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Abstract—To monitor RF activity and efficiently coordinate
channel access for heterogeneous wireless systems over a shared
channel, it is important to be able to classify observed trans-
missions accurately without decoding them. In this paper, we
propose novel recurrent neural network (RNN) architectures for
signal classification, considering as a use case on interleaving-
based spectrum sharing model for Wi-Fi, LTE-LAA, and 5G-
NRU over the unlicensed 5 GHz bands. Several classifiers are
presented, which take raw in-phase/quadrature (I/Q) samples
as input. First, we examine Simple RNNs, Long Short-term
Memory (LSTM) networks, and Gated Recurrent Units (GRU)
networks for protocol classification. These RNNs are used to
capture the unique features in observed signals. To further
improve the classification accuracy, we extend the RNN designs
into a bidirectional structure, allowing an RNN cell to learn
the temporal dependence in the waveform in both forward and
backward directions. Bidirectionality can effectively increase the
amount of information and the context available to the neural
network. We then extend our designs to multi-layer RNNs, which
allow the classifier to capture temporal correlations at multiple
time scales, hence increasing the network’s computational ca-
pacity. Finally, we propose further enhancements to reduce the
over-fitting problem in RNN training, including regularization,
recurrent weight constraints, and rate halving. Our simulation
results show that the multi-layer and bidirectional designs can
effectively improve the accuracy of the RNN-based RF signal
classifier. Combining the two features, an RNN structure can
achieve more than 92% accuracy in our protocol classification
problem.

Index Terms—Deep learning, signal classification, coexistence,
recurrent neural networks, dynamic spectrum access

I. INTRODUCTION

The demand for wireless capacity continues to outgrow
spectrum availability, especially at low and mid bands (e.g.,
sub-6 GHz). To efficiently utilize the congested spectrum,
various spectrum-sharing architectures have been proposed [1].
For example, in the Citizens Broadband Radio Service
(CBRS), a three-tiered spectrum authorization access system is
employed, which enables commercial users to share spectrum
with incumbent federal and non-federal users [2]. A dynamic
frequency selection approach was adopted for the Unlicensed
National Information Infrastructure (UNII) bands, permitting
LTE license assisted access (LAA) and 5G unlicensed (NR-
U) cellular technologies to share the unlicensed spectrum with
Wi-Fi devices [3], [4] in sub-6 GHz bands. The coexistence of
various waveforms inevitably introduces interference among
users. Interference may originate from legitimate devices or
may come from adversarial systems that aim at jamming or

capturing the channel and preventing legitimate devices from
accessing it. Therefore, it is critical for network coordinators
to be able to classify observed signals for the purpose of ensur-
ing fair access and detecting nonconforming and adversarial
behavior.

Common spectrum sensing approaches are usually based on
energy detection, maximum likelihood estimation, and cyclo-
stationarity [5]. Many of these approaches require the receiver
to know the protocol semantics as well as the transmitter
parameters (e.g., frequency offset). Such methods are often
designed to detect the signal of a particular protocol. However,
in some spectrum sharing scenarios, multiple heterogeneous
protocols may contend for the shared spectrum. For example,
in the unlicensed 5 GHz bands, Wi-Fi, LTE LAA, and 5G NR-
U devices can share the common spectrum [6], [7]. Unless a
given contending device is equipped with multiple radios, it is
difficult to identify the waveforms of different signal protocols.
In addition, the conventional methods require listening for
a certain period when receiving the waveforms to estimate
the periodicity and calculate the correlation with the known
sequences (e.g., the preamble). Nonetheless, such listening
time can be insufficient for the fast adaption between different
protocols, especially in the dynamically shared bands. To ad-
dress the above limitations, we propose a deep neural network
(DNN) based framework for accurate and fast signal sensing
and classification in multi-protocol coexistence scenarios.

