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While several non-pharmacological measures have been implemented for a few months in an effort to slow the
coronavirus disease (COVID-19) pandemic in the United States, the disease remains a danger in a number of
counties as restrictions are lifted to revive the economy. Making a trade-off between economic recovery and
infection control is a major challenge confronting many hard-hit counties. Understanding the transmission
process and quantifying the costs of local policies are essential to the task of tackling this challenge. Here, we
investigate the dynamic contact patterns of the populations from anonymized, geo-localized mobility data and
census and demographic data to create data-driven, agent-based contact networks. We then simulate the
epidemic spread with a time-varying contagion model in ten large metropolitan counties in the United States and
evaluate a combination of mobility reduction, mask use, and reopening policies. We find that our model captures
the spatial-temporal and heterogeneous case trajectory within various counties based on dynamic population
behaviors. Our results show that a decision-making tool that considers both economic cost and infection out-
comes of policies can be informative in making decisions of local containment strategies for optimal balancing of

economic slowdown and virus spread.

1. Introduction

The coronavirus disease 2019 (COVID-19) has caused a global
pandemic threatening public health and human well-being (Headey
et al., 2020). As of November 4, 2020, 47.7 million confirmed cases and
1.2 million deaths have been reported worldwide (John Hopkins Uni-
versity, 2020). In response to the pandemic and in the absence of
effective vaccines and drugs, numerous non-pharmaceutical in-
terventions, such as stay-at-home and social distancing orders, have
been implemented in the majority of the affected countries and regions
(Chinazzi, 2020; Kraemer, 2020). For example, Harris County in Texas
enacted stay-at-home orders starting March 2020, and mandatory mask
order in May 2020. These measures were enacted to quarantine infected
persons thus isolating cases and suppressing virus transmission (Rader
et al., 2020). The execution of these measures, however, caused a sig-
nificant economic slowdown (Polyakova et al., 2020). In particular,
travel restrictions and business lockdowns have caused soaring unem-
ployment and a decline in tax revenue (Auray & Eyquem, 2020). Hence,
it is essential to examine policy solutions for making an optimal trade-off
between virus control and economic recovery, especially in hard-hit
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regions.

As society faces this global public health challenge, numerous studies
in a variety of research streams relevant to pandemic mitigation have
been published. Departing from the cross-region spread of infection, one
study (Kraemer, 2020) investigated the effects of travel restrictions on
delaying epidemic outbreaks and reducing the number of cases. This
research was followed by a further study on understanding cross-region
population flow as a driver of the spatial-temporal distribution of
COVID-19 in China (Jia et al., 2020). Through the use of mathematical
models on metapopulations, such as the global epidemic and mobility
model (GLEAM) (Balcan, 2009), risk source model (Jia et al., 2020), and
disease contagion models (Chowell et al., 2004; Newman, 2002), these
studies explored the mechanisms affecting the large-scale pandemic and
demonstrated the role of human behaviors (especially human mobility)
in disease transmission, and also examined the effectiveness of non-
pharmacological interventions in virus spread control. With the under-
standing of the underlying mechanisms influencing epidemic spread and
ubiquitous population movement data, data-driven methods and tools,
such as deep neural networks (Kapoor, 2020; Ramchandani et al., 2020),
have been adopted to predict the spread of infections across states and
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counties. The well-performed predictions obtained through the use of
these methods expand the capability of forecasting future trajectories of
increases in the number of cases across different regions (Chang et al.,
2020).

Despite enormous progress (Holtz, 2020) in slowing down the cross-
regional spread of the pandemic, the COVID-19 pandemic has already
entered the phase of community spread. The continuing infection
growth accentuates the need for further localized containment measures
(Schlosser, 2020). Existing meta-population-based analyses, however,
are limited in capturing high-resolution person-to-person transmission
to inform the evaluation of localized measures (Balcan, 2009). Recent
studies have argued that anonymized mobile phone data, when used
properly and carefully, could characterize the epidemic dynamics
among human contacts during all stages of the pandemic life cycle
(Oliver et al., 2020). Mobility data collected from a large number of
devices enables time-resolved characterization of population contact
patterns, making it possible to probe the mechanisms by which disease is
transmitted among the population with precision unattainable by other
data sources, such as surveys. Due to the benefits of mobile phone data
(Grantz et al., 2020), studies (Liu, 2018) have attempted to simulate the
SARS-CoV-2 transmission on synthetic populations derived from mobile
phone data in normal situations and to model the impact of individual-
based measures, such as testing, contact tracing and household quar-
antine (Aleta et al., 2020).

Human behaviors, however, are dynamic, as the pandemic evolves.
Limited consideration of the dynamics of human contact patterns would
undermine the robustness of localized measures of pandemic mitigation.
Models that can explain the virus spread based on dynamic human be-
haviors are especially needed. In addition, after the execution of stay-at-
home orders and business activity restriction policies in the United
States during March and April 2020, many states and counties allowed
reopening of economic activities to relieve the heavy burden on the
economy caused by the shutdown (Bonaccorsi, 2020). Although lifting
restrictions could help with economic recovery, the subsequent increase
in population contact activities drove the pandemic to a new peak
(Kaxiras & Neofotistos, 2020). Clearly, an integrative consideration of
infections and economic costs in the decision-making process is critical
to inform making tradeoff decisions between the number of infections
and the economic costs of containment policies. The existing models do
not enable examining this important tradeoff.

