
Robotics and Computer–Integrated Manufacturing 82 (2023) 102522

Available online 16 January 2023
0736-5845/© 2023 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Robotics and Computer-IntegratedManufacturing

journal homepage: www.elsevier.com/locate/rcim

Full length article

A hierarchical long short term safety framework for efficient robot
manipulation under uncertainty
Suqin He a,1, Weiye Zhao b,1, Chuxiong Hu a,<, Yu Zhu a, Changliu Liu b,<

a State Key Laboratory of Tribology & Beijing Key Laboratory of Precision/Ultra-Precision Manufacture Equipments and Control, Department of Mechanical
Engineering, Tsinghua University, Beijing, 100084, China
b Robotics Institute, Carnegie Mellon University, Pittsburgh, 15213, PA, USA

A R T I C L E I N F O

Keywords:
Robot safety
Safe control
Hierarchical control
Motion planning

A B S T R A C T

Safe and efficient robot manipulation in uncertain clustered environments has been recognized to be a
key element of future intelligent industrial robots. Unlike traditional robots that work in structured and
deterministic environments, intelligent industrial robots need to operate in dynamically changing and stochastic
environments with limited computation resources. This paper proposed a hierarchical long short term safety
system (HLSTS), where the upper layer contains a long term planner for global reference trajectory generation
and the lower layer contains a short term planner for real-time emergent safety maneuvers. Additionally,
a hierarchical coordinator is proposed to enable smooth coordination of the two layers by compensating the
communication delay through trajectory modification. The theoretical results verify that the long term planner
can always find a feasible trajectory (feasibility guarantee); and the short term planner can guarantee safety
in the probabilistic sense. The proposed architecture is validated in industrial settings in both simulations and
real robot experiments, where the robot is interacting with randomly moving obstacles while performing a
goal reaching task. Experimental results demonstrate that the proposed HLSTS framework not only guarantees
safety but also improves task efficiency.

1. Introduction

A key requirement for future robots is that they should be able to
operate safely and efficiently in uncertain clustered environments [1].
The applications range from robot manipulators that collaborate with
humans in factories, to autonomous vehicles that interact with var-
ious road participants. It is desired to ensure that the robot system
can achieve its task efficiently while providing safety guarantee. The
safety requirement considered in this paper is a hard constraint on
the system’s state space, e.g., a collision avoidance constraint. It is
challenging to design a safe and efficient robotic system that satisfies
hard constraint while maximizing task efficiency, for the following
reasons.

Firstly, there are non-trivial environmental uncertainties: (1) the
measurements of other entities in the environment (other agents or
obstacles) can be noisy which may lead to large prediction errors on the
entities’ states; (2) the robot may experience large tracking errors due to
its own model uncertainty and actuation noises. In order to be provably
safe, the robot needs to meet the safety constraint in the worst case
scenario, which may result in conservative and inefficient behaviors.

< Corresponding authors.
E-mail addresses: hesq16@mails.tsinghua.edu.cn (S. He), weiyezha@andrew.cmu.edu (W. Zhao), cxhu@tsinghua.edu.cn (C. Hu), zhuyu@tsinghua.edu.cn

(Y. Zhu), cliu6@andrew.cmu.edu (C. Liu).
1 These authors contributed equally to this work.

Secondly, the robot system can have low task efficiency when the
planning and control do not look far into the future, which may result
in unsmooth movements, or get stuck at livelock/deadlock. It has been
shown by Grover et al. [2] that robots that utilize the reactive safe
control methods, such as Control Barrier Function (CBF) [3], are prone
to deadlock, where robots get stuck in some locations before completing
their tasks. It is desired to equip the robot with capabilities to foresee
the potential deadlocks/livelocks and avoid these inefficient motions.

Thirdly, the computational capacity of the robot systems is usually
limited, which may delay the robot’s response to generate new refer-
ence trajectories in emergency situations. To ensure real-time safety,
the robot should be safe guarded by a safety module that can act
defensively and respond to emergencies in real-time.

There are methods that are able to address a subset of these chal-
lenges. To tackle the first challenge under the dynamic uncertainty
for the ego robot, FasTrack can plan a trajectory that is robustly
safe against the worst-case deviations from the planned trajectory [4].

https://doi.org/10.1016/j.rcim.2022.102522
Received 12 May 2022; Received in revised form 11 October 2022; Accepted 28 December 2022

https://www.elsevier.com/locate/rcim
http://www.elsevier.com/locate/rcim
mailto:hesq16@mails.tsinghua.edu.cn
mailto:weiyezha@andrew.cmu.edu
mailto:cxhu@tsinghua.edu.cn
mailto:zhuyu@tsinghua.edu.cn
mailto:cliu6@andrew.cmu.edu
https://doi.org/10.1016/j.rcim.2022.102522
https://doi.org/10.1016/j.rcim.2022.102522

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

2

S. He et al.

List of Symbols

⇠ The closest point on the boundary of the
infeasible set with respect to robot state

s Robot state trajectory
sr Reference robot state trajectory
sO Obstacle trajectory
u Robot control command
x Robot configuration
x
0

Robot start pose at first time step
xr Robot reference pose from reference trajec-

tory
xgoal Robot goal pose at final time step
� General uncertainties on robot and obstacle
�u, �x, �⇠ Robot control, state, and obstacle state

uncertainties
�u Admissible control set
�x System state reachable set
D Distance metric between robot and obstacle
F Convex feasible set
J Objective function
C Convex hull
� Safety index
D Signed distance function in configuration

space
dm Distance margin
M Total trajectory horizon
N Robot configuration space dimension
T Time duration of the robot motion
t Time
t
0

Initial time
ts Sampling time
US Set of safe control
X System state space
XS Safe set

There are planning strategies that can tackle the first challenge un-
der the environmental uncertainties, e.g., fail-safe planning [5], and
non-conservatively defensive strategy [6].

To tackle the second challenge, two categories of methods are
adopted to improve the task efficiency, including reactive short term
control methods and long term planning methods. Grover et al. [2,7]
proposed a short term deadlock-resolution strategy to resolve deadlock
of multiple mobile robot system, which ensures robots complete theirs
tasks while avoiding collision. However, the proposed algorithm can
neither ensure task completion nor guarantee deadlock resolution in
clustered dynamic uncertain environments. On the other hand, long
term planning methods [8–10] are able to generate the trajectory with
long time horizon to improve the task efficiency while ensuring the tra-
jectory is collision free with environmental obstacles. However, these
methods tend to be computationally expensive due to long horizon
sampling or nonlinear and nonconvex safety constraints (costs).

To address the third challenge, reactive safe control methods are
proposed [3,11–13]. However, those traditional methods do not explic-
itly consider the improvement of task efficiency or the safety guarantee
under environmental uncertainties. The methods like SEA [14], safe
learning-based control [15], RL-CBF [16], backup-CBF [17] and adap-
tive CBF [18] can provide such real-time safe response with system
dynamics parameters uncertainty. The core idea is to increase the
safety margin in the control synthesis with respect to the environmental
uncertainties.

These challenges constrain one another with numerous trade-offs
between long term planning and short term planning. For example,
long term planners improve the task efficiency by optimizing the future
trajectory in a long time horizon, but this requires longer compu-
tation time and results in uncertainty accumulation (from both the
environment and the trajectory itself). To ensure safety under those
uncertainties, conservative robot motion is needed, which in turn will
render the motion inefficient. On the other hand, short term reac-
tive safety modules guarantee safety through high-frequency reactions.
However, the resulting trajectory is easier to be trapped into deadlocks
where the safe reaction conflicts with task completion. Thus the single
scheme planning is not desired, and we desire to jointly address all
challenges in a unified framework to maximize the task efficiency of
the robot system while satisfying the real-time safety constraint under
environmental uncertainties.

This paper proposes a hierarchical long short term safety system
(HLSTS), where the upper layer contains (1) a long term planner for
global reference trajectory generation, (2) the lower layer contains a
short term planner for real-time emergent safety maneuvers, and (3)
the middle layer contains the hierarchical coordinator to deal with
communication latency. The proposed HLSTS differs from the state-
of-the-art methods through a hierarchical framework which jointly
addresses the aforementioned challenges to equip the robot system with
high task efficiency and provable safety guarantees under environmen-
tal uncertainties. The long term planning module aims to tackle the
second challenge by equipping the system with the ability to generate
a trajectory that is task efficient and safe with respect to predicted
obstacles. The short term planning module jointly addresses the first
and third challenges by providing the reactive safety guarantees. Ad-
ditionally, a hierarchical coordinator is proposed to enable smooth
coordination of the two layers by compensating the communication
delay through trajectory modification. The key contributions of this
paper are summarized below:

• We propose a unique parallel planning architecture that inte-
grates previously developed algorithms to handle both safety and
efficiency under system uncertainty and computation limits.

• We provide the theoretical proofs to verify that the long term
planner can always find a feasible trajectory (feasibility guar-
antee); the short term planner can also guarantee safety in the
probabilistic sense.

• We integrate and test the proposed architecture on industrial
settings in both simulations and real robot experiments, which
demonstrates that the proposed HLSTS framework not only guar-
antees safety but also improves task efficiency.

The remainder of the paper is organized as follows Section 2 reviews
prior work. Section 3 formulates the problem. Section 4 discusses safe
set algorithm (SSA) for short term planning, while Section 5 discusses
convex feasible set (CFS) method for long term planning. Section 6
proposes the hierarchical long and short term safety system, where
the coordination mechanism is elaborated. Section 7 presents the hy-
pothesis for the HLSTS framework. Section 8 introduces the evaluation
experiments and discusses the results. Section 9 concludes the paper. A
presents the theoretical results for the system.

2. Prior work

In this section, we are going to discuss prior work in three aspects:
(1) long term planning; (2) short term planning; (3) coordination
between long term and short term under uncertainties.

2.1. Efficient long term planning

Many long term planning methods have been proposed to ensure
efficiency and safety of robot manipulation as well as the trajec-
tory smoothness [19]. There are three types of algorithms for long

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

3

S. He et al.

term motion planning [20]: sampling-based methods [21], searched-
based methods [22] and optimization-based methods [19]. Sampling-
based methods plan trajectories by generating random joint space
displacements until the goal is reached. Representative methods include
probabilistic road maps (PRM) [23] and rapidly-exploring random
tree (RRT) [8], both of which can generate collision free trajectories.
Building on top of RRT, Keil et al. [24] proposed meta-planning to
generate reference trajectories using multiple online planners with
offline computation to guarantee safety during tracking. Similar to
sampling based method, searched based methods also expand the tra-
jectory through node construction while satisfying predefined heuristic.
However, the reference trajectories planned by construction are usually
not smooth [25], which may cause chattering motions. Meanwhile,
these methods do not scale well with the dimensionality of the state
space.

Optimization-based methods, on the other hand, generate much
smoother trajectories compared to the sampling-based methods. To
generate collision free long term trajectory through optimization, some
methods incorporate the safety constraint as penalty into optimization
objectives, such as CHOMP algorithm [9] and ITOMP algorithm [10].
However, unsafe reference trajectory may still be generated. It is de-
sired to solve trajectory generation optimization problem while ex-
plicitly satisfying the safety constraints, which makes the optimization
problem highly nonlinear and non-convex [26]. To solve the nonlinear
and non-convex long term planning problem in real-time, a method
called Convex Feasible Set (CFS) algorithm [19] is introduced which
incorporates domain specific information to speed up the computation,
e.g., the geometry of the problem.

The core idea of CFS is to solve a sequence of convex optimizations
constrained in the convex feasible sets, which efficiently search the
non-convex feasible space defined by the inequality constraints for
solutions. The CFS algorithm handles problems that have the following
two features: (1) The objective function is strictly convex and smooth.
(2) The non-convex safety inequality constraints can be written as s À ⇤

where ⇤ = „i⇤i, and ⇤i = {s : ⇡i(s) g 0} where s is the robot state
trajectory and ⇡i is a continuous, piecewise and semi-convex smooth
function. The core idea of the CFS algorithm is to compute a convex
feasible set F := F (sr) œ ⇤ around sr, where sr is a given reference
trajectory. For each constraint ⇤i, CFS algorithm finds a convex feasible
set Fi and constructs the overall convex feasible set as F (sr) = „iFi(sr).
Liu et al. [19] discussed the complete rules of finding Fi in three cases:
(1) ⇤i is convex, (2) the complementary of ⇤i is convex, and (3) neither
⇤i nor its complementary is convex.

In practice, different variations of the CFS algorithm have been
proposed to address planning problems under different contexts. To
address planning problems with nonlinear equality constraints, such
as nonlinear system dynamics, Slack-CFS [27] is introduced to relax
nonlinear equality constraints by introducing slack variables. Fast robot
motion planner (FRMP) [28] is proposed to ensure that the generated
trajectory is time-optimal. FRMP applies CFS algorithm to solve both
trajectory planning problem and the associated velocity/acceleration
profile optimization problem.

To apply trajectory generation in real world robotics applications,
frequent replanning is required to compensate the imperfect trajectory
tracking. Chen et al. [29] proposed the FOAD framework to perform
real-time planning and replanning using the CFS algorithm. However,
FOAD framework adopts the time driven replanning where replanning
is triggered in every time step, which introduces a heavy computation
load. This paper will introduce an event-triggered replanning scheme
to save the computation effort.

2.2. Provably safe short term planning

In contrast with long term planning, which generates efficient and
safe long horizon reference trajectories, short term planning methods
are mainly used to address real-time safety. One extreme case of

Fig. 1. Illustration of the safe set X
S
and the safety index �.

short term planning is reactive safe control [30]. The safe control
law guarantees that the unsafe region of the system state space is not
reachable. Usually, a scalar energy function, which can also be called
as a potential function, a barrier function, or a safety index, is designed
to evaluate how far the system state is from the boundary of the safe
set. Representative reactive safe control methods include potential field
method (PFM) [11], sliding mode algorithm (SMA) [13], control barrier
function (CBF) [3], and safe set algorithm (SSA) [12]. Specifically, the
design objective for safe control is to maintain the system state in the
safe set. The safe set is conventionally defined such that XS is a 0-
sublevel set of a continuously differentiable function � : X ≠ R,
i.e., XS = {x : �(x) < 0}, where �(x) is known as the safety index
as shown in Fig. 1. The safety index maps the subset of ‘‘unsafe’’ states
in the state space X to positive real values and ‘‘safe’’ states to zero or
negative real values. The safety index � has the following properties,

1. � is differentiable with respect to t, i.e. Ü� = ()�_)x) Üx exists
everywhere;

2.) Ü�_)u ë 0;

The first condition is to ensure that � is smooth. The second condition
is to ensure that the robot control input u can always affect the safety
index. If a control law is selected such that the closed-loop system
dynamics always satisfy the following conditions, the safe set will be
forward invariant and globally attractive [31]:

Ü�(x, u) f *⌘, ≈ x À {x : �(x) g 0}, (1)

for some ⌘ > 0. We say the system is safe if the safe set is forward
invariant and globally attractive. This means that any system that starts
at a state within the safe set will remain within the safe set, and any
state which starts outside the safe set will be drawn towards the safe
set in finite time t f �_⌘.

