Video-zilla: An Indexing Layer for Large-Scale Video Analytics

Bo Hu
b.hu@yale.edu
Yale University

Abstract

Pervasive deployment of surveillance cameras today poses enor-
mous scalability challenges to video analytics systems operating
over many camera feeds. Currently, there are few indexing tools to
organize video feeds beyond what is provided by a standard file sys-
tem. Recent video analytic systems implement application-specific
frame profiling and sampling techniques to reduce the number
of raw videos processed, leveraging frame-level redundancy or
manually labeled spatial-temporal correlation between cameras.

This paper presents Video-zilla, a standalone indexing layer be-
tween video query systems and a video store to organize video data.
We propose a video data unit abstraction, semantic video stream
(SVS), based on a notion of distance between objects in the video.
SVS implicitly captures scenes, which is missing from current video
content characterization and a middle ground between individual
frames and an entire camera feed. We then build a hierarchical index
that exposes the semantic similarity both within and across camera
feeds, such that Video-zilla can quickly cluster video feeds based on
their content semantics without manual labeling. We implement
and evaluate Video-zilla in three use cases: object identification
queries, clustering for training specialized DNNSs, and archival ser-
vices. In all three cases, Video-zilla reduces the time complexity
of inter-camera video analytics from linear with the number of
cameras to sublinear, and reduces query resource usage by up to
14X compared to using frame-level or spatial-temporal similarity
built into existing query systems.
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1 Introduction

Recent years have witnessed a sharp uptick of the number of
video cameras. 2018 alone saw 140 million shipments of video cam-
eras [41]. These are widely deployed for monitoring and surveil-
lance in diverse sectors, ranging from traffic control [90], crime
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investigation [27], to healthcare [91]. For example, the city of Belle-
vue, WA has deployed cameras at many intersections to monitor
traffic; According to the British Security Industry Authority [11],
approximately 300,000 cameras are already deployed in UK schools.
These surveillance applications have generated a wide variety of
video analytics workloads. At the core of these workloads is a set of
computer vision tasks, such as object detection and tracking, which
then form the basis for specific applications such as license plate
identification, tracking suspects, and fall detection for elder care.

While video content analysis dates back decades, today’s large-
scale video analytics landscape is drastically different. First, video
analytics used to be run on a small number of static video clips (i.e.,
pre-recorded with a fixed number of frames); Instead, we now have
many surveillance cameras generating continuous video feeds. A
single camera alone capturing video at 30 frames per second can
generate 20 GB of video per day [82]. Second, the computer vision
tasks have also grown in sophistication thanks to the increasing
adoption of deep learning inference. Applying a state-of-the-art
object detection DNN in real time (i.e., processing 30+ frames per
second) to a single video feed requires a powerful GPU [45] costing
$4000. Further, it is increasingly common to aggregate and analyze
a large number of video feeds [42], for example, to track a suspect
car around a city. The sheer volume of the videos today presents
colossal scalability challenges to large-scale video analytics systems.

Existing large-scale video analytics systems tackle the daunt-
ing scalability prospects by leveraging the inherent redundancy
within video feeds [37, 43, 45]. For example, objects in successive
frames are likely to be the same, exhibiting frame-level redundancy;
Cameras deployed at the same intersection often capture the same
vehicles and pedestrians, though from different perspectives, due to
the spatial-temporal correlation of camera placement and captured
scenes. The former optimizes for individual frame retrieval, oblivi-
ous to the collective semantics of a feed, while the latter optimizes
across video feeds, though requiring manual labeling. Redundancy
elimination combines naturally with edge processing [88] and large-
scale video analytics is a killer app for edge computing [42].

Still, neither redundancy management strategy can keep pace
with the growing number of video feeds. Inter-feed analytics jobs
effectively need to profile each camera feed individually. Fundamen-
tally, a camera feed comprises of scenes, each carrying an implicit,
collective sense of content semantics, such as parking lot, downtown,
and school. This semantics dictates the type of objects and events
featured in the feed. Exposing this semantics facilitates further opti-
mizations to process the most relevant (subsets of) feeds. However,
there are few mechanisms available to recognize this collective se-
mantics and organize feeds. Feeds today are mainly stored in a file
system following common encoding formats. Recent video analytic
systems each implements application-specific frame profiling and
sampling strategies to reduce redundant data processing. (Section 2)
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Figure 1: Video-zilla architecture

In this paper, we build Video-zilla, a standalone indexing layer
interposed between video query systems and a video store to orga-
nize large-scale, multi-camera feeds. We propose a video data unit
abstraction called semantic video stream (SVS) based on a notion of
distance between objects in the video (Section 3). SVS implicitly
characterizes the video content by scenes, which is missing from
current video data abstractions and offers a suitable middle-ground
granularity between individual frames and an entire camera feed.
We then build a hierarchical index that analyzes and exposes the
semantic similarity both within and across camera feeds (Section 4).
This way, Video-zilla can quickly organize video feeds based on their
content semantics without manual analysis of video content, while
preserving the boundaries between cameras (Section 5). Video-zilla
provides a generic service to a range of query systems. The index
can be run either offline over static videos or online over live feeds
with new frames arriving continuously. The built-in automatic
video segmentation naturally delineates different scenes, which is
also useful for moving cameras like dashcams or drones capturing
frequent changing scenes. Finally, we refactor existing large-scale
video analytics pipelines to separate out frame content analysis as
an independent module, providing a per-camera video ingestion
interface to the underlying surveillance cameras and a centralized
query interface to upper-level video query engines (Section 6).

Video-zilla effectively acts as an explanation database [14, 69,
70, 85] for the video data, and a similar approach can apply to
other unstructured but correlated IoT data. We evaluate Video-zilla
with three case studies, object identification, specialized network
training and video archiving (Section 7). Compared to existing
indexing strategies, Video-zilla reduces query resource usage by
up to 14X and can offer video clustering or archival support that
is currently not feasible. Video-zilla can replace substantial code
development for video content analysis in existing analytics systems
with a few lines of query code.

In summary, we make three contributions: First, we propose
Semantic Video Stream (SVS), a novel video data unit abstraction
based on a notion of distance between objects in the video, which
abstracts away the video content precisely and concisely. Second,
based on SVS, we build a hierarchical video index as a data organiza-
tion strategy to expose the correlation between and within camera
feeds. By preserving the boundary between cameras while captur-
ing their correlation, this lends to easy incorporation of additional
cameras or policies such as privacy measures. Third, we advocate
for refactoring current video analytic systems into a generic in-
dexing layer, Video-zilla, and the specific analytics queries on top

of that. Video-zilla can simplify building analytic applications and
reduce time complexity of inter-camera video analytics to sublinear
with the number of camera feeds.

2 Tackling the scalability challenge

Consider a canonical multi-camera deployment (Figure 1). For
surveillance applications, the objects in the videos constitute the
main content of interest, hence the "video semantics". Video analyt-
ics systems sift through the video feeds for certain objects. Given
the high data volume and the low ratio of signal (useful objects)
to noise (useless background scenes), efficient analytics rests on
pruning the search space fast. Existing systems are still far from
scaling analytics sublinearly with the number of feeds and frames.

2.1 Lack of adequate video data abstraction
Video data are gigantic but highly redundant. The key enabler
of a scalable multi-camera video analytics system is to fully un-
derstand and leverage this inherent redundancy. However, there is
insufficient understanding and characterization of the redundancy
in the current multi-camera video surveillance landscape, impeding
further optimizations.
Types of redundancy within videos. Figure 2 shows 4 consecu-
tive images captured by the same camera. We can always see the
same car bounded by the red box across all these frames. This is
the type of frame-level similarity already leveraged extensively in
video coding and analysis [37, 45]. Figure 3 shows snapshots from
two live video feeds captured by surveillance cameras mounted at
the same intersection in Jackson Hole, WY [5]. We can see signif-
icant overlap between the views of these two cameras. This is a
form of camera-level spatial-temporal similarity [42, 43] due to the
physical camera placement. Figure 4 shows two images captured
by video cameras installed in different parking lots from the VIRAT
dataset [58]. Unlike that in Figure 3, spatially these two cameras
are not necessarily near each other. However, since both can be
viewed as “parking lot" cameras, the video feeds captured by these
two cameras are somewhat similar to each other. For example, both
of them might contain cars and people stepping out of their cars.
We refer to this as stream-level semantic similarity, where a stream
is a contiguous block of frames within a camera feed. We make a
distinction between “camera-level” and “stream-level” since a long
camera feed may be divided into multiple streams, each featuring
different objects (hence “semantics”). As a simple example, consider
the video feed from a camera mounted near a railway track. The
frames capturing an approaching train are semantically different
from when no train is present.
Existing views and limitations. Current data organization in
video query systems can be seen as an extension of image retrieval
systems, built on top of the frame-level similarity. All video data are
treated as a giant collection of video frames. However, this requires
processing every frame within the video collection at ingestion or
query time, which incurs incredibly high computation overhead.
While frame sampling or adding camera-level constraints [37, 43,
88] can reduce the number of frames processed, the number of
frames extracted from the streaming video data is still huge.
A new abstraction. Clearly, there is a mismatch between existing
data abstractions and the fundamental video data characteristics.
This necessitates a mechanism to aggregate video at a sub-feed
level to both accurately preserve the frame-level video content and



Figure 4: Images captured in different parking lots

minimize the number of data objects to handle. We therefore argue
for a level of abstraction between the feed level and the frame level.

