller, we consider this look ahead point at any given
time by (I ,1,+) to tune for the look ahead distance I4.
Based on Fig.1, the radius of curvature to track the point
(z4,y;) is given by

s @)

r=-—%.
2y,

The robot requires two high level trajectory references
namely the linear and angular velocity (v,w). Given a cer-
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tain linear velocity and radius of curvature (as computed
in Eq.(2)), angular velocity is determined using w = v/r.

3. DEEP REINFORCEMENT LEARNING
FRAMEWORK

3.1 Deep Reinforcement Learning Architecture

This section highlights our implementation of a DRL agent
used to generate a policy m(s,a), which tunes the look
ahead distance [ and velocity v; in the pure-pursuit con-
troller formulation. The state-action representation (s,a)
of the environment described in 3.1.2 sets up the platform
for experience based learning to generate an optimal policy
m* to maximize the Q-value function as highlighted in Eq.
(3). This Q-value corresponds to the reward function Eq.
(8), (9) which is to be maximized.

Deep Reinforcement Learning Agent: Given the
nature of our problem being a high-dimensional stochastic
environment with no preview, an approach that provides
the the sampling efficiency of value-based DRL methods
and the convergence of policy-based DRL methods is nec-
essary. Actor-critic algorithms offer benefits of both policy-
based and value-based methodologies in an adversarial
setting making them desirable for our problem setup. Our
DRL agent is based upon the Twin-Delay Deep Determin-
istic Policy Gradients (TD3) (Dankwa and Zheng, 2019).
There are two key facets to the TD3 implementation: The
“actor network” which uses a policy gradient to maximize
the reward function Q4(s, a) through the expected returns
E given by:

max Qo (5 ()] (3)

The “critic network” in the TD3 algorithm uses a single
target function y as seen in Eq. (4) derived from the
network having the least target value of Eq. (5). In this
equation d indicates whether the state s’ is terminal. The
parameter D is the replay buffer for updating the Q-
networks.

y(r,s',d) = r + v(1 — d) Zrili% Q%mrg(s',a/(s')) (4)

L(¢iaD> = (&a,r, Slvd) ~ D(Q¢i(8’a) —y(r, Slad))Q (5)

where ¢ = 1,2. The TD3 algorithm learns these two
functions Qg, and @4, using the Mean Squared Bellman
Equation as seen in Eq. (5). Extensive formulation of TD3
and nomenclature for Eq. (3) - (5) can be found in Dankwa
and Zheng (2019).

RL agent state-action representation: In order to
achieve better tracking performance in an offroad environ-
ment, the DRL agent not only needs to consider pose,
cross-track error, prior look ahead point (I;.,1,.) and
velocity (v;) but also the pitch velocity observed by the
on-board IMU as the vehicle traverses over the the 2.5D
environment(w, ). Thus, the state representation is a [7x1]
dimensional vector given by,

st = (20,6, Y0,6: V0,15 Wy L.t Ly o5 V] (6)
The output from the DRL agent is the tuneable look ahead
parameter and the linear velocity to the skid-steer robot.
ar = [ld,vt] (7)

where lg € [0.2m, 1.5m] and v, € [0.1m/s,2m/s].

3.2 Stability Considerations:

Optimization function: We frame two reward func-
tions for training two different RL agents, one without
considering the angular velocity observed by IMU as the
vehicle travels over bumps in the environment Eq.(8) and
the other penalizes traversing over bumps at high speeds
to avoid destabilizing the robot and affecting tracking
performance Eq. (9).

Ry = ailleal® + aalvees — v)? + aualdy) (8)

RtQ = oleectHQ +042(’U,«ef —’Ut)2 +a3(wy)2 +Oé4(dt) (9)

The parameters in Eq. (8)(9) are cross-track error(||eq||),
target velocity (vres), total distance covered by the robot
(di) and rotational velocity in w, measured by the on-
board IMU. a1, as, a3, oy are the weights assigned to the
penalties.

Hyper parameters and computational time: We
consider the following hyper parameters for training the
DRL agent.