In this study, we investigated the dynamic contact patterns from fine-
grained, anonymized data for millions of mobile devices along with
census and demographic data. Accordingly, we then synthesized weekly
contact networks of the populations based on their dynamic contact
patterns captured by mobile phone data from the date of first reported
cases through the end of June 2020 in ten selected US metropolitan
counties. Each agent in the contact networks is associated with a census
block group (CBG) within specific residential areas. On top of the dy-
namic data-driven contact networks, we overlaid a time-varying, de-
gree-based Susceptible-Exposed-Infectious-Recovered (SEIR) contagion
model that simulates the case trajectories among the synthetic popula-
tion. This model allows us to capture the temporal evolution of the
pandemic and the spatial distribution of the infections due to the dy-
namic contact patterns of the population. Through the understanding of
the spatial-temporal heterogeneity of disease spread, we could identify
the most at-risk populations, quantify the cost and infection trajectories,
and provide a quantitative analysis of the effects of combined local
containment policies on the costs and infections.

Here, we demonstrate the performance of our model in terms of out-
of-sample prediction based on population contact behaviors. The results
show multiple waves of virus spread and spatial variation within ten US
metropolitan counties. The results also highlight the heterogeneous ef-
fects of local policies on contact networks and disease spread across
different regions. With these important observations, we propose a
method that allows us to quantify the cost of the local policies and
recommends optimal combined policies to achieve a better trade-off
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between economic recovery and virus control.
2. Results
2.1. Dynamic data-driven contact networks

The computational experiments are conducted on large-scale social
contact networks. It would be very computationally expensive if we use
the actual population to construct the social networks. Hence, we create
the agent-based model in which we capture the mobility patterns of the
residents from a CBG using mobile phone data and synthesize a smaller
group of the population that is proportional to the number of residents in
a CBG using census data. To provide a quantitative estimate for the
dynamic contact patterns in the population of agents in each county, we
first use detailed demographic data from US Census Bureau (Bureau,
2019) to generate a certain number of agents and assign them to specific
Census Block Groups (CBGs). During this process, we ensure that the
numbers of agents in the CBGs are proportional to the numbers of res-
idents according to the census data. To validate the representativeness of
the anonymized mobile phone data, we conducted a correlation analysis
to examine the extent to which the number of mobile phone devices is
proportional to the number of residents in a CBG from the census data
(see in Supplementary Information Section 1). We find that, the corre-
lation coefficient is high enough, indicating that the population of each
CBG captured in the mobile phone data is significantly proportional to
the population estimated from demographic surveys. In this respect, we
consider that the mobile phone data could represent the populations in
CBGs in a county, and can capture the mobility of individuals in the
population between areas.

Virus transmission occurs through the co-presence, defined as con-
tact through activities, of two or more agents in the same small area. To
simulate infection spread among the synthetic population, we build
weekly contact networks (%) that encode the dynamic contact patterns
of anonymized mobile devices from our empirical data (see Methods).
The co-presence of two mobile devices in a point of interest (POIs) de-
termines a link between them, and the duration of the co-presence is the
weight of the link (w;;, where i and j are different agents). POIs refer to
public common places such as restaurants, museums, nature parks, day
care services, gasoline stations. The synthetic contact networks follow
the same patterns of degree distribution and duration of contact as what
is documented in the empirical data on a weekly basis (Fig. 1).

2.2. Epidemic contagion in contact networks

We implemented a stochastic time-varying and degree-based
compartmental model in which the spread of infection relies on the
structure of networks and the duration of contacts (Fig. 2a, the state
transition diagram). The model is formulated as a system of ordinary
differential equations. In this model, we consider that an agent could be
in only one of the five states: susceptible (S(t)), exposed (E(t)), infectious
asymptomatic (Io(t)), infectious symptomatic (I;(t)) and removed (R(t))
at any time-step t (1d). Ostensibly, the susceptible agents are those who
have not been infected at time t. We consider that the susceptible agents
have a certain chance of getting infected based on their contact activities
with infectious agents (asymptomatic infectious (I,(t)) and symptomatic
infectious (Ii(t))) in the contact networks (Centers for Disease Control
and Prevention, 2020). Exposed agents (E(t)) are those who have been
infected but are not yet infectious. That is, the structures of the networks
that facilitate the spread of the disease are incorporated, which leads to
heterogeneous probabilities of susceptible agents to be infected (Pastor-
Satorras & Vespignani, 2001). The agents with higher degrees (more
links connecting to them) are more likely to be in contact with in-
fections, and therefore they would be more likely to get infected (Bar-
abasi & Posfai, 2016). Assuming the agents with the same degree behave
similarly (Barabasi & Posfai, 2016), we employ degree block approxi-
mation to place the agents that have the same degree into the same block
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Fig. 1. Schematic illustration of synthesizing the dynamic contact networks from anonymized mobile devices.

(group). This approach allows us to create a separate compartmental
model in each group of agents based on their degrees.