If the modulation and coding scheme (MCS) of the captured
signal is unknown, then a protocol classifier would have to
rely on down-converted baseband signals to be used as input.
In recent years, different neural networks have been designed
to classify RF signals based on baseband in-phase/quadrature
(1/Q) samples. In [8], [9], the authors used the moving kernel
of a convolutional neural network (CNN) to capture features
hidden in a segmented sequence of I/Q samples. However,
CNNs are not particularly effective at capturing temporal
dependencies. In contrast, a recurrent neural network (RNN)
can capture the memory (time dependency) in the data, which
explains its widespread use in forecasting problems, such as
language modeling, speech recognition, and trajectory predic-
tion of moving objects. The authors in [10] applied a Long
Short-term Memory (LSTM) network, a type of RNNs, for
automatic modulation classification. Their proposed design
outperforms a CNN classifier at high SNRs. In [11], the
authors used both CNN and LSTM networks to generate



adversarial RF waveforms that successfully mislead legitimate
classifiers. Most existing DNN-based RF classification efforts
focus on modulation scheme identification. However, the three
examined protocols have several modulation schemes in com-
mon, and they may operate over the same bandwidth. Hence,
modulation classification techniques cannot differentiate be-
tween the waveforms of such protocols, which calls for new
machine learning-based classifiers that capture other protocol-
related embedded features in the observed transmissions.

A traditional protocol detection approach relies on the time-
correlated view of the received sequences, which is similar to
an RNN that can exhibit temporal dynamic behavior over the
input sequence. Therefore, we investigate the application of
RNNSs for heterogeneous protocol classification over a shared
spectrum, focusing on Wi-Fi, LTE-LAA, and 5G NR-U in
the unlicensed 5 GHz bands as an example. We consider an
interleaving spectrum sharing approach, where any but only
one of the three coexisting technologies can be active at a time.
Starting first with a basic two-layer RNN model, we show that
this model can achieve around 71% classification accuracy,
on average. To improve the classification accuracy, we then
consider more advanced RNN models, involving bidirectional
and multi-layer (hierarchical) gated structures. Unlike basic
RNN models, these advanced networks have gates that balance
the impact of the most recent input and the trained state
during the recurrence. In addition, our bidirectional RNN
structures allow information from the past (backward) and
future (forward) states to be simultaneously used during the
training. Such bidirectional design helps the RNN detect
the backward dependency that the forward structure cannot
capture. Our results show that the bidirectional design can
increase not only the accuracy but also the precision and recall.
In our hierarchical RNN designs, the classification outcomes
of a lower RNN layer are used as input to train the next upper
layer, which further increases the computational capability of
the RNN-based classifier.

On the other hand, the multi-layer and bidirectional struc-
tures increase the neural network’s complexity and give rise to
possible model over-fitting. To solve these problems, we pro-
pose further enhancements, including regularization, dropout,
recurrent weight constraints, and learning rate halving. Matlab-
based simulations of the three coexisting protocols over the 5
GHz band were conducted for various proposed designs. They
show that the average classification accuracy as a result of the
novel RNN structures exceeds 92%.

II. BAsiCc RNN MODELS
A. Simple RNN

An RNN is a type of neural networks that is designed for
sequential processing. At each time step j, j = 1,2,..., a
basic RNN cell takes sequence x; as input and updates the
corresponding learnable hypothesis parameter 6. In contrast
to CNNs, RNNs can capture temporal dependencies over the
entire input. A typical RNN model can be unfolded over j,
where the current hidden state h; is updated based on the
previous state h;_; and the external input z;. Formally, h; =
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Fig. 1. Cell architecture for LSTM and GRU networks.

f(hj—1,2;;6), where f is a mapping function. For a finite
number of time steps, state h; can include the previous state
input in a recursive manner:

hj = f(hj1,250) = f(f(hj22j1),250) = (D)

