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A B S T R A C T   

While several non-pharmacological measures have been implemented for a few months in an effort to slow the 
coronavirus disease (COVID-19) pandemic in the United States, the disease remains a danger in a number of 
counties as restrictions are lifted to revive the economy. Making a trade-off between economic recovery and 
infection control is a major challenge confronting many hard-hit counties. Understanding the transmission 
process and quantifying the costs of local policies are essential to the task of tackling this challenge. Here, we 
investigate the dynamic contact patterns of the populations from anonymized, geo-localized mobility data and 
census and demographic data to create data-driven, agent-based contact networks. We then simulate the 
epidemic spread with a time-varying contagion model in ten large metropolitan counties in the United States and 
evaluate a combination of mobility reduction, mask use, and reopening policies. We find that our model captures 
the spatial-temporal and heterogeneous case trajectory within various counties based on dynamic population 
behaviors. Our results show that a decision-making tool that considers both economic cost and infection out
comes of policies can be informative in making decisions of local containment strategies for optimal balancing of 
economic slowdown and virus spread.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) has caused a global 
pandemic threatening public health and human well-being (Headey 
et al., 2020). As of November 4, 2020, 47.7 million confirmed cases and 
1.2 million deaths have been reported worldwide (John Hopkins Uni
versity, 2020). In response to the pandemic and in the absence of 
effective vaccines and drugs, numerous non-pharmaceutical in
terventions, such as stay-at-home and social distancing orders, have 
been implemented in the majority of the affected countries and regions 
(Chinazzi, 2020; Kraemer, 2020). For example, Harris County in Texas 
enacted stay-at-home orders starting March 2020, and mandatory mask 
order in May 2020. These measures were enacted to quarantine infected 
persons thus isolating cases and suppressing virus transmission (Rader 
et al., 2020). The execution of these measures, however, caused a sig
nificant economic slowdown (Polyakova et al., 2020). In particular, 
travel restrictions and business lockdowns have caused soaring unem
ployment and a decline in tax revenue (Auray & Eyquem, 2020). Hence, 
it is essential to examine policy solutions for making an optimal trade-off 
between virus control and economic recovery, especially in hard-hit 

regions. 
As society faces this global public health challenge, numerous studies 

in a variety of research streams relevant to pandemic mitigation have 
been published. Departing from the cross-region spread of infection, one 
study (Kraemer, 2020) investigated the effects of travel restrictions on 
delaying epidemic outbreaks and reducing the number of cases. This 
research was followed by a further study on understanding cross-region 
population flow as a driver of the spatial-temporal distribution of 
COVID-19 in China (Jia et al., 2020). Through the use of mathematical 
models on metapopulations, such as the global epidemic and mobility 
model (GLEAM) (Balcan, 2009), risk source model (Jia et al., 2020), and 
disease contagion models (Chowell et al., 2004; Newman, 2002), these 
studies explored the mechanisms affecting the large-scale pandemic and 
demonstrated the role of human behaviors (especially human mobility) 
in disease transmission, and also examined the effectiveness of non- 
pharmacological interventions in virus spread control. With the under
standing of the underlying mechanisms influencing epidemic spread and 
ubiquitous population movement data, data-driven methods and tools, 
such as deep neural networks (Kapoor, 2020; Ramchandani et al., 2020), 
have been adopted to predict the spread of infections across states and 
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counties. The well-performed predictions obtained through the use of 
these methods expand the capability of forecasting future trajectories of 
increases in the number of cases across different regions (Chang et al., 
2020). 

Despite enormous progress (Holtz, 2020) in slowing down the cross- 
regional spread of the pandemic, the COVID-19 pandemic has already 
entered the phase of community spread. The continuing infection 
growth accentuates the need for further localized containment measures 
(Schlosser, 2020). Existing meta-population-based analyses, however, 
are limited in capturing high-resolution person-to-person transmission 
to inform the evaluation of localized measures (Balcan, 2009). Recent 
studies have argued that anonymized mobile phone data, when used 
properly and carefully, could characterize the epidemic dynamics 
among human contacts during all stages of the pandemic life cycle 
(Oliver et al., 2020). Mobility data collected from a large number of 
devices enables time-resolved characterization of population contact 
patterns, making it possible to probe the mechanisms by which disease is 
transmitted among the population with precision unattainable by other 
data sources, such as surveys. Due to the benefits of mobile phone data 
(Grantz et al., 2020), studies (Liu, 2018) have attempted to simulate the 
SARS-CoV-2 transmission on synthetic populations derived from mobile 
phone data in normal situations and to model the impact of individual- 
based measures, such as testing, contact tracing and household quar
antine (Aleta et al., 2020). 

Human behaviors, however, are dynamic, as the pandemic evolves. 
Limited consideration of the dynamics of human contact patterns would 
undermine the robustness of localized measures of pandemic mitigation. 
Models that can explain the virus spread based on dynamic human be
haviors are especially needed. In addition, after the execution of stay-at- 
home orders and business activity restriction policies in the United 
States during March and April 2020, many states and counties allowed 
reopening of economic activities to relieve the heavy burden on the 
economy caused by the shutdown (Bonaccorsi, 2020). Although lifting 
restrictions could help with economic recovery, the subsequent increase 
in population contact activities drove the pandemic to a new peak 
(Kaxiras & Neofotistos, 2020). Clearly, an integrative consideration of 
infections and economic costs in the decision-making process is critical 
to inform making tradeoff decisions between the number of infections 
and the economic costs of containment policies. The existing models do 
not enable examining this important tradeoff. 