2.3. Hierarchical multi-layer systems

Hierarchical systems and the coordination of different system hi-
erarchies have always been an active research area. In learning com-
munity, hierarchical reinforcement learning (HRL) [32,33] is proposed
to decompose reinforcement learning problems into different levels
of hierarchy, where higher level plans the parent problems, e.g. the
different motion primitives. Lower level is invoked by higher level
to complete the child problems, e.g. execute motion primitives [34].
The coordination of HRL is straightforward through different levels of
problem assignment, whereas it is difficult for reinforcement learning
methods to satisfy hard constraints, e.g. safety constraints [35] [36].
Compared with HRL system, the hierarchical model predictive control
(HMPC) [37] system is more close to our robotics system where tasks
are distributed to different layers and executed in different frequencies.
However, nonlinear and nonconvex design methods for HMPC are still
lacking, and some fundamental problems regarding the synchronization
across different layers remain unsolved, such as transmission latency
or loss of information. Some existing works adopt the idea of HMPC
into hierarchical robotics system, such as the robot safe interaction

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

4

S. He et al.

system for intelligent industrial co-robots (RSIS) [38] and safe and
efficient robot collaboration system (SERoCS) [39]. Empirical results
demonstrate that those hierarchical systems can efficiently make robots
accomplish manipulation tasks while avoiding environmental obstacles.
However, there still lacks principled approaches to design the coor-
dination and to perform extensive evaluation, which are necessary to
provide a deeper insight on how to improve the design of hierarchical
system.

3. Problem formulation

In this section, we formulate the fundamental problem of safe and
efficient robot motion planning in uncertain clustered environments.
For simplicity, this paper focuses on the scenario with one robot
and multiple moving obstacles. The methodology can be extended to
scenarios with multiple robots and multiple moving obstacles.

We denote the continuous robot trajectory from current time t
0

to time t
0
+ T as x(t

0
: t

0
+ T), where x À RN . By sampling the

trajectory by time ts, i.e., let t0 = t
[1]

< t
[2]

< 5 < t
[M]

= t
0
+ T ,

t
[i+1]

* t
[i]

= ts, i = 1, 2,… ,M * 1, then we have the time-stamped robot
trajectory s = [x[1];5 ;x[i];5 ;x[M]

], where i = 1, 2,… ,M .
The robot control trajectory from current time t to time t + T is

denoted as a = [u[1];… ; u[i];… ; u[M]
], u À RN . The planning horizon

T can either be chosen as a fixed number or as a decision variable
that should be optimized up to the accomplishment of the task. Sim-
ilarly, the trajectories of environmental obstacles from t to t + T are
denoted as sO, which is the ground truth obstacle trajectory, and is not
directly accessible to the robot but can rather be estimated through
measurement and prediction. To obtain optimal robot trajectory in
uncertain clustered environment, the following optimization problem
is considered,

min
s,u

J (s, u), (2a)

s.t. ≈i = 1,… ,M , x[i] À �x, u[i] À �u, (2b)

Üx[i] = f (x[i]) + g(x[i])u[i], (2c)

x[i] À XS , (2d)

x[1] = x(t
0
),x[M]

= xgoal , (2e)

where (2a) is the objective function, which evaluates the trajectory
smoothness and task efficiency. J is designed as:

J (s, u) =
t+T…
i=t

(w
[i]

1
Òx[i] * xgoalÒ2 +w

[i]

2
Òu[i]Ò2) (3)

where xgoal is the goal configuration for the robot state. Smaller differ-
ence norm between the current state x(t) and the target configuration
indicates higher task efficiency. The control norm penalty aims to mini-
mize the control effort to reduce the chattering during robot operation.
w

[i]

1
,w

[i]

2
À R+ denote weight terms.

Eq. (2b) are the constraints on the robot state space �x (such as
joint limits) and control space �u (such as control saturation). Eq. (2c)
is the dynamic constraint which is assumed to be affine in the control
input. Eq. (2d) is the safety constraint. In this paper, safety constraint
is considered as the constraint for collision avoidance. Eqs. (2e) are the
initial and end pose constraints.

However, solving (2) is not a trivial task, where both efficiency and
safety objectives are coupled together. Note that it is impossible to
solve such a long horizon optimization problem in a high frequency due
to limited computation capacity of real world robot systems, whereas
safety is a hard constraint that should be satisfied in real-time. This
fact motivates us to design a system with a principle to separate the
efficiency objective and safety objective when operating in different
frequencies, such that the safety is guaranteed at the maximum pos-
sible frequency and efficiency objective is satisfied at lower frequency
allowed by the remaining computation resources.

Following the prescribed design principle, we define (1) a long
term objective in terms of efficiency for the whole trajectory which is
optimized at a low frequency; and (2) a short term objective in terms of
real-time safety which is optimized at a high frequency. In the following
discussion, we will introduce the dismantled objectives for long term
and short term, separately.

Firstly, we discuss the optimization problem for long term planning.
Intuitively, the long term planner will generate a sequence of state
trajectory s to guide the short term planner, such that greater task
efficiency and trajectory smoothness can be achieved while satisfying
safety constraints. Suppose the trajectory generated from long term
planner is discretized intoM points, we denote the reference trajectory
as: sr := [x[1]r ;… ;x[M]

r], where x[1]r = x(t
0
) is the initial robot pose, and

the last point of the reference trajectory should reach the goal such
that x[M]

r = xgoal. As described in (3), the system efficiency objective
is to minimize the distance between robot state and the target state
along the trajectory. Therefore, the most efficient reference trajectory
can be generated using direct linear interpolation from the current state
to the goal state, where the linear interpolation indicates that x[i]r =
i*1

M*1
(xgoal *x[1]r) +x[1]r . We also treat linear interpolation as the default

sr, whereas x[i]r does not necessarily satisfy the safety requirements.
Therefore, we design the optimization objective as to encourage the
new trajectory to be smooth and close to reference trajectory, and pose
the optimization constraints as the safety requirements. Mathemati-
cally, the long term optimization problem is formulated as following:

min
s

J (s) = Òs * srÒ2Qr

+ ÒsÒ2
Qs

(4a)

s.t. x[i] À XS , i = 1, 2,… ,M (4b)

x[i] À �x (4c)

x[1] = x(t
0
),x[M]

= xgoal (4d)

where Qr and Qs are both positive semi-definite, Òs * srÒ2Qr

= (s *

sr)T Qr(s * sr) penalizes the deviation from the new trajectory to the
reference trajectory, and ÒsÒ2

Qs

= sT Qss penalizes the properties of the
new trajectory itself.

After finishing the long term optimization, the short term planner
receives the planned reference trajectory from the long term planner.
The short term planner is firstly formulated as a reference trajectory
tracking controller to generate a reference input ur at each control
cycle. Then, certain modification on the ur is needed to ensure that
the interaction constraint x À XS will be satisfied after applying the
new input. The short term planning problem can be formulated as the
following optimization,

min
u

Òu * urÒ2Qu

, (5a)

s.t. u À �u,x À �x, Üx = f (x) + g(x)u, (5b)

x À XS (5c)

where Òu * urÒ2Qu

= (u * ur)ÒQu(u * ur) penalizes the deviation from
the reference input, where Qu should be designed as a second order
approximation of J , e.g. Qu ˘ d

2
J _d(u)2. The constraints are the

same as the constraints in (2). Note that modifying the control input
is equivalent to modifying the reference trajectory. Without loss of
generality, it is assumed that x À XS implies that x À �x. Otherwise,
we just take the intersection of the two constraints. The safe set and
the robot dynamics impose nonlinear and non-convex constraints which
make the problem hard to solve. In Section 4, we will transform the
non-convex state space constraint into convex control space constraint
using the idea of invariant set.

By solving the dismantled objectives, the long term planner pass
as the reference trajectory to the short term planner, which computes
the safe control and further control the robot. Building on top of the
long term planner and short term planner, we propose a hierarchical
long short term safety framework (HLSTS) as demonstrated in Fig. 2. In

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

5

S. He et al.

Fig. 2. The designed architecture of the hierarchical long short term safety system. The original optimization problem of robot trajectory in uncertain clustered environment is
dismantled into (1) the long term optimization problem and (2) the short term optimization problem. The long term planner generates the long time horizontal reference trajectory
s at a low frequency. The short term planner applies real-time reactive safe control u to guarantee safety at a high frequency. Then the low level controller executes the desired
control u on the robot hardware.

the following sections, we target to design proper methods to solve (4)
and (5), respectively. Additionally, we desire a suitable coordination
mechanism such that the HLSTS system maximizes the task efficiency
of the robot system while satisfying real-time safety constraint under
environmental uncertainties.

4. The safety-oriented short term planning

Firstly, we discusses how to address the safety following the invari-
ant safe set definition in Section 2.2. To ensure safety, the robot control
must be chosen from the set of safe control US (t) = {u(t) : Ü�(x, u) f

*⌘(�) when �(x) g 0} where ⌘ : R ≠ R+ is a general function of �.
By the dynamics equation in (5b), the derivative of the safety index
can be written as Ü� = Lf�(x) + Lg�(x)u, where Lf�(x) =

)�

)x f (x) and
Lg�(x) =

)�

)x g(x). Then

US (t) =
�
u (t) : Lg� � u(t) f *⌘ * Lf� when � g 0

�
, (6)

Due to the introduction of the set of safe control, the non-convex
safe set constraint XS is transformed to a convex control space con-
straint US . Since �u is usually convex, the problem (5) is transformed
to a quadratic programming optimization,

min
u

Òu * urÒ2Q, (7a)

s.t. u À �u „ US . (7b)

The switch condition between � g 0 and � < 0 may result in
oscillation for discrete time implementation. Therefore, a smoothed
version of the algorithm is discussed in [40]. To ensure the feasibility
of (7b) constraint, i.e. there always exists non-empty �u „ US , we
can synthesize a properly parameterized safety index � as in [41–
43], where the problem (7) is guaranteed to be feasible. In the next
step, the above-mentioned safe set algorithm (SSA) will be applied
in our robotics application and the detailed structural design will be
illustrated.

In real world applications, robotics systems usually take joint veloc-
ity or joint acceleration/torque as the control input. Thus, depending
on the robot control input, the SSA can be classified as Velocity-SSA
and Acceleration-SSA. For both types of SSA, we build their detailed
structure as follows.

4.1. Velocity-SSA

For the Velocity-SSA, the control input u = Üx is the joint velocity,
and the safety index � is defined as

�(x) = �
0
(x) = dm *D(x), (8)

where dm g 0 is a positive safety margin, D(x) : RN ≠ R is a metric
evaluating the signed distance between the robot and the obstacles.

For most real world robotic systems, the desired control input for
the robot is supposed to be smooth. Therefore, we use the sub level
safe set algorithm to construct US where Ü� satisfies

Ü� f *ks�(x), when �(x) g 0 (9)

where ks À R+ is a positive gain. In this way, the robot motion during
the safe control is smoother than the original constant change rate. The
Ü� can be further represented by

Ü�(x, Üx) = (x�
Ò
Üx (10)

It is assumed that �u = {u : umin f u f umax} represents the control
saturation for the robot, where umin and umax are constant bounds.
Suppose the original joint velocity command without SSA control is Üxo.
After applying SSA control, the new joint velocity command is Üxc . Thus,
the optimization problem (7) can be formulated as

min
Üxc

Ò Üxc * ÜxoÒ2 (11a)

s.t. (x�
Ò
Üxc f *ks�(x) or �(x) < 0 (11b)

umin f Üxc f umax (11c)

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

6

S. He et al.

It is noted that when the control saturation constraint (11c) is not
activated, the analytical solution of (11) can be obtained through KKT
condition and the resulting Velocity-SSA control law is

Üxc =
T

Üxo, �(x) < 0

Üxo *
ks�+(x�

Ò
Üxo

(x�Ò(x�
(x�, �(x) g 0

(12)

In practice, a suitable safety margin will be used, and the robustness
of the SSA controller can be improved by tuning coefficient ks. Note
that the conclusion from (12) does not consider the control saturation
constraint (11c). When (11c) is activated, we can synthesize a properly
parameterized safety index �, such that there always exists non-empty
set of safe control within the control saturation [41,44,45]. Thus,
the safe control solution for (11) can be obtained through quadratic
programming.

4.2. Acceleration-SSA

For the Acceleration-SSA, the control input u = áx is the joint
acceleration, and the safety index is defined as in [12]

�(x, Üx) = d
2

m
*D

2
* k

1
ÜD, (13)

where k
1
g 0 is a positive scalar. Similar to the Velocity-SSA, a sub

level safe set is used so that Ü� satisfies

Ü� f *ks�(x, Üx), when � g 0 (14)

And Ü� can be represented as

Ü� = (x�
Ò
Üx + (Üx�

Ò
áx

(x� = 2D
)�

0

)x + k
1

)
2
�
0

)x2
Üx

(Üx� = k
1

)�
0

)x

(15)

Suppose the original joint acceleration command without SSA con-
trol is áxo. After applying SSA control, the new joint acceleration com-
mand is áxc . We can similarly formulate the optimization problem (7)
as

min
áxc

Ò áxc * áxoÒ2 (16a)

s.t. (x�
Ò
Üx + (Üx�

Ò
áxc f *ks�, if � > 0 (16b)

umin f áxc f umax (16c)

Similarly, when the control saturation constraint (16c) is not activated,
the resulting Acceleration-SSA control law as

áxc =
T

áxo, � < 0

áxo *
ks�+(Üx�

Ò
áxo+(x�

Ò
Üx

(Üx�
Ò
(Üx�

(Üx�, � g 0
(17)

In practice, the choice of Velocity-SSA and Acceleration-SSA de-
pends on the input of the servo system (i.e., the servo controller is
working on the velocity-loop or the acceleration-loop) as well as where
the constraints are defined (i.e., the velocity constraint or acceleration
constraint). Since the joint acceleration command from Acceleration-
SSA is integrated to joint velocity, the actual robot motion using
Acceleration-SSA is smoother than the robot motion using Velocity-
SSA. However, in most industrial applications, the servo controller only
provides a joint position/velocity control interface. Thus we can only
apply Velocity-SSA, which has lesser computation complexity as well.
And for the joint position interface, we can multiply the joint velocity
command by control cycle time, and feed the result to the position
controller. As long as the servo control frequency is not too slow, this
approximation is accurate enough for safe control.