B. LSTM Network

An LSTM network builds on the simple RNN architecture
but adjusts the updating procedure of the hidden state. We
define the cell as the unit for state update, as shown in
Figure 1(a). At each 7, the cell output at the previous time step,
hj_1, is combined with x; to form the input to the current cell.
The state of the cell is C;, which records the system memory
and gets updated at each j. In contrast to simple RNNs, an
LSTM network uses several gates, including an input gate (),
an output gate (o;), and a forget gate (p;). These gates are
defined in Equation (2) below. They are used to control the
effect of the input and output information through a sigmoid
(o) function:

’ij = O'(Wil‘j + Uihjfl + bl)
0; = O‘(WO.%]' + Uoh]’,1 + bo) 2)
pj = o(Wpxj + Uphj1 +bp).

In (2), W;, W, and W), are weights assigned to the three gates;
Ui, U,, and U, are the corresponding recurrent weights; and
bi, by, and b, are the bias values of the three gates. Similar
to the gate function, z; gnd hj_1 are combined to update the
intermediate cell state C;. Instead of a sigmoid, the inputs
are processed by a hyperbolic tangent function (tanh) that
generates an output value between —1 and 1:

Cj = tanh(Wewj + Uchj1 + be). 3)

After knowing C;_; and @-, the cell state at time j is updated
by the forget gate and the input gate as follows:

Cj=pj*Cj_1+i;%C;. 4)

The output of the cell h;, which will be used at time j + 1, is
obtained from by the element-wise product of the output gate
and the hyperbolic tangent functioned C}:

h,j =05 * tanh(C’j). (5)

C. GRU Model

The main difference between the GRU model and the LSTM
network is that GRU models use the same unit to control the
input gate and the forget gate factor, as shown in Figure 1(b).
Therefore, a GRU has only two gates: a reset gate r; and an



update gate z;. At each step j, these gates are calculated as
follows:

Ty =0 (W»,-ZL'j + Urhj,1 + br)
zj = o(Wexj + Uzhj1 +02).

Similar to LSTM structure, W,. and W, are gate weights; U,
and U, are recurrent weights; and b, and b, are bias vectors.
r; determines the combination rate of the current input and
the previous state’s output, while z; defines the amount of the
previous state’s output that will be used in the current step.
As depicted in Figure 1(b), the intermediate hidden state h;
is determined by x; and h;_;, where h;_ is processed by r;
before tanh. Thus, Ej can be expressed as:

(6)

hj = tanh(Wia; + Un(rj * hj_1) + bp). Q)

A GRU does not have the extra output gate to apply the
nonlinearity as in (5). Hence the output of the cell is the direct
gated combination of h;_; and h;:

hj:(lfzj)*hj,1+2’j *?Lj. (8)

III. MULTI-LAYER AND BIDIRECTIONAL RNNS

Although the basic RNN structures described in the previous
section have the unique ability to capture correlations in the
signal, capturing long-term dependencies is still challenging
due to the gradient vanishing and exploding problems. In
addition, long-term correlations tend to be subdued by small
perturbations caused by short-term variations in the input. In
this paper, we explore the use of multi-layer and bidirectional
RNN-based to increase the computational capacity of the
classifier. We also propose further enhancements to regularize
and constrain the recurrent structure so as to balance the
over-fitting problem raised by the higher model complexity.
Combining the above three aspects, we apply the designs to
our protocol classification problem.

A. Multi-layer RNN Structure

We consider a stacked RNN architecture in which the output
of a RNN layer is used as input to the next-upper RNN
layer, as shown in Fig. 2(a). The layer can be any RNN
structure, such as a standard RNN (i.e., the SimpleRNN in
TensorFlow), a LSTM [10], or a GRU. During training, the
classification outcomes of a lower layer are used as inputs
to train the next upper layer. Thus, the output at the final
layer (i.e., classification layer) is expected to achieve higher
classification accuracy than any lower-layer network. This
stacked architecture captures temporal correlations at different
time scales without using too many input samples. It allows
the lower layer to transform the raw input into a more suitable
format (e.g., remove the unrelated samples and disturbances).