We propose a new data abstraction, semantic video stream (SVS),
that can represent the content of a subset of a feed. Video frames
from a single camera can be divided into several video streams
based on their content difference, likely due to scene changes. SVSs
aggregate frames to drastically prune the search space. Besides, SVS-
based data organization lends to large-scale inter-feed processing
that is currently difficult. Examples are specialized neural network
training and aggressive video archiving. A semantic understanding
of video streams makes it possible to train one specialized neural
network per-cluster of SVSs. For the latter, instead of observing the
access pattern of individual frames, we can operate at the level of
an SVS or a cluster of them.

2.2 Multi-faceted policy considerations
The rise of edge data source. As data collection is increasingly at
the edge of the network [40], the data volume at the edge is growing
exponentially. Further, given how pervasive surveillance cameras
are deployed, the captured data tends to raise privacy concerns [24].
Feeds from different cameras may need to be isolated depending
on who owns the camera and manages the captured videos. It
is desirable to minimize the number of raw frames sent both for
bandwidth and privacy considerations.
Our approach. We organize video data using a hierarchical index,
with inter-camera and intra-camera components. The hierarchy
can be naturally mapped to different processing locations. Instead
of sending all raw data to the cloud, we can send only the repre-
sentative video streams, and only raw frames containing objects
of interest can leave the edge processing point near a camera. Be-
sides largely reducing network overhead in the backbone network,
this offers privacy support by preserving the data boundary and a
summary view across cameras to the cloud to speed up subsequent
query processing.
2.3 Intertwined management and analytics
Existing video stores treat video data the same as any data, and
do not provide any support to characterize the redundancy. This
shifts the burden to the query systems. Recent video analytics

systems implement built-in custom strategies to reduce redundant
data processing and scale analytics [37, 43, 88].

Scaling implementation efforts. Building an effective video in-
dex requires notable domain knowledge of video processing [42].
Apart from the merit of the processing strategies, including an index
within each system inevitably requires repeated implementation of
common processing steps, which itself is inefficient. Further, this
indicates a lack of separation between basic data organization and
actual analytics that makes it harder to scale in other ways.
Towards a data organization layer. Instead, video data analysis
and organization should ideally be a separate layer overlaid on
a video store and support common types of video queries. For
video surveillance, two common types revolve around specific object
identification (direct queries) and correlating camera feeds (clustering
queries). The former takes the format of find video streams that
contain object X in N streams. This forms the basis for various
applications like theft detection [26], incident investigation [29] and
even atmospheric administration [10]. The latter is in the form of
find all video streams that are semantically similar to a video stream
Y, which lends to effective specialized network training and video
archiving. Additional qualifiers over a subset of camera or time
range can be easily supported.

2.4 Introducing Video-zilla

So far, we have motivated the need for a new abstraction, a
hierarchical index exposing boundaries between cameras, and a
system to separate and interface with the video store and the query
engine. Video-zilla is designed to address these. We outline the
challenges and solutions below.
Deriving semantic video streams. Previously, we gave a qual-
itative illustration of two semantically similar video streams. To
be integrated into an analytic system, we need a suitable metric,
i.e., a quantifiable definition of “semantics”, to delineate SVSs to
provide an effective abstraction. On that basis, we need to measure
the “similarity” between SVSs for further aggregation. Section 3
describes representing a semantic video stream as a feature map
and computing the similarity score between two streams based
on a novel metric, object mover’s distance. We also introduce an
approximation method to reduce the computation overhead.
SVS clustering for index construction. We need an index that is
precise and concise, capturing the video content comprehensively
as well as the level of redundancy. This requires low-latency and
effective clustering of all SVSs incrementally as new SVSs arrive in
a streaming fashion (Section 4).
Expressive interfacing. As a generic indexing layer between a
video store and query applications, Video-zilla should provide clean
and expressive interfaces to hide the complexity of the underlying
data organization but capture the video content. Sections 5 and 6
describe the architecture of Video-zilla, the functionality it provides,
and the APIs exposed.

3 Semantic video streams (SVSs)

In this section, we define an SVS and a quantifiable notion of
“semantics” (Section 3.1). We then propose a novel metric, object
mover’s distance (OMD), to compare the semantics among different
video streams, as well as an approximate algorithm (Section 3.2)



to speed up OMD computation. Finally, we discuss how to repre-
sent several semantically similar SVSs using a representative SVS
(Section 3.3), a primitive for subsequent indexing operations.

3.1 Defining Semantic Video Streams

We define a video stream as a contiguous block of frames within
a camera feed. The "semantics" of a video stream describes the
content of these frames. For object-identification based surveillance
applications, the content of each frame can be characterized by
the objects captured in that frame. Therefore, we characterize the
semantics of a video stream with all the objects within that stream,
with per-object feature vectors. A semantic video stream (SVS) then
is the collection of these feature vectors (i.e., the feature map).

Note that an SVS only captures the object distribution that may
correspond to an event or scene change, but cannot and does not
aim to explicitly identify the event. For example, a train-station
camera mainly captures two types of scenes interleaved with each
other: train passing, and empty tracks. These will be mapped to
different SVSs, some featuring trains. An object distribution of
“85% train and 15% people” may correspond to "train passing”. The
analytics application using these SVSs may infer the corresponding
events if provided with additional contextual information about the
video. Further, an SVS cannot track object motion, which requires
tracking more frame-level information than the object distribution.
Video frame clipping. In preparation for deriving SVSs, we first
clip objects that is contained in each frame using an object detection
mechanism. The notion and derivation of SVS are orthogonal to
per-frame object detection, so we can use either lightweight ones
such as the YOLO series [65] or more sophisticated approaches
[53, 73, 89] to balance the computation footprint and detection
accuracy trade-offs. In our evaluation we use YOLO. Each object
is represented by its four-point 2-D coordinate (top, left, bottom,
right) in the original frame.
Object feature extraction. To characterize an SVS, the first key
step is to obtain the feature vector per object. We can lean on state-
of-the-art image classification tools such as convolutional neural
networks (CNNs) [35, 51, 74]. The output of a CNN is the probabili-
ties of all object classes, and the class with the highest probability
is the classification result. The penultimate layer’s output of a CNN
proves to be representative features of an input image [48]. The
features form a real-valued vector, whose length ranges from 512
to 4096 in the latest CNNs [35, 76]. Therefore, running a CNN until
the penultimate layer on any image containing an object extracts
the feature vector for that object. For a video frame with multiple
objects, we can clip the frame and obtain the feature vectors for all
objects within the frame.

3.2 Distance between SVSs

The key to our data indexing system is to cluster semantically
similar SVSs to reduce the search space for queries. Therefore, we
need a mechanism to quantify the similarity between SVSs.
SVS distance. Since the SVS semantics refers to the objects cap-
tured, "semantic similarity" between two SVSs manifests as similar
objects and their distributions in different SVSs. An SVS distance
metric should then reflect how far object distributions deviate be-
tween SVSs, i.e., the travel cost between objects in different SVSs.
As objects are represented by feature vectors, one natural measure
is the Euclidean distance in the feature vector space, defined as
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Figure 5: Illustration of Object mover’s distance

d(i, j) = ||x; — xj||2, where x; and x; are the feature vectors of
objects i and j.