5. Efficiency-oriented long term planning

The proposed efficiency oriented long term planner aims to generate
the reference trajectory to optimize the task efficiency and trajectory
smoothness while satisfying safety constraints. As discussed in Sec-
tion 3, Òs * srÒ2Qr

penalizes the deviation from the new trajectory to
the reference trajectory, and ÒsÒ2

Qs

penalizes the properties of the new
trajectory itself. Specifically, we construct the positive semi-definite
matrices Qr,Qs À RNMùNM from three components, including the
matrices for position, velocity and acceleration [19]. (1) We denote
Q

1
= INM as the position matrix, where IN represents the identity

matrix with dimension N . (2) We denote Q
2
= V

Ò
V as the velocity

matrix, where V À RN(M*1)ùNM is a finite difference operator, such
that:

V =
1

ts

b
f
f
f
fd

I *I 0 0 5 0

0 I *I 0 5 0

4 4 7 7 7 4
0 0 5 0 I *I

c
g
g
g
ge

. (18)

(3) We denote Q
3

= A
Ò
A as the acceleration matrix, and A À

RN(M*2)ùNM is also a finite difference operator, such that:

A =
1

t2
s

b
f
f
f
fd

I *2I I 0 5 0

0 I *2I I 5 0

4 4 7 7 7 4
0 0 5 I *2I I

c
g
g
g
ge

(19)

Then we set Qr =
≥3

i=1
c
r

i
Qi and Qs =

≥3

i=1
c
s

i
Qi, where c

r

i
and

c
s

i
are the positive weights. Therefore, the minimization of Òs * srÒ2Qr

minimizes the distance between the trajectory s and the reference sr,
which ensures the task efficiency. The minimization of ÒsÒ2

Qs

ensures
low velocity and acceleration magnitude, which ensures the trajectory
smoothness and further benefits the trajectory interpolation and track-
ing. Constraint x[i] À XS requires that the system states (including the
robot state and the estimated obstacle state) should be in the safe set
at each planning horizon.

However, solving the long term planning problem is not a triv-
ial task, since the corresponding optimization problem (4) is highly
nonconvex, where the non-convexity mainly comes from the highly
nonlinear inequality constraints (4b) and (4c). It is computationally
expensive to obtain a solution using generic nonlinear optimization
solvers such as sequential quadratic programming (SQP) [46]. There-
fore, it is desired to incorporate the domain specific information,
e.g., the geometry of the problem, to improve the computational ef-
ficiency while solving the optimization. In this work, we adopt Convex
Feasible Set (CFS) algorithm [47] to tackle (4), where we directly
convexify the optimization problem using domain knowledge. CFS
algorithm has been shown to work successfully in practice and can
efficiently find optimal global planning solutions in real-time that are
strictly feasible [19]. in the following subsections, we are going to (1)
briefly introduce the CFS algorithm to solve (4), and (2) provide an
example of long term planning for a six-degrees-of-freedom robot arm.

5.1. Convex feasible set algorithm

To make the computation more efficient, we transform (4) into a
sequence of convex optimizations by obtaining a sequence of convex
feasible sets inside the non-convex domain XS . The general methods
in constructing the convex feasible set are discussed in [47]. In the
following discussions, we will review the major steps to find convex
feasible sets.

In this paper, we consider the continuously moving environmental
obstacles. In order to meet the safety requirement x[i] À XS continu-
ously, we require the robot state at time step i to not be in the infeasible
sets from time step i to time step i + 1, which are denoted as C[i:i+1]

j
,

where j À N+ denotes the jth infeasible set. Based on the C
[i:i+1]

j
, we

give the following definition of distance constraint:

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

7

S. He et al.

Definition 1 (Distance Constraint). Define the signed distance function
from time step i to i + 1 as:

D
[i:i+1]

j
(x) =

h
n
l
nj

minoÀ)C[i:i+1]
j

Òx * oÒ x Ã C
[i:i+1]

j

*minoÀ)C[i:i+1]
j

Òx * oÒ x À C
[i:i+1]

j

(20)

where)Cj denotes the boundary of the infeasible set Cj . Then the
distance constraints from time step i to i+1 are D[i:i+1]

j
(x) g 0,≈j À N+.

Then we can rewrite the constraint (4b) using distance constraints
as D[i:i+1]

j
(x) g 0,≈j À N+.

Next, the convex feasible subsets for (4) can be computed leveraging
the geometric property of C[i:i+1]

j
. For the case where C

[i:i+1]

j
is con-

vex, the function D
[i:i+1]

j
(x) is also convex [48]. Hence D

[i:i+1]

j
(x) g

D
[i:i+1]

j
(xr) + (xD

[i:i+1]

j
(xr)(x * xr) for any reference point xr. Then

D
[i:i+1]

j
(xr) + (xD

[i:i+1]

j
(xr)(x * xr) g 0 implies that x Ã C

[i:i+1]

j
and it

is feasible. For the case where C
[i:i+1]

j
is non-convex, we can manually

break it into several overlapping infeasible convex subsets C[i:i+1]

j,q
, such

that C[i:i+1]

j
=
∑

q
C
[i:i+1]

j,q
. The same rule applies for each C

[i:i+1]

j,q
.

Therefore, the convex feasible set F (sr) for (4) can be constructed
as:

F (sr) = {x : x À �x,

D
[i:i+1]

j
(x[i]

r
) + (xD

[i:i+1]

j
(x[i]

r
)(x[i] * x[i]

r
) g 0,≈j, i},

(21)

which is a convex subset of �x. Thus, (4) can be solved iteratively
within computed convex feasible set:

s(k+1) = argmin
sÀF (s(k)r)

J (s). (22)

where the reference trajectory is updated using solution from last
iteration s(k)r = s(k), and the initial reference trajectory is s(1)r = sr.
The convex optimization (22) will be solved iteratively until either the
solution converges or the descent of objective J is small.

It has been proved [47] that the sequence {s(k)} converges to a
local optimum of problem (4). Moreover, the computation time can be
greatly reduced using CFS. This is due to the fact that we directly search
for solutions in the feasible area. Hence (1) the computation time per
iteration is smaller than existing methods as no linear search is needed,
and (2) the number of iterations is reduced as the step size (change of
the trajectories between two consecutive steps) is unconstrained.

5.2. Example: Long term planning for a robot arm manipulator

In this subsection, we will discuss how to apply CFS algorithm to
robot arm motion planning. Here we consider the scenarios where the
six-degrees-of-freedom robot manipulator with initial pose x

0
À R6 at

time t
0
, and the robot is suppose to reach a target position at xgoal À R6

at time t
0
+ T . Let T = Mts, where ts is the sampling rate, we have the

time-stamped robot trajectory as s = [x[1];… ;x[i];… ;x[M]
], where i À

{1, 2,… ,M}, where x[1] = x
0
, and x[M]

= xgoal. Due to the joint limits,
the robot state constraints are: �x := {x : xp À [*

⇡

2
,
⇡

2
], p = 1, 2,… , 6}.

In the environment, there are other entities (obstacles) performing
routine navigation tasks, which may interfere the robot maneuver.
For simplicity, we assume the obstacles yield several convex non-
overlapping infeasible sets in the robot configuration space, which are
denoted as Cj .

Therefore, the safety constraint x[i] À XS is equivalent to that the
robot state is within the feasible set at every time step, which can
then be represented as the signed distance function to infeasible sets
C
[i:i+1]

j
is greater than 0,≈j, i.e. D[i:i+1]

j
(x[i]) g 0. Mathematically, the

discretized optimization problem is formulated as:

min
s

Òs * srÒ2Qr

+ ÒsÒ2
Qs

, (23a)

s.t. x
[i]

p
À [*

⇡

2
,
⇡

2
], p = 1, 2,… , 6, (23b)

D
[i:i+1]

j
(x[i]) g 0,≈i,≈j, (23c)

x[1] = x
0
,x[M]

= xgoal (23d)

where the reference trajectory sr is the linear interpolation from x
0
to

xgoal, such that x
[i]

r = x
0
+

i*1

M*1
(xgoal * x

0
).

Next, we will convexify the safety constraint (23c) according to
(21). Given the reference trajectory sr, we have the configuration x[i] at
horizon (i = 2, 3,… ,M * 1) should satisfy a linear inequality constraint

A[i]
(x[i]r)x[i] f b[i](x[i]r), where A[i]

(x[i]r) =

b
f
f
fd

*(xD
[i:i+1]

1
(x[i]r)

*(xD
[i:i+1]

2
(x[i]r)

4

c
g
g
ge
and

b[i](x[i]r) =

b
f
f
fd

D
[i:i+1]

1
(x[i]r) * (xD

[i:i+1]

1
(x[i]r)x[i]r

D
[i:i+1]

2
(x[i]r) * (xD

[i:i+1]

2
(x[i]r)x[i]r

4

c
g
g
ge
.

Therefore, we can represent the convex feasible set F for trajectory s
from (21) as As f b, where A = diag{0

1ù6
,A[2]

,… ,A[i]
,… ,A[M*1]

, 0
1ù6

}

and b = [0; b[2];… ; b[i];… ; b[M*1]
; 0].

With the convexified (23c), the motion planning optimization prob-
lem (23) is then solved using CFS iteratively until the solution con-
verges or the objective value is small. Note that since both the con-
vexified (23b) and (23c) are linear constraints and the objective (23a)
is quadratic, we are actually solving a sequence of quadratic pro-
grams, which can be handled efficiently using off-the-shelf quadratic
programming solvers.

6. Hierarchical long short term safety system

6.1. System workflow

The HLSTS system workflow is shown in Fig. 3. The system consists
of three hardware/software layer, those are (1) the long term planner
layer, (2) the coordinator layer, (3) the short term planner layer, and
(4) the low-level control layer.

The long term planner and short term planner run in parallel with
the control signal and data communication. The long term planner
focuses on generating the initial reference trajectory or replanned
trajectory sr = [x[1]r ;x[2]r ;… ;x[M]

r] by solving (4) for the entire system.
The trajectory sr is then sent to the hierarchical coordinator. The
idea of the hierarchical coordinator is to deal with the latency in
the communication between long term planner and short term plan-
ner. The hierarchical coordinator runs the trajectory interpolation and
modification program and generates a modified reference trajectory
sd = [x[1]

d
;x[2]

d
;… ;x[Md]

d
] for the short term planner, where Md > M is

the number of the interpolated trajectory. The short term planner uses
SSA control law (12) to generate the joint velocity command Üxc . This
command will be sent to the low-level controller to a simulated robot
or a real robot, and certain servo controllers such as PID controller is
required to track the Üxc command.

The global data are robot position x, robot velocity Üx, goal position
xgoal, and the nearest obstacle position ⇠. Leveraging the high loop
frequency for short term planner, the distance to obstacle is calculated
in the short term planner and the safety index � is then calculated. If
� g 0, the SSA control is activated and a replan_request signal
will be sent to the long term planner. Note that long term planning
adopts the ‘‘Event Trigger’’ replanning mechanism, where the long
term planner will replan a trajectory from the current state to goal
state, if an uninterrupted sequence of replan_request are received
(e.g., consecutive 3 requests in our 40 Hz implementation). Here, the
‘‘uninterrupted requests’’ is used as the replanning indicator to avoid
occasional false requests due to measurement noises. Additionally,
since the short term controller is running at a high frequency, it is
suitable to serve as the replanning requester who monitors the sys-
tem safety status (�) in real-time. Through these control signals, the
hierarchical system could run in parallel while keeping synchronization
between different layers.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

8

S. He et al.

Fig. 3. Hierarchical Long Short Term Safety (HLSTS) system workflow timeline.

Fig. 4. Replanned trajectory modification in Coordinator.

6.2. Hierarchical coordinator

The Hierarchical Coordinator is used to solve the delay problem
caused by two factors. The first one is the computation time in the
long term planner. And the second one is the communication latency
between long term planner and short term planner as shown in Fig. 3.
The Hierarchical Coordinator has two major functions including the
trajectory interpolation and trajectory modification. The trajectory gen-
erated in long term planner features a low sampling rate while the short
term planner has a high sampling rate trajectory. Thus the trajectory
interpolation is applied in the Hierarchical Coordinator to match these
two different sampling rates. The interpolation will comply with the
joint velocity limit.

The trajectory modification is applied when a new plan is generated
by the long term planner. Due to the computation time needed for re-
planning and the communication delay between the long term planner
and the short term planner, when the replanned trajectory arrives at
the short term planner, the current position of the robot may not be
aligned with the initial position of the replanned trajectory. As shown in
Fig. 4, we propose a simple trajectory modification method to deal with
this ‘‘planning-on-the-fly’’ problem. Suppose the replanned trajectory is
sr = [x[1]r ,x[2]r ;… ;x[M]

r], the robot’s current position is x, and the robot’s
velocity is Üx. The estimated robot position in the next time cycle is
Çx = x + ÜxTp, where Tp is the low level controller cycle time. Then, we
neglect the first point of the new trajectory and take the second point
as a reference. The new desired point Çx[1]

r
is obtained by

Çx[1]
r

= Çx + ⇢(x[2]
r

* Çx) (24)

where ⇢ g 0 is a smoothing factor. After the trajectory modification,
the new reference trajectory Çsr = [Çx[1]

r
;x[2]r ;… ;x[M]

r] is interpolated into
sd = [x[1]

d
;x[2]

d
;… ;x[Md]

d
] and then sent to the short term planner. This

trajectory modification method is efficient in practice. It improves the
motion smoothness significantly when the replanning is running in a
low frequency.

7. HLSTS hypothesis

Based on the hierarchical system architecture and constrained multi-
objective optimization, we anticipate that the long term safety planner
and short term safety planner both can benefit each other and a
hierarchical coordination of both long and short term planners will
further improve the overall performance of the hierarchical system.
Here we propose three main hypothesis, which will be verified in the
experiments to be discussed in the following sections:

Hypothesis 1 (Long Term Planner Improves Efficiency). Long terms safety
planner can find a global optimal reference trajectory compared to the
short term planner, which largely optimize the total operation time by
reducing the livelock and deadlock situations.

Hypothesis 2 (Short Term Planner Guarantees Safe Operation). Short
term safety planner can always drag the robot state to the safe set while
considering the obstacle uncertainty, which guarantees the provably
safe operation in both simulation and real world application.

Hypothesis 3 (Coordination of Long and Short Term Planner Increases the
Overall Smoothness, Efficiency and Safety). A coordination mechanism
can compensate the latency during the communication between long
and short term safety planner, which reduces the undesired zig-zag
motion and further increases the overall smoothness, efficiency and
safety.

8. Results and discussion

8.1. Evaluation platforms

To evaluate the performance of the proposed HLSTS framework
as shown in Fig. 3, a series of decentralized robot manipulation ex-
periments in clustered environments have been conducted, where the
robot have no access to the ground truth obstacle movement patterns.
The decentralized manufacturing system increases both flexibility and
robustness by maintaining the level of productivity [49]. For exam-
ple, human–robot collaboration system can accomplish non-repetitive

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

9

S. He et al.

Fig. 5. A robot factory coordination evaluation platform. The robot is performing
a goal reaching task and two gripper obstacles are driven along several random
trajectories.

