
Machine Learning Based Protocol Classification in

Unlicensed 5 GHz Bands

Wenhan Zhang and Marwan Krunz

Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ

{wenhanzhang, krunz}@email.arizona.edu

AbstractÐTo monitor RF activity and efficiently coordinate
channel access for heterogeneous wireless systems over a shared
channel, it is important to be able to classify observed trans-
missions accurately without decoding them. In this paper, we
propose novel recurrent neural network (RNN) architectures for
signal classification, considering as a use case on interleaving-
based spectrum sharing model for Wi-Fi, LTE-LAA, and 5G-
NRU over the unlicensed 5 GHz bands. Several classifiers are
presented, which take raw in-phase/quadrature (I/Q) samples
as input. First, we examine Simple RNNs, Long Short-term
Memory (LSTM) networks, and Gated Recurrent Units (GRU)
networks for protocol classification. These RNNs are used to
capture the unique features in observed signals. To further
improve the classification accuracy, we extend the RNN designs
into a bidirectional structure, allowing an RNN cell to learn
the temporal dependence in the waveform in both forward and
backward directions. Bidirectionality can effectively increase the
amount of information and the context available to the neural
network. We then extend our designs to multi-layer RNNs, which
allow the classifier to capture temporal correlations at multiple
time scales, hence increasing the network’s computational ca-
pacity. Finally, we propose further enhancements to reduce the
over-fitting problem in RNN training, including regularization,
recurrent weight constraints, and rate halving. Our simulation
results show that the multi-layer and bidirectional designs can
effectively improve the accuracy of the RNN-based RF signal
classifier. Combining the two features, an RNN structure can
achieve more than 92% accuracy in our protocol classification
problem.

Index TermsÐDeep learning, signal classification, coexistence,
recurrent neural networks, dynamic spectrum access

I. INTRODUCTION

The demand for wireless capacity continues to outgrow

spectrum availability, especially at low and mid bands (e.g.,

sub-6 GHz). To efficiently utilize the congested spectrum,

various spectrum-sharing architectures have been proposed [1].

For example, in the Citizens Broadband Radio Service

(CBRS), a three-tiered spectrum authorization access system is

employed, which enables commercial users to share spectrum

with incumbent federal and non-federal users [2]. A dynamic

frequency selection approach was adopted for the Unlicensed

National Information Infrastructure (UNII) bands, permitting

LTE license assisted access (LAA) and 5G unlicensed (NR-

U) cellular technologies to share the unlicensed spectrum with

Wi-Fi devices [3], [4] in sub-6 GHz bands. The coexistence of

various waveforms inevitably introduces interference among

users. Interference may originate from legitimate devices or

may come from adversarial systems that aim at jamming or

capturing the channel and preventing legitimate devices from

accessing it. Therefore, it is critical for network coordinators

to be able to classify observed signals for the purpose of ensur-

ing fair access and detecting nonconforming and adversarial

behavior.

Common spectrum sensing approaches are usually based on

energy detection, maximum likelihood estimation, and cyclo-

stationarity [5]. Many of these approaches require the receiver

to know the protocol semantics as well as the transmitter

parameters (e.g., frequency offset). Such methods are often

designed to detect the signal of a particular protocol. However,

in some spectrum sharing scenarios, multiple heterogeneous

protocols may contend for the shared spectrum. For example,

in the unlicensed 5 GHz bands, Wi-Fi, LTE LAA, and 5G NR-

U devices can share the common spectrum [6], [7]. Unless a

given contending device is equipped with multiple radios, it is

difficult to identify the waveforms of different signal protocols.

In addition, the conventional methods require listening for

a certain period when receiving the waveforms to estimate

the periodicity and calculate the correlation with the known

sequences (e.g., the preamble). Nonetheless, such listening

time can be insufficient for the fast adaption between different

protocols, especially in the dynamically shared bands. To ad-

dress the above limitations, we propose a deep neural network

(DNN) based framework for accurate and fast signal sensing

and classification in multi-protocol coexistence scenarios.

If the modulation and coding scheme (MCS) of the captured

signal is unknown, then a protocol classifier would have to

rely on down-converted baseband signals to be used as input.

In recent years, different neural networks have been designed

to classify RF signals based on baseband in-phase/quadrature

(I/Q) samples. In [8], [9], the authors used the moving kernel

of a convolutional neural network (CNN) to capture features

hidden in a segmented sequence of I/Q samples. However,

CNNs are not particularly effective at capturing temporal

dependencies. In contrast, a recurrent neural network (RNN)

can capture the memory (time dependency) in the data, which

explains its widespread use in forecasting problems, such as

language modeling, speech recognition, and trajectory predic-

tion of moving objects. The authors in [10] applied a Long

Short-term Memory (LSTM) network, a type of RNNs, for

automatic modulation classification. Their proposed design

outperforms a CNN classifier at high SNRs. In [11], the

authors used both CNN and LSTM networks to generate

is a small constant for stabilization, and ϵ is the step size (set

to 0.001). The momentum is incorporated into the update for

θ, and helps adapt the updating step according to the gradient.

