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Data collected by large-scale instruments, observatories, and sensor networks

(i.e., science facilities) are key enablers of scientific discoveries in many disciplines.
However, ensuring that these data can be accessed, integrated, and analyzed in a
democratized and timely manner remains a challenge. In this article, we explore
how state-of-the-art techniques for data discovery and access can be adapted to
facilitate data and develop a conceptual framework for intelligent data access and

discovery.

cience in the 21st century is being transformed
S by our unprecedented ability to collect and pro-

cess data from a variety of sources. At the
same time, large-scale multiuser scientific observato-
ries, instruments, and experimental platforms provide
a broad community of researchers and educators with
open access to shared-use infrastructure and data
products generated from geo-distributed instruments
and equipment. These large facilities (LF) have rece-
ntly enabled significant scientific discoveries such as
the detection of gravitational waves' and the imaging
of the event horizon of a black hole.?

However, as the number of such LF and their scale
increases along with corresponding growth in the
number, distribution, and diversity of their users,
ensuring that LF data can be discovered, accessed,
integrated, and analyzed in a timely manner is result-
ing in significant demands on LF cyberinfrastructure
(.2 For example, the Ocean Observatory Initiative
(oon? integrates over 1250 instruments, producing
over 25,000 data items and over 100,000 data prod-
ucts. Similarly, each antenna of the Square Kilometre
Array (SKA), the world's largest radio telescope proj-
ect, produces raw data at the rate of approximately
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0.5-1TB per second and approximately 300PB of data
after preprocessing per telescope per year.?

Satisfying the overarching goal of LF, i.e., ensuring
democratized and equitable access to their data and
data products across the broadest set of users, can be
challenging. Many LF (e.g., OOI) provide data-download
portals and interfaces. However, discovering data/
data-products using these portals can be challenging,
especially for users from a different domain, due to
data complexity, diversity, and volumes. Furthermore,
data transfer time for the same high-resolution data
can range from near-real-time streaming access to sev-
eral weeks via shipped disk drives. For example, Dart
et al.’ demonstrated that transferring 56 TB of climate
data to the NERSC computing center took up to three
months due to network bandwidth and the poor perfor-
mance of data transfer nodes. Additionally, access to
low-latency, high-bandwidth network connections, and
adequate computing and storage resources remains a
significant challenge, especially for smaller and under-
resourced institutions. Although national resources
may be leveraged, such as those funded by the U.S.
National Science Foundation (NSF), they are typically
oversubscribed and are largely separate from the LF.
Likewise, using them to process LF data requires users
to download the data, get the data ready for their work-
flows, and then upload the data and the workflow to
the national resource for execution. As a result, their

*https://www.skatelescope.org/the-skaproject/
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effective use in processing LF
data is limited by the users'
local resources.

Consequently, democratiz-
ing LF-enabled science requires
new approaches for data dis-
covery, access, and processing.
In recent years, we have seen
advances in related technolo-
gies and capabilities aimed at
increasing access to commer-
cial data and data services such
as content delivery networks
(i.e., a geographically distributed
network of data centers and
proxy servers with embedded data placement engines)
and recommender systems. These technologies aid data
discovery, proactively recommend data that are most
relevant to the user and provide anytime/anywhere
access to the data. Recent efforts also address how cor-
responding services can be developed for science data
and to support science workflows.®

The objective of this article is to explore how these
approaches, coupled with an understanding of the
data and their usage, can be effectively used to democ-
ratize access to LF data/products and accelerate the
science enabled by LF. In this article, we build on con-
cepts and technology presented in our previous
work®® to construct an intelligent data discovery and
delivery framework composed of 1) user query analysis
techniques that model access patterns and associated
localities and affinities; 2) optimized data caching, data
prefetching, and data steaming mechanisms to sup-
port optimized push-based data delivery; and 3) a data
recommendation framework based on the collabora-
tive knowledge-aware graph-attention network (CKAT)
recommendation model to facilitate data discovery.
We also present an evaluation® of the effectiveness
and performance of these components using access
traces from two NSF-funded large-scale observatories,
the OOI, and the Geodetic Facility for the Advance-
ment of Geoscience (GAGE). The results show how the
data discovery and delivery framework and the mecha-
nisms it provides can broaden access to LF. The key
contribution of this article is a novel approach and
framework for the discovery, access, and delivery of
science data that leverage advances in the enter-
prise data technologies and complements existing
services (e.g., search, metadata catalogs, knowledge
bases, etc.). The article provides experiences and
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bThe sources are available at https://gitlab.com/sci-data.
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FIGURE 1. Overarching architecture of an intelligent data service framework.

preliminary results to show that the framework is
viable and useful and can be the basis for additional
research and development efforts toward a produc-
tion solution.