Fig. 6. Robot and obstacle capsules. Several capsules are used to wrap the robot mesh
and obstacle mesh for distance calculation.

tasks with human’s adaptive and cognitive capability [50], where
the robot and human coexist in the same cell and the robot should
safely and efficiently complete its tasks without full access of human’s
intentions [51]. This section introduces the evaluation tasks that we
developed.

Robot factory coordination simulation platform
The experiments are first conducted on a simulation platform with

a robot factory coordination scenario. A 6-DOF serial robot YASKAWA
Motoman GP50 is used in these experiments to perform a goal reaching
task as the yellow line shown in Fig. 5. The initial pose of the robot
is x

0
= [0, 0, 0, 0, 0, 0]

Ò and the target pose of the robot is xgoal =

[
⇡

4
,*

⇡

2
,
⇡

4
, 0, 0, 0]

Ò. Meanwhile, other robots or tools are executing their
own tasks, i.e., their end-effectors are moving along specific trajectories
and interfering with the GP50 robot in the middle of the goal reaching
task. To demonstrate generalizability, we simulate a two-tool scenario
and a one-tool scenario and randomized 20 tool trajectories as the
orange lines and green lines shown in Fig. 5. These tool trajectories
are composed of several line segments. For the one-tool scenario, the
tool trajectories are defined by four segment points, where the start
point is fixed and the rest points are randomly sampled from a uniform

distribution. The segment points in (x, y, z) are

h
n
l
nj

b
f
fd

1

0.1

1

c
g
ge
,

b
f
fd

1

0.4

1.1

c
g
ge
+ 0.2U ,

b
f
fd

1

0.8

1.2

c
g
ge
+ 0.2U ,

b
f
fd

1

1.2

1.3

c
g
ge
+ 0.1U

i
n
m
nk
,

where the U means the uniform distribution from *1 to 1.
Similar to one-tool scenario, for the two-tool scenario, where the

trajectories are also defined by four randomly sampled segment points.
The tool 1 trajectories segment points in (x, y, z) are

h
n
l
nj

b
f
fd

1.1

*0.2

0.9

c
g
ge
,

b
f
fd

1

0.2

1.0

c
g
ge
+ 0.2U ,

b
f
fd

1.1

0.6

1.1

c
g
ge
+ 0.2U ,

b
f
fd

1

1.0

1.2

c
g
ge
+ 0.1U

i
n
m
nk
,

and the tool 2 trajectories segment points in (x, y, z) are

h
n
l
nj

b
f
fd

1.1

1.0

1.2

c
g
ge
,

b
f
fd

1

0.6

1.1

c
g
ge
+ 0.2U ,

b
f
fd

1.1

0.2

1.0

c
g
ge
+ 0.2U ,

b
f
fd

1

*0.2

0.9

c
g
ge
+ 0.1U

i
n
m
nk
.

The tools are moving along the trajectories with a constant speed
0.03 m_s. In order to calculate the distance between the robot and the
obstacles efficiently, several capsules are used to wrap the robot and the
obstacles as illustrated in Fig. 6. Thus, the distance calculation between
mesh surfaces can be simplified to the distance calculation between line
segments, which increase computation efficiency significantly [52].

To investigate the impact of different uncertainty levels on the
efficiency and safety performance of HLSTS framework, we design
different experiment sets where the robot is supposed to perform the
goal reaching task while keeping the obstacle collision avoidance.

Without the access to the ground truth obstacle movement tra-
jectory, the obstacle position estimation is becoming more inaccurate
as the time step growing, which will result in accumulated obsta-
cle uncertainties. Therefore, we investigate the performance of the
HLSTS framework under different prediction qualities on the obstacle
trajectory, including (1) no prediction, (2) local prediction, and (3)
global prediction. No prediction assumes obstacle is staying static,
which greatly differentiates from ground truth obstacle movement,
thus representing large obstacle uncertainty. Local prediction makes
inaccurate obstacle movement prediction, which mildly differentiates
from ground truth obstacle movement, thus representing mediocre
obstacle uncertainty. Finally, global prediction makes accurate obstacle
movement prediction, thus representing near-zero obstacle uncertainty.
Therefore, we have designed the following experiment cases:

1. LT no predict, Long Term planning only, without any prediction
on the obstacles.

2. LT local predict, Long Term planning only, with inaccurate pre-
diction on the obstacles.

3. LT global predict, Long Term planning only, with accurate pre-
diction on the obstacles.

4. ST, Short Term planning only, where the current obstacle po-
sition is fed to the short term planner. Short term planner is a
reactive planner and no prediction is needed.

5. LSTS no predict, Hierarchical Long Short Term Safety planning,
without any prediction on the obstacles.

6. LSTS local predict, Hierarchical Long Short Term Safety planning,
with inaccurate prediction on the obstacles.

7. LSTS global predict, Hierarchical Long Short Term Safety plan-
ning, with accurate prediction on the obstacles.

To perform a fair comparison in time efficiency between these
experimental cases, the robot is driven with a maximum joint velocity
0.05 rad_s. The Velocity-SSA in (12) is used in the short term planner
for these cases and the coefficient for SSA controller is set as ks =

10. To ensure the provable safety for the short term safety planner
under the uncertainties (tracking and measurement, etc.), we choose a

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

10

S. He et al.

appropriate safe margin dm and gain ks for SSA controller, such that
the requirements in Theorem 2 are met. To evaluate the efficiency
and safety of different cases, we chose the goal reaching time tf and
minimum distance dmin as performance indexes.

Real-robot platform
The real robot experiments are carried out on a real 6-DOF

YASKAWA Motoman GP50 robot as shown in Fig. 7. The GP50 robot
offers outstanding performance for increased production output with
high mounting flexibility for a large range of applications.2 The max-
imum horizontal reach of GP50 robot is 2.061 m and the maximum
vertical reach of GP50 is 3.578 m. To test the performance of the
proposed HLSTS framework on real robot, we design a simple obstacle
avoidance case using a virtual obstacle. The virtual sphere obstacle
with radius 0.3 m is driven from the initial position (1.0, 0.3, 1.0) m

with constant speed as the yellow circle shown in Fig. 7. To study
the obstacle avoidance ability of the robot system, different obstacle
moving speed are chosen as follows

• vO = (0, 0.0005, 0.004) m_s,
• vO = (0, 0.001, 0.008) m_s,
• vO = (0, 0.005, 0.04) m_s.

The joint velocity limit for the real robot is 0.025 rad_s. The Velocity-
SSA in (12) is used in the short term planner and the coefficient for SSA
controller is set as ks = 4. It is tested in pre-experiments that this choice
of ks guarantees the probabilistic safety in real-time. And the capsule
design is the same as in the simulation setup. The overall HLSTS system
workflow is the same as in Fig. 3. The long term planner is running on
a Matlab-ROS program in host-PC with about 10 Hz frequency. And the
short term planner is running on a ROS C++ node in target-PC with
40 Hz frequency. The joint velocity command output from the short
term planner is multiplied by cycle time 0.025 s as the joint position
increment, since the YRC1000 controller only takes in the joint position
command. The control command is sent to the robot through MotoROS
application running on the Motoman YRC1000 controller, where the
desired position is tracked in the servo control level. The commu-
nication latency between the host-PC and the YRC1000 controller is
about 50 ms according to preliminary experiments. It is noted that in
our experiments, the host-PC and target-PC are the same laptop with
Intel Core i7-6700HQ @2.60 GHz CPU. The results is still satisfying
even under such limited computational resources, while one can set up
the host-PC and target-PC separately to acquire better computational
ability.

8.2. Experiment results

Simulation experiments results
Different cases have been carried out in the one-obstacle scenario

and the two-obstacle scenario. The goal reaching time tf – minimum
distance dmin graph for the one-obstacle scenario and the two-obstacle
scenario are shown in Fig. 8(a) and Fig. 8(b), respectively. Each data
point is a experiment for corresponding case with respect to certain
randomized obstacle trajectory. And the Kernel distribution is used to
illustrate the general spreading of the data sets. We could observe the
distribution behavior more intuitively in the goal reaching time tf and
minimum distance dmin for different cases. Meanwhile, the mean, stan-
dard deviation and correlation coefficient values for all experiments
are exhibited in Table 1. Besides, the running process for two-obstacle
experiments are plotted in Figs. 9 and 15–20 for detailed analyses.

2 https://www.motoman.com/en-us/products/robots/industrial/assembly-
handling/gp-series/gp50

Fig. 7. Real robot experiment platform. The robot is performing a goal reaching task
as in the simulation and the virtual obstacle (yellow sphere) is driven from the initial
position with constant speed.

One-obstacle results. From the one-obstacle results in Fig. 8(a), we
could observe that different cases have a conspicuous difference on
minimum distance dmin while having an inconspicuous difference on
goal reaching time tf .

For the minimum distance dmin, the cases with short term planner,
i.e., ST and LSTS, have a larger minimum distance (dmean

min
g 0.0436 m),

which means the better safety performance. The LT cases have smaller
minimum distance (dmean

min
f 0.0265 m), however, with the better pre-

diction on the obstacle movement, the safety performance increase
significantly (dmean

min
= *0.0119 m for LT no predict, dmean

min
= 0.0035 m for

LT local predict and d
mean

min
= 0.0265 m for LT global predict). Most data

points of LT no predict case have negative minimum distance, while
only a few data points of LT global predict case have negative minimum
distance. From this result we can conclude that the better prediction
on the obstacle movement leads to the better safety, but the best way
to ensure safety is using the high-frequency short term planner. Note
the goal reaching time of LSTS is only 1 s longer than LT on average,
which indicates that LSTS does not generate a more time-consuming
trajectory. There are two underlying reasons for this, (1) LT cases reach
the target efficiently by sacrificing safety too much, i.e., the average
dmin is lower than LSTS cases and the variation is larger than LSTS case
as in Fig. 8(a); and (2) LSTS cases only need minor modification of the
reference trajectory from LT cases via triggering the ST at critical states.
Hence, the goal reaching time of LSTS is slightly longer than LT.

For the goal reaching time tf , the nominal values of the distribution
of different cases are almost the same (tmean

f
˘ 32 s) while the ST

case has larger distribution variance (tstd
f

= 5.0889 s) than the others
(tstd
f

f 3.7314 s). The reason for this result is that the one-obstacle
scenario is too simple to demonstrate the efficiency merits for the long
term planner. The robot trajectory from long term planner and the
trajectory from short term planner are quite similar in most cases.
However, the long term planner tends to find a more time-optimal
trajectory in complicated scenario. Thus, we further carried out the
two-obstacle experiments.

Two-obstacle results. The two-obstacle results in Fig. 8(b) show obvious
difference on both minimum distance dmin and goal reaching time tf .

The minimum distance dmin results have similar pattern as the one-
obstacle results, i.e., the cases with short term planner have better
safety performance (dmin g 0.0288 m for cases with short term planner
and dmin f 0.0115 m for cases without short term planner). Besides,
the safety performance increases as the prediction accuracy increases.
This trend is observed in both LT cases (dmean

min
= *0.0823 m for LT no

predict, dmean
min

= *0.0470 m for LT local predict and d
mean

min
= 0.0115 m

for LT global predict) and LSTS cases (dmean
min

= 0.0288 m for LSTS no

https://www.motoman.com/en-us/products/robots/industrial/assembly-handling/gp-series/gp50
https://www.motoman.com/en-us/products/robots/industrial/assembly-handling/gp-series/gp50

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

11

S. He et al.

Table 1
Experimental results for one-obstacle and two-obstacle scenarios.

One-obstacle experiments Two-obstacle experiments

t
f
(s) d

min
(m) corr. coef. t

f
(s) d

min
(m) corr. coef.

mean std. mean std. mean std. mean std.

LT no predict 31.5207 3.4869 *0.0119 0.0130 *0.0455 28.9548 7.5948 *0.0823 0.0590 *0.0830
LT local predict 31.4885 2.8746 0.0035 0.0159 *0.5842 29.0144 6.0028 *0.0470 0.0540 0.1669
LT global predict 31.6287 3.4862 0.0265 0.0109 *0.3540 29.4750 6.1475 0.0115 0.0342 *0.5705
ST 31.5999 5.0889 0.0436 0.0016 *0.1119 34.6100 8.0315 0.0289 0.0092 *0.4128
LSTS no predict 32.6966 3.7314 0.0439 0.0014 *0.0772 35.1973 5.8271 0.0288 0.0099 *0.3881
LSTS local predict 32.4600 2.8746 0.0447 0.0159 0.0107 31.9381 5.5963 0.0368 0.0109 *0.5194
LSTS global predict 32.2146 3.4675 0.0454 0.0014 *0.1160 30.7253 6.0510 0.0465 0.0017 *0.5412

Fig. 8. Goal reaching time t
f
– minimum distance d

min
graph for experimental results. (Each data point represents a randomized obstacle trajectory, and the colored area represents

the Kernel distribution for the data set).

predict, dmean
min

= 0.0368 m for LSTS local predict and d
mean

min
= 0.0465 m

for LSTS global predict) for two-obstacle results while it is not obvious
for LSTS cases in one-obstacle results (dmean

min
= 0.0439 m for LSTS no

predict, dmean
min

= 0.0447 m for LSTS local predict and d
mean

min
= 0.0454 m

for LSTS global predict). The reason is that the two-obstacle experiment
is more complicated than the one-obstacle experiment. A bad prediction
on the obstacle movement will cause the SSA control runs into a severe
condition (e.g., two obstacle come from both side and block the path)
that a large gain ks is needed to avoid the collision. However, we cannot
set the infinite value for ks. Thus there are some unsafe cases even there
is a short term planner.

Unlike the one-obstacle results, the two-obstacle results have more
apparent difference on the goal reaching time tf . The nominal value
of ST case (tmean

f
= 34.6100 s) and the LSTS no predict case (tmean

f
=

35.1973 s) is larger than the others (tmean
f

f 31.9381 s). However, the
ST case has larger distribution variance (tstd

f
= 8.0315 s) than the LSTS

no predict case (tstd
f

= 5.8271 s). And from the distribution plots on the
top of Fig. 8(b) we can see that, the ST case has a series of experiment
sets those goal reaching time tf are larger than the others. These results
indicate that the ST case is less efficient than the others. The reason for
this phenomenon can be explained through the ST case process plot in
Fig. 9. It is observed from 8 s to 38 s in Fig. 9 that, some ST cases
runs into a situation that one of the obstacle always blocks the robot
on the one side. The short term planner can only locally generates a
trajectory free from collision while stay at one side of the obstacle.
Thus for a long time the robot is moving but the distance to the goal is
not decreasing. For such livelock situation, the long term planner could
generate a trajectory around the obstacle and get away with the local
minima. The more complicated the environment is, the more efficient
will the long term planner works.