In this study, we investigated the dynamic contact patterns from fine- 
grained, anonymized data for millions of mobile devices along with 
census and demographic data. Accordingly, we then synthesized weekly 
contact networks of the populations based on their dynamic contact 
patterns captured by mobile phone data from the date of first reported 
cases through the end of June 2020 in ten selected US metropolitan 
counties. Each agent in the contact networks is associated with a census 
block group (CBG) within specific residential areas. On top of the dy
namic data-driven contact networks, we overlaid a time-varying, de
gree-based Susceptible-Exposed-Infectious-Recovered (SEIR) contagion 
model that simulates the case trajectories among the synthetic popula
tion. This model allows us to capture the temporal evolution of the 
pandemic and the spatial distribution of the infections due to the dy
namic contact patterns of the population. Through the understanding of 
the spatial-temporal heterogeneity of disease spread, we could identify 
the most at-risk populations, quantify the cost and infection trajectories, 
and provide a quantitative analysis of the effects of combined local 
containment policies on the costs and infections. 

Here, we demonstrate the performance of our model in terms of out- 
of-sample prediction based on population contact behaviors. The results 
show multiple waves of virus spread and spatial variation within ten US 
metropolitan counties. The results also highlight the heterogeneous ef
fects of local policies on contact networks and disease spread across 
different regions. With these important observations, we propose a 
method that allows us to quantify the cost of the local policies and 
recommends optimal combined policies to achieve a better trade-off 

between economic recovery and virus control. 

2. Results 

2.1. Dynamic data-driven contact networks 

The computational experiments are conducted on large-scale social 
contact networks. It would be very computationally expensive if we use 
the actual population to construct the social networks. Hence, we create 
the agent-based model in which we capture the mobility patterns of the 
residents from a CBG using mobile phone data and synthesize a smaller 
group of the population that is proportional to the number of residents in 
a CBG using census data. To provide a quantitative estimate for the 
dynamic contact patterns in the population of agents in each county, we 
first use detailed demographic data from US Census Bureau (Bureau, 
2019) to generate a certain number of agents and assign them to specific 
Census Block Groups (CBGs). During this process, we ensure that the 
numbers of agents in the CBGs are proportional to the numbers of res
idents according to the census data. To validate the representativeness of 
the anonymized mobile phone data, we conducted a correlation analysis 
to examine the extent to which the number of mobile phone devices is 
proportional to the number of residents in a CBG from the census data 
(see in Supplementary Information Section 1). We find that, the corre
lation coefficient is high enough, indicating that the population of each 
CBG captured in the mobile phone data is significantly proportional to 
the population estimated from demographic surveys. In this respect, we 
consider that the mobile phone data could represent the populations in 
CBGs in a county, and can capture the mobility of individuals in the 
population between areas. 

Virus transmission occurs through the co-presence, defined as con
tact through activities, of two or more agents in the same small area. To 
simulate infection spread among the synthetic population, we build 
weekly contact networks (G ) that encode the dynamic contact patterns 
of anonymized mobile devices from our empirical data (see Methods). 
The co-presence of two mobile devices in a point of interest (POIs) de
termines a link between them, and the duration of the co-presence is the 
weight of the link (ωij, where i and j are different agents). POIs refer to 
public common places such as restaurants, museums, nature parks, day 
care services, gasoline stations. The synthetic contact networks follow 
the same patterns of degree distribution and duration of contact as what 
is documented in the empirical data on a weekly basis (Fig. 1). 

2.2. Epidemic contagion in contact networks 

We implemented a stochastic time-varying and degree-based 
compartmental model in which the spread of infection relies on the 
structure of networks and the duration of contacts (Fig. 2a, the state 
transition diagram). The model is formulated as a system of ordinary 
differential equations. In this model, we consider that an agent could be 
in only one of the five states: susceptible (S(t)), exposed (E(t)), infectious 
asymptomatic (Ia(t)), infectious symptomatic (Is(t)) and removed (R(t)) 
at any time-step t (1d). Ostensibly, the susceptible agents are those who 
have not been infected at time t. We consider that the susceptible agents 
have a certain chance of getting infected based on their contact activities 
with infectious agents (asymptomatic infectious (Ia(t)) and symptomatic 
infectious (Is(t))) in the contact networks (Centers for Disease Control 
and Prevention, 2020). Exposed agents (E(t)) are those who have been 
infected but are not yet infectious. That is, the structures of the networks 
that facilitate the spread of the disease are incorporated, which leads to 
heterogeneous probabilities of susceptible agents to be infected (Pastor- 
Satorras & Vespignani, 2001). The agents with higher degrees (more 
links connecting to them) are more likely to be in contact with in
fections, and therefore they would be more likely to get infected (Bar
abási & Pósfai, 2016). Assuming the agents with the same degree behave 
similarly (Barabási & Pósfai, 2016), we employ degree block approxi
mation to place the agents that have the same degree into the same block 
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(group). This approach allows us to create a separate compartmental 
model in each group of agents based on their degrees. 

Contact networks tend to lack degree correlations, which means the 
probability that a link points from an agent with degree k to an agent 
with degree k′ is independent of k. Such a heterogenous contact pattern 
in the group forms the basis to formulate a general differential equation 
system. The probability that a random chosen link connects an agent in 
the group of degree k′ is the excess degree k′pk′/〈k〉, where pk′ is the 
probability of a random chosen agent with degree k′ in the contact 
network. Existing infected agent should have at least one link connect
ing to another infected agent, the one that transmitted the disease. 
Therefore, the number of links available for future transmission of the 
agent is (k′ − 1). The fraction of infected nodes in the neighborhood of a 
susceptible agent in a group of degree k is defined as a density function 
Θk. We also consider the agents at the infectious stage can spread the 
disease and infect other susceptible agents. As such, the density function 
can be written as: 

Θk =

∑
k′ (k

′

− 1)pk′ ik′

〈k〉
(1)  

where ik′ represents the density of infected agents with degree k′ in the 
network. As observed from Eq. (1), in the absence of degree correlations, 
the density function Θk is independent of k. By differentiating both sides 
of the equation, we can obtain: 

dΘk

dt
=
∑

k

(k − 1)pk

〈k〉
dik

dt
(2) 

Exposed agents are transformed from susceptible agents into infec
tious at a rate of 1/α. Hence, the change of the density of exposed agents 
depends on two transitions: the number of agents transitioned from 
susceptible; and the number of agents transitioned to the infectious. We 
formalize the changing rate of the density of exposed agents as: 

Interactions among people
from different CBGs

Population contact network

Synthetic population

People contact in a POI

Sociodemographic
data: population
size in each CBG.