Several research advances in Cl technologies and
services can be leveraged to address LF data dis-
covery and delivery challenges. For example, the
demilitarized zone (DMZ) network model” creates a
dedicated network to enable high-throughput data
transfer for scientific data flows. A data transfer
node (DTN)® provides an access point for users
connecting to a DMZ network and is responsible
for managing and optimizing data transfers. DTNs
can also be used to analyze users’ requests in the
network; identify the patterns, localities, and affini-
ties described above; and host services that use this
information to improve data access performance. For
example, frequently accessed data can be cached at
DTNs. Furthermore, the analysis can be used to
develop strategies for predicting future queries and for
prefetching data to DTN storage closer to the user.
Finally, the analysis of user data query patterns can be
used for recommending other relevant data to users
and to host such recommendation services at the
DTNs. Finally, the DMZ and DTNs have been used to
develop a federated data collaboration architecture,
where DTNs are used to support access to data within
a collaboratory. Specifically, the Virtual Data Collabora-
tory (VDC) project® implements a data-DMZ that sup-
ports data sharing and data-driven collaborations
through DTNSs. It also integrates data from other sour-
cessuchasLF.
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implement a data recommenda-
tion service. Together, these serv-
ices can help move us toward
democratizing access to LF data
following the FAIR (Findable,
Accessible, Interoperable, and
Reusable) data principles. These components are
discussed in the following sections.

Analyzing LF data and user data usage and query pat-
terns is essential to understand correlations and predict-
ing user behaviors. Such analysis also enables the
identification of ineffective practices or bottlenecks and
thus can support the improvement of system perfor-
mance. Our goal in this analysis is to classify users based
on their queries or requests and model these queries to
identify affinities that can anticipate future requests. To
achieve this goal, we analyzed one year of requests from
the OOl and GAGE access traces. OOl and GAGE sup-
port data discovery and access interactively through
their web data portal and programmatically using an
application programming interface (API). Our analysis
showed that whereas most of the accesses in the traces
were via the data portal, 90.1% of the data downloads
used APIs and were triggered by workflows or scripts. As
user access data using APIs (termed as program users)
are the major data consumers, we focus on improving
the access performance for these users. Program user
requests are generated programmatically, these request
patterns tend to remain consistent over time and can be
used to develop models to predict future requests.

Computing in Science and Engineering
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FIGURE 2. Representation of users’ requests from a fragment of the OOI trace. Each

cluster represents a distinct user (please see in color).

To identify consistent request patterns, we ana-
lyzed program user requests in the traces using differ-
ent parameters, such as the time intervals between
queries, the set of queried data, and the queried time
range. We identified three access patterns: regular,
overlapping, and real-time requests. Regular requests
represent the most common request type and query
new data since the last request without any overlap.
Real-time requests are regular high-frequency requests
typically used to monitor the occurrence of specific
events. Overlapping requests are similar to regular
requests but have overlaps in the queried time range
across consecutive requests.

We also found significant overlap in the data que-
ried in both traces. On the one hand, this overlap in
queried data comes from overlapping time ranges
across a user's consecutive requests. On the other
hand, it results from similar data requests generated
by different users (i.e., groups of users request similar
data items). The overlap allows us to leverage data-
caching mechanisms immediately to improve data
access performance and reduce redundant queries
and data transfers.

We also analyzed correlations across data queries
and identified three key types of affinities:

1) Facility instrument locality: Data from instru-

ments that are located close together tend to be
queried together. LF typically deploy multiple
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instruments in an area with
high research value. As a
result, users studying that
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traces shows that, on aver-  FIGURE 3. Architecture of the intelligent data delivery service.

age, users make 43.1% and

36.3% of their queries for

data objects from instruments located in one
region, and 51.6% and 68.8% of their queries are to
the same data type, respectively. We also observed
a temporal correlation across user queries in our
analysis. Figure 2 shows the requested data
objects (using instrument name and instrument
location) from a fragment of the OOI trace clus-
tered by users. The observed patterns suggest the
existence of a spatial correlation across the
requests as users request multiple data objects
from one region and the same type of data object
from nearby regions. We also observed a temporal
correlation in our analysis.