Joint velocity comparison
The joint velocity profiles for different cases are also compared as

in Fig. 10. It is observed that, the velocity profile for the ST case has
chattering phenomenon, which is due to the high frequency interaction
between the robot and the obstacle. Without the short term planner,
the LT only cases (LT no predict, LT local predict and LT global
predict) have the smoothest joint velocity profile as illustrated in the
top of Fig. 10. And the long term planner benefits the joint velocity
smoothness significantly. Compared with the ST cases, the LSTS cases
(LSTS no predict, LSTS local predict and LSTS global predict) have
smoother joint velocity profile as illustrated in the bottom of Fig. 10.

Besides, for both LT cases and LSTS cases, the local predict cases
have smoother joint velocity than no predict cases, and the global
predict cases have smoother joint velocity than local predict cases.
These results can be explain through two aspects:

1. The reason for LT cases is that as the prediction accuracy
increases, the numbers of the replanning decrease. This phe-
nomenon can be observed from Figs. 15–17, where the numbers
of replanning decreases from 12 to 5. The replanning is re-
quested when a potential collision is detected. Each replanned
trajectory will driven the robot away from current trajectory to
avoid the collision. Thus successional replanning keeps chang-
ing the robot moving direction and thus causes the unsmooth
motion.

2. The reason for LSTS cases is that as the prediction accuracy
increases, the time of the short term planner activated decrease.
This phenomenon can be observed from Figs. 18–20, where the
green SSA activate area decreases. The less time of short term
planner activated also means the less numbers of replanning,

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

12

S. He et al.

Fig. 9. Two-obstacle ST process. (The blue solid line is the distance from the robot to the obstacle. The orange solid line is the distance from the robot end-effector to the goal.
The red dashed line is the safety line with zero distance. The gray dashed lines represent the replanning time. The green zone means the SSA control in short term planner is
activated).

Fig. 10. Joint velocity compare results for different cases under same obstacle
trajectory. (The dashed lines on ±0.05 represent the velocity limit. Only joint 2 velocity
profile is plotted for distinctness).

which is determined by our system workflow as in Fig. 3. Be-
sides, the SSA control law (12) in the short term planner will
cause chattering without the appropriate gain ks. With the prior-
knowledge of the obstacle, the accurate prediction decreases the
time of short term planner activated, thus the whole running
process is smooth.

Thus the more accurate the prediction is, the smoother will the joint
velocity profile be. The above results consistently verify Hypotheses 1
and 2.

Real-robot experiments results
Different obstacle speed are tested and the obstacle distance profile

for different cases are shown in Fig. 11. It is observed that for the low
obstacle speed case vO = (0, 0.0005, 0.004) m_s at the top of Fig. 11,
all three cases have similar safety performance with the minimum
distance approximate 0.1 m. For the medium obstacle speed case vO =

(0, 0.001, 0.008) m_s at the middle of Fig. 11, the LSTS case and ST case
have similar safety performance with the minimum distance approx-
imate 0.08 m, while the LT case has worst safety performance where
the minimum distance dmin = 0.018 m. For the high obstacle speed case
vO = (0, 0.005, 0.04) m_s at the bottom of Fig. 11, the LT case is unsafe
with dmin = *0.17 m. The LSTS case and ST case are still safe, but
due to the obstacle avoidance ability limitation brought by the robot
joint velocity limits, the minimum distance is quite close to 0. These
results demonstrate that the proposed HLSTS system can maintain a
good safety performance in real robot application.

Fig. 11. Obstacle distance results for real robot experiments with different obstacle
moving speed. (The area colored in red represents unsafe distance).

The whole process for the LSTS experiment with high obstacle speed
is shown in Fig. 12. The long term planner starts with a trajectory
circumventing the obstacle from its top. As the obstacle moving up-
wards, the short term planner pushing the robot upward to guarantee
the safety. Meanwhile, the long term planner keeps replanning efficient
trajectory to avoid the collision. The average replanning time is 0.4728 s

as the dashed lines shown in Fig. 12. After a few seconds (at about
15 s), the long term planner find a replanned trajectory with better time
efficiency, which circumventing the obstacle from its bottom. Then,
more replanning corrects the trajectory and leads the robot to the
goal. The whole process shows the coordination between the long term
planner and the short term planner. The resulting obstacle avoidance
trajectory is efficient to our human knowledge.

Hierarchical coordinator comparison
In Section 6.2, we proposed a hierarchical coordination method

through replanned trajectory modification, which improve the coordi-
nation between the long term planner and short term planner due to the
replanning computation time and the communication latency. In order
to illustrate the effectiveness of the proposed hierarchical coordinator,
we compare two tasks with coordination on and off using LT no predict
case under the same obstacle trajectory. The comparison result is shown
in Fig. 13.

It is seen from the robot end-effector trajectory on the top of
Fig. 13 that, without coordination, the robot is running with a zig-zag

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

13

S. He et al.

Fig. 12. LSTS process for real robot experiments with obstacle moving speed v
O
= (0, 0.005, 0.04) m_s. (The blue solid line is the distance from the robot to the obstacle. The

orange solid line is the distance from the robot end-effector to the goal. The red dashed line is the safety line with zero distance. The gray dashed lines represent the replanning
time. The green zone means the SSA control in short term planner is activated).

Fig. 13. Coordination compare results under the same obstacle trajectory. (The green
curve is the robot end-effector trajectory and the red curve is the reference trajectory.
Only joint 2 velocity profile is plotted for distinctness).

motion. While the robot is running smoothly with coordination. This
phenomenon can also be illustrated through the joint velocity profile
in the middle of Fig. 13. Without coordination, the joint velocity is
reversed after receiving a replanned trajectory, which not only lead
to the zig-zag motion, but also increase the goal reaching time. The
coordination prevents the velocity reverse and lead to smooth motion
as well as efficiency improvement.

Besides, the obstacle distance profile at the bottom of Fig. 13
indicates that the coordination also improves the safety. Without co-
ordination, the first point of replanned trajectory is an unsafe point
short time ago. The robot is commanded to track this unsafe point
thus the safety is violated. With coordination, the modified first point
leverage the safe position of the second point of replanned trajectory.
Hence the robot is tracking a relatively safe point and the safety perfor-
mance is better than the uncoordinated case. These results illustrate the
effectiveness of the proposed hierarchical coordinator and also verify
Hypothesis 3.

Safety index comparison in SSA
To provide a guidance on the safety index choose, two different

types of safety indexes used in (8) and (13) are also compared. For
the Velocity-SSA, the controller output is joint velocity and the control

law is used as in (12). For the Acceleration-SSA, the controller output
is joint acceleration and the control law is used as in (17). Different
joint hardware interfaces and tracking controllers are implemented
accordingly. They are both running on a same obstacle avoidance task,
i.e., same obstacle trajectory and moving speed. The parameters used
in Velocity-SSA and Acceleration-SSA are

• Velocity-SSA: ks = 10

• Acceleration-SSA: ks = 30, k
1
= 0.02

To perform a fair comparison, parameters for Velocity-SSA and
Acceleration-SSA are carefully tuned so that the resulting obstacle
distance for them are basically the same. Besides, the joint velocity
limits are the same 0.05 rad_s. It is observed that the increase on k

1
will

lead to the decrease on minimum distance. Thus a larger ks is used in
Acceleration-SSA while the similar minimum distance is obtained. Due
to the complexity of the distance function D, we can only calculate)�0

)x
and)

2
�0

)x2 in discrete form. In (15), we have

)�
0

)x = [
)�

0

)x
1

,… ,
)�

0

)xN

]
Ò

)
2
�
0

)x2
=

b
f
f
f
f
fd

)
2
�0

)x
2

1

…
)
2
�0

)x1)xN

4 7 4
)
2
�0

)xN)x1

…
)
2
�0

)x
2

N

c
g
g
g
g
ge

(25)

Using central difference method, the discrete form can be obtained as

)�
0

)xi

˘
�
0
(xi + h) * �

0
(xi * h)

2h

)
2
�
0

)x
2

i

˘
�
0
(xi + h) * 2�

0
(xi) + �

0
(xi * h)

h2

)
2
�
0

)xi)xj

˘
�
1
* �

2
* �

3
+ �

4

4h2

�
1
= �

0
(xi + h, xj + h)

�
2
= �

0
(xi * h, xj + h)

�
3
= �

0
(xi + h, xj * h)

�
4
= �

0
(xi * h, xj * h)

(26)

where h > 0 is a small positive constant, i, j = 1,… ,N and i ë j.
The resulting obstacle distance profile and the joint velocity profile

are plotted in Fig. 14. The top figure of Fig. 14 indicates that the ob-
stacle distance profile for them are basically the same (dmin = 0.0426 m

for Velocity-SSA and dmin = 0.0439 m for Acceleration-SSA). From the
joint velocity profile we can see that the Acceleration-SSA is much
more smoother than the Velocity-SSA. One reason is that the system
dynamics for Acceleration-SSA is running on the joint acceleration

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

14

S. He et al.

Fig. 14. Velocity-SSA and Acceleration-SSA safety index comparison results. (Joint 4–6
velocity profiles are not plotted due to small movement).

layer, where the joint velocity is the integral of the control command.
Note that the smooth joint velocity profile from Acceleration-SSA could
be achieved by applying a filter to Velocity-SSA. However, in our ex-
periments, we choose Acceleration-SSA instead of filtered Velocity-SSA
due to (1) Acceleration-SSA achieves smooth joint velocity profile while
providing provable safety guarantee; and (2) simply filtering Velocity-
SSA will compromise the zero safety violation guarantee brought by
SSA. Another reason is the penalization on the time derivative of the
distance D in the safety index (13). By tuning the parameter k

1
we can

tune the smoothness of the joint velocity profile.

8.3. Hypothesis discussion

Hypothesis 1 - long term planner improves the efficiency of short term
planner

As the two-obstacle results analyzed in Section 8.2, the average goal
reaching time tf is smaller for cases with long term planner (LSTS
and LT cases) compared with the cases without long term planner
(ST case). Notice that when the joint velocity of robot is bounded,
the smaller goal reaching time means the robot can complete its tasks
more efficiently. We also observed that when equipped the long term
planner, the livelock situation in Fig. 9 is avoided (Hypothesis 1).

Due to the complexity nature of global optimal maneuver trajec-
tory for the robot to reach the target while dodging the obstacle,
the short term planner only focuses on the locally reactive trajectory

modification, where the local trajectory construction is hard to sat-
isfy the global trajectory objective (smoothness) when starting from
a reference trajectory that is a bad local trajectory optima (linear
interpolation). On the other hand, the idea of long term planner is
solving the optimization problem avoiding the obstacle, minimizing the
overall trajectory length, and ensuring trajectory smoothness. There-
fore, the trajectory generated by long term planner inherently minimize
the undesired behaviors such as livelocks that make the trajectory
longer and less smooth. At the same time we also observe that, as the
obstacle prediction accuracy increases in the long term planner, the
average goal reaching time tf decreases accordingly. Since better ob-
stacle prediction accuracy enables better obstacle avoidance constraints
satisfaction for the reference trajectory, which further improves the
reference trajectory optimality and yields better efficiency.

Hypothesis 2 - short term planner guarantees safe operation
From the simulation results in Section 8.2 and real-robot results

in , the minimum distance dmin between the robot and the obstacle
is significantly larger for cases with short term planner (LSTS and ST
cases) compared with cases without short term planner (LT cases).

Considering the uncertainty of obstacle position prediction, track-
ing error of reference trajectory, as well as the limited horizon of
reference trajectory from long term planner, the robot state may not
constantly remain the safe set during the reference trajectory tracking.
However, the short term planner explicitly consider the uncertainty of
the obstacle, and pull the robot into safe set whenever it is unsafe,
which further guarantees the safe operation during reference trajectory
tracking (Hypothesis 2).

Hypothesis 3 - coordination of long and short term planner increases the
overall smoothness, efficiency and safety

As the results shown in , with the hierarchical coordinator turned
on, the goal reaching time tf is decreased, the average distance be-
tween the robot and the obstacle is increased, and the robot motion
smoothness is increased significantly.

Due to the execution frequency difference between the long term
planner and short term planner, the reference start position of the robot
is the snapshot of the robot state a few times ago when replanning is
requested, whereas the shorter term planner makes the current robot
state closer to the target and more safe. Without a proper coordination
mechanism to modify the reference start position after replanning, the
robot is commanded to track this unsafe point thus the safety will
be violated. At the same time, tracking a point that has already been
passed will reverse the velocity of the robot, which leads to the zig-zag
motion as well as the increasing the goal reaching time. With a proper
designed coordinator, we can prevents the zig-zag motion which further
leads to better efficiency and safety (Hypothesis 3).

Fig. 15. Two-obstacle LT process without prediction. (The blue solid line is the distance from the robot to the obstacle. The orange solid line is the distance from the robot
end-effector to the goal. The red dashed line is the safety line with zero distance. The gray dashed lines represent the replanning time).

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

15

S. He et al.

Fig. 16. Two-obstacle LT process with local prediction. (The blue solid line is the distance from the robot to the obstacle. The orange solid line is the distance from the robot
end-effector to the goal. The red dashed line is the safety line with zero distance. The gray dashed lines represent the replanning time).

Fig. 17. Two-obstacle LT process with global prediction. (The blue solid line is the distance from the robot to the obstacle. The orange solid line is the distance from the robot
end-effector to the goal. The red dashed line is the safety line with zero distance. The gray dashed lines represent the replanning time).

Fig. 18. Two-obstacle LSTS process without prediction. (The blue solid line is the distance from the robot to the obstacle. The orange solid line is the distance from the robot
end-effector to the goal. The red dashed line is the safety line with zero distance. The gray dashed lines represent the replanning time. The green zone means the SSA control in
short term planner is activated).

Fig. 19. Two-obstacle LSTS process with local prediction. (The blue solid line is the distance from the robot to the obstacle. The orange solid line is the distance from the robot
end-effector to the goal. The red dashed line is the safety line with zero distance. The gray dashed lines represent the replanning time. The green zone means the SSA control in
short term planner is activated).

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

16

S. He et al.

Fig. 20. Two-obstacle LSTS process with global prediction. (The blue solid line is the distance from the robot to the obstacle. The orange solid line is the distance from the robot
end-effector to the goal. The red dashed line is the safety line with zero distance. The gray dashed lines represent the replanning time. The green zone means the SSA control in
short term planner is activated).

9. Conclusion

The safe and efficient robot manipulation in clustered environment
remains challenging due to uncertainties in the system and limited
computation resources. This paper proposed a hierarchical long short
term safety system (HLSTS), which combines efficiency-oriented long
term planner in the upper layer, a safety-oriented short term planner
in the lower layer, and a hierarchical coordinator in the middle layer.
The long term planner enables the robot to generate global reference
trajectory with great optimality. The short term planner guarantees the
robot safety by reacting to local environment emergencies in real-time.
The coordinator ensures the smooth motion of the robot system by
trajectory modification to compensate the communication latency be-
tween upper and lower layer. The theoretical results indicate feasibility
guarantee of the long term planner as well as the probabilistic safety
guarantee of the shot term planner. The proposed architecture has been
implemented in our robot factory application on both simulations and
real robot experiments, where the robot is performing a goal reaching
task while interacting with randomly moving obstacles. Experimental
results consistently verify our hypothesis, which indicates that the
proposed HLSTS framework not only guarantees the safety but also
improves the efficiency.