The "travel cost" between two objects is a natural building block
for the distance between two SVSs. Let d and d’ be two feature
maps, containing n and n’ feature vectors, respectively. We allow
each object i in d to be either partially or fully transformed into any
object ind’. Let T € R™" be a cost matrix where T;; > 0 denotes
the unit travel cost from object i € d to object j € d’. To transform
d entirely into d’, we need to ensure that the overall outgoing flow
from object i equals d;, i.e., Zj Tij = d;. Further, the amount of
incoming flow to object j should match d;., ie, X; Tij = dj’.. This
way, we define the distance between two SVSs as the minimum
cumulative object travel cost required to move all objects ind to d’,
i.e., Zi,j led(l, ])

Object Mover’s Distance. Calculating the aforementioned mini-
mum cumulative object travel cost can be formalized as:

n n
. . 1.
gnnér(} Z T;;d(i, j) where .ZTU = ;,Vz €1,..,n
i,j=1 Jj=1 (1)

= 1
ZTij = —/,Vj €l,...n
i=1 n

d; = 1/nand dj = 1/n’ mean that we treat every feature vector
within an SVS equally by giving them the same weight. The weights
in each SVS sum up to 1. Equation 1 aims to minimize the weighted
cost of transferring ("mapping") all feature vectors ind to d’. A
vector i in d could be mapped to several vectors in d’, with its
weight d; split over the target vectors’ ind’. Therefore, the mapping
is one-to-many, not one-to-one, as shown in Figure 6a.

This is a special case of the well-studied transportation problem,

Earth Mover’s Distance [72], with specialized solvers [52, 60]. To
highlight this connection, we use the term object mover’s distance
(OMD). OMD is a metric since d; j is a metric [71]. Figure 5 illus-
trates the OMD metric for two SVSs, A and B. Each arrow represents
the correspondence (or flow) between two objects, their Euclidean
distance shown next to the arrow. The distance between two SVSs
reflects a cumulative travel cost across the objects.
Fast OMD computation. Calculating an accurate OMD between
two SVSs has O(n> log n) time complexity, where n is the number
of features within a video stream. It is thus impractical to compute
the OMD between large video streams.

Fortunately, there are several fast specialized approximate com-
putation methods [52, 59, 60]. We adopt the thresholded ground
distance method [60]. Instead of comparing all pair-wise object
moving costs, we set a distance threshold ¢. Any pair-wise dis-
tance between feature vectors larger than ¢ will be capped to t. We
essentially merge all such pair-wise relationships to a single group.

Figure 6 illustrates the transformation process from the origi-
nal OMD computation to the thresholded-OMD computation. The
boxes are objects and the colors indicate different video streams.
The red circle is the new transshipment vertex that serves as an
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Figure 6: Illustration of the thresholded OMD
intermediate vertex, before a feature vector goes to its original desti-

nation. Any incoming edge cost is the threshold t and any outgoing
edge cost is 0. The drastic reduction of the number of edges is the
main reason for computation time reduction when using FastOMD.

3.3 Representative construction

To efficiently cluster SVSs, we also need a way to construct a
representative SVS for an SVS cluster. A new SVS can then be
compared with per-cluster representatives, rather than with all
SVSs in that cluster. Section 4 explains how to identify a suitable
existing cluster for a new SVS to join.
k-clustering representative construction. Recall that objects
that are visually similar have similar feature vectors in the Euclidean
space. We perform k-means to derive k clusters of feature vectors,
each has a centroid feature vector. Weighted by the size of each
cluster, these centroids vectors then form a representative SVS.

We adopt the silhouette method to determine the value of k [68].
The silhouette value is a measure of how similar an object is to its
own cluster compared to other clusters. Formally, for data point
ieCsi) = % where a(i) = (=4 T jec, iz 40, J)
and b(i) = mingy; 3’ jec, d(i, j). A high silhouette value indicates
a well-formed cluster.
Defining query hit. To facilitate direct object identification queries,
we record the boundary for each weighted center. The boundary
is defined by the distances between the farthest data points in all
directions and the cluster center. We obtain a query hit when the
queried feature lies within the boundary of a weighted center.

4 Clustering SVSs

Given a set of SVSs, index construction for fast query boils down
to clustering the SVSs based on the similarity of their semantic
content. In this section, we first explain an existing incremental
clustering algorithm that works for both the Euclidean and OMD
metric space, explaining the basic data structure and related opera-
tions in Section 4.1. Section 4.2 then maps these basic operations to
those needed for an SVS index. Finally, we propose a novel pruning-
based approximation technique to largely reduce the computation
overhead incurred by OMD computation in Section 4.3, which is
our unique system contribution when dealing with clustering in
the OMD space.

4.1 Basic data structure and operations

SVS organization. Taking a leaf out of previous work [47], we
organize SVSs with a tree. Each leaf node in this tree represents a
unique SVS. The root node represents all SVSs stored in the index.
Each internal node is the root of a subtree and represents all SVSs
at the leaves in this subtree. Each children node of the same parent
node contains a subset of SVSs of that in parent node. As clustering
SVSs can be seen as partitioning a set of SVSs into multiple subsets,
the SVS tree structure encodes multiple ways of clustering SVSs.
Evaluating cluster tree using dendrogram purity. The quality
of a cluster tree is less obvious compared to a “flat” clustering
approach, such as k-means. We adopt a holistic measure, known
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Figure 7: Masking and unmasking

as dendrogram purity [36]. In words, the dendrogram purity of a
cluster tree with respect to a ground truth clustering C* is the
expectation of the random process computed in the following steps:
1) sample two SVSs, s; and s; uniformly from the same cluster Cy in
the ground truth; 2) compute their least common ancestor p in the
cluster tree T; and 3) compute the fraction of leaves of p that also
belong to Cx. With this definition, the dendrogram purity is a real
number between 0 and 1. A "perfect” cluster tree has dendrogram
purity 1, in which all leaves of an internal node belong to the same
ground-truth cluster.
Greedy incremental clustering. For live video feeds, new SVSs
arrive continuously, hence it is natural to follow a greedy incre-
mental insertion strategy. For each incoming SVS x, the algorithm
will iterate through all the leaf nodes in the cluster tree to find the
nearest neighbor to x, a leaf node s. A Split operation is performed
on s that first disconnects s from its parent, creates a new leaf node
s’ to store x, and finally creates a new internal node, whose parent
is s’s former parent and whose children are s and s’.
Masking and unmasking. However, this greedy insertion strat-
egy cannot reach an optimal dendrogram purity because of the
masking effect. Figure 7 illustrates the case when the current leaves
in a tree belong to a "car-dominant” cluster, denoted Cy and Cj.
If an incoming SVS T belongs to a "train-dominant” cluster, ac-
cording to the greedy incremental tree construction heuristics, it
will be first inserted in the tree next to C1. We say T is masked
by Cy, since Cy and C; are clearly more similar to each other and
should be sibling nodes. Masking effect essentially means putting a
SVS is being covered by a supposed representative that does not
actually represent it well. The root cause of masking effect is that
the random incoming order of SVSs cannot guarantee siblings in a
cluster tree are actually the closest (like Tp and C; in Figure 7b).

Formally, A node v with sibling v” and aunt a (i.e., the sibling
of a parent node) in a tree is masked if there exists a point x € lvs(v)
such that, max ejys(v) OMD(x, y) > mingejps(q) OMD(x, 2). lvs(2)
is the set of leaves for any internal node z. [47] proves that a cluster
tree without masked nodes has dendrogram purity 1.

Inspired by self-balancing trees like red-black trees [28], we
employ the following masking triggered rotations to mitigate the
dendrogram purity loss. When masking is detected, a Rotate oper-
ation swaps the position of s with its aunt in the cluster tree. After
the rotation, the algorithm checks if s’s new sibling is masked and
recursively applies rotations until no masking is detected or we
reach the root (Algorithm 1). The intuition behind the rotations is
to move the "masked" node up towards the root by swapping this
node with its aunt recursively, until masking no longer manifests.
4.2 Building an SVS index
SVS insertion. The combination of greedy incremental insertion
and masking-triggered rotation provides a baseline algorithm to



Algorithm 1 Rotate(v, conditionDetect)

Algorithm 2 Insert(x;, Tree)

(ShouldRotate, ShouldStop) = conditionDetect(v)
if ShouldRotate then
Tree Rotate(v, conditionDetect)
end if
if ShouldStop then
Output: Tree
else
Output: Tree.Rotate(v.Parent(), conditionDetect)
end if

insert an incoming SVS (Algorithm 2). This is referred to as purity
enhancing rotations for cluster hierarchies (PERCH [47]), building a
cluster tree with optimal dendrogram purity. Further, the algorithm
also performs a balancing-triggered rotation. This is an optimization
we will discuss in the following subsection, together with a pruning-
based nearest neighbor search optimization.