An RNN cell can be regarded as a hypothesis that updates
according to (1). The output g; is generated by the ¢(h;),
where ¢ is the activation function. After that, the loss function
L can be calculated based on %; and desired prediction
y;. To minimize this loss function, we train the model and
update 6 at each iteration by the back-propagated gradient:
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Fig. 2. Computational graph for recurrent network with multi-layer and
bidirectional structures.

g = 1Vy ijl L(¢(f(hj—1,2;;6)),y;). When it comes to
the multi-layer RNN structure, the output of the hidden layer in
layer [ at time j can be computed from the hidden layer output
of both lower layer at current time j (h;—1,;) and the same
layer at previous time (h; ;_1). Combined with the hypothesis
parameter 6, the hidden layer output can be formulated as:

hji= f(hj-11,hj1-1;0). 9)

The unfolding of RNN involves two-dimensional calculation
in layer and time, which leads to a different information flow
than a regular RNN structure. The gradient propagated through
layer and time is used to calculate the weights of the input
and previous hidden state. A typical gradient of the weight
matrix from hidden unit gy can be computed by its Jacobian

. Ohy

matrix =%+ and the partial derivative vector of the loss g, ;:
go = age gh;,- As aresult, the singular values of the Jacobian
matrix decide the magnitude of gradients. A small value will
attenuate the gradient and result in a vanishing problem. In
contrast, a large value results in gradient explosion. For a deep
RNN structure, the gradient of the hidden layer can be affected
by the previous layer and time. Therefore, the hidden unit
gradient can be expanded as:

Ohjt1,
Ohjy Ihsv
To reduce the impact of extreme gradient updates, we con-
sider the adaptive moment optimizer, also known as ADAM.
In this optimization algorithm, the DNN first estimates the
first- and second-order moment to correct the bias. The step
gradient is the same as in stochastic gradient descent (SGD),
but two more moment variables are added: s and gq. The
estimated first moment is updated as s = pi1s+ (1 — p1)g.
Similarly, the estimated second moment can be updated as
g = p2q+ (1 —p2)g * g, where * operator is the element-
wise product of a matrix. To correct the initialization bias, we
introduce the correction terms of the first and second moments
which are given by: § = 1_5p1, and § = 1_'1p2, where p;
and ps is the exponential decay rate and can be decided in
the initial steps. We set p; = 0.9 and py = 0.999 as the
default values. Then, the parameter update can be decided by

the moment estimation: Af = —€ T where 6 = 0.00001

_ Ohjin
i 8hj,l

ghj>l+1 + (10)




is a small constant for stabilization, and € is the step size (set
to 0.001). The momentum is incorporated into the update for
60, and helps adapt the updating step according to the gradient.
Besides, this adaption also makes ADAM not too sensitive to
the initial learning rate, so it is more robust to the choice of
hyperparameters than SGD.

B. Bidirectional RNN Structure

Bidirectional RNNs connect two hidden layers of opposite
directions to the same output. With this form of generative
deep learning, the output layer receives information from the
past (backward) and future (forward) states simultaneously.
This leads to improved accuracy because classification is now
based on merging the results from both directions, i.e., chrono-
logical and inverse chronological orders. Such bidirectionality
makes the network non-causal, whereby future information can
influence the current decision. However, this non-causality is
applied only during the training of the RNN network. Once
the network has been trained, real-time classification (testing
part) is performed using only currently received samples.