CRediT authorship contribution statement

Suqin He: Conceptualization, Methodology, Software, Validation,
Formal analysis, Investigation, Writing – original draft. Weiye Zhao:
Conceptualization, Methodology, Software, Validation, Formal anal-
ysis, Investigation, Writing – original draft. Chuxiong Hu: Method-
ology, Resources, Writing – review & editing, Supervision, Project
administration, Funding acquisition. Yu Zhu: Writing – review & edit-
ing. Changliu Liu: Conceptualization, Methodology, Resources, Writ-
ing – review & editing, Supervision, Project administration, Funding
acquisition.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.rcim.2022.102522.

Data availability

Data will be made available on request.

Acknowledgment

This work is supported in part by the Beijing Natural Science Foun-
dation under Grant JQ19010, in part by the National Nature Science
Foundation of China under Grant 51922059, in part by the National
Science Foundation under Grant No. 2144489, in part by the Amazon
Research Award, and in part by Subaward No. ARM-TEC-18-01-F-06
from the Advanced Robotics for Manufacturing ("ARM") Institute.

Appendix A. Theoretical analysis

Before we discuss the theoretical analysis for the proposed hierar-
chical long and short term safety system, we start with definitions for
two crucial categories of concepts.

The first category of concepts is trajectory, there are four differ-
ent definitions summarized as following, and their illustrations are
summarized in Fig. A.21:

• discrete-time trajectory sD: The planned trajectory generated
by planning algorithm (e.g. convex feasible set algorithm), which
includes a sequence of discrete waypoints x[i]r , such that sD =

[x[1]r ;x[2]r ;…]. In the following, we use left-superscript j to denote
the jth replanned trajectory, e.g., jsD represents the jth replanned
discrete-time trajectory.

• continuous-time trajectory sC : The continuous trajectory that
connects all the discrete waypoints from a discrete-time trajec-
tory, such that: «Ti : [0, 1] ô X indexed by interval I = [0, 1],
such that Ti(0) = x[i]r , Ti(1) = x[i+1]r , i = 1, 2,…. Then sC =

[T
1
; T

2
;5]

• concatenated planning trajectory sConcat: The continuous tra-
jectory that connects the first waypoint jx[1]r for a sequence of
planned discrete-time trajectory jsD, j = 1, 2,…, such that: «jTC :

[0, 1] ô X indexed by interval I = [0, 1], such that j
TC (0) =

j

x[1]r ,
j
TC (1) =

j+1 x[1]r , j = 1, 2,…. Then sConcat = [
1
TC ;

2
TC ;5]. And

this is the trajectory that is being monitored by the short term
controller.

• executed trajectory sExec : The robot executed continuous trajec-
tory.

The second category of concepts is feasibility, there are three differ-
ent definitions summarized as following:

• discrete-time feasibility: every waypoint in discrete-time tra-
jectory sD satisfies the safety constraints, i.e. (≈x[i]r À sD,≈j À

N+
),D

[i:i+1]

j
(x[i]r) g 0, where D

[i:i+1]

j
is the safety constraint de-

fined in (20).
• continuous-time feasibility: there exists a continuous time tra-
jectory sC such that every possible point x À sC satisfies the safety
constraint.

https://doi.org/10.1016/j.rcim.2022.102522
https://doi.org/10.1016/j.rcim.2022.102522
https://doi.org/10.1016/j.rcim.2022.102522

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

17

S. He et al.

Fig. A.21. Illustration of different types of trajectories. Blue waypoints: discrete-time
trajectory s

D
. Blue line segments: continuous-time trajectory s

C
. Green line segments:

concatenated planning trajectory s
Concat

. Yellow trajectory: executed trajectory s
Exec

.

• persistent feasibility: for each jth replanning step, there always
exists a discrete-time trajectory jsD that satisfies the discrete-time
feasibility.

With the clarified two categories of concepts, for the proposed
hierarchical long and short term safety system, there are mainly five
potential questions regarding its performance:

Q1: If both the delay and tracking error are bounded, and there is no
uncertainty, will the planner always generate a feasible discrete-
time trajectory plan at every replanning step during execution,
i.e., can we ensure persistent feasibility?

Q2: If there is no uncertainty, will there always be a feasible
continuous-time trajectory such that every possible point along
the trajectory is feasible, i.e. continuous-time feasibility?

Q3: If there is bounded delay, tracking error, and uncertainty, will the
safety of the system still be guaranteed?

Q4: If there is bounded delay and uncertainty, will there always be
a feasible continuous-time trajectory to track the concatenated
planning trajectory sConcat with bounded error during execution?

Q5: Will there be persistent feasibility for the long term planner when
there are bounded delay and uncertainty, and if so, will the robot
be able to converge to the target position, i.e. x ô xgoal, safely in
finite time?

In this paper, we will answer the first three questions by presenting
the following main theorems and the associated assumptions, while the
last two questions are left for future work.

The above questions are based on different assumptions regarding
delay, tracking error and uncertainties, where (1) the delay is mainly
caused by the communication delay between hierarchical layers; (2)
the tracking error is mainly caused by system dynamics and modeling
errors; (3) the uncertainties are mainly caused by measurement of the
robot and prediction of the obstacles.

The first question is answered by Theorem 3 and the second ques-
tion is answered by Theorem 1. A positive answer to the first question
ensures that we will always find a discrete-time long term plan in
receding horizon if there is no uncertainty (persistent feasibility guar-
antee). A positive answer to the second question ensures that the
robot can safely track a continuous-time trajectory to the target if
there is no delay, tracking error or uncertainty. Note that the dynamic
constraints are not considered in long term planning, thus the feasible
continuous-time trajectory can only be perfectly tracked by the robot

if the low-level controller is perfect, i.e., there is no tracking error
regarding the continuous-time trajectory.

The third question is answered by Theorem 2. The result ensures
that the system safety can be probabilistically ensured even if the long
term plan is not feasible during execution due to prediction error as
well as the trajectory tracking error.

The reason why we need to show Theorem 1 and Theorem 3 is
that the original proof for CFS algorithm [47] only concerns with
discrete-time feasibility in one planning. Discrete-time feasibility in
one planning answers what initial reference trajectory can lead to an
optimal and feasible discrete-time trajectory through CFS iterations.
Theorems 1 and 3 answer continuous time feasibility in one plan
as well as persistent feasibility in subsequent plans. Note there are
other approaches that plan in discrete time and ensure continuous
time feasibility, such as TrajOpt algorithm [53]. However, there are no
formal guarantees on convergence for TrajOpt and it remains unclear
what initialization can guarantee a solution.

A.1. Assumption and properties

Assumption 1. It is assumed that the infeasible set in the configuration
space from time step i to time step i + 1 can be represented as a set of
convex hulls C[i:i+1]

j
, j À N+ and j < ÿ, and all the convex hulls have

disjoint closures, i.e. ≈k ë j,C
[i:i+1]

j

∂
C
[i:i+1]

k
= Á.

The Assumption 1 is easy to met in practice. Consider the settings
shown in Fig. 6, the infeasible set in the state space for the 6-DOF robot
can be wrapped into a set of disjoint convex hulls as shown in Fig. A.22.
The Assumption 1 ensures the convexity of the distance function (20).
In practice, we can use Joint Tolerance Estimation (JTE) toolbox [54]
to find the convex hulls for the infeasible sets by solving the following
local positiveness constrained optimization:

min �j , s.t. ≈�j + ⇣ g Òx * xCj Ò
ÿ

> �j ,x is feasible. (A.1)

where the infeasible convex hull Cj is represented as a hypercube with
length �j , xCj is a reference infeasible state sampled in Cj , and ⇣ > 0

controls the minimum distance between the disjoint infeasible convex
hulls. We can also use adversarial optimization [55] to numerically
solve the dual problem of (A.1) as following:

max �j , s.t. «�j + ⇣ g Òx * xCj Ò
ÿ

> �j ,x is infeasible. (A.2)

where infeasible convex hull Cj is also represented as a hypercube with
length �j . Note that (A.2) can be solved efficiently using off-the-shelf
nonlinear programming solvers, such as fmincon in MATLAB.

Given the distance function definition in (20), D[i:i+1]

j
(x) is a convex

function [48]. Therefore, D[i:i+1]

j
(x) is Lipschitz continuous and has

bounded subgradient everywhere. At the same time, since we are
representing ≈j,Cj using polygon-shaped convex hull, which implies
the boundary of ≈j,Cj is piece-wise smooth. According to the Theorem
3.1 from [56], the following properties hold:

(P1) ≈j,D
[i:i+1]

j
(x) is Lipschitz continuous in x, i.e., D[i:i+1]

j
(x

1
)

*D
[i:i+1]

j
(x

2
) f L

1
Òx

1
* x

2
Ò.

(P2) ≈j,D
[i:i+1]

j
(x) is a L-smooth function in x, i.e., Ò(xD

[i:i+1]

j
(x

1
) *

(xD
[i:i+1]

j
(x

2
)Ò f L

2
Òx

1
* x

2
Ò almost everywhere.

(P3) ≈j,(xD
[i:i+1]

j
is bounded, i.e., Ò(xD

[i:i+1]

j
Ò f L

3
almost every-

where.

where L
1
,L

2
,L

3
À R+ are positive constants.

Assumption 2. It is assumed that the distance function (20) at each
time step is continuous and smooth with respect to time, i.e.,

(A1) ≈i, j,x, D[i+1:i+2]

j
(x) *D

[i:i+1]

j
(x) f L

4
(t
[i+1]

* t
[i]
) = L

4
ts.

(A2) ≈i, j,x, Ò(xD
[i+1:i+2]

j
(x) * (xD

[i:i+1]

j
(x)Ò f L

5
(t
[i+1]

* t
[i]
) = L

5
ts.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

18

S. He et al.

Fig. A.22. Infeasible configurations for a 6-DOF robot. Each point represents an
infeasible joint 1-2-3 configuration. These infeasible configurations can be wrapped
by a series of convex hulls.

where L
4
,L

5
À R+ are positive constants.

Since the robot system is continuously evolving and the environ-
mental obstacles are also evolving with bounded velocities in real-
ity, Assumption 2 is easy to be met in practice if we sample the
trajectory dense enough. Assumption 2 ensures that the feasible set
deforms continuously with respect to time, which will be used in the
proof of Theorem 1.

A.2. Continuous-time feasibility theorem

In this subsection, we will first provide the theory and the associated
proof to answer Q2. Here we define the existence of continuous trajec-
tory that goes through all the reference waypoints as: «Ti : [0, 1] ô X

indexed by interval I = [0, 1], such that Ti(0) = x[i]r , Ti(1) = x[i+1]r , i =

1, 2,… ,M * 1.
Note that the long term planner plans in discrete time. And during

execution, the robot generates a continuous path passing the planned
discrete waypoints sD. Thus, we should prove that there exists a
continuous-time path passing through all the waypoints of discrete-time
planned trajectory, such that every point along this continuous-time
path is safe (continuous-time feasibility).

Theorem 1 (Continuous-Time Feasibility). If the system satisfies As-
sumptions 1 and 2, start pose and end pose are feasible, i.e. ≈j,D[1:2]

j
(x[1]) >

0,D
[M*1:M]

j
(x[M]

) > 0, then by using a continuous-time reference trajectory
xr(t0 : t

0
+T) with high enough sampling rate, i.e. ts = t

[i+1]
* t

[i] ô 0,≈i =

1,… ,M * 1, the long term planner can always find a continuous feasible
path T (s, t) : RNùM

ù R ≠ RN , where T is a continuous function with
respect to time t À [t

[1]
, t
[M]

], and T (s, t[i]) = x[i], i = 1,… ,M , such that
every point on the path is safe, i.e. D[i:i+1]

j
(T (t)) > 0,≈i = 1,… ,M * 1, j À

N+.

Proof.
According to Assumption 1, from time step i to time step i + 1, we

have that the infeasible set in configuration space are a set of disjoint
convex hulls C

[i:i+1]

j
, j À N+. Since that distance constraints in (20)

are convex functions [48], according to the Feasibility Lemma (Lemma
5.1) from Liu et al. [57], we have that CFS algorithm can always find
non-empty convex feasible set F

[i:i+1]
(xr) for any reference configu-

ration state xr with respect to the constraint D
[i:i+1]

j
(x) > 0, where

F
[i:i+1]

(xr) =
∂

jÀN+ F
[i:i+1]

j
(xr) ë Á and ≈x À F

[i:i+1]
(xr),D

[i:i+1]

j
(x) >

0,≈j. According to convex feasible set algorithm described in Sec-
tion 5.1, we compute F

[i:i+1] with respect to x[i]r at time step i, and
F

[i:i+1]

j
(x[i]r) := {x : D

[i:i+1]

j
(x[i]r) + (D

[i:i+1]

j
(x[i]r)(x * x[i]r) g 0}.

Therefore, we can represent F [i:i+1]
(x[i]r) in the form of A[i:i+1]

(x[i]r)x
f b[i:i+1](x[i]r), such that:

A[i:i+1]
(x[i]

r
) =

b
f
f
f
f
fd

(xD
[i:i+1]

1
(x[i]r)

(xD
[i:i+1]

2
(x[i]r)

(xD
[i:i+1]

3
(x[i]r)

4

c
g
g
g
g
ge

(A.3)

b[i:i+1](x[i]
r
) =

b
f
f
f
f
fd

D
[i:i+1]

1
(x[i]r) * (xD

[i:i+1]

1
(x[i]r)x[i]r

D
[i:i+1]

2
(x[i]r) * (xD

[i:i+1]

2
(x[i]r)x[i]r

D
[i:i+1]

3
(x[i]r) * (xD

[i:i+1]

3
(x[i]r)x[i]r

4

c
g
g
g
g
ge

In the following discussion, we will show that if the trajectory
sampling rate is high enough, i.e., ts = t

[i+1]
* t

[i] ô 0, then
F

[i:i+1]
(x[i]r)

∂
F

[i+1:i+2]
(x[i+1]r) ë Á.