SVS clustering. Given the SVS tree, we derive the actual clusters
using the following heuristics. We maintain a list of tree nodes to
represent different clusters. Initially, only the root node of a tree is
in this list. While the number of nodes in the list (i.e., the number
of clusters) is less than k (determined by the silhouette method
mentioned in Section 3.3), we iteratively remove the tree node with
the smallest cost in the list, replacing it with its two children nodes
added to the list. The clustering process terminates once there are
exactly k tree nodes in the list. The cost of a tree node v is defined
as the maximum distance among the lvs(v).

Search operations. Our index supports two basic search primi-
tives: feature search and SVS search, corresponding to the direct
identification query and clustering query. A feature search aims at
finding a set of SVSs that might contain feature vectors that are
similar to the target feature vector. We use the decision-boundary-
based query (Section 3.3), first to identify candidate clusters of SVSs,
and then searching all SVSs in candidate clusters to find the SVSs
that actually meet the requirement. An SVS search aims at finding
the SVS that is closest to the target SVS. This is supported by the
nearest neighbor search function in the insertion algorithm.
Smoothness of the OMD space. The latent space generated
by SVSs may not be smooth, especially when an SVS consists of
high-dimensional feature vectors. Due to the curse of dimension-
ality [23, 79], we cannot avoid this issue completely. This "discon-
tinuity" causes some SVSs to be inserted into the wrong clusters,
and a subsequent query to Video-zilla may either miss an SVS (false
negative) or examine an SVS unnecessarily (false positive).

Given the nature of video scenes, we cannot derive close-form
expressions for this discontinuity. To quantify its impact empirically,
we evaluate the false-positive (FPR) and false-negative rates (FNR)
of queries with and without Video-zilla in Section 7.4. Further, we
also introduce a performance adaptation and bailout mechanism in
Section 5.3.

4.3 Nearest neighbor search optimization

One sub-procedure of the algorithm in 4.1, finding nearest neigh-
bors in the cluster tree, can make its naive implementation slow. In
this section, we introduce pruning-based nearest neighbor search
with the help of an easy-to-compute lower bound of OMD. In addi-
tion, we perform a balancing based rotation operation as further
optimization.

nbrs = NearestNeighbor(x;)
leaf = Split(nbrs)
for a in Ancestors(l) do
a.AddPt(x;)
end for
Tree = Tree.Rotate(leaf .Sibling(), CheckMasked)
Tree = Tree Rotate(leaf Sibling(), CheckBalanced)
Output: Tree

Pruning-based search. We propose a novel pruning technique
by introducing a cheap lower bound of the OMD that allows us to
prune away the majority of SVSs in the cluster tree without ever
computing the exact OMD distances.

Following [71], it is straightforward to show that the distance
among the centroids of feature vectors within two SVSs is a lower
bound for the OMD between them. We refer to this lower bound as
the object centroid distance (OCD) as each SVS is represented by
the weighted average vector over all feature vectors contained in it.
Compared to OMD, OCD is easy to maintain and update in O(N)
time, where N is the feature vector dimension.

We use OCD to drastically reduce the amount of OMD distance
computation when performing the nearest neighbor search. We
first sort all SVSs within the cluster tree in ascending order of their
OCD distance to the target SVS. Starting from the head of the sorted
list, we repeatedly compute the OMD between the target SVS and
the SVS that is at the head of the sorted list. The distance of this
SVS will be updated and the list will be sorted based on the updated
distance. As the OCD is a lower bound of OMD, we maintain a set
of explored SVSs whose OMD has been computed. The first SVS
we visited that has already been explored is guaranteed to be the
nearest neighbor of the target SVS.

Although pruning-assisted process can largely reduce the com-
putation overhead of nearest neighbor search, it cannot reduce the
OMD computation when checking the masking condition or up-
dating the cost for each internal node. As the masking condition is
checked in a bottom-up manner and the check terminates when no
further masking effect is detected, only a small subset of the SVSs
within the index are involved. For the cost update for each internal
node in the tree, we adopt a bottom-up approximation heuristic.
The algorithm updates the cost of the nodes along the path from
the leaf to the root, terminating once the cost of a node within the
path does not change.

Balancing based rotations. Our pruning method can be largely
affected by the depth of the tree. While our rotation algorithm
guarantees optimal dendrogram purity, it does not provide any
guarantees on the depth of the generated cluster tree. The balance
of a cluster tree T is the average local balance of all nodes in T,

where the local balance of a node v with children v}, v, is bal(v) =

min{||lvs(v))|],||lvs(0) ||} s - . . .
max {] ”05(0’1) M Tos @I Similar to the masking condition, we will

rotate the current node with its aunt in the tree if we find that it
will improve the balance of the tree without causing masking.
5 Video-zilla system

Based on the clustering mechanisms described previously, Video-
zilla (Figure 1) builds a hierarchical index with two components: 1)
an intra-camera index per camera feed to index the video streams



captured by the same camera; 2) an inter-camera index across all
cameras to index the representative semantic video streams con-
structed by all intra-camera indices. The inter-camera index resides
somewhere centrally, where the queries are issued, while the intra-
camera indices could stay at edge servers to filter raw data and
ensure most of them remain local. Each camera sends raw video
data to the nearest edge server, via wired or wireless connections.
The hierarchical index maintains the boundary between cameras,
which allows the components to map to different processing loca-
tions when appropriate.

Video-zilla is designed as a layer between the video store and
applications. Consider Microsoft’s Project Rocket [9], for example.
Video-zilla can be interposed between the light and heavy DNN
detectors, using the feature vectors extracted by the light DNN
detectors to build the index, and the heavy DNN detectors to refine
the final query results.

5.1 Hierarchical index generation

An incoming image frame will first pass a key frame selection

module, which adaptively filters video frames based on the compu-
tation capacity of the edge server. The selected key frames will then
pass several feature extraction modules to compute application-
specific feature vectors. Our automatic video segmentation module
will then segment a stream of feature vectors generated by the
same camera into separate SVSs. These SVSs will be first inserted
into the corresponding intra-camera index. Finally, triggered by the
representative SVS update in an intra-camera index, the per-model
inter-camera index will be updated. Following this process, our
hierarchical index will be constructed incrementally.
Automatic video segmentation. Given a stream of feature vec-
tors, the first key step is to derive an SVS from them. This can
be especially helpful for scenarios with frequent scene changes,
e.g., as a drone flies above different terrains. We propose a greedy
segmentation heuristic. The general idea is to track novel features
in consecutive frames and then segment the video when a set of
features seems to drift away from the previous SVS.

Initialization. To bootstrap the system, the initial portion of the
streaming video over a set length of time t,,4x is extracted as the
first SVS. This tyax also serves as the maximum length of an SVS.
The choice of ty4x will affect the query result granularity. In prac-
tice, we leave the choice of t,,4x to the application developer. In
our evaluation, we set t;qx as 15 minutes.

Tracking novel features. After initialization, we use the represen-
tative SVS of the cluster that the last segmented SVS belongs to as
the reference SVS. We maintain a current feature buffer that con-
tains all incoming feature vectors after the last video segmentation.
An incoming feature vector that lies outside the decision boundary
(Section 3.3) of the representative will be labeled as a novel feature.
We track all novel feature vectors using a novelty feature buffer.