Contact networks tend to lack degree correlations, which means the
probability that a link points from an agent with degree k to an agent
with degree k’ is independent of k. Such a heterogenous contact pattern
in the group forms the basis to formulate a general differential equation
system. The probability that a random chosen link connects an agent in
the group of degree k' is the excess degree k'px/(k), where py is the
probability of a random chosen agent with degree k' in the contact
network. Existing infected agent should have at least one link connect-
ing to another infected agent, the one that transmitted the disease.
Therefore, the number of links available for future transmission of the
agent is (k' — 1). The fraction of infected nodes in the neighborhood of a
susceptible agent in a group of degree k is defined as a density function
Ok. We also consider the agents at the infectious stage can spread the
disease and infect other susceptible agents. As such, the density function
can be written as:

_ > (kl = Dpyiy
6, = . (€9)

where i represents the density of infected agents with degree k" in the
network. As observed from Eq. (1), in the absence of degree correlations,
the density function Oy is independent of k. By differentiating both sides
of the equation, we can obtain:

d@k _ (k - l)pk dlk
T W @

Exposed agents are transformed from susceptible agents into infec-
tious at a rate of 1/a. Hence, the change of the density of exposed agents
depends on two transitions: the number of agents transitioned from
susceptible; and the number of agents transitioned to the infectious. We
formalize the changing rate of the density of exposed agents as:
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Fig. 2. Model description and fit. a, The state transition diagram illustrating the compartmental model used to capture the transmission process of the SARS-CoV-2
among the population in different states. Specifically, we consider the susceptible (S), exposed (E), infectious asymptomatic (I,) and infectious symptomatic (I,). The
rates, 8, p/a, (1 — p)/a, and y indicate the probability of people transformed from the current state to the next state. Here, p is equal to 20 %. More details for the
model are provided in the main text and the supplementary information. b, Model fit for Harris County (Houston area), Texas. The plot on the left panel is the full fit
on the full range of data, while the plot on the right panel is the out-of-sample prediction. In the out-of-sample prediction, we calibrated the model on the data before
80 days since March 10 and predicted the infections afterwards. ¢, The model fit and out-of-sample prediction for additional nine US metropolitan counties. The
numbers on top of each subplot show the Federal Information Processing Standard (FIPS) codes of the selected counties.
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where si(t) represents the density of susceptible agents with degree k in
the contact network at time ¢, ey represents the density of exposed agents
with degree k/, and « is an inverse of a rate, indicating the mean latent
period for the disease. To be consistent with reported results in the
literature (Guan et al., 2020), we consider that the SARS-CoV-2 has a
latent period of 14 days in this study (a equals 14). The infection rate is
proportional to the general infection rate f in the entire contact network
and the degree k, which specifies the chance of a susceptible agent with
degree k being infected.

Exposed agents will further move to infectious stage, leading to the
change of density of infected agents in the network. The change of
infected agents also depends on two transitions: one is agents tran-
sitioning from the exposed state, and the other is the agents transitioning
to recovery status. Therefore, the changing rate of the density of infected
agents at time t could be given as:
diy, (t) (3 ([)

i a7 @

where y is the recovery rate, meaning that both asymptomatic and
symptomatic infections would be removed after a mean infectious
period 1/y. The infections with degree k are composed of asymptomatic
infectious and symptomatic infectious agents with degree k. Hence, the
density of infections in the contact network % could be represented as:

ik (f) = iak (t) + iSk (t) (5)

where ig(t) and ig(t) represent the density of asymptomatic infectious
and symptomatic infectious agents with degree k in the network
respectively. Based on the settings in an existing study (Aleta, 2020), we
consider that 25 % of infections are asymptomatic infectious and the rest
are symptomatic. This study is also aware of the case detection rate,
which may vary with prevalence, testing capacity, testing protocols, and
reporting fatigue. These factors may in turn all vary spatially and

temporally. To take the influences of these factors into account, we
calibrate the model in each week so that the model can capture the
dynamic infectious situation well.

Then, with a probability of p, exposed agents in the latent state will
move to the symptomatic infectious state; otherwise, they will move to
asymptomatic infectious. Since the probability p in our model is fixed,
we still use Ix(t) in the mathematical formulation of the problem. The
probability p, however, influences the trajectory of disease spread in
contact networks, which will be discussed later.

Plugging both Egs. (3) and (4) into Eq. (2), we have:

d@k(l) - (k — l)p)\ .
e Zk: ® (BkeOx(t) sk (t) — reix(t) ) (6)
Here, we keep only the first order terms, which means that the si(t)
could be ignored above, as for small t, ex(t) and ix(t) are much smaller
than one and sk(t) is much close to 1. Then, the Eq. (6) could be
simplified as:

dey(r) (k) — (k)
P (ﬂ w7 *6x(t) @
To solve this equation, we get:
Ou(t) = Ce'l* (8)

TR — 0B+

where 7 is the characteristic time for the model. Using the initial con-
dition, Ox(t = 0) = C. Hence,
(k) —1

where e and iy are initial values for the densities of exposed agents and
infected agents.
The susceptible agents can only transform to exposed agents. Hence,
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we formulate the change of the density of susceptible agents as:

dsy (l )
dt

= Pk Oy (t)esi(t) an

The removed agents include both agents recovered from the infec-
tious state and agents who died of the disease. Therefore, we determine
the changing rate of removed agents using:

d’;ﬁ’) — rid(t) a2)
Ni/N = si(t) + e (t) + i (1) + (1) (13)

where r(t) is the density of removed agents with degree k in the
network. The ordinary differential equation is formed in each group of
agents with specific degrees. The total number of infected agents is the
sum of all infected degree-k agents: I =  ipilk, where py is the proba-
bility density of the agents with a degree of k. Hence, the equations
above capture, with a set of equations for all degree-k agents, the time-
dependent behavior of the whole system.