Since the reference trajectory xr(t0 : t
0
+T) is continuous and ts ô 0,

we have Òx[i+1]r * x[i]r Ò ô 0, i = 1, 2,… ,M * 1. According to (P2) and
(A2), the following condition holds:

≈j, Ò(xD
[i+1:i+2]

j
(x[i+1]

r
) * (xD

[i:i+1]

j
(x[i]

r
)Ò (A.4)

fÒ(xD
[i+1:i+2]

j
(x[i+1]

r
) * (xD

[i+1:i+2]

j
(x[i]

r
)Ò

+ Ò(xD
[i+1:i+2]

j
(x[i]

r
) * (xD

[i:i+1]

j
(x[i]

r
)Ò

f L
5
ts + L

2
Òx[i+1]

r
* x[i]

r
Ò ô 0

Given (P1), (P2), (P3), (A1) and (A2), and noting that ≈i, Òx[i]r Ò is
bounded, the following condition holds:

≈j, fl D
[i+1:i+2]

j
(x[i+1]

r
) * (x[i+1]D

[i+1:i+2]

j
(x[i+1]

r
)x[i+1]

r
(A.5)

* (D
[i:i+1]

j
(x[i]

r
) * (xD

[i:i+1]

j
(x[i]

r
)x[i]

r
) fl

f fl D
[i+1:i+2]

j
(x[i+1]

r
) *D

[i+1:i+2]

j
(x[i]

r
) fl+

Ò(xD
[i+1:i+2]

j
(x[i+1]

r
)x[i+1]

r
* (xD

[i+1:i+2]

j
(x[i+1]

r
)x[i]

r
Ò

+ Ò(xD
[i+1:i+2]

j
(x[i+1]

r
)x[i]

r
* (xD

[i+1:i+2]

j
(x[i]

r
)x[i]

r
Ò

+ ÒD[i+1:i+2]

j
(x[i]

r
) *D

[i:i+1]

j
(x[i]

r
)Ò

+ Ò(xD
[i+1:i+2]

j
(x[i]

r
)x[i]

r
* (xD

[i:i+1]

j
(x[i]

r
)x[i]

r
Ò

f L
1
Òx[i+1]

r
* x[i]

r
Ò + L

3
Òx[i+1]

r
* x[i]

r
Ò

+ L
2
Òx[i+1]

r
* x[i]

r
ÒÒx[i]

r
Ò + L

4
ts + L

5
tsÒx[i]r Ò ô 0

Based on (A.4) and (A.5), given the fact that the numbers j of Cj is
limited, we further have F

[i+1:i+2]

[i:i+1]
:= F

[i+1:i+2]
(x[i+1]r)

∂
F

[i:i+1]
(x[i]r) ë

Á, and we illustrate the existence of F [i+1:i+2]

[i:i+1]
in Fig. A.23, where we

also demonstrate F [i+1:i+2]

[i:i+1]
does not exist if Assumption 2 does not hold

. Therefore, we can find a common solution x[i+1] À F
[i+1:i+2]

[i:i+1]
, i =

1, 2,… ,M * 2.
Then we can construct a continuous path in [t

[i]
, t
[i+1]

] as

Ti(⌧
®
) = (1 * ⌧

®
)x[i] + ⌧

®x[i+1], ⌧® À [0, 1] (A.6)

Ti is actually a straight line connecting {x[i],x[i+1]}. Noting that F [i:i+1]

(x[i]r) is convex, x[i] À F
[i:i+1]

(x[i]r), and x[i+1] À F
[i:i+1]

(x[i]r), we have
≈⌧

®
À [0, 1], Ti(⌧

®
) À F

[i:i+1]
(x[i]r). Thus, ≈j,D[i:i+1]

j
(Ti(⌧

®
)) > 0,≈⌧

®
À

[0, 1].

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

19

S. He et al.

Fig. A.23. Illustration of F [i+1:i+2]

[i:i+1]
in Theorem 1.

Fig. A.24. The construction of continuous feasible path T .

Then we connect all line segment paths Ti and construct the com-
plete continuous path as shown in Fig. A.24, and

T (⌧)=

h
n
n
n
l
n
n
nj

T
1
((M*1)⌧), ⌧À [0,

1

M*1
)

4 4

Ti((M*1)⌧*(i*1)), ⌧À [
i*1

M*1
,

i

M*1
)

4 4

TM*1
((M*1)⌧*(M*2)), ⌧À [

M*2

M*1
, 1]

(A.7)

Obviously, every point along the path T (⌧) are within the convex
feasible set, i.e., ≈j,≈⌧ À [0, 1],D

[i:i+1]

j
(T (⌧)) > 0, i = 1, 2,… ,M * 1.

Note that the initial pose and end pose are both feasible, with
x[1] = x(t

0
) and x[M]

= xgoal. However, we only have x[1] À F
[1:2]

(x[1]r),
whereas x[M]

Ã F
[M*1:M]

(x[M]

r). Thus the predefined continuous-time
trajectory T (⌧) only continuously connect x[i], i = 1, 2,… ,M * 1. To
construct a feasible continuous-time trajectory segment for connecting
x[M*1] towards x[M], we firstly define F

[M]
(x[M]

r) := F
[M:M+1]

(x[M]

r).
Similar to the aforementioned proof, we have F

[M]

[M*1:M]
= F

[M]
(x[M]

r)∂
F

[M*1:M]
(x[M*1]

r) ë Á. Next, we find an anchor point xanc À

F
[M]

[M*1:M]
. Then we can construct a straight line TM connecting xanc and

x[M] as shown in Fig. A.24, and modify the TM*1
in (A.7) to connecting

x[M*1] and xanc . With these modifications, it is proved that every point
along the path the continuous path T = T

1
,… , TM*1

, TM is safe. ∏

A.3. Probabilistic safety theorem

In this subsection, we will give the theoretical guarantees of proba-
bilistic safety for the shorter term safety planner under uncertainties.

We first define a metric as D in (8) to evaluate the signed distance
between the robot and the obstacle at time t based on Definition 1.
Denote jm = argmin

jÀN+ D
[i:i+1]

j
(x(t)), t À [t

[i]
, t
[i+1]

], then we define
⇠(t) À RN as the closest point on the boundary of C[i:i+1]

jm
with respect

to x(t) such that D(x(t), ⇠(t)) =

h
n
l
nj

Òx(t) * ⇠(t)Ò, x(t) Ã C
[i:i+1]

jm

*Òx(t) * ⇠(t)Ò, x(t) À C
[i:i+1]

jm

=

D
[i:i+1]

jm
(x(t)). Therefore, we can straightforwardly obtain the following

properties for D(x, ⇠):

(P4) D(x, ⇠) is Lipschitz continuous in x and ⇠, i.e., D(x
1
, ⇠

1
) *

D(x
2
, ⇠

2
) f Òx

1
* x

2
Ò + Ò⇠

1
* ⇠

2
Ò.

(P5) D(x, ⇠) is a L-smooth function in x, i.e., Ò(xD(x
1
, ⇠)*(xD(x

2
, ⇠)Ò

f L
6
Òx

1
* x

2
Ò.

(P6) (xD(x, ⇠) is bounded, i.e., Ò(xD(x, ⇠)Ò f L
7
.

where L
6
,L

7
À R+ are positive constants.

Theorem 2 (Probabilistic Safety). Suppose there are bounded uncertain-
ties on robot tracking, robot position measurement and obstacle perception,
i.e., Üx = Üx< + �V , x = x< + �R and ⇠ = ⇠< + �⇠ , where Üx<, x< and ⇠< are
ground truth robot velocity, velocity and closest point on the boundary of
C with respect to x

<, respectively. Ò�uÒ f �u, Ò�xÒ f �x and Ò�⇠Ò f �⇠

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

20

S. He et al.

are bounded uncertainties with upper bound �u,�x,�⇠ > 0. Then with the
proper defined safety margin dm in safety index and safe control gain ks, the
short term safety planner can always guarantee safety, i.e., D(x<, ⇠<) > 0.

Proof. The bounded uncertainty assumptions indicate Ò Üx * Üx<Ò f �u,
Òx * x<Ò f �x and Ò⇠ * ⇠<Ò f �⇠ .

Firstly, we consider the robot tracking uncertainty Ò Üx * Üx<Ò f �u.
According to (10), we have Ü�(x, Üx) = (x�

Ò
Üx and Ü�(x<, Üx<) = (x<�

Ò
Üx<.

The difference between Ü�(x, Üx) and Ü�(x<, Üx<) satisfying

 Ü�(x, Üx) * Ü�(x<, Üx<) = (x�
Ò
Üx * (x<�

Ò
Üx<

= (x�
Ò
Üx * (x�

Ò
Üx< + (x�

Ò
Üx< * (x<�

Ò
Üx<

f (�Ò

x (Üx * Üx<) + ((x� * (x<�)
Ò
Üx<

f Ò(x�ÒÒ Üx * Üx<Ò + Ò(x� * (x<�ÒÒ Üx<Ò

(A.8)

According to the definition of � in (8), and based on (P5)(P6), we have

Ò(x�Ò f L
7

Ò(x� * (x<�Ò f L
6
Ò Üx * Üx<Ò

(A.9)

The true robot velocity Üx< is the commanded joint velocity, thus by
limiting the commanded joint velocity, we have Ò Üx<Ò f Vb, where
Vb > 0 is velocity bound. Therefore, the (A.8) can be represented as

 Ü�(x, Üx) * Ü�(x<, Üx<) f (L
6
+ L

7
Vb)�u (A.10)

The bounded difference between Ü�(x, Üx) and Ü�(x<, Üx<) indicates that we
can always guarantee Ü�(x<, Üx<) < 0 by controlling Ü�(x, Üx) < *ks, where
ks g (L

6
+ L

7
Vb)�u. Thus the safety under robot tracking uncertainty

can be guaranteed.
Now we consider effects on robot position uncertainty Òx*x<Ò f �x

and obstacle position uncertainty Ò⇠ * ⇠<Ò f �⇠ . According to (P4), we
have

D(x, ⇠) *D(x<, ⇠<) f Òx * x<Ò + Ò⇠ * ⇠<Ò
f �x + �⇠

(A.11)

Under the short term planner control law (12), we have �(x) < 0,
i.e., D(x, ⇠) > dm according to (8). By choosing a large enough safety
margin dm > �x + �⇠ , short term safety planner can always guarantee
D(x<, ⇠<) > 0. In summary, once ks g (L

6
+L

7
Vb)�u and dm > �x+�⇠ are

satisfied in the designed safety controller, the short term safety planner
can guarantee the safety even under all possible robot tracking, robot
position measurement and obstacle perception uncertainties. ∏

A.4. Persistent feasibility theorem

In this subsection, with the help of Theorem 2, we will finally
provide the theory and the associated proof to answer Q1.

Theorem 3 (Persistent Feasibility). If there is (1) bounded delay and
bounded tracking error, (2) no uncertainty, (3) the system satisfies Assump-
tion 1, and (4) the end pose is feasible, i.e. ≈j,D[M*1:M]

j
(x[M]

) > 0, then
the long term planner can always find a feasible discrete-time trajectory (sD)
at all replanning steps during the execution.

Proof. There are many factors can contribute to tracking error, such as
modeling mismatch, actuation limit and servo control tuning, as long
as there is bounded delay and tracking error, and no uncertainty, we
have that minjÀN+ Dj (x<) = D(x<, ⇠<) > 0 for every time step during
execution according to Theorem 2, which indicates the start pose x[1]
for a replanned trajectory is always feasible during execution.

According to Theorem 1, if the system satisfies Assumption 1, we
have that CFS algorithm can always find non-empty convex feasible set
≈i,F

[i:i+1]
(x[i]r) for any reference configuration state x[i]r with respect to

the constraint

D
[i:i+1]

j
(x) > 0. By the Theorem 4.1 from [57], we have that for

i = 2, 3,… ,M * 1, x[i] will converge to a feasible solution, where
D

[i:i+1]

j
(x[i]) > 0, j À N+. Since the end of pose x[M] is also feasible,

we have long term planner can always find a feasible discrete-time
trajectory sD = [x[1],x[2],… ,x[M]

] at any replanning step during the
execution. ∏

So far, we have discussed the assumptions and theorems to show
that (1) if there are bounded delay and tracking error, and there is no
uncertainty, then there always exists a feasible discrete long term plan
at all replanning steps during execution; (2) If there is no delay and no
uncertainty, there always exists a feasible continuous-time trajectory
such that every possible point along the trajectory is feasible; (3) If
there is bounded uncertainty, the safety of the system is still provably
guaranteed.

In order to guarantee the stability and optimality of HLSTS, we
still need to prove (1) if there is delay and uncertainty, there exists a
feasible continuous trajectory to track the long term plan with bounded
error; (2) The robot can converge to the target position safely in finite
time, which are left for future works. In the following section, we will
validate the effectiveness of HLSTS for safe and efficient manipulation
in uncertain clustered environment with both simulation and real world
experiments.

References

[1] P.A. Lasota, T. Fong, J.A. Shah, et al., A Survey of Methods for Safe Human-Robot
Interaction, Now Publishers, 2017.

[2] J.S. Grover, C. Liu, K. Sycara, Deadlock analysis and resolution for multi-
robot systems, in: Algorithmic Foundations of Robotics XIV: Proceedings of
the Fourteenth Workshop on the Algorithmic Foundations of Robotics, Vol. 14,
Springer International Publishing, 2021, pp. 294–312.

[3] A.D. Ames, J.W. Grizzle, P. Tabuada, Control barrier function based quadratic
programs with application to adaptive cruise control, in: 53rd IEEE Conference
on Decision and Control, IEEE, 2014, pp. 6271–6278.

[4] S.L. Herbert, M. Chen, S. Han, S. Bansal, J.F. Fisac, C.J. Tomlin, FaSTrack:
A modular framework for fast and guaranteed safe motion planning, in: 2017
IEEE 56th Annual Conference on Decision and Control, CDC, IEEE, 2017, pp.
1517–1522.

[5] S. Magdici, M. Althoff, Fail-safe motion planning of autonomous vehicles, in:
2016 IEEE 19th International Conference on Intelligent Transportation Systems,
ITSC, IEEE, 2016, pp. 452–458.

[6] W. Zhan, C. Liu, C.-Y. Chan, M. Tomizuka, A non-conservatively defensive strat-
egy for urban autonomous driving, in: 2016 IEEE 19th International Conference
on Intelligent Transportation Systems, ITSC, IEEE, 2016, pp. 459–464.

[7] J. Grover, C. Liu, K. Sycara, Why does symmetry cause deadlocks? IFAC-
PapersOnLine 53 (2) (2020) 9746–9753.

[8] S.M. LaValle, Rapidly-Exploring Random Trees: a New Tool for Path Planning,
Citeseer, 1998.

[9] N. Ratliff, M. Zucker, J.A. Bagnell, S. Srinivasa, CHOMP: Gradient optimiza-
tion techniques for efficient motion planning, in: Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA, 2009, pp. 489–494.

[10] C. Park, J. Pan, D. Manocha, ITOMP: Incremental trajectory optimization for
real-time replanning in dynamic environments, in: Twenty-Second International
Conference on Automated Planning and Scheduling, 2012.

[11] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, in:
Autonomous Robot Vehicles, Springer, 1986, pp. 396–404.

[12] C. Liu, M. Tomizuka, Control in a safe set: Addressing safety in human-robot
interactions, in: Dynamic Systems and Control Conference. Vol. 46209, American
Society of Mechanical Engineers, 2014, V003T42A003.