Video segmentation. Whenever a novel feature vector is added
to the novel feature buffer, we cluster feature vectors in the buffer
using k-means and calculate the average distance between the
members and the corresponding cluster center. We compare this
average distance dj, in the novelty buffer with d, in the representa-
tive. Video segmentation (Algorithm 3) is triggered when d,, < d,.
At the same time, we also record the hit pattern of the weighted
clustering centers in the reference SVS. if one of these centers has

Algorithm 3 Video segmentation

% A novel incoming feature vector v;,,ye;
NovelFeatureBuffer.add(v,,ppe1)
CurrentFeatureBuffer.add(v;,,e1)
dpn = NovelFeatureBuffer.cal AvgDist()
dr = SVSTree.avgRepDist()
thi+ = SVSTree.maxLastHitTime()
if d, < dy or ty;; > Lsplit then
SVSnew = Features(CurrentFeatureBuffer)
insert(SVSpeq, SVSTree)
end if

not been hit by any incoming features after time fgp;;, the video

needs splitting. fspy;; is set to be %tmax empirically. To segment
the video, the current feature buffer is divided at the point where
the first novelty feature or the last hit feature arrives.

Take a train-station surveillance camera as an example. It should
mainly see trains and people (with luggage) or a largely empty
platform. The video feed captured by this camera will be divided
into chunks using our automatic video segmentation mechanism,
correlating with train arrival and departure.

Hierarchical index update. The newly generated SVS is inserted
into the corresponding intra-camera index. One or more represen-
tative SVSs in this intra-camera index will be updated. The updated
representative SVSs will then replace the outdated versions in the
inter-camera index. This completes one update round of our intra-
and inter-camera hierarchical indices.

Adaptive key frame selection. It is neither computationally fea-
sible nor efficient to process every single video frame captured by a
video camera. This module determines which video frames should
have objects clipped and passed to the feature extraction module.
The ingestion computation cost is determined by both the frame
rate and the inter-frame deviation threshold. The latter one uses
the deviation between two consecutive images as the metric. When
the deviation exceeds a threshold ¢, we consider the incoming im-
age as a key frame. Many combinations of these two factors are
plausible, and we adopt a best-effort heuristic to avoid queuing. We
monitor the input frame queue at the feature extraction module.
Once a queue starts building up, we will downgrade it to a more
lightweight configuration. Conversely, we will upgrade it to a more
heavyweight configuration.

Customizable feature extraction. As different applications may
prefer specific feature extraction techniques, we make this mod-
ule customizable. Each application can register their own feature
extraction module. We provide several default feature extractors,
including VGG16, VGG19, ResNet50, and ResNet101 [8], all trained
on the COCO dataset [3].

5.2 Query processing

For direct object identification, the query specification includes
an image containing the object of interest, together with the op-
tional time range and camera ID constraints as the metadata. The
candidate representatives SVSs will be first identified in the inter-
camera index. Then the query will be dispatched to all the intra-
camera indices containing the candidate representatives, to search
for the actual SVSs that contain the queried object.

A clustering query takes as input a feature map that characterizes
an SVS, as well as the optional time range and camera ID constraints.



For this query, Video-zilla returns all similar SVSs to the input SVS.
Video-zilla will check the inter-camera index to find the cluster C
containing the most similar SVS to the input SVS. Each intra-camera
index will return all SVSs that belong to the cluster represented by
a representative SVS in C.

5.3 Performance monitoring and bailout
Performance monitoring. Due to the errors induced by feature
extraction, index building and SVS candidate selection, querying
our hierarchical index cannot guarantee 100% accuracy. Thus, Video-
zilla monitors the error rate of query results and adjusts the index
setting to satisfy the user-defined error preference. Periodically, in
addition to querying the hierarchical index, Video-zilla runs the
same query on all the video frames in the background. This query
result serves as the ground-truth. This will inevitably take a long
time, so Video-zilla only performs this operation every 50 queries.
If the current query F1 scores do not meet the user preference,
Video-zilla can adjust the following parameters one at a time: i)
increasing the number of clusters within the inter- and intra-indices;
ii) decreasing the OMD computation threshold to derive a more
accurate OMD value; and iii) downgrading to a flat SVS index, i.e.,
without distinguishing between the intra- or inter-camera indices.
Bailout. If applying all three parameter adjustments still cannot
meet the user error preference, a bailout mechanism will be trig-
gered, where Video-zilla will downgrade to a frame-level index
to search through video frames across all cameras. Meanwhile,
Video-zilla periodically runs a query on the hierarchical index to
determine when to switch back to the hierarchical index. Video-zilla
performs this operation every 10 queries.
5.4 Discussion
Privacy considerations. Orthogonal to common privacy protec-
tion approaches such as data encryption and image anonymization
(via pixelation or blurring), Video-zilla introduces some amount of
anonymization through feature aggregation. Given our hierarchical
index design, only the representative SVSs in each intra-camera
index will be sent to a centralized operation point to construct
an inter-camera index. An analytics user can only access the few
frames returned as the query results and not the raw videos at large.
Security concerns. IoT cameras have been vulnerable to security
attacks or exploited in DDoS attacks (such as Mirai [67]). While
this work does not explicitly address security issues, Video-zilla
may help by acting as an intermediary, which facilitates limiting
direct access to the cameras.
Per-model indexing. Video-zilla generates an index per DNN
model. However, the index generation process is the same, regard-
less of the feature extractor, and hence different applications can
run on a common indexing layer.
Camera ID and time range filtering. We can filter the camera ID
at the inter-camera level when identifying the intra-camera indices
to dispatch the queries to. The time range can be applied in each
intra-camera index, by comparing against the video timestamps.

6 Implementation

We implement Video-zilla using the Akka toolkit [1]. Follow-
ing the actor model in Akka, Video-zilla comprises of five actors,
key frame selection, feature extraction, intra-camera index, inter-
camera index and query history cache. Data exchange between

modules follows asynchronous message passing. There is also a
query actor per type of queries.

We use the OpenCV library [21] to implement key frame selec-
tion, including video I/O, frame rate control and image deviation
computation. Keras 2.3.1 [7] is used to train the default feature
extractors, and the massive online analysis library [19] for repre-
sentative construction. The fastOMD implementation adapts the
fastEMD library [6]. Our incremental clustering algorithm extends
the codebase in [47] to our OMD metric space. Each intra-/inter-
camera index is stored as a tree structure.

Our feature extractors are trained using Microsoft COCO, and
this code is written in Python. Other Video-zilla modules are written
in Java. The implementation totals about 4K lines of code, including
3K in Java and 400 in Python for the indexing, and around 500-
600 lines of Java code for the query stubs. The codebase size of
Video-zilla suggests that existing analytics systems can be simpli-
fied substantially by issuing queries to a generic index in place of
performing custom video content analysis per application.

Setup and configuration APIs. The analytics application can add
or remove a feed with cameraStart(cameralID, historyData-
TimeRange, appID) and cameraTerminate(cameralD, appID).
We make the feature extraction module pluggable and expose an
API to applications to customize feature extractors. setFeature-
Extractors(Model, appID) allows an application to specify a
custom feature extractor to characterize the video semantics.
Query APIs. Video-zilla supports two most common queries, di-
rectQuery(objectImg, appID) for direct object identification,
and clusteringQuery(targetSVS, appID) to organize SVSs. A
direct query takes as argument the image of the object of interest,
while a clustering query takes as input the feature map of an SVS.
We further provide a utility API, getMetaData(SVS), to return in-
formation such as the start and end timestamps of this SVS, the
camera ID that captured this SVS, and the access time of this SVS.
Customizable APIs: Video archiving as a case study. Develop-
ers can also implement custom APIs by composing the built-in
APIs. For example, to build a video archiving service, we need an
API isArchived(targetSVS, appID), which is a variation of the
clustering query. Instead of returning a list of semantically similar
SVSs, it returns the average access frequencies of all these SVSs.
Code snippet 6 shows how to implement this by composing clus-
teringQuery and getMetaData.

isArchived(targetSVS, appID):
SVS[] res = clusteringQuery(targetSVS, appID);
sumFreq = 0;
for (SVS svs : res):
sumFreq += getMetaData(SVS).accessFreq;
return sumFreq / res.length;

7 Evaluation

Hardware setting. We use two Linux servers to host the hier-
archical index, both with 8-core 2.1 GHz Intel Xeon CPUs, one
with a NVIDIA RTX 2080Ti GPU, and the other with an NVIDIA
RTX 2070 GPU. We run an inter-camera index on the former and
intra-camera indices on the latter. In cases we need to run multiple
intra-camera indices, this process is done in a serial fashion on a
single machine. This way we avoid any artifacts that may arise
from a distributed setup. Video-zilla is orthogonal to improving
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Figure 9: Object distributions from the same feed.

processing efficiency with distributed computing, and can leverage
existing works [16, 39, 88] on that.