With the estimates of populations in each state, the next critical step
is to determine which agent is in what state to capture both temporal and
geographical patterns of the pandemic spread in the contact network.
Here, we adopt the idea of network percolation in three transitions to
simulate the state transition of specific agents. First, susceptible agents
are more likely to get infected if they are exposed to (contact) infections
for a long time. Hence, to select the agents who will make transition
from susceptible state to exposed state in the next time step, we compute
the time that susceptible agents spent in contact with infectious agents.
The probability of a susceptible agent being infected (p~P) is pro-
portional to contact time with infectious agents.

pfs_'E)cx (Zwy> 14)

jel

where i is a susceptible agent and j is one of the infectious agents.

Second, exposed agents in latent state have two directions for tran-
sitioning to the next state: symptomatic and asymptomatic infections.
We assume that symptomatic infections tend to have fewer movements
and contact activities, while asymptomatic infections may maintain
their behaviors as normal. Based on these assumptions, we compute the
differences in contact activities and how the exposed agents behave
during the following week and the current week. The probability of an
exposed agent having symptomatic infection is proportional to the dif-
ferences in the contact activities. The more reduced the contact of an
exposed agent in the following week, the higher the probability of
transitioning to a symptomatic infectious state (rather than an asymp-
tomatic infectious state). We denote the probability of transitioning to
symptomatic infection (p{f=P) as follows:

pﬁE»l\)o( (Z@/ﬂl) _ ZCUI(';T) ) (15)
J J

where, a)l(j”l) is the contact time between i and j on week T + 1.

Third, both asymptomatic and symptomatic infectious agents would
transition to removed agents. They may recover from the disease or die
of it. The mean duration of infection is about 14 days, based on the in-
formation from the Centers for Disease Control and Prevention
(Healthcare workers, n.d.). Hence, we consider the probability of an
infectious agent being removed in the next time step follows a Gaussian
distribution with a mean of 14 and a standard deviation of 3.

P~ r(14,3) 16)

Each agent in the state of infection would be assigned a probability at
each time step, and the agents with a higher probability are more likely
to be selected for state transition.

Through the above-described contagion and percolation process, this
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model allows us to capture both temporal evolution and geographical
distribution of the infections and how the epidemic spreads in human
networks due to contact activities. To obtain model parameters over
time, we calibrated the model for each week and in every county in the
United States using cumulative confirmed cases obtained from the The
New York Times (2020).

2.3. Model fitting and validation

To validate the model, we showed the performance of the model in
fitting real case data and predicting out-of-sample cases using the model
calibrated on the period before. Specifically, we split the study period
into two parts: the first 12 weeks as the learning set for fitting and cal-
ibrating the model; the balance of the time (4 weeks) as the testing set
for predicting the confirmed cases. We first fit the model taking the
weekly contact networks in the first 12 weeks as the input and obtained
the values of model parameters. Due to the delay in case testing and
reporting, our model implemented on the contact network in any week
was fitted on the cases in the following week by minimizing the root
mean square error (RMSE). Hence, we define the loss function as:

~ 2
o b (Y4 —ya)
min? s =\[> 0 p an
s..(Fy —ya)’ <001y

where, d is the day in the fitting process, D is the number of days in total,
¥4 is the predicted number of cases, and y, is the actual reported number
of cases. It should be noted that the constraints we added here were to
ensure that the number of cases on the last day of the prediction was
close to the actual reported cases. That is, the deviation of the predicted
results would not influence the prediction of the following weeks.

It is evident that using mathematical derivation to solve the problem
of Eq. (17) and get analytical solutions is challenging. That is because
the functions are usually not continuous and differentiable. A more
efficient way is to calculate the numerical solutions through a heuristic
algorithm. In this study, we employed the global pattern search algo-
rithm as a derivative-free numerical optimization method to identify the
optimal point which can minimize the loss and satisfy the constraint.
The estimated values for model parameters and the optimized RMSE are
shown in the supplementary information.

Through the training process, we obtained the model parameters
including $ and y. The stochasticity is introduced in the model through
the initialization of the exposed and infected agents as well as the spe-
cific infected agents in the groups of degrees. (See supplementary in-
formation for more details.) Running the resulting models on contact
networks in the testing set, we predicted the confirmed cases in the
testing weeks. Specifically, the parameters obtained from the most
recent week in the training set for each county are used to make the
predictions of out of sample data (testing set). We evaluated the pre-
dictive performance of the model by comparing the differences between
the predicted cases and actual reported cases. Sub-figures in Fig. 2b and
¢ show that the model fits the out-of-sample case data very well,
demonstrating that this model is effective in extrapolating beyond the
training set to future periods.

2.4. Spatial-temporal heterogeneity of infections

Since the synthetic population of the contact networks is generated
based on US Census data together with the results of the model, we can
characterize the differential spread of SARS-CoV-2 across the CBGs in a
county. Through examining the spatial and temporal mechanisms of the
disease spread, we are able to quantify different levels of infection in
different places and provide a quantitative approach for modeling the
execution of local containment and recovery policies.