2) Domain data model: Data produced by LF instru-
ments and observations are typically used to
derive data products, and the “recipes” used in this
derivation are defined in the facilities’ data models.
For example, studies in oceanology use conductiv-
ity, temperature, and depth data to calculate water
salinity and density. These domain-specific rela-
tionships define data-model affinities between
data items and result in corresponding correlations
across data queries. For example, conductivity,
temperature, and depth data are correlated and
are likely to be requested together to calculate
water salinity and density.

User association: A classic association used in collab-
orative filtering recommendation models is that users
with similar interests download similar data items. This
association indicates that if two users have similar charac-
teristics, such as research interests, they will likely request
the same data items. Identifying such associations is diffi-
cult since facilities typically do not keep track of users or
ask them to create profiles. However, our analysis shows
that determining user similarity according to their

May/June 2022

geographical proximity is possible because LF users are
typically part of larger research groups and/or projects
and potentially part of the organization or institute. Such
users would, with high probability, request similar data
items. Consequently, we can leverage user locality as an
indicator of data affinity and the resulting correlation
across queries. Our analysis of the OOl and GAGE access
traces validates user association and shows that users
within the same research group (or same organization)
tend to have similar data-query patterns.

The data delivery service aims to improve the user
data access performance by prefetching data to DTNs
close to users and enabling them to access data pri-
marily from the cache rather than retrieving them
from the remote data source. The prefetching mecha-
nism is based on user request history. As discussed
above, over 90.1% of the volume of data downloaded
is in response to queries from program users, i.e., pro-
grammatic queries generated by automated programs
or scripts. These queries, by their nature, are predict-
able. As a result, by prefetching the relevant data
items and caching requested data that can potentially
serve future requests, the local cache at the DTN stor-
age can serve a large fraction of user requests.

The data delivery service is designed based on
these insights, as illustrated in Figure 3. The architec-
ture consists of two primary functional components:
the cache layer and the data push mechanism. The
cache layer spans DTNs at the data sources (i.e., the
LF) and at user locations, and forms a distributed
interconnected cache network using the storage avail-
able at the DTNs. The goal of the data placement

Computing in Science and Engineering
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strategy is to place the data at local DTNs that are
close to potential users, and to keep data with a high
probability of being accessed in the future in the
cache network. The overall data placement strategy is
composed of local caching based on the least recently
used (LRU) policy and the creation of virtual groups.
Virtual groups are groups of users who have common
data interests and are geographically close to each
other. We can place data objects of interest to a vir-
tual group at a DTN that has the best connectivity to
the corresponding set of users. We use k-means clus-
tering to identify virtual groups. The data push mecha-
nism is responsible for prefetching and streaming
data based on user access patterns’ analysis.

Clients run on DTNs at the user side and preprocess
user requests by searching for the requested data in the
cache layer. If the requested data are not present in the
cache, the request is forwarded to a server, which runs at
DTNs at the data source, e.g., the LF. The server also runs
the data prefetching mechanisms and manages the
placement of cached data. Although we aim to improve
data delivery using a federation of DTNs, our approach is
complementary to (and can be integrated with) existing
data services such as those provided by open science
grid (OSG), open storage network (OSN), and others.

The evaluation of the data delivery service is based
on a simulated VDC with seven geographically distrib-
uted DTNs interconnected via a wide-area network. It
uses the OOl and GAGE request traces to evaluate
the effectiveness and performance of the data deliv-
ery service under various operational conditions and
using different scenarios. The results show that the
delivery service improves data delivery performance
as well as the quality of service along different dimen-
sions as compared to current practices. Key results of
our evaluation are summarized below:

1) Higher throughput and lower latencies achieved:
The data delivery service improves data delivery
throughput by over 2600 times, and reduces the
latency from request submission to data access
by 38%. These improvements are primarily the
result of requests being served using cached data.

2) Data delivery performance is more robust to net-
work variation: The data delivery service is more
robust to the network variations. Data access
performance does not dramatically change with
changing network conditions. The overall net-
work bandwidth requirements are also reduced,
especially over the wide area, as redundant data
requests are eliminated.