Datasets. For the microbenchmarks (Sections 7.1, 7.2, 7.3), we syn-
thesize a dataset from 1000 SVSs. Each contains 500 1024-dimension
feature vectors, and these vectors follow a multivariate normal dis-
tribution. We assume there are 10 different types of feature vector
distributions in total, each containing 100 SVSs.

For the end-to-end case studies (Sections 7.4, 7.5, 7.6), we assem-
ble publicly available real-world datasets to emulate a real-world
multi-camera surveillance system for public transportation, like
that in Chicago [13]. The total length of these videos is 30 hours,
including three types of feeds from both stationary and moving
cameras: i) 40 road-view captured by in-vehicle cameras: 20 of them
capture the downtown areas [4] of New York City, London, Chicago
and Los Angeles, 5 per city; the other 20 capture highways across the
U.S. [20]; ii) 2 train-station video livestreams from Youtube [62, 63];
and iii) 2 harbor video feeds from Youtube [78, 81]. We intention-
ally set the number of cameras in train-stations and harbors to be
smaller than that of in-vehicle cameras, which matches the expected
ratio between these feeds in practice.

7.1 Comparison of video characterization

SVS vs. Camera-level. We compare the SVSs from the same cam-
era feed with those belonging to the same semantic cluster (which
may or may not be from the same camera). For both sets of SVSs, we
compute the average OMD distance between the SVSs pairwise. Be-
sides the first three real-world scenarios, we derive a combined case
by concatenating a downtown road-view video with a highway-to-
national park road-view feed. This emulates a car driving from a
downtown area to a highway, to increase the variability of content.

We use four types of feeds, including 10 in-city and 10 on-
highway camera feeds as the in-vehicle case, 2 "harbor" feeds, 2
"train-station" feeds, and 10 camera feeds as the last combined case.
The average length of SVSs extracted by Video-zilla is around 10
minutes worth of video, 600-700 frames.

Figure 8 shows that the average OMDs of in-vehicle cameras are
similar to one other, as the feeds we captured are relatively short and
the frame content within each feed is fairly homogeneous. Empiri-
cally, the OMD among the SVSs within the same cluster is around
0.3 and 0.35. However, there is a distinct difference between SVSs in
the other three cases. A lower average OMD for Video-zilla means
that Video-zilla is able to better capture the semantic similarity
compared to camera-level video characterization. Further, it shows
the OMD calculation works regardless of whether the video frames
are from stationary train-station cameras or moving in-vehicle cam-
eras, as the object detection mechanism Video-zilla adopts works
for both cases. As an example, Figure 9a shows object distributions
from two SVSs derived from a train station surveillance camera,
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and Figure 9b shows the same for an in-vehicle camera in LA. The
object distribution over time hardly changes for the LA road-view
feed. In contrast, for the train-station feed, the object distribution
varies depending on what events are covered. This highlights the
descriptiveness of an SVS over a camera-level video feed.

SVS vs. Frame-level. Using frame-level characterization results
in many more data objects to handle. Figure 9 suggests that SVSs
as data units for queries capture the object distribution, SVS can
improve system scalability without sacrificing descriptiveness.

7.2 Effective and efficient SVS derivation
Automatic video segmentation. We select and concatenate 10
feature maps as SVSs from our synthesized dataset. To mimic real
settings where SVSs differ in length, the number of composite
feature vectors within each SVS is a random number ranging from
250 to 750, and the feature vectors in each SVS follow a distinct
multivariate normal distribution.

Our automatic video segmentation technique is compared with
two baseline methods: (i) an oracle that can perfectly segment a
video feed, which, in our case, means segmenting the video feed
exactly into the 10 original SVSs; and (ii) a strawman that simply
divides a video stream into equal-length video clips, where the fixed
length can be 1, 5 or 10 minutes’ worth of video clips.

We evaluate the effectiveness of the video segmentation tech-

niques using the average OMD distance between SVSs that appear
consecutively in a feed. Higher OMDs mean better segmentation
effect. Figure 11a shows the average OMD distance using different
segmentation techniques. Our method nearly matches the oracle
while outperforming the strawman method. Zooming in, Figure 11b
shows the empirical CDF of the OMD between adjacent SVSs. When
video clips are segmented evenly, it is unavoidable that some adja-
cent clips are similar to each other and exhibit low OMDs.
Fast OMD. Figure 10 shows the impact of the FastOMD threshold
a on the computation accuracy and time. We randomly select 100
pairs of SVSs from the synthesized dataset, and compute the pair-
wise OMD distance as « varies from 0.5 to 1. We use the OMD for
a = 1 as the reference ground truth and calculate the approximation
error as the accuracy metric. The computation time is normalized
with respect to the computation time needed for a = 1.

The approximation error decreases with increasing « at the ex-
pense of a higher computation time. Empirically, « = 0.6 appears to
achieve a balance between the computation accuracy and process-
ing time reduction. For this « value, the average OMD computation
time is reduced to less than a second (767 ms on average). Since the
average length of the SVSs in the real-world dataset is around 12
mins, this overhead is acceptable.
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7.3 Scalable incremental clustering

Pruned nearest neighbor search. Figures 13a and 13b show com-
putation reduction when inserting or querying an SVS given differ-
ent index sizes, measured by the number of SVSs with the index. For
SVS query, the nearest neighbor search is the only trigger for OMD
computation, and our pruning approach can reduce the computa-
tion by 92%. For SVS insertion, checking for masking and updating
the cost of internal nodes incur additional OMD calculations, but
pruning still reduces the total OMD computation by 80%.
Incremental SVS clustering. Figure 12 compares Video-zilla’s
incremental clustering algorithm with the commonly-used hier-
archical agglomerative clustering (HAC) algorithms [57] with dif-
fering linkage choices. All algorithms achieve similar clustering
accuracy. Every incoming SVS triggers a clustering attempt to up-
date the representative SVSs of the index. The overhead of the three
HAC algorithms increases quadratically with the size of the index,
while that of Video-zilla only linearly by avoiding reconstructing
the whole tree every time.

Comparison with M-tree. SVS organization leverages a hierar-
chical incremental clustering tree, which is a well-studied area.
We compare our method (PERCH with OMD approximation, or
"PERCH-OMD") with M-Tree [25], an efficient incremental indexing
method for similarity search in a metric space. Using the synthe-
sized dataset, we perform a 100-nearest-SVS search for 10 randomly
selected SVSs. We choose 100 because this is the ground-truth clus-
ter size for each SVS cluster in the synthesized dataset.

In Figure 14, the x-axis represents the maximum number of
elements in a single node of an M-Tree, which we refer to as the
maximum node size, and the y-axis represents the number of OMD
computation needed. For comparison, the dashed line shows the
number of OMD computation needed when using PERCH-OMD.

Both PERCH-OMD and M-tree can derive the correct set of
100 nearest SVSs, but M-tree incurs extra OMD computation. This
shows that the choice of the maximum node size can heavily influ-
ence the number of OMD computation needed. Further, this choice
depends on the number of SVSs within a cluster, which varies with
the actual video feeds. The main reason is that data structures like
M-tree still suffer from the masking effect mentioned in Section 4.
Elements which belong to the same SVS cluster can be contained in
disjoint subtrees, while some SVSs that should belong to different
clusters are included in the same subtree. The extra OMD computa-
tion arises from comparing with these extra elements. The original
M-tree algorithm may also suffer from potential overlap between
different leaf nodes. However, this overlap problem appears to be
addressed in most open-source M-tree implementations.

Comparison with approximate nearest neighbor (ANN) search.

Since PERCH-OMD performs precise nearest neighbor search, we

Figure 12: Clustering algorithm comparison.

also compare it with its approximate counterparts. Specifically, we
compare with a state-of-the-art ANN algorithm [30]. This is one
of the most efficient ANN algorithms [2], with a well-documented
open-source toolkit [12], including built-in support for the EMD
metric space.