Table 1. Experiment hyper parameters

Hyperparameters

Sample Time 0.01
Training episodes 50
Training steps per episode 1500

Cross track threshold (for failure) 0.8

Distance to goal threshold 0.2
Mini batch size 64
Experience buffer length (D) le6

Discount Factor (vy) 0.99

Given the hyper parameters, training the network typically
takes about 3 hours for a single policy. However, once the
network is trained for the ideal policy, the computational
time required for one forward pass is ~ 60ms.

4. NONLINEAR MODEL PREDICTIVE CONTROL

In order to benchmark the performance of the proposed
DRAPP controller, a Nonlinear MPC is deployed in a path
tracking capacity. The dynamic equations of motion of
skid-steered systems are considerably complex and expen-
sive to utilize for real-time motion control (Mandow et al.
(2007)). Hence, kinematic model predictive controllers
are preferable under low-speed driving conditions due to
their simplicity and computational efficiency (Tang et al.
(2020)). Given the higher-level path tracking nature of the
objective and low operating speeds,a kinematic NMPC has
been utilized.

The kinematic model used in our study is an extended
differential drive model summarized by Rabiee and Biswas
(2019) through the equations,

v=(w + wr)%” (10)
w=(—w + wr);—l; (11)

where w; and w, are the left and right wheel angular
velocities, respectively, and v and w are longitudinal and
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angular velocities of the robot respectively. The effective
wheel radius is denoted by r,,, w is the lateral track width,
and yx is an empirical parameter dependent on location of
instantaneous center of rotation. It assumes values [1, 00),
x = 1 being the case corresponding to an ideal differential
drive robot.

The primary objective of the NMPC is to track a predeter-
mined path as closely as possible. This is accomplished by
penalizing the position error with respect to the waypoints
(e =[x, — 2,y — y]T), where (x,,vy,) is the position of
the robot. In order to result in a smooth input profile
that prevents sharp accelerations in the vehicle, we also
penalized the rate of change of control input u(t). Addi-
tionally, the proposed NMPC should be able to track a
reference Uyer(t). The control input u(t) = [w;(t),w,(t)]T
is comprised of wheel velocities described in Eq. (10) (11)

The kinematic behavior described in Eq. (10)(11), is rep-
resented by equality constraint in Eq. (14b), in addition to
actuator limits, feasible state spaces and initial constraint.

The state of the vehicle is represented by q(t) =
[z, (1), y-(t),¥(t)]T. The optimal control problem is solved
over a fixed finite horizon NV,, subscribing to the Euler-
forward integration scheme shown below.

(Wit) + wr (£)).22 . cos (1)
(@it) +wr (). sin ()
(wr(t) — wz(t))-%”(

q(t+1) =f(q(t),u(t)) =

(12)

q(t +1) = q(t) + f(q(t), u(t)).At (13)

where At is the time step of integration.

t=N,

+ (u(t) — urer(t) T R(u(t) — urer(t)) (14a)
subject to
q(t +1) =g(q(t),u(t)) Vvt (14b)
Umin < u(t) < Umax Yt (14c¢)
dmin S Q(t) S Jmax vt (14d)
a(0) = [zo,y0.%0]" (14e)

In NMPCs, the tunable parameters -penalty matrices
Q, P and R, prediction horizon length NN,, and control
horizon length N., have complex relationships with the
optimization variables. Due to the lack of methodical
tuning approaches for MPC controllers, as described by
Shah and Engell (2011), the NMPC controller was tuned
and tested against various conditions enlisted below.

(1) Maximum Tracking Performance : In order to
satisfy this condition, the tunable weight R, was set
to zero to let the controller freely select control input
u(t) within the specified range. Consequently, the
NMPC is biased towards minimizing e.

(2) Minimum Control Effort : To meet this condition,
the reference urer(t) was set to zero. The parameters
Q@ and R were tuned to ensure that minimum cumu-
lative control effort is spent while € remains bounded.

(3) Maximum Speed : This condition is satisfied by
setting the reference uyer(t) equal to the maximum
control input Umax.

The prediction horizon N, was tuned for best performance
and N,, = 1 second was determined to be optimal preview.
Similarly N. = 0.1 seconds was selected given the fast
moving nature of this agent. For comparison with DRAPP,
the weight matrices were set as @ = 30, R =0.1, P =0.1.