We explain an example of the COVID-19 pandemic in Harris County



C. Fan et al.

(Houston area), Texas. Fig. 3a and d show the predicted numbers of
agents in exposed, removed, and symptomatic infectious states by fitting
the model with reported cases. We observed that the pandemic situation
evolved over time. For example, there are multiple peaks of infections in
the study period. This result indicates that our model is distinct from
existing simulation models and could capture realistic patterns of virus
spread over time. Due to the lack of dynamic fined-grained contact
networks, existing simulation models tend to simulate the spread of a
disease on a static contact network in which the connections among the
agents are not time-varying. Such simulations may not be able to ac-
count for the evolving human behaviors and explain the temporal var-
iations and spatial heterogeneity of infections.

Fig. 3b shows an example of the geographical distribution of in-
fections across Harris County. It is evident that the infections are
geographically heterogeneous. This finding explains the contribution of
contact patterns of people to the infection rates of their CBGs. People
who engage in intensive contact activities cause their CBG to be inten-
sively infected. The geographical heterogeneity in number of cases is
further demonstrated in other counties (Fig. 3e). The mean entropy of
the infection distribution grows rapidly from 0.5 in the first week of
March 2020 to around 1.5 in late March 2020, and it remains at a high
level until the end of the study period. This result demonstrates that the
infection patterns are extremely heterogeneous across different areas of
the county and implementing uniform containment or reopening pol-
icies may lead to severe burdens on the economy or infection reduction
efforts. Our model shows an important capability for uncovering the
mechanism of disease spread, which could be used in formulating local
policies.

The results above raise an important need for localized policies, such
as geo-fencing in high-infection CBGs and reopening in low-infection
CBGs. Since policy development is based on the pandemic situation at
the moment, the evaluation of policy effectiveness requires projection to
the future. That is, the containment policies should apply to areas that
show high infection at the current time step and will maintain a high
level of infection in the future in the absence of containment policies. By
doing so, the localized containment policies would have an optimal
outcome in containing the spread of the disease. In response to this
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question, we split the range of infection percentages of the CBGs in a
county into five levels with equal ranges. The example for Harris County
is shown in in Fig. 3c. We find that the numbers of cases across the CBGs
are highly unequally distributed in these five levels. Most of the CBGs
are at the lowest infection level, while a few CBGs are greatly infected.
Then, we examine the level of infections of these CBGs in different
months (Fig. 3f). We observe little variances regarding the infection
levels of the March CBGs in each group. This result demonstrates that
the CBGs maintain their levels of infection during the pandemic,
implying that adopting targeted policies for the CBGs with high infection
levels at this time step is essential to preventing further deterioration of
these CBGs. This finding provides important evidence for developing
localized policies, which will be discussed in the following section.

2.5. Effects of local policies on network structure and daily infections

With the unveiled spatial-temporal patterns of the pandemic, local
policies should account for such heterogeneous impacts. Since the
outbreak began in early March 2020, governments and policymakers
have introduced large-scale restriction measures, such as mobility con-
trol and mask use. Typical measures in mobility control include area
lockdown and stay-at-home orders. The restriction of human contact
activities, however, induced a heavy burden on the local economy,
especially on labor-intensive businesses. To mitigate the economic
pressures, many counties and states lifted their restrictions and allowed
local businesses to reopen. These above-mentioned local policies were
commonly adopted in the majority of counties in the United States. The
local policies and their effects on contact networks lead to multiple
peaks in the pandemic. This situation prompts a question regarding the
extent to which these policies would reduce the pandemic spread.

For these reasons, we project the direct impacts of typical local
policies on human contact networks and estimate the consequences of
contact network changes on infections. Three different scenarios
through the implementations of three local policies are summarized
here:
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e Mobility control (CBG lockdown) scenario: Mobility control measures
including business lockdown and stay-at-home orders with the intent
of limiting the number of contacts a person would have. In particular,
local containment policies are developed to contain the activities of
people from specific areas. Together with the findings from the last
section, we rank the CBGs based on their percentage of infections
from high to low. Then the mobility control measures are simulated
by removing the connections of agents belonging to specific CBGs.
We started containing the activities of agents from CBGs with a high
level of infections, and selected 0 %, 25 %, 50 %, 75 % and 100 % of
CBGs to be contained.

e Mask use scenario: The SARS-CoV-2 infection is transmitted pre-
dominately by respiratory droplets generated when people talk to
each other (Moghadas et al., 2020; Worby & Chang, 2020). The
longer the face-to-face communication, the higher the chance of
infection. Masks are primarily intended to reduce the emission of
virus-laden droplets and reduce inhalation of these droplets by the
wearer (Fischer et al., 2020). Hence, we simulate the mask use sce-
nario by reducing the weights of the links between the agents with
masks. If the weights after the reduction of a specific value become
negative, we consider there is no link that would allow a disease to be
transmitted. As such, with a certain percentage of agents wearing
masks, the contact network would be sparser, implying a lower
probability that a disease can transmit across the networks. It should
be noted that the selection of agents wearing masks is random,
without consideration of their CBGs and infection levels.