As before, we perform a 100-nearest-SVS search for 10 randomly

selected SVSs in the synthesized dataset. The average recall for this
ANN algorithm is 97.8%, which is even slightly better than reported
in the original paper (92.5%). This is due to the difference in the
dataset. Still, we can observe accuracy loss when applying ANN. In
contrast, PERCH-OMD considers strictly nearest neighbors, which
are by nature more accurate than ANN. Efficiency-wise, given we
are not dealing with a huge number of SVSs, we do not necessarily
need the "most computationally efficient” algorithm.
Index building overhead. For an index that contains 1000 SVSs
in our synthesized dataset, the overall index size is less than 5 MB.
The corresponding video length is around 200 hours, whose data
size can be more than 20 GB if the video data are captured in 640 X
480 pixels. The overall index building time is less than 20 minutes,
which is negligible compared to the total length of video.

The hierarchical index construction in Video-zilla naturally lends
to distributed indexing. In contrast, building a single, flat centralized
index would send more raw data to a centralized point. We therefore
compare the amount of data sent for index construction between
these two approaches. Assuming key frame selection and feature
extraction done at the edge, we incrementally add 20 camera feeds
to the system, each containing 100 SVSs randomly selected from the
synthesized dataset. By only sending representative SVSs, adopting
a hierarchical index can reduce the network traffic between the
cloud and edge servers by a factor of 19.

7.4 Case study: Direct object identification

Direct object identification queries follow the format of find
image frames that contain object X within all streams. We let X be fire
hydrant, boat, or train. This is because the object of interest should
be contained in some but not all videos. Searching for giraffe or
person would not make sense, as no videos in our datasets contain
giraffes and virtually all contain people. We generate 50 query
instances, taken from the real-world videos, per query type.

We compare Video-zilla with two state-of-the-art correlation
analysis mechanisms in large-scale video analytic systems, per-
camera top-k indexing in FOCUS [37] and leveraging spatial-temporal
correlation between cameras in Spatula [43]. FOCUS optimizes the
processing latency of individual camera feed by building an ap-
proximate frame-level index per feed at ingestion time to reduce
query time later. Spatula speeds up multi-feed analytics by lever-
aging the insight that objects found in one camera feed will only
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Figure 13: Number of OMD computation.

appear on nearby cameras with spatial-temporal correlation with
the first camera. Both systems include additional system optimiza-
tions such as CNN compression to reduce ingestion overhead and
pruning errors via replay search that are orthogonal to Video-zilla,
so we focus on comparing the query quality and latency for Video-
zilla based on SVSs vs using the approximate frame-level index
in FOCUS or the spatial-temporal correlation between cameras
in Spatula. Specifically, we compare the intra-camera processing
of Video-zilla to using the per-camera top-k index and the inter-
camera processing of Video-zilla to a Spatula-like system leveraging
spatial-temporal correlation. Unless otherwise stated, all queries in
this section achieve at least 95% precision and recall.

Video-zilla vs per-camera top-k. For each camera, we build an
approximate top-k index for the incoming image frames. An in-
coming query will be directly dispatched to the top-k indices of all
camera feeds, instead of only to the inter-camera index in Video-
zilla. To ensure the performance is not affected by unrelated factors,
we use the same ResNet50 used in Video-zilla feature extractor with
the additional softmax layer to generate the top-k index, and we
use the same set of video frames to build indices for both systems.
This way, the ingestion overhead of both systems is roughly the
same. As in [37], we set k = 3 for all top-k indices, i.e., each object
in a streaming video will be indexed by the top 3 possible object
classes in the corresponding top-k index. We adopt the same Yolo-
v2 as the ground-truth CNN in [37].! The ground-truth CNN is the
main contributor to the query time.

We measure the bottleneck query time (Figure 16), i.e., the time
taken for the slowest intra-camera index to return results. This is
because the end-to-end query time is bottlenecked by this even
when we parallelize query processing of intra-camera indices.

There are two components of the query processing time: one is
searching for the right frames, and the other is processing those
frames to complete the query. By carefully indexing video data,
Video-zilla can minimize the search time and thus reduce the total
number of frames processed in the latter part, seen in a decrease in
the cumulative GPU time, but does not affect the processing time
in the slowest intra-camera index. Video-zilla tries to reduce the
computation time on unnecessary video data, not to reduce the
essential search time.

Figure 17 shows the cumulative GPU time across all intra-camera
indices. We do not show the cumulative CPU time here as GPU
is typically the resource bottleneck for deep learning inference
workloads. While achieving nearly the same query time for all
types queries, Video-zilla reduces the cumulative GPU time by
14x compared to the top-k indices. Viewed differently, Video-zilla

!We also tried YOLO-v3 and YOLO-v4, and saw little difference in the object detection
accuracy for our datasets. However, it is much faster to run v2.
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Figure 15: The impact of K

can support up to 14X more video queries simultaneously while
incurring negligible accuracy loss.

The root cause is that a frame-level top-k index does not cap-
ture enough feed-level information, whereas the hierarchical index
of SVSs in Video-zilla does. The top-k index incurs unnecessary
computation if it mis-classifies objects, whereas Video-zilla is more
robust. Careful inspection of the top-k indices for each camera feed
suggests that a train object can be found even in the top-3 index of a
video captured in downtown Manhattan. An actual query therefore
causes the system to unnecessarily search through the Manhattan
feed. Figure 18 illustrates this mis-classification effect. For the same
video segment, Video-zilla will identify three object classes, but the
top-k index has 4 classes, the fourth being “other”. This “other” class
is the source of extra, unnecessary computation in a top-k index,
as any video frames associated with this class will be examined
during an actual query.

We use K to represent the number of classes that can be recog-

nized in a top-k index. Setting a proper K value can help reduce the
mis-classification effect. In our case, we set K to 5. Decreasing K
from 5 to a lower value will clearly amplify the mis-classification
effect in a top-k index. Therefore we increase K from 5 to 6, 7 and
8. Figure 15 shows the impact of the K value on the cumulative
GPU time. However, identifying the right K value is non-trivial and
requires careful inspection of the specific video feed. The whole
point of Video-zilla is to automatically organize data based on its
semantics instead. Furthermore, a larger K requires a more com-
plicated recognition model, hence larger processing overhead at
ingestion time.
Video-zilla vs spatial-temporal correlation. The main purpose
is to show the benefits and caveats of using spatial-temporal correla-
tion compared to the correlation captured in Video-zilla. Therefore,
we use the same intra-camera query mechanism in Video-zilla. For
the inter-camera part, instead of dispatching queries based on the
SVS similarity, we dispatch queries based on the spatial-temporal
correlation between the camera that captured the image and other
cameras within the system. For example, for a fire hydrant query
that is captured by an in-vehicle camera in New York City, we will
only search other cameras located in NYC.

Both camera-level filtering approaches achieve around 95% query
precision performance. However, adopting spatial-temporal corre-
lation leads to higher false negative rates (FNRs) (Figure 19), sug-
gesting the search space is pruned too aggressively. This is because
spatial-temporal correlation is a coarse-grained video similarity.
Uncertainty and error rates. Figure 19 shows the false posi-
tive rates (FPR) and false negative rates (FNR) for various queries.
Recall = 1-FNR. We compare indexing schemes including "classifier-
only" (no indexing), per-camera top-k, spatial-temporal correlation
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Figure 19: Performance variation with indexing schemes and feature extractors.

(S-T), Video-zilla, and a version of Video-zilla without the inter-
camera index, where queries will be sent to all intra-camera indices.
Data points corresponding to the same scheme are linked with dash
lines. We experiment with three feature extractors.

When using the state-of-the-art feature extractors like ResNet-34
and ResNet-50, Video-zilla incurs consistent FNR losses (up to 3%)
and up to 80% FPR reduction compared to classifier only. The FPR
reduction shows Video-zilla prunes the search space effectively. S-T
achieves similar FPRs with spatial-temporal pruning. However, that
pruning is too aggressive, hence dramatically increasing the FNRs.

With the less accurate VGG-16 as the feature extractor, error rates
vary by the query goal. The FNR increases for fire hydrant because
VGG-16 classifies fire hydrants less accurately than it classifies boats
and trains, which propagates to inaccurate clustering. Interestingly,
intra only hardly suffers from increased FNR compared to the top-k
index. This suggests a way to mitigate the performance disparity
between query types by disabling the inter-camera index.