Besides, this adaption also makes ADAM not too sensitive to

the initial learning rate, so it is more robust to the choice of

hyperparameters than SGD.

B. Bidirectional RNN Structure

Bidirectional RNNs connect two hidden layers of opposite

directions to the same output. With this form of generative

deep learning, the output layer receives information from the

past (backward) and future (forward) states simultaneously.

This leads to improved accuracy because classification is now

based on merging the results from both directions, i.e., chrono-

logical and inverse chronological orders. Such bidirectionality

makes the network non-causal, whereby future information can

influence the current decision. However, this non-causality is

applied only during the training of the RNN network. Once

the network has been trained, real-time classification (testing

part) is performed using only currently received samples.

In our case, outputs are possible signal protocols. The loss

function is obtained from the output of the hidden layer and

the actual value of y. Therefore, the output o can be regarded

as the unnormalized log probabilities of each possible value

of the labels. The total loss for a given sequence x and the

corresponding label y can be represented as the sum of losses

over all time steps:

L = L (x1, ..., xJ , y1, ..., yJ) =

J∑

1

Lj

=

J∑

1

log pmodel(yj |x1, ..., xj) (11)

where pmodel(yj |x1, ..., xj) is the probability loss calculated

from yj and model’s input x1, ..., xj . However, we still

consider a causal structure, where at the time j, only the

samples prior to j make contributions to f . Because the

signal waveform contains correlations from the sequences

after the current input xj , we include another intermediate

layer beginning from the end of the sequence, as drawn in

Figure 2(b). In this figure, hj is the state of the sub-recurrent

layer that moves forward and bj is the state of the sub-recurrent

layer that moves backward. Accordingly, the output unit can

benefit from both directions and compute the outcome based

on both the past and the future, i.e.,

oj = f(V
(h)
j hj , V

(b)
j bj) (12)

where f function is the mapping function that combines the

output sequences. In our proposed structure, the outputs for

both the forward and backward layers are calculated in a

recurrent way. Unlike (11), the backward weight matrix V
(b)
j

is updated by the input after time j, thus including the impact

of the future inputs.

Note that V
(h)
j hj and V

(b)
j bj are only used to train f with

parameter θ. When the training is finished, the predicted label

can be expressed as: ȳj = ϕ(f(xj ; θ)). For the predicted

label is only regarded to the current input xj , the testing

system is still causal. When applying a bidirectional RNN

network model for protocol classification in shared-spectrum

environments, the states of various cells need to be updated in

both directions simultaneously to ensure that each unit receives

updates from the whole sequence.

C. Further Enhancements

Our proposed multi-layer and bidirectional RNN structures

help capture more features in input sequences but they also

increase the complexity of the classifier. They may lead to a

over-fitting situation during the training process. Additionally,

RNNs in general may face a gradient exploding problem due

to the reuse of sequential states. As shown in (2) and (6),

the recurrent weight matrix U j at step j is updated using

nonlinear activation functions, which could result in weights

and gradients exploding when j is large. We propose several

further enhancements to constrain these side effects:

1) Regularization and Dropout: Regularization can be used

to tune the weight matrix by adding additional penalty terms

into the loss function. The added terms control excessively

fluctuating function values and associate with the weight co-

efficients such that the coefficients do not take extreme values.

Dropout refers to randomly deleting connections between

computational units (neurons) during the training process of a

DNN. It helps reduce the reliance on specific units and dilution

of the weights. Using both approaches, RNN can reduce the

generalization error between the evaluation set and the training

set.

2) Recurrent Weight Constraints: Recurrent weight con-

straints check the norm of the recurrent weights and rescale

them below a pre-defined threshold. Weight constraints are

per-variable projection functions, applied to the target weight

matrix after each gradient update during the training. Such

constraints force each hidden state to have a norm that is less

than or equal some desired value.

3) Learning Rate Halving: The learning rate is bounded

by the step size parameter ϵ. This setting is suitable at the

beginning of the training, but ϵ may be too large to detect

small changes well into the training process. Learning rate

halving can solve this problem, where we associate ϵ with the

epoch number. During the initial training epochs, the weight

matrix differs a lot from the desired one, allowing the back-

propagated gradients to be more significant. When updating

the weights, the weight matrix gets closer to the near-optimal

one, and the corresponding gradients will be limited to a

smaller value. This way, our RNN models can still update from

the small gradients even after many iterations in the training

process.

IV. PERFORMANCE EVALUATION

A. Data Generation

We use Matlab Communication and 5G Toolboxes to gen-

erate waveforms of LTE, Wi-Fi, and 5G NR protocols. A

set of signal features supported by Matlab, including channel

bandwidth, modulation schemes, I/Q imbalance, DC offset,

and subcarrier spacing are varied. Through these features,

we can generate diverse waveforms under different parameter

settings. Of the various possible features, we consider the

baseband I/Q samples at the receiver (with added noise) as

input to the classifier. I/Q samples can be easily obtained

before decoding the signal, and they provide a rich represen-

tation of the waveform. By applying a sliding window, these

samples are divided into multiple sequences, each consisting

of 512 I/Q pairs. These sequences are used as datasets to

train and test various classifiers. Approximately 15,000 of such

segments were obtained, split into 70% for training and 30%

for testing. In this paper, we assume all protocols operate

on the same center frequency and have a channel bandwidth

of 20 MHz. This classification problem is more challenging

because the frequency information or spectrogram can only

provide a limited contribution to distinguish signal types. In

addition, we assume an AWGN channel for all transmission.