Fig. 1. Schematic illustration of synthesizing the dynamic contact networks from anonymized mobile devices.  
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dek(t)
dt

= βk∙Θk(t)∙sk(t)−
ek(t)

α (3)  

where sk(t) represents the density of susceptible agents with degree k in 
the contact network at time t, ek′ represents the density of exposed agents 
with degree k′, and α is an inverse of a rate, indicating the mean latent 
period for the disease. To be consistent with reported results in the 
literature (Guan et al., 2020), we consider that the SARS-CoV-2 has a 
latent period of 14 days in this study (α equals 14). The infection rate is 
proportional to the general infection rate β in the entire contact network 
and the degree k, which specifies the chance of a susceptible agent with 
degree k being infected. 

Exposed agents will further move to infectious stage, leading to the 
change of density of infected agents in the network. The change of 
infected agents also depends on two transitions: one is agents tran
sitioning from the exposed state, and the other is the agents transitioning 
to recovery status. Therefore, the changing rate of the density of infected 
agents at time t could be given as: 

dik(t)
dt

=
ek(t)

α − γ∙ik(t) (4)  

where γ is the recovery rate, meaning that both asymptomatic and 
symptomatic infections would be removed after a mean infectious 
period 1/γ. The infections with degree k are composed of asymptomatic 
infectious and symptomatic infectious agents with degree k. Hence, the 
density of infections in the contact network G could be represented as: 

ik(t) = iak(t) + isk(t) (5)  

where iak(t) and isk(t) represent the density of asymptomatic infectious 
and symptomatic infectious agents with degree k in the network 
respectively. Based on the settings in an existing study (Aleta, 2020), we 
consider that 25 % of infections are asymptomatic infectious and the rest 
are symptomatic. This study is also aware of the case detection rate, 
which may vary with prevalence, testing capacity, testing protocols, and 
reporting fatigue. These factors may in turn all vary spatially and 

temporally. To take the influences of these factors into account, we 
calibrate the model in each week so that the model can capture the 
dynamic infectious situation well. 

Then, with a probability of p, exposed agents in the latent state will 
move to the symptomatic infectious state; otherwise, they will move to 
asymptomatic infectious. Since the probability p in our model is fixed, 
we still use Ik(t) in the mathematical formulation of the problem. The 
probability p, however, influences the trajectory of disease spread in 
contact networks, which will be discussed later. 

Plugging both Eqs. (3) and (4) into Eq. (2), we have: 

dΘk(t)
dt

=
∑

k

(k − 1)pk

〈k〉
(βk∙Θk(t)∙sk(t)− γ∙ik(t) ) (6) 

Here, we keep only the first order terms, which means that the sk(t) 
could be ignored above, as for small t, ek(t) and ik(t) are much smaller 
than one and sk(t) is much close to 1. Then, the Eq. (6) could be 
simplified as: 

dΘk(t)
dt

=

(

β
〈
k2
〉
− 〈k〉

〈k〉
− γ

)

∙Θk(t) (7) 

To solve this equation, we get: 

Θk(t) = Cet/τ (8)  

τ =
〈k〉

β
〈
k2
〉
− 〈k〉(β + γ)

(9)  

where τ is the characteristic time for the model. Using the initial con
dition, Θk(t = 0) = C. Hence, 

C =
〈k〉 − 1
〈k〉

(e0 + i0) (10)  

where e0 and i0 are initial values for the densities of exposed agents and 
infected agents. 

The susceptible agents can only transform to exposed agents. Hence, 

Fig. 2. Model description and fit. a, The state transition diagram illustrating the compartmental model used to capture the transmission process of the SARS-CoV-2 
among the population in different states. Specifically, we consider the susceptible (S), exposed (E), infectious asymptomatic (Ia) and infectious symptomatic (Is). The 
rates, β, p/α, (1 − p)/α, and γ indicate the probability of people transformed from the current state to the next state. Here, p is equal to 20 %. More details for the 
model are provided in the main text and the supplementary information. b, Model fit for Harris County (Houston area), Texas. The plot on the left panel is the full fit 
on the full range of data, while the plot on the right panel is the out-of-sample prediction. In the out-of-sample prediction, we calibrated the model on the data before 
80 days since March 10 and predicted the infections afterwards. c, The model fit and out-of-sample prediction for additional nine US metropolitan counties. The 
numbers on top of each subplot show the Federal Information Processing Standard (FIPS) codes of the selected counties. 
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we formulate the change of the density of susceptible agents as: 

dsk(t)
dt

= βk∙Θk(t)∙sk(t) (11) 

The removed agents include both agents recovered from the infec
tious state and agents who died of the disease. Therefore, we determine 
the changing rate of removed agents using: 

drk(t)
dt

= γik(t) (12)  

Nk/N = sk(t) + ek(t) + ik(t)+ rk(t) (13)  

where rk(t) is the density of removed agents with degree k in the 
network. The ordinary differential equation is formed in each group of 
agents with specific degrees. The total number of infected agents is the 
sum of all infected degree-k agents: I =

∑
kpkIk, where pk is the proba

bility density of the agents with a degree of k. Hence, the equations 
above capture, with a set of equations for all degree-k agents, the time- 
dependent behavior of the whole system. 