Reopening scenario: When reopening policies are enacted, businesses

reopen and population activity increases. Reopening policies allow

people to re-engage in contact activities to the level of normal con-
ditions (Vermund & Pitzer, 2020). Hence, to simulate the scenario of
reopening, we extracted the contact networks in February before the
outbreak of the pandemic and synthesized connections similar to
that of normal conditions for selected agents. The localized reopen-
ing policy is also executed in the CBGs in terms of their levels of
infections. That is, we start reopening CBGs with the lowest level of
infections then selecting CBGs with increasingly higher levels of
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infection based on specified reopening rate (percentage of reopened
CBGs among all CBGs). In this study, the reopening rates are 0 %, 25
%, 50 %, 75 % and 100 %.

Fig. 4 shows the effects of local policies on the structure of contact
networks and the consequences of network changes on disease spread in
Harris County. (See results for other counties in the supplementary in-
formation.) The first panel of the figure shows the effects of mobility
control measures. As shown in Fig. 4d, the total weights of the contact
networks in Harris County decreased 50 % in about one month since
March 10, 2020 and remained stable until the end of the study period.
Mobility control measures implemented on the 13th week since March
10 significantly reduced the total weighting in the network. The
reduction of the weighting is almost proportional to the percentage of
the controlled CBGs in a county. When all CBGs are contained, the total
weights of the network are 0, meaning that no links exist present in the
contact network. This would be an ideal outcome of local containment,
which cuts all possible transmission trajectories of the disease. Hence,
mobility control policies could lead to promising results in terms of
pandemic containment (Fig. 4a). All curves with mobility control pol-
icies indicate a peak of infection one or two weeks after the policy
implementation, as is shown in historical data. That is because the
frequent contact activities enable a denser contact network, while the
total weight of the network does not change dramatically. This conclu-
sion is realistic as it indicates the effect of contact activities in disease
spread. With the increase of controlled mobility in CBGs, the magnitude
of the peak infections decreases. When 75 % or more CBGs are
controlled for mobility, the peak number of infections is at a similar level
as or even a lower level than the previous peak. This result implies that
an aggressive mobility control policy is effective and necessary to
change the trajectory of the pandemic, or at least to prevent the
pandemic from worsening.

The middle panel of Fig. 4 shows the effects and consequences of
mask use on the pandemic spread. When agents are in contact with
others, masks reduce infection to a certain degree. Hence, the use of
masks does not have evident effects (Fig. 4d), as mobility control
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Fig. 4. Effects of localized policies on daily infections and network structure for a variety of policy implementation levels. Each panel represents effectiveness in
terms of relative levels of policy implementation on number of daily infections and the contact network. The impacts of varying policy levels on daily new infections
a—c are shown for different policies: mobility control, mask use, and reopening. The outcomes of varying policy levels on the weighted contact networks d-f are
shown with different policies. This study selects different levels of 0 %, 25 %, 50 %, 75 % and 100 % for policy implementation on the synthetic population.
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policies explicitly cut the connections among the agents and break down
the contact network. Mask use is still essential since it can to some de-
gree moderate the pandemic (Fig. 4b). An increase in the number of
people wearing masks leads to a significant decrease in the daily new
infections and the magnitude of the peak number of infections. In an
extreme case in which 90 % agents wear masks, the pandemic would be
still out-of-control. That is because, there are some agents who contact
others frequently and for a long time and some of them are infectious.
The role of wearing masks is weakened in such cases. Hence, simply
requiring all people to wear masks is insufficient to contain the
epidemic.

The last panel of the figure indicates the outcomes of reopening
policies. Although the stay-at-home order has been lifted since late May
and June 2020, population mobility and contact activities did not revert
to their pre-pandemic patterns. As we simulate the contact activities of
some agents based on their regular activities in normal conditions, the
contact networks get denser and the weights of the network increase
drastically (Fig. 4f). Such change in the network causes a sharp increase
of the daily infections, two or three times the historical reported cases. In
addition, as the hardest-hit CBGs reopen, the growth of daily infections
rises even faster. This result shows a warning that untimely reopening
policies during the pandemic could neutralize all previous control
efforts.

In summary, we have observed diverse effects of different policies
and various levels of implementations of these policies on the structure
of contact networks and the pandemic spread. Purely from a perspective
of pandemic containment, both mobility control and mask use are
necessary and effective in containing the transmission of the disease
through population contact behaviors. During pandemic peak and eco-
nomic recession, however, recovery of economic activities is also of
great concern. Despite these exigencies, we must still take into account
the larger economic loss which may be caused by a possible worsening
pandemic in the future if we simply reopen regions without adequate
containment measures (Fan, 2020).

2.6. Impacts of combined policies on costs and infections

The above analyses and results raise two important questions: what
combination of policies would be more effective in containing the
pandemic; and how we can make a trade-off between costs and in-
fections for policy development. In this section, we present a method to
quantify the costs of combined policies and also project the pandemic
situation after implementing these combined policies.