The Interior Point Optimizer Solver (IPOPT) (Wéchter
and Biegler, 2006), implemented through the CasADi non-
linear optimization tool developed by (Andersson et al.,
2019), was used to solve the NMPC optimization.

5. TOOLS OF STUDY

This section presents the tools that were used to perform
the deployment aspects of this study. This includes the
simulation platform and the environment and process
pipeline for training our DRAPP algorithm.

5.1 Gazebo Environment

To represent our environment with varying surface geom-
etry, we have used the ROS Gazebo simulation engine.
The process of generating such an environment can be
described as:

(1) Environment and robot: We create our desired
environment using the Gazebo building editor which
enables us to add obstacles from CAD files. The .urdf
file for the Clearpath Husky (Clearpath, 2020) is used
to spawn an exemplar robot in the said environment.

(2) Mapping and Localization: Since accurate state-
estimation is outside the scope of this study, to obtain
consistent pose information, we map out the environ-
ment using an off-the-shelf Hector SLAM package and
localize the robot in the map frame to obtain our pose
estimate.

5.2 Reinforcement Learning Pipeline

We use the pure-pursuit algorithm with our DRL agent to
learn the policies for our DRAPP controller.

We subscribe to sensor data from the simulation environ-
ment, feed in the input observations to the DRAPP agent,
and obtain actions from the controller. Once the control
action from the RL agent is implemented on the robot,
we pause the simulation to get the observations used for
calculating rewards and to update the weights of our actor-
critic networks. This whole process is repeated until the
termination condition for a training episode is triggered,
after which the robot is reset in the environment.

6. RESULTS

In this section, we compare and contrast performance of
three different approaches to the path tracking problem in
a uneven environment.This is highlighted using cross track
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Fig. 2. Husky gazebo uneven bump environment

Fig. 3. Husky gazebo rumble strip environment

error (eqt), velocity profile (v, ) and observed pitch velocity
over the bumps (w,) obtained from the onboard IMU
sensor as the robot traverses the path. The reference path
of the robot is chosen to be a rectangular planar path with
intermittent bumps to emulate an uneven terrain. Having a
Cp continuous curve makes it challenging for the standard
pure-pursuit with fixed look ahead distance to closely
track the path. This is where we show the improvement
in performance through using DRAPP controller which
modulates velocity and look ahead distance to closely fol-
low the path while considering the undulations the terrain.
The performance of our controller is then validated against
the NMPC for the highlighted metrics. It is to be noted
that the initial spawn location of our robot is at (zg, yo)-
The performance of all three path tracking controllers viz.
pure-pursuit, NMPC, and DRAPP following the rectangu-
lar path on the rumble strip environment is highlighted in
Fig. 6. It is evident that both NMPC and DRAPP heavily
outperform the original pure-pursuit for tracking perfor-
mance as seen in Fig. 6. Further increasing the speed on
the pure-pursuit controller would lead to higher overshoot

and sub-optimal tracking while modifying the look ahead
distance would lead to undercutting or oscillations in the
tracking. Considering these factors, we only compare and
contrast the performance of NMPC and DRAPP from here
on out for clarity.

Fig. 4, 5 compare the vehicle response with NMPC con-
troller and two different DRAPP agents trained with Eq.
(8),(9) respectively for the rumble strip environment. Both
the DRAPP agents show similar performance gains in
tracking and average linear velocity when compared to the
NMPC deployment. The NMPC controller has a smoother
velocity response just through consideration of the spatial
points of the track but with no terrain information. Ad-
ditionally, having smaller undulations do not perturb the
robot to have significant impact on tracking.

In contrast, the uneven bump environment as shown in
Fig. 2 heavily affects the NMPC controller as it does
not factor into the terrain interactions for path planning,
leading to sub optimal tracking compared to DRAPP
agent as seen in Fig. 9. Although the NMPC formulation
can be improved in order to accommodate acceleration and
erk considerations that can improve this performance, this
requires expertise in development as well as tuning whereas
the DRAPP formulations provides an easy template to
include the vertical conditions. Additionally, the DRAPP
agent trained with Eq. (9) which factors into the IMU
reading for angular velocity (w,) outperforms both the
NMPC controller as well as the DRAPP agent that does
not account the effect of terrain. This is evident from Fig.
8 where the DRAPP agent modulates the input velocity
to the robot before traversing over the bumps. This leads
to lower tracking error and reduced angular velocity (w,)
as the vehicle significantly slows down while traversing
undulations as can be contrasted between Fig. 7 and Fig.
8.