The Wi-Fi waveform is transmitted by generating baseband

samples of 802.11ac (VHT) with BPSK modulation and 1/2
code rate. LTE waveforms are generated assuming downlink

reference measurement channel with R.9. This waveform uses

64 QAM modulation. We also generate 5G waveforms using

5G downlink fixed reference channel under QPSK modulation

and a code rate of 1/3, with a subcarrier spacing of 15 kHz.

B. Impact of Multi-layer Structure

Results in [9] indicate that the DNN classifier has the

highest accuracy when SNR is around 15 dB; therefore, we

conduct simulations under this SNR and test the multi-layer

RNN approach for up to 6 recursive layers. Note that we

control the gain of all types of signals to be 15 dB, which

means all the received signals in the database have the same

SNR. We first show the impact of using different optimizers.

The result are summarized in Figure 3, where we apply

the multi-layer LSTM networks with different layers as an

example. An SGD optimizer exhibits a better performance in

a shallower network. It outperforms the ADAM optimizer with

ϵ = 0.01 when the number of layer is less than three. However,

as more layers are integrated, the SGD’s accuracy drops

monotonously. In contrast, the ADAM optimizer with ϵ = 0.01

has low accuracy in shallow architecture, but its performance

improves when the network structure becomes deeper. The

accuracy stabilizes at 64% with some fluctuations when the

layer number is greater than three. An ADAM optimizer with

ϵ = 0.001 exhibits the best classification performance among

these three optimizers. For instance, with three RNN layers,

the classification accuracy enhances from 52.7% under SGD

to 90.8% under ADAM . This is because an ADAM optimizer

can individually adapt the learning step size for different θ by

estimating of the first and second moments of the gradients.

ADAM with ϵ = 0.001 suffers slightly when the number of

layer increases from three to six, but still outperforms other

optimizers. As shown in Figure 3, The ADAM optimizer with

ϵ = 0.001 has a similar accuracy with ϵ = 0.01 when the layer

number is six. These results also indicate that even with the

1 2 3 4 5 6

Number of Layers

0

20

40

60

80

100

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

SGD

ADAM = 0.01

ADAM = 0.001

Fig. 3. Accuracy of multi-layer LSTM networks using different gradient
optimizers.

TABLE I
COMPARISON OF RNN MODELS WITH VARIOUS NUMBER OF LAYERS.

Model
Number of RNN Layers

1 2 3 4 5 6

SimpleRNN 51.8% 70.8% 70.3% 73.6% 70.9% 68.4%

LSTM 84.6% 91.6% 90.8% 88.7% 83.6% 67.5%

GRU 85.5% 89.9% 90.4% 83.8% 66.4% 66.2%

TABLE II
PRECISION AND RECALL FOR CLASSIFIED PROTOCOLS USING DIFFERENT

RNNS UNDER SNR=20 DECIBEL.

Metrics Protocol GRU Bi-GRU LSTM Bi-LSTM

Recall
Wi-Fi 82.00% 91.49% 83.34% 90.63%
LTE 81.73% 90.19% 81.32% 89.34%

5G NR 86.46% 85.58% 85.60% 91.09%

Precision
Wi-Fi 81.99% 86.00% 71.36% 88.00%
LTE 85.00% 91.99% 90.91% 93.09%

5G NR 83.01% 89.00% 88.18% 89.96%

same DNN structure, different optimizer settings still have an

impact on the performance of the neural networks.

Because the ADAM optimizer with ϵ = 0.001 outperforms

other optimizers, we apply it to the rest of RNN structures and

show the results in Table I. It can be observed that the accuracy

increases with the layer numbers for the first several layers

but decreases when more layers are added. Among all these

RNN-based classifiers, the LSTM network can achieve the

highest accuracy of 91.6% when there are two LSTM layers

stacked together. However, suffering from the layer increasing,

the accuracy of the LSTM network drops to 83.6% when the

layer number is five and to 67.5% when the layer number is

six. This can be explained by the fact that the backpropagation

of the gradient in deeper RNNs suffers more from exploding

and vanishing problems than shallow RNNs. The redundant

layers can also easily lead the model to overfit the training

data and to perform worse on the testing part. We also tested

different combinations of different types of RNN, and the

results show similar trends (e.g., the accuracy increases for

the first several layers and then decreases). These findings

indicate that stacking RNN layers can improve the classifier

performance but with certain limitations of the layer number.

C. Impact of Bidirectional Structure

We conduct simulations using the same dataset as before

but with SNR = 20 dB. To calculate the recall and precision