In our simulation model, we assume the system is consistent,
meaning that no inflow nor outflow of agents occurs during the study
period. The total number of agents remains the same throughout the
study period. In addition, combined policies are consistently imple-
mented during the test period. Thus, the timing of the policy imple-
mentation is not a factor influencing the calculation of the costs and the
projection of infections. Based on these assumptions, we consider the
costs of the policies to be proportional to the size of the population
affected by the policies. Accordingly, we can assign a cost factor to each
group of the population under specific policies to roughly quantify the
costs of the policies. The cost function is formulated as follows:

@ = p,Pop,, + p,Pop, — pzPop, + p,Pop; (€2

where p, p2 and ug are the cost factors for three types of populations
under the policies. The values of these cost factors can be selected based
on an estimation of the costs in specific local regions. Hence, the cost
factors may be variant from region to region. The factors such as hos-
pitalization, hospital capacity, age-dependent severity of illness and
adherence with public health measures could also be incorporated in the
cost factors to enable an accurate estimation. See more details in the
supplementary information. In addition, Pop,, is the percentage of the
population wearing masks, Pop,. is the percentage of the population in
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the CBGs with mobility control, Pop; is the percentage of the population
in reopened CBGs, and Pop; is the number of new infections during the
implementation of the policies. To compute the costs and project the
infections for all combinations of the policies, we conducted a test for
several levels of policy implementation. Specifically, we selected the
values for three policy-related variables (i.e., Popn, Pop,, and Pop,) from
0.1 to 0.9 with increments of 0.1, estimated the infections under the
specified policies, and computed the costs for all combinations of these
variables.

To compare costs of different local policies, we focused mainly on
relative values of costs, which indicate extra savings or expenses of one
policy compared to another. In other words, the cost values are not
required to be precise in this analysis since relative costs are sufficient
for us to identify cost-effective policies. As long as relative costs are
reasonable, the assumption is defensible. Hence, we define y; to be 5, us
to be 30, us to be 5, and y4 to be 1. Taking the example of Harris County,
Texas, it is clear that different combinations of local policies result in
varying levels of infections in the test period (Fig. 5a). Furthermore, by
maintaining the stability of one policy, we can observe the cost and
infection changes brought by the changes in the other two policies. For
example, as we keep 10 % of reopening in CBGs at the lowest level of
infection, a low rate of mobility control and mask use leads to a great
number of infections (Fig. 5f). The number of infections decreases as we
increase mobility control and mask use. Meanwhile, the containment
effect of mobility control is more evident than mask use. Such a pattern
of effects by local policies influences the costs. As shown in Fig. 5b, the
most cost-effective strategy in this case is to implement mobility control
(i.e., geo-fencing) in 10 % of CBGs which are highly infected with an 80
% mask-wearing rate. This result highlights the importance of mask use
to achieve pandemic containment. In another case, we consider the rate
of mobility control to be stable (10 %) and change the rates of CBGs with
reopening and the percentage of people wearing masks. We find that the
reopening of CBGs significantly worsens the epidemic situation, leading
to an explosion of infections (Fig. 5g). Due to the reopening and asso-
ciated contact activities, the actual cost of a high rate of reopening is
quite low, although a large number of people get infected (Fig. 5¢). An
optimal strategy would be increasing the percentage of the population
wearing masks and reopen the majority of the CBGs that are not highly
infected. Finally, we examine the impact of changing the rates of
mobility control and reopening and maintaining 10 % of the population
wearing masks. Fig. 5h shows a clear pattern that the upper left corner is
dark, while the lower right corner is bright, indicating that reopening
establishes a number of connections between people and subsequently
provides a path for disease spread. Due to the effect of reopening on
economic recovery, the cost could be relatively low when 10 % of the
hardest-hit CBGs are under mobility control (Fig. 5d).

Counties have different pandemic situations, which require different
compound policies for containment. In this step, we apply our method to
ten counties to identify their cost-effective combined policies. The
optimal combined policy strategies are plotted in Fig. 5e. The cost-
effective combined policies for the majority of the counties, such as
Dallas County, Texas (FIPS county code 48113, Dallas) and Wayne
County, Michigan (FIPS county code 26163, Detroit) need a low per-
centage of CBG reopening, a high proportion of population wearing
masks, and a large number of CBGs under mobility control. These
counties tend to be among the hardest hit during the test period. Other
counties, such as King County, Washington (53033, Seattle), and Suffolk
County, Massachusetts (25025, Boston), require reopening for fewer
infected CBGs to recover their economy, but severely infected CBGs
should remain under mobility control. These findings indicate that
mobility control is not always a fit-to-all option and not always cost-
effective. Different counties require specific combined policies for con-
taining the pandemic and to efficiently recover economic activities.
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Fig. 5. Outcomes of combined local containment policies and searching for optimal combinations. a, Daily new infections under varying levels of compound policies
(selected examples shown) in Harris County (FIPS county code 48201), Texas. To be visually clear, the plot shows only the outcomes for eight combinations of local
policies. The estimated cost b-d and the total number of infections f-h with varying levels of compound policies. By keeping the reopen rate at 10 %, the cost and rate
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3. Discussion and concluding remarks

We present a data-driven contact network model that incorporates
an epidemic contagion process. Using the synthetic contact network
built based on anonymized data related to the contact activities from
millions of people in ten major infected counties during the COVID-19
pandemic, our model performs well in predicting the spread of the
disease in contact networks. Because our simulation is agent-based, we
can identify the CBGs of the infected agents and assess the spatial-
temporal heterogeneity of the pandemic in a county. This outcome is
of particular importance since it addresses the challenge of geographical
spread of the disease. As the model suggests, cross-CBG contact activities
intensify disease transmission and enable a prediction of the infection
distribution, which is consistent with the results of existing studies at
national (Jia et al., 2020) and international (Wells, 2020) scales. The
findings regarding the spatial-temporal patterns of the pandemic suggest
localized containment strategies and inform us in which fraction of the
population of urban areas the policies should be implemented. Our study
can inform policymakers seeking to adopt area-specific policies instead
of county-wide uniform measures (Chen et al., 2020).