With the estimates of populations in each state, the next critical step 
is to determine which agent is in what state to capture both temporal and 
geographical patterns of the pandemic spread in the contact network. 
Here, we adopt the idea of network percolation in three transitions to 
simulate the state transition of specific agents. First, susceptible agents 
are more likely to get infected if they are exposed to (contact) infections 
for a long time. Hence, to select the agents who will make transition 
from susceptible state to exposed state in the next time step, we compute 
the time that susceptible agents spent in contact with infectious agents. 
The probability of a susceptible agent being infected (pi

(S→E)) is pro
portional to contact time with infectious agents. 

p(S→E)
i ∝

(
∑

j∈I
ωij

)

(14)  

where i is a susceptible agent and j is one of the infectious agents. 
Second, exposed agents in latent state have two directions for tran

sitioning to the next state: symptomatic and asymptomatic infections. 
We assume that symptomatic infections tend to have fewer movements 
and contact activities, while asymptomatic infections may maintain 
their behaviors as normal. Based on these assumptions, we compute the 
differences in contact activities and how the exposed agents behave 
during the following week and the current week. The probability of an 
exposed agent having symptomatic infection is proportional to the dif
ferences in the contact activities. The more reduced the contact of an 
exposed agent in the following week, the higher the probability of 
transitioning to a symptomatic infectious state (rather than an asymp
tomatic infectious state). We denote the probability of transitioning to 
symptomatic infection (pi

(E→I)) as follows: 

p(E→Is)
i ∝

(
∑

j
ω(T+1)

ij −
∑

j
ω(T)

ij

)

(15)  

where, ωij
(T+1) is the contact time between i and j on week T + 1. 

Third, both asymptomatic and symptomatic infectious agents would 
transition to removed agents. They may recover from the disease or die 
of it. The mean duration of infection is about 14 days, based on the in
formation from the Centers for Disease Control and Prevention 
(Healthcare workers, n.d.). Hence, we consider the probability of an 
infectious agent being removed in the next time step follows a Gaussian 
distribution with a mean of 14 and a standard deviation of 3. 

p(I→R)
i ∼ N (14, 3) (16) 

Each agent in the state of infection would be assigned a probability at 
each time step, and the agents with a higher probability are more likely 
to be selected for state transition. 

Through the above-described contagion and percolation process, this 

model allows us to capture both temporal evolution and geographical 
distribution of the infections and how the epidemic spreads in human 
networks due to contact activities. To obtain model parameters over 
time, we calibrated the model for each week and in every county in the 
United States using cumulative confirmed cases obtained from the The 
New York Times (2020). 

2.3. Model fitting and validation 

To validate the model, we showed the performance of the model in 
fitting real case data and predicting out-of-sample cases using the model 
calibrated on the period before. Specifically, we split the study period 
into two parts: the first 12 weeks as the learning set for fitting and cal
ibrating the model; the balance of the time (4 weeks) as the testing set 
for predicting the confirmed cases. We first fit the model taking the 
weekly contact networks in the first 12 weeks as the input and obtained 
the values of model parameters. Due to the delay in case testing and 
reporting, our model implemented on the contact network in any week 
was fitted on the cases in the following week by minimizing the root 
mean square error (RMSE). Hence, we define the loss function as: 

min
β,γ

L G =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑D

d=1

(ŷd − yd)
2

D

√

s.t.(ŷd − yd)
2
≤ 0.01yd

(17)  

where, d is the day in the fitting process, D is the number of days in total, 
ŷd is the predicted number of cases, and yd is the actual reported number 
of cases. It should be noted that the constraints we added here were to 
ensure that the number of cases on the last day of the prediction was 
close to the actual reported cases. That is, the deviation of the predicted 
results would not influence the prediction of the following weeks. 

It is evident that using mathematical derivation to solve the problem 
of Eq. (17) and get analytical solutions is challenging. That is because 
the functions are usually not continuous and differentiable. A more 
efficient way is to calculate the numerical solutions through a heuristic 
algorithm. In this study, we employed the global pattern search algo
rithm as a derivative-free numerical optimization method to identify the 
optimal point which can minimize the loss and satisfy the constraint. 
The estimated values for model parameters and the optimized RMSE are 
shown in the supplementary information. 

Through the training process, we obtained the model parameters 
including β and γ. The stochasticity is introduced in the model through 
the initialization of the exposed and infected agents as well as the spe
cific infected agents in the groups of degrees. (See supplementary in
formation for more details.) Running the resulting models on contact 
networks in the testing set, we predicted the confirmed cases in the 
testing weeks. Specifically, the parameters obtained from the most 
recent week in the training set for each county are used to make the 
predictions of out of sample data (testing set). We evaluated the pre
dictive performance of the model by comparing the differences between 
the predicted cases and actual reported cases. Sub-figures in Fig. 2b and 
c show that the model fits the out-of-sample case data very well, 
demonstrating that this model is effective in extrapolating beyond the 
training set to future periods. 

2.4. Spatial-temporal heterogeneity of infections 

Since the synthetic population of the contact networks is generated 
based on US Census data together with the results of the model, we can 
characterize the differential spread of SARS-CoV-2 across the CBGs in a 
county. Through examining the spatial and temporal mechanisms of the 
disease spread, we are able to quantify different levels of infection in 
different places and provide a quantitative approach for modeling the 
execution of local containment and recovery policies. 