In our case, outputs are possible signal protocols. The loss
function is obtained from the output of the hidden layer and
the actual value of y. Therefore, the output o can be regarded
as the unnormalized log probabilities of each possible value
of the labels. The total loss for a given sequence x and the
corresponding label y can be represented as the sum of losses
over all time steps:

J

L = L (x1,..,5,91,-,Y) = ZLJ
1
J

= Zlog Pmodet(Yj|T1, -y z5) (1)
1

where ppoder(Yj|21, ..., 2;) is the probability loss calculated
from y; and model’s input zi,...,x;. However, we still
consider a causal structure, where at the time j, only the
samples prior to j make contributions to f. Because the
signal waveform contains correlations from the sequences
after the current input z;, we include another intermediate
layer beginning from the end of the sequence, as drawn in
Figure 2(b). In this figure, h; is the state of the sub-recurrent
layer that moves forward and b; is the state of the sub-recurrent
layer that moves backward. Accordingly, the output unit can
benefit from both directions and compute the outcome based
on both the past and the future, i.e.,

0j = F(V\"h;, v{"b)) (12)

where f function is the mapping function that combines the
output sequences. In our proposed structure, the outputs for
both the forward and backward layers are calculated in a
recurrent way. Unlike (11), the backward weight matrix Vj(b)
is updated by the input after time j, thus including the impact
of the future inputs.

Note that Vj(h)hj and V-(b)bj are only used to train f with

J
parameter . When the training is finished, the predicted label

can be expressed as: y; = ¢(f(x;;0)). For the predicted
label is only regarded to the current input x;, the testing
system is still causal. When applying a bidirectional RNN
network model for protocol classification in shared-spectrum
environments, the states of various cells need to be updated in
both directions simultaneously to ensure that each unit receives
updates from the whole sequence.

C. Further Enhancements

Our proposed multi-layer and bidirectional RNN structures
help capture more features in input sequences but they also
increase the complexity of the classifier. They may lead to a
over-fitting situation during the training process. Additionally,
RNNSs in general may face a gradient exploding problem due
to the reuse of sequential states. As shown in (2) and (6),
the recurrent weight matrix U7 at step j is updated using
nonlinear activation functions, which could result in weights
and gradients exploding when j is large. We propose several
further enhancements to constrain these side effects:

1) Regularization and Dropout: Regularization can be used
to tune the weight matrix by adding additional penalty terms
into the loss function. The added terms control excessively
fluctuating function values and associate with the weight co-
efficients such that the coefficients do not take extreme values.
Dropout refers to randomly deleting connections between
computational units (neurons) during the training process of a
DNN. It helps reduce the reliance on specific units and dilution
of the weights. Using both approaches, RNN can reduce the
generalization error between the evaluation set and the training
set.

2) Recurrent Weight Constraints: Recurrent weight con-
straints check the norm of the recurrent weights and rescale
them below a pre-defined threshold. Weight constraints are
per-variable projection functions, applied to the target weight
matrix after each gradient update during the training. Such
constraints force each hidden state to have a norm that is less
than or equal some desired value.

3) Learning Rate Halving: The learning rate is bounded
by the step size parameter e¢. This setting is suitable at the
beginning of the training, but ¢ may be too large to detect
small changes well into the training process. Learning rate
halving can solve this problem, where we associate ¢ with the
epoch number. During the initial training epochs, the weight
matrix differs a lot from the desired one, allowing the back-
propagated gradients to be more significant. When updating
the weights, the weight matrix gets closer to the near-optimal
one, and the corresponding gradients will be limited to a
smaller value. This way, our RNN models can still update from
the small gradients even after many iterations in the training
process.

IV. PERFORMANCE EVALUATION

A. Data Generation

We use Matlab Communication and 5G Toolboxes to gen-
erate waveforms of LTE, Wi-Fi, and 5G NR protocols. A
set of signal features supported by Matlab, including channel