3) Reduced load and network traffic at the LF: The
data delivery service reduces the total requests

Computing in Science and Engineering
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FIGURE 4. Percentage of data movement from the local cache
for OOI (top) and GAGE (bottom).

and corresponding network traffic at the LF, as
many requests are satisfied using cached data
at the DTN on the client side.

We also studied how prefetching improves local data
reuse. Figure 4 shows the average percentage of
requests that are served from a local cache, using virtual
groups and caching with prefetching (referred to as
“Smart Cache” in Figure 4). The results indicate that pre-
fetching enables users to obtain a larger fraction of data
from their local cache. Instead of passively searching
cached data, the prefetching mechanism proactively
pushes data to the user. Thus, it ensures that users can
access more of their data locally regardless of whether
they are reused from the previous requests. Further-
more, the prefetching mechanism can achieve near-
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optimal performance with small cache size. Please refer
to previous work by Qin et al.? for more details.

Overall, we observe that the proposed data deliv-
ery service significantly improves performance and
enhances service robustness in response to complex
real-world operational variations.

As the number of data and data-products available at LF
grows, discovering data/data-products of interest can
be extremely challenging. The data discovery service
aims to recommend data and data products to users
that are most relevant to their research interests. How-
ever, most popular e-commerce recommendation mod-
els are based on linked data and rich metadata about a
user's personal history and preferences. Such data may
not be available and relevant when recommending data
and data products from LF, and the existing models do
not directly translate for such recommendations. In the
case of LF users, data requests are based on research
needs. Furthermore, facilities typically do not keep track
of user histories or require users to create personal pro-
files listing their preferences. As a result, the data discov-
ery service uses knowledge about user-query patterns
and correlations across user queries along with domain-
specific data models.

As noted earlier, our analysis of user requests to pro-
duction LF identified three key affinities that character-
ize query behaviors: instrument locality, domain data
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model, and user association. Harvesting these affinities
is critical to automating the data discovery process, and
they can be obtained from a combination of information
sources, including the facility instrument metadata, user
query traces, and external sources such as Wikipedia.
This information is then captured in a knowledge graph,
which is an effective method for representing such infor-
mation, capturing the facts as nodes and relationships
among facts as paths in the graph. Several recently pro-
posed recommendation models leverage knowledge
graphs to carry auxiliary information to help address the
cold-start and data-sparsity challenges.”® In our case,
the knowledge graph contains information about the
three types of affinities described above.

To design a data discovery service capable of rec-
ommending relevant data to LF users, we developed a
Collaborative Knowledge-aware ATtention network
(CKAT) recommendation model. The overall recom-
mendation generation process is summarized in
Figure 5 and described below.

We first represent each knowledge source with an
individual knowledge graph. To correlate the knowledge
sources, we can consolidate these individual knowledge
graphs into a Collaborative Knowledge Graph (CKG)
using entity alignment.'®'? The CKG enables diverse
information to be connected in the graph to form a col-
laborative signal. The CKG construction process also
allows us to examine different knowledge combinations,
which is key to achieving sound recommendations.
Paths in the CKG represent the connection of two data

Computing in Science and Engineering
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FIGURE 6. Sample recommendation outcome using OOl data. The arrows show the attention scores.

items, whereas first-order connectivity occurs when
data items are directly connected, high-order connectiv-
ity occurs when there is a path between two data items
across multiple nodes in the graph. The advantage of
combining various knowledge sources using the CKG
is the ability to identify connections between two indi-
rectly related data items, which requires capturing
long-distance paths (i.e., the high-order connectivity)
in the graph. This can be achieved using a graph neu-
ral network (GNN). However, before sending the CKG
to the GNN, we embed the graph representation into
a vector representation. This embedding layer of the
CKAT model initializes and parameterizes each node
of the CKG using a vector representation. Specifically,
we use the TransR embedding model by Lin et al.,"
which considers relations in two distinct spaces, i.e.,
entity space and relationships spaces, and performs
the translation from the entity space to the relation-
ships space, thus reflecting the importance of two
entities in different relationships. In the case of LF
data usage, two data items can be used together for
different research purposes and for which the correla-
tion or importance of the two data items is different.
For example, the correlation of physical environmental
variables can be relevant for climate change research
but can also help in the understanding of shorter-term
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effects such as the impact of invasive species on
migratory species through predation. Therefore, being
able to distinguish between these differences is
important.