We explain an example of the COVID-19 pandemic in Harris County 
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(Houston area), Texas. Fig. 3a and d show the predicted numbers of 
agents in exposed, removed, and symptomatic infectious states by fitting 
the model with reported cases. We observed that the pandemic situation 
evolved over time. For example, there are multiple peaks of infections in 
the study period. This result indicates that our model is distinct from 
existing simulation models and could capture realistic patterns of virus 
spread over time. Due to the lack of dynamic fined-grained contact 
networks, existing simulation models tend to simulate the spread of a 
disease on a static contact network in which the connections among the 
agents are not time-varying. Such simulations may not be able to ac
count for the evolving human behaviors and explain the temporal var
iations and spatial heterogeneity of infections. 

Fig. 3b shows an example of the geographical distribution of in
fections across Harris County. It is evident that the infections are 
geographically heterogeneous. This finding explains the contribution of 
contact patterns of people to the infection rates of their CBGs. People 
who engage in intensive contact activities cause their CBG to be inten
sively infected. The geographical heterogeneity in number of cases is 
further demonstrated in other counties (Fig. 3e). The mean entropy of 
the infection distribution grows rapidly from 0.5 in the first week of 
March 2020 to around 1.5 in late March 2020, and it remains at a high 
level until the end of the study period. This result demonstrates that the 
infection patterns are extremely heterogeneous across different areas of 
the county and implementing uniform containment or reopening pol
icies may lead to severe burdens on the economy or infection reduction 
efforts. Our model shows an important capability for uncovering the 
mechanism of disease spread, which could be used in formulating local 
policies. 

The results above raise an important need for localized policies, such 
as geo-fencing in high-infection CBGs and reopening in low-infection 
CBGs. Since policy development is based on the pandemic situation at 
the moment, the evaluation of policy effectiveness requires projection to 
the future. That is, the containment policies should apply to areas that 
show high infection at the current time step and will maintain a high 
level of infection in the future in the absence of containment policies. By 
doing so, the localized containment policies would have an optimal 
outcome in containing the spread of the disease. In response to this 

question, we split the range of infection percentages of the CBGs in a 
county into five levels with equal ranges. The example for Harris County 
is shown in in Fig. 3c. We find that the numbers of cases across the CBGs 
are highly unequally distributed in these five levels. Most of the CBGs 
are at the lowest infection level, while a few CBGs are greatly infected. 
Then, we examine the level of infections of these CBGs in different 
months (Fig. 3f). We observe little variances regarding the infection 
levels of the March CBGs in each group. This result demonstrates that 
the CBGs maintain their levels of infection during the pandemic, 
implying that adopting targeted policies for the CBGs with high infection 
levels at this time step is essential to preventing further deterioration of 
these CBGs. This finding provides important evidence for developing 
localized policies, which will be discussed in the following section. 

2.5. Effects of local policies on network structure and daily infections 

With the unveiled spatial-temporal patterns of the pandemic, local 
policies should account for such heterogeneous impacts. Since the 
outbreak began in early March 2020, governments and policymakers 
have introduced large-scale restriction measures, such as mobility con
trol and mask use. Typical measures in mobility control include area 
lockdown and stay-at-home orders. The restriction of human contact 
activities, however, induced a heavy burden on the local economy, 
especially on labor-intensive businesses. To mitigate the economic 
pressures, many counties and states lifted their restrictions and allowed 
local businesses to reopen. These above-mentioned local policies were 
commonly adopted in the majority of counties in the United States. The 
local policies and their effects on contact networks lead to multiple 
peaks in the pandemic. This situation prompts a question regarding the 
extent to which these policies would reduce the pandemic spread. 

For these reasons, we project the direct impacts of typical local 
policies on human contact networks and estimate the consequences of 
contact network changes on infections. Three different scenarios 
through the implementations of three local policies are summarized 
here: 

a cb

d fe

Fig. 3. The outcomes of disease spread in the data-driven contact networks. a, Daily number of exposed infections and cumulative number of recovered infections in 
Harris County, Texas, simulated by our model. b, Spatial distribution of infections characterized by the percentage of people who were infected on the 80th day since 
March 10 across CBGs in Harris County, Texas, simulated by our model. Spatial distributions of infections in other counties are provided in supplementary infor
mation. c, We categorize the CBGs in Harris County into five levels of infections. The range of percentages of infections at each level is the same. d, Daily new 
symptomatic infections in Harris County, Texas, simulated by our model. e, The results of Shannon Entropy quantifying the spatial heterogeneity of infections across 
CBGs in each county for the ten studied counties. f, The percentage of infections in April, May, and June in CBGs at levels of infections determined in March. 
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• Mobility control (CBG lockdown) scenario: Mobility control measures 
including business lockdown and stay-at-home orders with the intent 
of limiting the number of contacts a person would have. In particular, 
local containment policies are developed to contain the activities of 
people from specific areas. Together with the findings from the last 
section, we rank the CBGs based on their percentage of infections 
from high to low. Then the mobility control measures are simulated 
by removing the connections of agents belonging to specific CBGs. 
We started containing the activities of agents from CBGs with a high 
level of infections, and selected 0 %, 25 %, 50 %, 75 % and 100 % of 
CBGs to be contained. 

• Mask use scenario: The SARS-CoV-2 infection is transmitted pre
dominately by respiratory droplets generated when people talk to 
each other (Moghadas et al., 2020; Worby & Chang, 2020). The 
longer the face-to-face communication, the higher the chance of 
infection. Masks are primarily intended to reduce the emission of 
virus-laden droplets and reduce inhalation of these droplets by the 
wearer (Fischer et al., 2020). Hence, we simulate the mask use sce
nario by reducing the weights of the links between the agents with 
masks. If the weights after the reduction of a specific value become 
negative, we consider there is no link that would allow a disease to be 
transmitted. As such, with a certain percentage of agents wearing 
masks, the contact network would be sparser, implying a lower 
probability that a disease can transmit across the networks. It should 
be noted that the selection of agents wearing masks is random, 
without consideration of their CBGs and infection levels.  