To summarize, the following factors affect the Video-zilla perfor-
mance: First, the FNR is mainly constrained by the feature extractor
accuracy; Second, using intra-camera indices only achieves lower
FNRs, while a two-level index structure achieves lower FPRs and
better processing scalability; Third, certain object types can com-
pound the effect of inaccurate feature extractors, but reducing the
number of hierarchies can mitigate the FNR disparity across object
types; finally, the threshold of the decision boundary to determine
query hit can be adjusted, and wider boundaries typically mean
lower FNRs and higher FPRs.

Scalability and accuracy trade-off. Figure 20 shows the scalabil-
ity (in terms of normalized cumulative GPU time), precision and
recall trade-off for fire hydrant queries as the number of clusters
varies within an inter-camera index for Video-zilla. Boat and train
queries exhibit similar trade-offs. The red dashed line represents the
number of clusters calculated by maximizing the silhouette value
on the real-world dataset. We do not vary the cluster number in the
intra-camera indices because manually setting that number causes
random performance changes in the system. The precision generally
increases and flattens around the chosen number of clusters. It is in
fact convex, and will decrease when there are so many clusters that
each SVS forms a distinct cluster. Conversely, recall is concave, and
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is highest when there are very few or many clusters. Scalability is
similarly concave.

These results suggest that the precision/recall can be tuned by
adjusting the number of SVSs clusters within an inter-camera in-
dex. More clusters initially increase precision and decrease recall by
aggressively eliminating irrelevant video frames, including some
relevant frames with few objects. The aggressive pruning also re-
duces the GPU time dramatically. As the cluster number increases
further, pruning becomes less effective; more SVSs are examined,
which increases both recall and the GPU time.

7.5 Case study: Specialized DNN training

A clustering query follows the format of find all semantic video
streams that are semantically similar to a video stream Y. In this
section, we highlight the potential of this novel query primitive by
showcasing its application to specialized neural network training.
We compare the training process based on the results of the cluster-
ing query compared to leveraging spatial-correlation among cam-
eras. The latter is the state-of-the-art camera correlation model [42].
We use the 20 downtown in-vehicle videos as our dataset, as there
is no obvious spatial-temporal correlation among others.

We adopt a method similar to the approach in [31] that only
retrains the first and last three layers of a model, given limited
size of the training dataset. In our case, we only select k classes
of objects that cover 95% of the image frames within the whole
dataset. Other classes will be labeled as an "Other" class. Each class
uses 500 images as the training data.

We use four models pre-trained on ImageNet in Keras [8] as
the base models: MobileNetV2, ResNet50, ResNet101, InceptionV3,
which cover a range of accuracy and inference time trade-off. 50
SVSs are selected from our hierarchical index built on top of the
20 downtown videos. For Video-zilla, we get a list of video streams
that belong to the same cluster, and use them as the training data.
For spatial-correlation, we treat the videos captured within the
same city as spatially-correlated. Using the output of YoloV2 as the
ground truth, we compare the average top-2 classification accuracy
for each trained network. Video-zilla’s automatic clustering is even
slightly better (around 1%) than manual labeling.

By clustering SVSs based on OMD, we successfully cluster video
streams that share similar classes of objects and have objects within



the same class visually similar to one other. Both factors can be
beneficial when training a specialized neural network. The cluster-
ing query by itself can be a novel tool to find the correlation among
different video streams.

Manual labeling (tagging feeds with location) is required to lever-
age spatial-temporal correlation, but Video-zilla can automate this
process by identifying semantic correlation. Further, manual label-
ing also implies some manual thresholding. For example, similar
cars should appear in cameras at consecutive intersections or 10
exits apart on a highway. These cameras may or may not be labeled
as spatially similar, but Video-zilla will recognize those.

7.6 Case study: Proactive video archiving

By capturing the correlation between different SVSs, Video-zilla
can enable a proactive video archival service. For example, consider
the train-station camera feed mentioned earlier. Most video frames
capture empty stations which convey little information. Once a feed
is divided into SVS clusters corresponding to “train arrival”, “train
departure” and “empty station”, the “empty station” cluster can be
aggressively archived. For any incoming SVS, we can estimate its
potential hit rate based on the hit rate of other SVSs in the same
cluster, and proactively archive low-information SVSs (for example,
to some secondary storage).

For the same query objects considered earlier, we consider the
ratio of total temporal length of SVSs that contain each type of
queries to the overall video data length. We also take a union of
all the SVSs that contain any one of the objects of interest, which
emulates the case when an application needs to search for differ-
ent objects. We assume each object will be queried at the same
frequency, since the hit or miss behavior should not change much
whether an application query for the same object once or multiple
times. What matters is how many different objects are queried,
not how often the same (type of) object is queried. The ratio for
fire hydrant, boat, train and combined case is 1.5%, 2.0%, 26.3% and
29.1% respectively. Even considering the union query case, less than
1/3 length of video data will be retrieved. This suggests that the
storage needs for the video feeds can be reduced by more than 70%
by aggressively archiving low-information video segments.

8 Related work

We are not aware of previous video indexing work using the
collective semantics of an entire video feed. Related work otherwise
revolves around video indexing, and video analytics optimizations.
Video indexing and retrieval. There is a rich literature on content-
based video indexing and retrieval [38, 49, 77], mainly on index
design for specific query types, such as shot boundary detection [87],
key frame extraction [50], semantic search [22] and spatio-temporal
based retrieval [54, 66]. These leverage frame-level or feed-level
video data abstractions. Video-zilla is orthogonal, since we focus
on a new abstraction for video data, SVS, which then lends to an
effective index.

Video-zilla can be seen as a form of explanation database [14, 69,
70, 85] for video data. Index structures have been widely used to
reduce query latency in conventional SQL databases [18], key-value
stores [56], graph databases [86] and many others [15]. Recent work
VStore [83] and VSS [32] aim to design the storage subsystem of
a video data management system (VDBMS), but still operate on

the raw video data directly. As a novel abstraction to capture the
inherent similarity within video data, SVS provides new ways to

understand and hence efficiently index video data.

Further, existing semantic video search indices [22, 44, 46] are

designed for offline video databases, where optimizations rely on
the ability to process the data in multiple passes. In contrast, Video-
zilla can work for live video feeds, where the main challenges of
real-time ingestion and efficient analysis of streaming data arise
from large amounts of data continuously arriving and processed in
a single pass.
Video analytics systems. Thanks to advances in machine learn-
ing, recent video analytics systems have transformed video content
analysis from simple information retrieval to sophisticated deci-
sion making. Some [33, 34] focus on video data management for
emerging applications, like virtual reality and multi-perspective
video analytics, while most [16, 17, 39, 55, 61, 75, 83, 84, 88] address
the inherent video processing complexity by providing system sup-
port for video encoding and decoding and parallel and distributed
processing. Understanding the semantic meaning of video data is
left to upper-level applications.

Recognizing the inherent redundancy within video data, more
recent efforts explore smarter video analytics approaches by un-
derstanding the video semantics. Noscope [45] and FOCUS [37]
both reduce per-feed query cost, the former with cheap per-camera
filters and the latter by applying a specialized and compressed DNN
per video camera at ingestion. Spatula [43] optimizes cross-camera
video analytics by exploiting spatial-temporal locality in a multi-
camera deployment, aiming at enabling effective object tracking
functionality. In contrast, the notion of semantic video streams
(SVS) introduces a new dimension to characterize the correlation
among video data and thus provides new optimization opportu-
nities for object identification applications [80]. Further, all these
systems implement frame analysis as part of the analytics pipeline,
whereas Video-zilla acts as a generic indexing layer that can help
simplify the development effort for new analytics applications by
supporting common indexing operations and query APIs.

9 Conclusion

In this paper, we propose a notion of semantic video stream (SVS)
that exposes the semantic content of the video feeds and captures
object distribution across a set of frames. This abstraction balances
the expressiveness of frame-level analysis and the efficiency of
camera-level aggregation. On this basis, we design Video-zilla, an
indexing layer interposed between a video store and analytics ap-
plications. Video-zilla builds a hierarchical index to capture of the
correlation between SVS instances both within and across camera
feeds, so as to dramatically narrow down the search space for com-
mon queries. We implement Video-zilla as well as proof-of-concept
query case studies for object identification, video clustering, and
archival. Video-zilla lends to almost constant scalability with the
number of video feeds. We believe the notion of SVS and the hierar-
chical index of SVS correlation can also be applied to other domains
witnessing large amounts of correlated but unstructured data.
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