With the prevalence of mobility control, mask use and reopening
policies (Schiinemann et al., 2020), we examined the impacts of these
policies on the structure of contact networks and the consequences of
structural changes on epidemic spread. We find that mobility control is
one of the most effective measures in containing the pandemic, yet
imposes a heavy burden on the economy and causes onerous societal
disruptions. This conundrum raises an urgent need for combined policies
to balance the trade-off between economic aspects and infection cases.
Our results show that the cost-effective strategy varies across different
counties based on the local epidemic situation. Large-scale mobility
control is not fit-to-all. An appropriate composition of the policies may
achieve a relatively low infection level and also a low cost to society in
the case of partial reopening and economic recovery. Our results and
findings could be informative for government agencies for local
containment strategies and for public response planning. For example,
policymakers may increase testing and quarantine in highly infected
CBGs, while lifting control for less infected CBGs.

Our study also confronts some limitations, specifically in the data set
we use. It should be noted that the data does not cover the contact

activities of all populations. For example, the activities from people who
do not opt-in to the data-sharing contract of the data provider cannot be
captured. Contact activities that occurred in non-points of interest may
not be included in building the contact links in the network. These
limitations in the dataset notwithstanding, fine-grained mobile phone
data is widely adopted in modeling epidemics and informing public
health policies (Oliver et al., 2020). In addition, although our model can
accurately predict the pandemic using contact networks, the results do
not imply the exact causal relation between contact activities and
epidemic spread. Further studies are needed in improving the model to
infer the in-depth mechanisms of epidemic spread and to substantiate
effective policies in pandemic containment.

4. Materials and methods
4.1. Data sets

We use geolocation data provided by Veraset, Inc. (Veraset, n.d.), a
data company that collects anonymized location data from numerous
applications and from a large number of devices. Veraset, Inc. collects 2
to 3 billion location event data points every day from >30 M unique
devices across the United States. The anonymized devices opted-in to
provide access to their location data through thousands of apps and
software development kits (SDKs) with Veraset. The data was shared
under a strict contract with Veraset through their collaborative program
in which they provide access to de-identified and privacy-enhanced
mobility data for academic research only. In this study, we filter the
data for ten of the most infected counties from January 1 through June
27, 2020. The data contains anonymized device IDs, timestamps, and
precise geographical coordinates of dwelling points. We legally per-
formed the analysis and were required never to attempt to identify any
individuals.

To identify the contact activities at points of interest, we employed
the geolocations of the POIs from SafeGraph (n.d.), a data company that
has documented the geographical information and business information
about physical places in the United States.

Demographic data at the census block group level are adopted from
the US Census Bureau's American Community Survey (ACS) (United
States Census Bureau, 2019). The population size of each CBG which we
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use to synthesize agents in our model is the most recent one-year esti-
mate (2018).

We calibrated our model using cumulative reported cases from the
data dataset published by the The New York Times (2020). The dataset
documents cumulative COVID-19 infections every day for all the
counties in the United States. We fit out the model on these cumulative
daily data to acquire the values of model parameters.

4.2. Data-driven contact network

The model considers a weighted network & = (7", &, 77;) with
stable agents 7, time-varying links &, and link weights 7. We define
the agents 7" and assigned them to specific CBGs based on the popu-
lation size of each CBG documented in the ACS demographic data. Then
using the dwelling locations of the devices provided in the Veraset data,
we considered two devices to be in contact if they presented in the same
POI at the same time. Here, the dwelling locations of the devices are
defined according to the time the devices spent in a location. We use 5
min as the threshold amount of time to filter out the locations where the
devices might be waiting for traffic lights. The length of the overlap of
their time spent in the POI is denoted as the duration of their contact. As
such, we create an empirical weighted contact network among the de-
vices in the Veraset data. In addition, we estimated the home CBGs of the
devices. The links between any pair of CBGs can be extracted. Based on
the proportion between the population size of empirical data and the
synthetic population, we have a scalar to quantify the difference be-
tween the number of devices and synthetic agents. The scalar is then
applied to determine the number of links that should be synthesized for
each pair of CBGs. The weights of these links follow the distribution of
the weights in the empirical contact network. Next, we assign the links
to the synthetic agents in these two CBGs, where the degree distribution
for the agents is consistent with the degree distribution of the devices in
the same CBGs in the empirical data. We generate and assign links by
repeating the above steps for all pairs of CBGs. This approach allows for
creating synthetic contact networks based on actual mobility data and to
maintain key structural and attribute information of the agents and the
networks.

We further conducted a test using Kullback-Leibler Divergence to
ensure the generated contact networks remained the structural proper-
ties of the corresponding empirical network. The detailed results suggest
that the degree distributions of the generated contact networks are
similar to the degree distributions of the empirical networks (supple-
mentary information). That is, our data-driven contact network is reli-
able for modeling realistic human contact patterns and pandemic
spread.
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