• Reopening scenario: When reopening policies are enacted, businesses 
reopen and population activity increases. Reopening policies allow 
people to re-engage in contact activities to the level of normal con
ditions (Vermund & Pitzer, 2020). Hence, to simulate the scenario of 
reopening, we extracted the contact networks in February before the 
outbreak of the pandemic and synthesized connections similar to 
that of normal conditions for selected agents. The localized reopen
ing policy is also executed in the CBGs in terms of their levels of 
infections. That is, we start reopening CBGs with the lowest level of 
infections then selecting CBGs with increasingly higher levels of 

infection based on specified reopening rate (percentage of reopened 
CBGs among all CBGs). In this study, the reopening rates are 0 %, 25 
%, 50 %, 75 % and 100 %. 

Fig. 4 shows the effects of local policies on the structure of contact 
networks and the consequences of network changes on disease spread in 
Harris County. (See results for other counties in the supplementary in
formation.) The first panel of the figure shows the effects of mobility 
control measures. As shown in Fig. 4d, the total weights of the contact 
networks in Harris County decreased 50 % in about one month since 
March 10, 2020 and remained stable until the end of the study period. 
Mobility control measures implemented on the 13th week since March 
10 significantly reduced the total weighting in the network. The 
reduction of the weighting is almost proportional to the percentage of 
the controlled CBGs in a county. When all CBGs are contained, the total 
weights of the network are 0, meaning that no links exist present in the 
contact network. This would be an ideal outcome of local containment, 
which cuts all possible transmission trajectories of the disease. Hence, 
mobility control policies could lead to promising results in terms of 
pandemic containment (Fig. 4a). All curves with mobility control pol
icies indicate a peak of infection one or two weeks after the policy 
implementation, as is shown in historical data. That is because the 
frequent contact activities enable a denser contact network, while the 
total weight of the network does not change dramatically. This conclu
sion is realistic as it indicates the effect of contact activities in disease 
spread. With the increase of controlled mobility in CBGs, the magnitude 
of the peak infections decreases. When 75 % or more CBGs are 
controlled for mobility, the peak number of infections is at a similar level 
as or even a lower level than the previous peak. This result implies that 
an aggressive mobility control policy is effective and necessary to 
change the trajectory of the pandemic, or at least to prevent the 
pandemic from worsening. 

The middle panel of Fig. 4 shows the effects and consequences of 
mask use on the pandemic spread. When agents are in contact with 
others, masks reduce infection to a certain degree. Hence, the use of 
masks does not have evident effects (Fig. 4d), as mobility control 

Fig. 4. Effects of localized policies on daily infections and network structure for a variety of policy implementation levels. Each panel represents effectiveness in 
terms of relative levels of policy implementation on number of daily infections and the contact network. The impacts of varying policy levels on daily new infections 
a–c are shown for different policies: mobility control, mask use, and reopening. The outcomes of varying policy levels on the weighted contact networks d–f are 
shown with different policies. This study selects different levels of 0 %, 25 %, 50 %, 75 % and 100 % for policy implementation on the synthetic population. 
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policies explicitly cut the connections among the agents and break down 
the contact network. Mask use is still essential since it can to some de
gree moderate the pandemic (Fig. 4b). An increase in the number of 
people wearing masks leads to a significant decrease in the daily new 
infections and the magnitude of the peak number of infections. In an 
extreme case in which 90 % agents wear masks, the pandemic would be 
still out-of-control. That is because, there are some agents who contact 
others frequently and for a long time and some of them are infectious. 
The role of wearing masks is weakened in such cases. Hence, simply 
requiring all people to wear masks is insufficient to contain the 
epidemic. 

The last panel of the figure indicates the outcomes of reopening 
policies. Although the stay-at-home order has been lifted since late May 
and June 2020, population mobility and contact activities did not revert 
to their pre-pandemic patterns. As we simulate the contact activities of 
some agents based on their regular activities in normal conditions, the 
contact networks get denser and the weights of the network increase 
drastically (Fig. 4f). Such change in the network causes a sharp increase 
of the daily infections, two or three times the historical reported cases. In 
addition, as the hardest-hit CBGs reopen, the growth of daily infections 
rises even faster. This result shows a warning that untimely reopening 
policies during the pandemic could neutralize all previous control 
efforts. 

In summary, we have observed diverse effects of different policies 
and various levels of implementations of these policies on the structure 
of contact networks and the pandemic spread. Purely from a perspective 
of pandemic containment, both mobility control and mask use are 
necessary and effective in containing the transmission of the disease 
through population contact behaviors. During pandemic peak and eco
nomic recession, however, recovery of economic activities is also of 
great concern. Despite these exigencies, we must still take into account 
the larger economic loss which may be caused by a possible worsening 
pandemic in the future if we simply reopen regions without adequate 
containment measures (Fan, 2020). 

2.6. Impacts of combined policies on costs and infections 

The above analyses and results raise two important questions: what 
combination of policies would be more effective in containing the 
pandemic; and how we can make a trade-off between costs and in
fections for policy development. In this section, we present a method to 
quantify the costs of combined policies and also project the pandemic 
situation after implementing these combined policies. 