bandwidth, modulation schemes, I/Q imbalance, DC offset,
and subcarrier spacing are varied. Through these features,
we can generate diverse waveforms under different parameter
settings. Of the various possible features, we consider the
baseband I/Q samples at the receiver (with added noise) as
input to the classifier. I/Q samples can be easily obtained
before decoding the signal, and they provide a rich represen-
tation of the waveform. By applying a sliding window, these
samples are divided into multiple sequences, each consisting
of 512 I/Q pairs. These sequences are used as datasets to
train and test various classifiers. Approximately 15,000 of such
segments were obtained, split into 70% for training and 30%
for testing. In this paper, we assume all protocols operate
on the same center frequency and have a channel bandwidth
of 20 MHz. This classification problem is more challenging
because the frequency information or spectrogram can only
provide a limited contribution to distinguish signal types. In
addition, we assume an AWGN channel for all transmission.
The Wi-Fi waveform is transmitted by generating baseband
samples of 802.11ac (VHT) with BPSK modulation and 1/2
code rate. LTE waveforms are generated assuming downlink
reference measurement channel with R.9. This waveform uses
64 QAM modulation. We also generate 5G waveforms using
5G downlink fixed reference channel under QPSK modulation
and a code rate of 1/3, with a subcarrier spacing of 15 kHz.

B. Impact of Multi-layer Structure

Results in [9] indicate that the DNN classifier has the
highest accuracy when SNR is around 15 dB; therefore, we
conduct simulations under this SNR and test the multi-layer
RNN approach for up to 6 recursive layers. Note that we
control the gain of all types of signals to be 15 dB, which
means all the received signals in the database have the same
SNR. We first show the impact of using different optimizers.
The result are summarized in Figure 3, where we apply
the multi-layer LSTM networks with different layers as an
example. An SGD optimizer exhibits a better performance in
a shallower network. It outperforms the ADAM optimizer with
€ = 0.01 when the number of layer is less than three. However,
as more layers are integrated, the SGD’s accuracy drops
monotonously. In contrast, the ADAM optimizer with € = 0.01
has low accuracy in shallow architecture, but its performance
improves when the network structure becomes deeper. The
accuracy stabilizes at 64% with some fluctuations when the
layer number is greater than three. An ADAM optimizer with
€ = 0.001 exhibits the best classification performance among
these three optimizers. For instance, with three RNN layers,
the classification accuracy enhances from 52.7% under SGD
to 90.8% under ADAM . This is because an ADAM optimizer
can individually adapt the learning step size for different 6 by
estimating of the first and second moments of the gradients.
ADAM with € = 0.001 suffers slightly when the number of
layer increases from three to six, but still outperforms other
optimizers. As shown in Figure 3, The ADAM optimizer with
€ = 0.001 has a similar accuracy with € = 0.01 when the layer
number is six. These results also indicate that even with the

I sGD
I ADAM € = 0.01
[JADAM ¢ = 0.001
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Fig. 3. Accuracy of multi-layer LSTM networks using different gradient
optimizers.
TABLE I
COMPARISON OF RNN MODELS WITH VARIOUS NUMBER OF LAYERS.

Number of RNN Layers

Model T 2 3 3 5 6
SImplcRNN_ 51.8%  708% 703% 13.6% 109% 634%
ISTM  84.6% 01.6% 908% 88.7% 83.6% 615%
GRU 855% 899% 904% 838% 664% 662%
TABLE Il

PRECISION AND RECALL FOR CLASSIFIED PROTOCOLS USING DIFFERENT
RNNs UNDER SNR=20 DECIBEL.

Metrics | Protocol [ GRU Bi-GRU LSTM  Bi-LSTM
Wi-Fi 82.00% 91.49% 83.34% 90.63%
Recall LTE 81.73% 90.19% 81.32% 89.34%
5G NR 86.46% 85.58% 85.60% 91.09%
Wi-Fi 81.99% 86.00% 71.36% 88.00%
Precision LTE 85.00% 91.99% 90.91% 93.09%
5G NR 83.01% 89.00% 88.18% 89.96%

same DNN structure, different optimizer settings still have an
impact on the performance of the neural networks.