The knowledge-aware attentive embedding propa-
gation layer of the CKAT model refines each node’s
representation by aggregating messages from its
neighborhoods in the CKG and applies a knowledge-
aware attention mechanism to learn the varying impor-
tance of each neighbor during a propagation. Recent
work by Wang et al."” has demonstrated that GNNs can
capture high-order connectivity through high-order infor-
mation propagation. However, key issues may impact
learning performance, such as irrelevant paths (i.e.
noise) that can impact the ability to find actual correla-
tions. Since nodes can be connected via different paths
in the graph, not all of them have the same importance
in a certain relation. Thus, we apply the attention mecha-
nism' to enable the GNN training process to focus on
the important relations.

Finally, the prediction layer of the CKAT model out-
puts the user—item pair prediction score by estimating
the likelihood of an interaction based on the final
representation.

An experimental evaluation of the CKAT-based
data discovery service shows that it can effectively
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recommend data to users. Its accuracy is over 6.12%
higher than the state-of-the-art models such as those
based on collaborative filtering, factorization, regulari-
zation, and propagation methods. Additional details
about the evaluations and the baseline models are
presented in Qin et al.’

The evaluation also shows that knowledge combi-
nation plays a key role in the results, indicating that
knowledge sources must be carefully selected to
obtain sound results. The results also differed
between facilities, indicating that a preselection pro-
cess is needed for each facility to achieve optimal
results. A large number of knowledge sources do not
necessarily provide better recommendation results.
Only related knowledge sources are needed. Our
experiments illustrate that when we purposely insert
“noise” (i.e., irrelevant knowledge) to the best knowl-
edge combination, the recommendation worsens,
which emphasizes the importance of the knowledge
selection process. Furthermore, when we disable the
attention mechanism, the recommendation result is
impacted by every knowledge source input, which
illustrates that the attention mechanism does help
eliminate the impacts of noisy knowledge sources
and helps improve training accuracy. Figure 6 illus-
trates the high-order connectivity in inferring user
preferences, i.e., using the attention score to repre-
sent the affinity in OOl data. The figure shows how
CTD instrument data (used to measure the electrical
conductivity, temperature, and pressure of seawater)
are recommended when the user previously queried
acoustic doppler current profiler (ADCP) instrument
data, which are obtained at the same location
(cabled endurance array). We observed that instru-
ment locality is more influential than other general
attributes.

As stated earlier, models using a GNN have been
widely adopted by e-commerce and social media. The
CKAT model demonstrates a new methodology and
direction to assist users in discovering facility data
through exploiting diverse knowledge sources. How-
ever, several challenges exist when targeting scientific
data, as noted in Qin et al.®

Scientific exploration in the 21st century is increas-
ingly leveraging data acquired from multiple distrib-
uted and diverse data sources and data-driven
workflows that discover, access, and integrate this
data. As a result, LF and Cl have become an essential
part of this exploration and will play an important role
in future scientific discoveries. In this article, we
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explore solutions to these challenges associated with
data discovery and access with the overarching goal
of democratizing this access to the data and the data
sources. Specifically, we explore how knowledge of
user access behaviors coupled with advances in ClI
can be leveraged to achieve democratized access to
LF data, and discuss a conceptual framework for intel-
ligent data access and delivery.

However, several open challenges remain before
access to LF data is truly democratized. For example,
these include:

» The harvesting of metadata and the creation of
the CKAT need to be automated. In the approach
described in this article, we used a manual process
to harvest this metadata from the LF.

» The applicability and effectiveness of the pre-
sented concepts and approach across different
LF (beyond those presented in this article) and
domains need to be verified. While we believe
the approach will translate to other LF beyond
those studied in this article, we have not done
this yet.

» The proposed framework builds on a data fabric
with the required capabilities and services. While
VDC, which was leveraged in this work, has con-
ceptualized and prototyped these components,
a production deployment will be needed.

The effectiveness of the proposed approach can
be increased by distilling knowledge about the con-
nection between LF data, data products, and associ-
ated research. Furthermore, the proposed methods
can deliver personalized recommendations by creat-
ing researcher profiles from publications and modern
techniques such as natural language processing and
knowledge representation learning.

We envision that the proposed framework and
services will become a pervasive data Cl available to
all researchers as part of a national data fabric.

This work was supported in part by the National Science
Foundation under Grant OAC 1835692 and Grant OAC
1640834.
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