In our simulation model, we assume the system is consistent, 
meaning that no inflow nor outflow of agents occurs during the study 
period. The total number of agents remains the same throughout the 
study period. In addition, combined policies are consistently imple
mented during the test period. Thus, the timing of the policy imple
mentation is not a factor influencing the calculation of the costs and the 
projection of infections. Based on these assumptions, we consider the 
costs of the policies to be proportional to the size of the population 
affected by the policies. Accordingly, we can assign a cost factor to each 
group of the population under specific policies to roughly quantify the 
costs of the policies. The cost function is formulated as follows: 

C = μ1Popm + μ2Popc − μ3Popr + μ4Popi (18)  

where μ1, μ2 and μ3 are the cost factors for three types of populations 
under the policies. The values of these cost factors can be selected based 
on an estimation of the costs in specific local regions. Hence, the cost 
factors may be variant from region to region. The factors such as hos
pitalization, hospital capacity, age-dependent severity of illness and 
adherence with public health measures could also be incorporated in the 
cost factors to enable an accurate estimation. See more details in the 
supplementary information. In addition, Popm is the percentage of the 
population wearing masks, Popc is the percentage of the population in 

the CBGs with mobility control, Popr is the percentage of the population 
in reopened CBGs, and Popi is the number of new infections during the 
implementation of the policies. To compute the costs and project the 
infections for all combinations of the policies, we conducted a test for 
several levels of policy implementation. Specifically, we selected the 
values for three policy-related variables (i.e., Popm, Popc, and Popr) from 
0.1 to 0.9 with increments of 0.1, estimated the infections under the 
specified policies, and computed the costs for all combinations of these 
variables. 

To compare costs of different local policies, we focused mainly on 
relative values of costs, which indicate extra savings or expenses of one 
policy compared to another. In other words, the cost values are not 
required to be precise in this analysis since relative costs are sufficient 
for us to identify cost-effective policies. As long as relative costs are 
reasonable, the assumption is defensible. Hence, we define μ1 to be 5, μ2 
to be 30, μ3 to be 5, and μ4 to be 1. Taking the example of Harris County, 
Texas, it is clear that different combinations of local policies result in 
varying levels of infections in the test period (Fig. 5a). Furthermore, by 
maintaining the stability of one policy, we can observe the cost and 
infection changes brought by the changes in the other two policies. For 
example, as we keep 10 % of reopening in CBGs at the lowest level of 
infection, a low rate of mobility control and mask use leads to a great 
number of infections (Fig. 5f). The number of infections decreases as we 
increase mobility control and mask use. Meanwhile, the containment 
effect of mobility control is more evident than mask use. Such a pattern 
of effects by local policies influences the costs. As shown in Fig. 5b, the 
most cost-effective strategy in this case is to implement mobility control 
(i.e., geo-fencing) in 10 % of CBGs which are highly infected with an 80 
% mask-wearing rate. This result highlights the importance of mask use 
to achieve pandemic containment. In another case, we consider the rate 
of mobility control to be stable (10 %) and change the rates of CBGs with 
reopening and the percentage of people wearing masks. We find that the 
reopening of CBGs significantly worsens the epidemic situation, leading 
to an explosion of infections (Fig. 5g). Due to the reopening and asso
ciated contact activities, the actual cost of a high rate of reopening is 
quite low, although a large number of people get infected (Fig. 5c). An 
optimal strategy would be increasing the percentage of the population 
wearing masks and reopen the majority of the CBGs that are not highly 
infected. Finally, we examine the impact of changing the rates of 
mobility control and reopening and maintaining 10 % of the population 
wearing masks. Fig. 5h shows a clear pattern that the upper left corner is 
dark, while the lower right corner is bright, indicating that reopening 
establishes a number of connections between people and subsequently 
provides a path for disease spread. Due to the effect of reopening on 
economic recovery, the cost could be relatively low when 10 % of the 
hardest-hit CBGs are under mobility control (Fig. 5d). 

Counties have different pandemic situations, which require different 
compound policies for containment. In this step, we apply our method to 
ten counties to identify their cost-effective combined policies. The 
optimal combined policy strategies are plotted in Fig. 5e. The cost- 
effective combined policies for the majority of the counties, such as 
Dallas County, Texas (FIPS county code 48113, Dallas) and Wayne 
County, Michigan (FIPS county code 26163, Detroit) need a low per
centage of CBG reopening, a high proportion of population wearing 
masks, and a large number of CBGs under mobility control. These 
counties tend to be among the hardest hit during the test period. Other 
counties, such as King County, Washington (53033, Seattle), and Suffolk 
County, Massachusetts (25025, Boston), require reopening for fewer 
infected CBGs to recover their economy, but severely infected CBGs 
should remain under mobility control. These findings indicate that 
mobility control is not always a fit-to-all option and not always cost- 
effective. Different counties require specific combined policies for con
taining the pandemic and to efficiently recover economic activities. 
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3. Discussion and concluding remarks 

We present a data-driven contact network model that incorporates 
an epidemic contagion process. Using the synthetic contact network 
built based on anonymized data related to the contact activities from 
millions of people in ten major infected counties during the COVID-19 
pandemic, our model performs well in predicting the spread of the 
disease in contact networks. Because our simulation is agent-based, we 
can identify the CBGs of the infected agents and assess the spatial- 
temporal heterogeneity of the pandemic in a county. This outcome is 
of particular importance since it addresses the challenge of geographical 
spread of the disease. As the model suggests, cross-CBG contact activities 
intensify disease transmission and enable a prediction of the infection 
distribution, which is consistent with the results of existing studies at 
national (Jia et al., 2020) and international (Wells, 2020) scales. The 
findings regarding the spatial-temporal patterns of the pandemic suggest 
localized containment strategies and inform us in which fraction of the 
population of urban areas the policies should be implemented. Our study 
can inform policymakers seeking to adopt area-specific policies instead 
of county-wide uniform measures (Chen et al., 2020). 