Because the ADAM optimizer with € = 0.001 outperforms
other optimizers, we apply it to the rest of RNN structures and
show the results in Table I. It can be observed that the accuracy
increases with the layer numbers for the first several layers
but decreases when more layers are added. Among all these
RNN-based classifiers, the LSTM network can achieve the
highest accuracy of 91.6% when there are two LSTM layers
stacked together. However, suffering from the layer increasing,
the accuracy of the LSTM network drops to 83.6% when the
layer number is five and to 67.5% when the layer number is
six. This can be explained by the fact that the backpropagation
of the gradient in deeper RNNs suffers more from exploding
and vanishing problems than shallow RNNs. The redundant
layers can also easily lead the model to overfit the training
data and to perform worse on the testing part. We also tested
different combinations of different types of RNN, and the
results show similar trends (e.g., the accuracy increases for
the first several layers and then decreases). These findings
indicate that stacking RNN layers can improve the classifier
performance but with certain limitations of the layer number.

C. Impact of Bidirectional Structure

We conduct simulations using the same dataset as before
but with SNR = 20 dB. To calculate the recall and precision
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Fig. 4. Confusion matrix comparison between the single-layer unidirectional
LSTM network and the multi-layer bidirectional LSTM network without
recurrent-weight constraints.

for each label, we first define the true positive (TP) as the
correct classification of the signal into such a label and the
true negative (TN) as classifying other signal types into other
labels. Accordingly, we also define two kinds of errors for
the classifier: The false positive (FP) when misclassifying
other types of signals into this label; the false negative (FN)
when misclassifying this signal into other labels. Therefore,
the precision can be written as TPTEFP and the recall can be
presented as TP +FN We then test the recall and precision of
the proposed bidirectional structure in the LSTM and GRU as
summarized in Table II. As shown above, the bidirectional
architecture successfully improves the classification perfor-
mance for both RNNs. The average recall improvement is
5.69% for GRU and 6.94% for LSTM, which indicates the
bidirectional structure is more sensitive to detect FN samples.
Meanwhile, the average precision improves 5.66% for GRU
and 6.87% for LSTM. Thus, it shows that the enhancement of
recall does not sacrifice precision performance. In other words,
the bidirectional structure can reduce two types of errors (FP
and FN) simultaneously. This improvement is because the
proposed structure can benefit from the two-direction layers
and help the RNN include the waveform dependencies from
both sides to improve the classification performance. As a
result, we consider combining the multi-layer structure with
the bidirectional design.

The confusion matrix for the proposed combined neural
network is depicted in Figure 4, where we use a three-layer
bidirectional LSTM network as the example. As shown in Fig-
ure 4(a), the average accuracy for a single-layer unidirectional
LSTM network is about 85%. It can detect the Wi-Fi signals
more accurately compared with LTE and 5G NR signals. This
is because the initial 5G NR launches depend on existing LTE
infrastructure in non-standalone (NSA) mode and is similar
to LTE protocol in 3GPP standardization. By introducing the
proposed structure, the average accuracy can achieve 92%, as
presented in Figure 4(b). Though LTE and 5G NR signals
show lower accuracy compared with the Wi-Fi signals, the
overall misdetections distribute more evenly in the proposed
model. As a result, the proposed multi-layer and bidirectional
LSTM network have a better classification performance than
the basic LSTM network.

V. CONCLUSION

In this paper, we developed RNN-based deep neural net-
works to detect coexisting signal types by I/Q samples without
having to decode them. With segmented sample sequences,
different types of recurrent neural networks were trained. The
classification result shows competitive accuracies by LSTM
and GRU networks. We then applied the multi-layer and
bidirectional structure to help capture long-term dependencies
in the signals. However, the increasing complexity of the RNN
can result in the over-fitting problem, so we proposed further
improvements to compensate for it, including regularization
and dropout, recurrent weight constraints, and learning rate
halving. The classification accuracy gets further enhanced by
the proposed structure. These results show that the proposed
deep neural architecture can achieve accurate results in the
signal protocol classification problems.
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