[13] L. Gracia, F. Garelli, A. Sala, Reactive sliding-mode algorithm for collision
avoidance in robotic systems, IEEE Trans. Control Syst. Technol. 21 (6) (2013)
2391–2399.

[14] C. Liu, M. Tomizuka, Safe exploration: Addressing various uncertainty levels in
human robot interactions, in: Proceedings of the American Control Conference,
ACC, 2015, pp. 465–470.

[15] J.F. Fisac, A.K. Akametalu, M.N. Zeilinger, S. Kaynama, J. Gillula, C.J. Tomlin, A
general safety framework for learning-based control in uncertain robotic systems,
IEEE Trans. Automat. Control 64 (7) (2019) 2737–2752, http://dx.doi.org/10.
1109/TAC.2018.2876389.

[16] R. Cheng, G. Orosz, R.M. Murray, J.W. Burdick, End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks,
2019, CoRR. arXiv:1903.08792.

http://refhub.elsevier.com/S0736-5845(22)00204-6/sb1
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb1
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb1
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb2
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb2
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb2
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb2
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb2
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb2
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb2
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb3
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb3
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb3
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb3
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb3
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb4
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb4
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb4
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb4
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb4
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb4
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb4
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb5
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb5
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb5
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb5
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb5
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb6
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb6
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb6
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb6
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb6
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb7
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb7
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb7
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb8
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb8
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb8
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb9
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb9
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb9
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb9
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb9
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb10
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb10
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb10
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb10
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb10
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb11
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb11
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb11
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb12
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb12
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb12
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb12
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb12
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb13
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb13
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb13
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb13
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb13
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb14
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb14
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb14
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb14
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb14
http://dx.doi.org/10.1109/TAC.2018.2876389
http://dx.doi.org/10.1109/TAC.2018.2876389
http://dx.doi.org/10.1109/TAC.2018.2876389
http://arxiv.org/abs/1903.08792

Robotics and Computer-Integrated Manufacturing 82 (2023) 102522

21

S. He et al.

[17] S. He, C. Hu, S. Lin, Y. Zhu, An online time-optimal trajectory planning method
for constrained multi-axis trajectory with guaranteed feasibility, IEEE Robotics
and Automation Letters 7 (3) (2022) 7375–7382, http://dx.doi.org/10.1109/
LRA.2022.3183536.

[18] A.J. Taylor, A.D. Ames, Adaptive safety with control barrier functions, in: 2020
American Control Conference, ACC, 2020, pp. 1399–1405, http://dx.doi.org/10.
23919/ACC45564.2020.9147463.

[19] C. Liu, C.-Y. Lin, Y. Wang, M. Tomizuka, Convex feasible set algorithm for
constrained trajectory smoothing, in: 2017 American Control Conference, ACC,
IEEE, 2017, pp. 4177–4182.

[20] H.-y. Zhang, W.-m. Lin, A.-x. Chen, Path planning for the mobile robot: A review,
Symmetry 10 (10) (2018) 450.

[21] B. Kim, T.T. Um, C. Suh, F.C. Park, Tangent bundle RRT: A randomized algorithm
for constrained motion planning, Robotica 34 (1) (2016) 202–225.

[22] B.J. Cohen, S. Chitta, M. Likhachev, Search-based planning for manipulation
with motion primitives, in: 2010 IEEE International Conference on Robotics and
Automation, IEEE, 2010, pp. 2902–2908.

[23] L.E. Kavraki, P. Svestka, J.-C. Latombe, M.H. Overmars, Probabilistic roadmaps
for path planning in high-dimensional configuration spaces, IEEE Trans. Robot.
Autom. 12 (4) (1996) 566–580.

[24] D. Fridovich-Keil, S.L. Herbert, J.F. Fisac, S. Deglurkar, C.J. Tomlin, Planning,
fast and slow: A framework for adaptive real-time safe trajectory planning, in:
2018 IEEE International Conference on Robotics and Automation, ICRA, IEEE,
2018, pp. 387–394.

[25] W. Li, R. Xiong, Dynamical obstacle avoidance of task-constrained mo-
bile manipulation using model predictive control, IEEE Access 7 (2019)
88301–88311.

[26] W.-Y. Zhao, S. He, C. Wen, C. Liu, Contact-rich trajectory generation in confined
environments using iterative convex optimization, in: Dynamic Systems and
Control Conference, Vol. 84287, American Society of Mechanical Engineers,
2020, V002T31A002.

[27] C. Liu, M. Tomizuka, Real time trajectory optimization for nonlinear robotic
systems: Relaxation and convexification, Systems Control Lett. 108 (2017) 56–63.

[28] H.-C. Lin, C. Liu, M. Tomizuka, Fast robot motion planning with collision
avoidance and temporal optimization, in: 2018 15th International Conference
on Control, Automation, Robotics and Vision, ICARCV, IEEE, 2018, pp. 29–35.

[29] J. Chen, C. Liu, M. Tomizuka, Foad: Fast optimization-based autonomous driving
motion planner, in: 2018 Annual American Control Conference, ACC, IEEE, 2018,
pp. 4725–4732.

[30] T. Wei, C. Liu, Safe control algorithms using energy functions: A uni ed
framework, benchmark, and new directions, in: 2019 IEEE 58th Conference on
Decision and Control, CDC, IEEE, 2019, pp. 238–243.

[31] J. Rauch, J.A. Smoller, Qualitative Theory of the Fitzhugh-Nagumo Equations,
Elsevier, 1978.

[32] A.G. Barto, S. Mahadevan, Recent advances in hierarchical reinforcement
learning, Discrete Event Dyn. Syst. 13 (1) (2003) 41–77.

[33] J. Wang, C. Hu, Y. Zhu, Cpg-based hierarchical locomotion control for modular
quadrupedal robots using deep reinforcement learning, IEEE Robotics and Au-
tomation Letters 6 (4) (2021) 7193–7200, http://dx.doi.org/10.1109/LRA.2021.
3092647.

[34] T.D. Kulkarni, K. Narasimhan, A. Saeedi, J. Tenenbaum, Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation,
Adv. Neural Inf. Process. Syst. 29 (2016) 3675–3683.

[35] J. Garcıa, F. Fernández, A comprehensive survey on safe reinforcement learning,
J. Mach. Learn. Res. 16 (1) (2015) 1437–1480.

[36] A. Ray, J. Achiam, D. Amodei, Benchmarking safe exploration in deep
reinforcement learning, 2019, arXiv preprint arXiv:1910.01708.

[37] R. Scattolini, Architectures for distributed and hierarchical model predictive
control–a review, J. Process Control 19 (5) (2009) 723–731.

[38] C. Liu, M. Tomizuka, Robot safe interaction system for intelligent industrial
co-robots, 2018, arXiv preprint arXiv:1808.03983.

[39] C. Liu, T. Tang, H.-C. Lin, Y. Cheng, M. Tomizuka, Serocs: safe and efficient
robot collaborative systems for next generation intelligent industrial co-robots,
arXiv preprint arXiv:1809.08215 (2018).

[40] H.-C. Lin, C. Liu, Y. Fan, M. Tomizuka, Real-time collision avoidance algorithm
on industrial manipulators, in: Control Technology and Applications (CCTA),
2017 IEEE Conference on, IEEE, 2017, pp. 1294–1299.

[41] W. Zhao, T. He, C. Liu, Model-free safe control for zero-violation reinforcement
learning, in: 5th Annual Conference on Robot Learning, 2021, URL: https:
//openreview.net/forum?id=UGp6FDaxB0f.

[42] S. He, C. Hu, S. Lin, Y. Zhu, M. Tomizuka, Real-time time-optimal con-
tinuous multi-axis trajectory planning using the trajectory index coordi-
nation method, ISA Transactions (ISSN: 0019-0578) 131 (2022) 639–649,
http://dx.doi.org/10.1016/j.isatra.2022.05.016, https://www.sciencedirect.com/
science/article/pii/S0019057822002506.

[43] W. Zhao, T. He, C. Liu, Probabilistic safeguard for reinforcement learning using
safety index guided gaussian process models, arXiv preprint arXiv:2210.01041
(2022).

[44] W. Zhao, T. He, T. Wei, S. Liu, C. Liu, Safety index synthesis via sum-of-squares
programming, arXiv preprint arXiv:2209.09134 (2022).

[45] T. Wei, S. Kang, W. Zhao, C. Liu, Persistently feasible robust safe control
by safety index synthesis and convex semi-infinite programming, IEEE Control
Systems Letters (2022).

[46] P.T. Boggs, J.W. Tolle, Sequential quadratic programming, Acta Numer. 4 (1995)
1–51.

[47] C. Liu, C.-Y. Lin, M. Tomizuka, The convex feasible set algorithm for real
time optimization in motion planning, SIAM J. Control Optim. 56 (4) (2018)
2712–2733.

[48] M. Safdari, The distance function from the boundary of a domain with corners,
Nonlinear Anal. 181 (2019) 294–310.

[49] L. Bochmann, T. Bänziger, A. Kunz, K. Wegener, Human-robot collaboration
in decentralized manufacturing systems: An approach for simulation-based
evaluation of future intelligent production, Procedia CIRP 62 (2017) 624–629.

[50] Y. Cheng, W. Zhao, C. Liu, M. Tomizuka, Human motion prediction using semi-
adaptable neural networks, in: 2019 American Control Conference (ACC), IEEE,
2019, pp. 4884–4890.

[51] P. Tsarouchi, A.-S. Matthaiakis, S. Makris, G. Chryssolouris, On a human-robot
collaboration in an assembly cell, Int. J. Comput. Integr. Manuf. 30 (6) (2017)
580–589.

[52] C. Liu, M. Tomizuka, Algorithmic safety measures for intelligent industrial co-
robots, in: Proceedings of the IEEE International Conference on Robotics and
Automation, ICRA, 2016, pp. 3095–3102.

[53] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K.
Goldberg, P. Abbeel, Motion planning with sequential convex optimization and
convex collision checking, Int. J. Robot. Res. 33 (9) (2014) 1251–1270.

[54] W. Zhao, S. He, C. Liu, Provably safe tolerance estimation for robot arms via
sum-of-squares programming, 2021, arXiv preprint arXiv:2104.08896.

[55] Y. Dong, Q.A. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, J. Zhu, Benchmarking
adversarial robustness on image classification, in: 2020 IEEE/CVF CVPR, 2020,
pp. 318–328, http://dx.doi.org/10.1109/CVPR42600.2020.00040.

[56] H. Luo, X. Wang, B. Lukens, Variational analysis on the signed distance functions,
J. Optim. Theory Appl. 180 (3) (2019) 751–774.

[57] C. Liu, C.-Y. Lin, M. Tomizuka, The convex feasible set algorithm for real
time optimization in motion planning, SIAM J. Control Optim. 56 (4) (2018)
2712–2733.

http://dx.doi.org/10.1109/LRA.2022.3183536
http://dx.doi.org/10.1109/LRA.2022.3183536
http://dx.doi.org/10.1109/LRA.2022.3183536
http://dx.doi.org/10.23919/ACC45564.2020.9147463
http://dx.doi.org/10.23919/ACC45564.2020.9147463
http://dx.doi.org/10.23919/ACC45564.2020.9147463
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb19
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb19
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb19
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb19
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb19
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb20
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb20
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb20
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb21
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb21
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb21
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb22
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb22
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb22
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb22
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb22
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb23
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb23
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb23
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb23
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb23
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb24
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb24
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb24
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb24
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb24
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb24
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb24
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb25
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb25
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb25
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb25
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb25
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb26
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb26
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb26
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb26
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb26
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb26
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb26
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb27
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb27
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb27
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb28
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb28
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb28
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb28
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb28
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb29
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb29
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb29
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb29
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb29
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb30
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb30
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb30
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb30
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb30
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb31
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb31
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb31
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb32
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb32
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb32
http://dx.doi.org/10.1109/LRA.2021.3092647
http://dx.doi.org/10.1109/LRA.2021.3092647
http://dx.doi.org/10.1109/LRA.2021.3092647
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb34
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb34
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb34
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb34
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb34
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb35
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb35
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb35
http://arxiv.org/abs/1910.01708
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb37
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb37
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb37
http://arxiv.org/abs/1808.03983
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb39
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb39
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb39
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb39
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb39
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb40
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb40
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb40
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb40
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb40
https://openreview.net/forum?id=UGp6FDaxB0f
https://openreview.net/forum?id=UGp6FDaxB0f
https://openreview.net/forum?id=UGp6FDaxB0f
http://dx.doi.org/10.1016/j.isatra.2022.05.016
https://www.sciencedirect.com/science/article/pii/S0019057822002506
https://www.sciencedirect.com/science/article/pii/S0019057822002506
https://www.sciencedirect.com/science/article/pii/S0019057822002506
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb43
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb43
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb43
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb43
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb43
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb44
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb44
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb44
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb45
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb45
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb45
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb45
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb45
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb46
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb46
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb46
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb47
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb47
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb47
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb47
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb47
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb48
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb48
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb48
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb49
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb49
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb49
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb49
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb49
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb50
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb50
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb50
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb50
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb50
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb51
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb51
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb51
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb51
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb51
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb52
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb52
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb52
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb52
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb52
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb53
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb53
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb53
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb53
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb53
http://arxiv.org/abs/2104.08896
http://dx.doi.org/10.1109/CVPR42600.2020.00040
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb56
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb56
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb56
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb57
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb57
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb57
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb57
http://refhub.elsevier.com/S0736-5845(22)00204-6/sb57

	A hierarchical long short term safety framework for efficient robot manipulation under uncertainty
	Introduction
	Prior Work
	Efficient Long Term Planning
	Provably Safe Short Term Planning
	Hierarchical Multi-layer Systems

	Problem Formulation
	The Safety-Oriented Short Term Planning
	Velocity-SSA
	Acceleration-SSA

	Efficiency-Oriented Long Term Planning
	Convex Feasible Set Algorithm
	Example: Long term planning for a robot arm manipulator

	Hierarchical Long Short Term Safety System
	System Workflow
	Hierarchical Coordinator

	HLSTS Hypothesis
	Results and Discussion
	Evaluation Platforms
	Robot Factory Coordination Simulation Platform
	Real-Robot Platform

	Experiment Results
	Simulation Experiments Results
	Joint Velocity Comparison
	Real-Robot Experiments Results
	Hierarchical Coordinator Comparison
	Safety Index Comparison in SSA

	Hypothesis Discussion
	Hypothesis 1 - Long Term Planner improves the Efficiency of Short Term Planner
	Hypothesis 2 - Short Term Planner guarantees Safe Operation
	Hypothesis 3 - Coordination of Long and Short Term Planner increases the Overall Smoothness, Efficiency and Safety

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	Appendix A. Theoretical Analysis
	Assumption and Properties
	Continuous-Time Feasibility Theorem
	Probabilistic Safety Theorem
	Persistent Feasibility Theorem

	References