With the prevalence of mobility control, mask use and reopening 
policies (Schünemann et al., 2020), we examined the impacts of these 
policies on the structure of contact networks and the consequences of 
structural changes on epidemic spread. We find that mobility control is 
one of the most effective measures in containing the pandemic, yet 
imposes a heavy burden on the economy and causes onerous societal 
disruptions. This conundrum raises an urgent need for combined policies 
to balance the trade-off between economic aspects and infection cases. 
Our results show that the cost-effective strategy varies across different 
counties based on the local epidemic situation. Large-scale mobility 
control is not fit-to-all. An appropriate composition of the policies may 
achieve a relatively low infection level and also a low cost to society in 
the case of partial reopening and economic recovery. Our results and 
findings could be informative for government agencies for local 
containment strategies and for public response planning. For example, 
policymakers may increase testing and quarantine in highly infected 
CBGs, while lifting control for less infected CBGs. 

Our study also confronts some limitations, specifically in the data set 
we use. It should be noted that the data does not cover the contact 

activities of all populations. For example, the activities from people who 
do not opt-in to the data-sharing contract of the data provider cannot be 
captured. Contact activities that occurred in non-points of interest may 
not be included in building the contact links in the network. These 
limitations in the dataset notwithstanding, fine-grained mobile phone 
data is widely adopted in modeling epidemics and informing public 
health policies (Oliver et al., 2020). In addition, although our model can 
accurately predict the pandemic using contact networks, the results do 
not imply the exact causal relation between contact activities and 
epidemic spread. Further studies are needed in improving the model to 
infer the in-depth mechanisms of epidemic spread and to substantiate 
effective policies in pandemic containment. 

4. Materials and methods 

4.1. Data sets 

We use geolocation data provided by Veraset, Inc. (Veraset, n.d.), a 
data company that collects anonymized location data from numerous 
applications and from a large number of devices. Veraset, Inc. collects 2 
to 3 billion location event data points every day from >30 M unique 
devices across the United States. The anonymized devices opted-in to 
provide access to their location data through thousands of apps and 
software development kits (SDKs) with Veraset. The data was shared 
under a strict contract with Veraset through their collaborative program 
in which they provide access to de-identified and privacy-enhanced 
mobility data for academic research only. In this study, we filter the 
data for ten of the most infected counties from January 1 through June 
27, 2020. The data contains anonymized device IDs, timestamps, and 
precise geographical coordinates of dwelling points. We legally per
formed the analysis and were required never to attempt to identify any 
individuals. 

To identify the contact activities at points of interest, we employed 
the geolocations of the POIs from SafeGraph (n.d.), a data company that 
has documented the geographical information and business information 
about physical places in the United States. 

Demographic data at the census block group level are adopted from 
the US Census Bureau's American Community Survey (ACS) (United 
States Census Bureau, 2019). The population size of each CBG which we 

ba dc
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Fig. 5. Outcomes of combined local containment policies and searching for optimal combinations. a, Daily new infections under varying levels of compound policies 
(selected examples shown) in Harris County (FIPS county code 48201), Texas. To be visually clear, the plot shows only the outcomes for eight combinations of local 
policies. The estimated cost b-d and the total number of infections f-h with varying levels of compound policies. By keeping the reopen rate at 10 %, the cost and rate 
infections for varying levels of mobility control and mask use are shown in b and f, respectively. By keeping the mobility control rate to be 10 %, the cost and 
infection rate for varying levels of reopening and mask use are shown in c and g, respectively. By keeping the rate of mask use to be 10 %, the cost and infection rate 
for varying levels of reopening and mobility control are shown in d and h. e, The optimal combination of the three local policies for the selected ten counties. 

C. Fan et al.                                                                                                                                                                                                                                      



Cities 128 (2022) 103805

10

use to synthesize agents in our model is the most recent one-year esti
mate (2018). 

We calibrated our model using cumulative reported cases from the 
data dataset published by the The New York Times (2020). The dataset 
documents cumulative COVID-19 infections every day for all the 
counties in the United States. We fit out the model on these cumulative 
daily data to acquire the values of model parameters. 

4.2. Data-driven contact network 

The model considers a weighted network G = (V ,E t ,W t) with 
stable agents V , time-varying links E t, and link weights W t. We define 
the agents V and assigned them to specific CBGs based on the popu
lation size of each CBG documented in the ACS demographic data. Then 
using the dwelling locations of the devices provided in the Veraset data, 
we considered two devices to be in contact if they presented in the same 
POI at the same time. Here, the dwelling locations of the devices are 
defined according to the time the devices spent in a location. We use 5 
min as the threshold amount of time to filter out the locations where the 
devices might be waiting for traffic lights. The length of the overlap of 
their time spent in the POI is denoted as the duration of their contact. As 
such, we create an empirical weighted contact network among the de
vices in the Veraset data. In addition, we estimated the home CBGs of the 
devices. The links between any pair of CBGs can be extracted. Based on 
the proportion between the population size of empirical data and the 
synthetic population, we have a scalar to quantify the difference be
tween the number of devices and synthetic agents. The scalar is then 
applied to determine the number of links that should be synthesized for 
each pair of CBGs. The weights of these links follow the distribution of 
the weights in the empirical contact network. Next, we assign the links 
to the synthetic agents in these two CBGs, where the degree distribution 
for the agents is consistent with the degree distribution of the devices in 
the same CBGs in the empirical data. We generate and assign links by 
repeating the above steps for all pairs of CBGs. This approach allows for 
creating synthetic contact networks based on actual mobility data and to 
maintain key structural and attribute information of the agents and the 
networks. 

We further conducted a test using Kullback-Leibler Divergence to 
ensure the generated contact networks remained the structural proper
ties of the corresponding empirical network. The detailed results suggest 
that the degree distributions of the generated contact networks are 
similar to the degree distributions of the empirical networks (supple
mentary information). That is, our data-driven contact network is reli
able for modeling realistic human contact patterns and pandemic 
spread. 
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