The DRAPP controller can extract maximum performance
via experience based learning without prior preview of
the terrain and effectively tune the look ahead distance
parameter of the pure-pursuit controller while providing
its own linear velocity commands to the robot. This results
in overall higher speed with better tracking performance
and the modulation of the velocity in the plots is indicative
of DRAPP controller learning to adapt these parameters
while going over bumps. It is observed that the pitch
velocity (w,y) larger for the DRAPP controller but it is
a byproduct of higher velocity of the robot. Our reward
function can be tuned to prioritize lower vertical jerks at
expense of linear speed if needed as discussed in the Fig.

7.

6.1 NMPC Parameter Tuning

The parameters considered for tuning the NMPC con-
troller to optimize tracking performance were the weight
matrices ) and R, prediction horizon N,. The root-mean-
square cross track error was plotted against variation of
the respective parameters, shown in Fig. 10 and Fig. 11.
From the plots, it could be concluded that increasing @
results in better tracking performance, evident from the
reduction in the cross-track error. Increasing the weight of
the control effort, R, resulted in greater cross-track error
and hence, poorer tracking performance.
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% Track Completed

Fig. 4. Vehicle response to rumble strip environment
without w, consideration for DRAPP

% Track Completed

Fig. 5. Vehicle response to rumble strip environment

It was also observed that the cross track error increases
when N, is increased from 0.2 seconds through 2 seconds,
keeping the control horizon constant at 0.1 seconds. As
expected, the computational time also increases when
the prediction horizon increases, due increased number of
NMPC optimization iterations.

7. DISCUSSION AND FUTURE WORK

In this study, we explored Deep Reinforcement Adap-
tive Pure-Pursuit (DRAPP) to enable path(waypoint)-
tracking in a skid-steered vehicle operating in an uneven
2.5D terrain. The success of the new control framework
was shown for a simulated vehicle under 2 test scenarios
consisting of bump disturbances on the terrain. As de-
scribed in Sec. 6, the DRAPP’s waypoint tracking per-
formance was shown to be superior both in terms of
higher chosen velocities and lower average cross track error
in comparison to the popular Nonlinear Model Predic-
tive Control (NMPC) approach. This performance was
achieved without pre-tuning the look ahead distance which
was tuned/adapted by DRAPP during runtime. The abil-
ity to adapt the preview or look ahead depending on the
reference trajectory as well as velocity is a feature that is
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Fig. 6. Vehicle path comparison for rumble strip environ-

ment
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Fig. 7. Vehicle response to uneven bump environment
without w, consideration for DRAPP
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Fig. 8. Vehicle response to uneven bump environment
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Fig. 9. Vehicle path comparison for uneven bump environ-
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absent in NMPC and attempting to add additional con-
straints to the NMPC problem would significantly increase
its complexity. Although the w, plots in Figs. 5 and 8
seem like the Z-axis performance of the NMPC is superior,
such a conclusion is not credible due to the fact that
NMPC is completely blind to the unevenness of the terrain
and this result is simply a side-effect of it choosing lower
operational speeds. However, the DRAPP is cognizant
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Fig. 12. Computational Time vs Prediction Horizon
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Fig. 13. Cross Track Error (RMS) vs Prediction Horizon

of the unevenness of the terrain and hence results in a
very similar w, profile despite operating at much higher
velocities. Further, this performance can be redesigned to
suit our needs by tailoring the objective function (if the
Z-axis performance was more important). In addition to
the simulated results, a thorough analysis of the objective
function used by DRL was presented in order to check for
optimality, feasibility and stability. For our future work, we
plan to further expand the approach by considering the
presence of measurement noise. System-integration with
a dynamic lower-level controller is also in the pipeline in
order to test dynamic feasibility of the reference generated
by this framework. Additionally, an analysis of the real-
time performance of the suggested controller using the
Clearpath Husky robot platform (Clearpath, 2020) is also
in the pipeline. The codebase for the deployment along
with the videos of the DRAPP agent performing the ma-
neuvers can be found at Joglekar (2022).
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