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Abstract—Supporting diverse Quality of Service (QoS)
requirements in 5G and beyond wireless systems often
involves solving a succession of convex optimization
problems, with varied approaches to optimally resolve each
problem. Even when the input set is specifically
designed/architected to segue to a convex paradigm, the
resultant output set may still turn out to be nonconvex,
thereby necessitating a transformation to a convex
optimization problem via certain relaxation techniques.
This transformation in itself may spawn yet other
nonconvex optimization problems, highlighting the
need/opportunity to utilize a Robust Convex Relaxation
(RCR) framework. In this paper, we explore a particular
class of Convolutional Neural Networks (CNNs), namely
Deep Convolutional Generative Adversarial Network
(DCGANs), to solve not only the QoS-related convex
optimization problems but also to leverage the same RCR
mechanism for tuning its own hyperparameters. This
approach gives rise to various technical challenges. For
example, Particle Swarm Optimization (PSO) is often used
for hyperparameter reduction/tuning. When implemented
on a DCGAN, PSO requires converting
continuous/discontinuous hyperparameters to discrete
values, which may result in premature stagnation of
particles at local optima. The involved implementation
mechanics, such as increasing the inertial weighting, may
spawn yet other convex optimization problems. We
introduce a RCR framework that capitalizes upon the feed-
forward structure of the “You Only Look Once” (YOLO)-
based DCGAN. Specifically, we use a squeezed Deep
Convolutional-YOLO-Generative Adversarial Network
(DC-YOLO-GAN), hereinafter referred to as a Modified
Squeezed YOLO v3 Implementation (MSY3I), combined
with convex relaxation adversarial training to improve the
bound tightening for each successive neural network layer
and to better facilitate the global optimization via a specific
numerical stability implementation within MSY3I.
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I. INTRODUCTION

The cellular industry, including wireless operators and
device manufacturers, is racing to deliver the Fifth Generation
(5G) wireless technology to end users through three main
service categories: Enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communications (URLLC), and
massive Machine-Type Communications (mMTC). These
service categories will support a wide range of QoS needs by
existing and emergent applications, such as connected and
autonomous vehicles, AR/VR, Industrial IoT, and others. While
the concepts of network slicing and Software-Defined Networks
(SDNSs) offer a framework for supporting diverse sets of QoS,
ultimately it comes down to the resource management algorithm
within an operator’s control plane to ensure that these QoS sets
are met without excessive allocation of network resources.
Various providers that launched their own 5G networks have
made QoS a top priority and articulated the need for new
approaches for the envisioned Beyond 5G (B5G) networks, or
what is referred to as “6G.”

Efficient support for 5G/B5G/6G QoS often necessitates
formulating nonconvex optimization problems. Examples
include: Radio Resource Allocation (RRA) (whose aim is to
maximize the spectral efficiency, subject to certain
performance guarantees), Multi-Radio Access Technology
(RAT) handling for multi-connectivity (each with its own QoS
requirements), and Radio Resource Management (RRM) for
connections with varied QoS requirements. The involved
optimization formulations are, in essence, mixed integer non-
linear programming (MINLP) problems that need to be
optimally solved. When the objective and constraint functions
are nonconvex, these MINLPs are construed to be nonconvex.
For instance, an RRA problem may be formulated as a problem
of optimally assigning frequency-time blocks (integer
variables) to a number of served connections while
simultaneously determining the appropriate transmit powers
(continuous variables) for these blocks over various frequency
subcarriers.

Prototypical approaches to solving a nonconvex MINLP
problem involve transforming it into a convex surrogate, e.g.,
via reformulation, convex approximation, or a series of convex
relaxations. Typically, convex relaxations are derived on a
problem-by-problem basis, but there are indeed forays, such as
Langevin Diffusions (with the possibility of premature



stagnation of particles at local optima) for nonconvex problems,
Alternating Direction Method of Multipliers (ADMM) for
nonconvex and nonsmooth functions, and yet others, such as for
transforming a nonconvex function to the sum of a smooth
function, a concave continuous function, and a convex lower
semi-continuous function [1]. Once the nonconvex function has
been transformed into a decomposed form, other general-
purposes approaches, such as Convex Relaxation Regression
(CoRR) and Lassere’s Semidefinite Programming (SDP)
Relaxation (a.k.a., Linear Matrix Inequality or LMI) can be
used. From a numerical implementation standpoint, the
aforementioned techniques may not be optimal, in terms of
transparency at each neural network layer; this is addressed by
the proposed RCR framework.

Historically, various neural network architectures have been
experimented with for tackling nonconvex MINLP problems.
Each has had its drawbacks, and as one simple example, in
several instances, performance tends to degrade with continued
training [2]. One approach that has gained great interest due to
its robustness and accuracy leverages convex relaxation
adversarial training aboard a DCGAN [3]. However, the
computational cost has often been quite high [4], as in the case
of the YOLO implementation for DCGAN, which is often
referred to as a DC-YOLO-GAN. Accordingly, to reduce the
computational cost, the notion of fire modules/layers from
SqueezeNet (a deep neural network) was utilized to replace
convolution layers (a.k.a. Conv) with Fire Layers (FL) [5], and
a SqueezeDet adaptation was incorporated for the replacement
of certain Conv with Special Fire Layers (SFL) [6]. In essence,
this process optimized the DCGAN. The FL and SFL reduced
network is referred to as a Modified Squeezed YOLO v3
Implementation (MSY3I). Prior research showed that although
the number of parameters in MSY3I are reduced in comparison
to a prototypical YOLO implementation, the average precision
and accuracy remain relatively high [7].

Given its advantages in terms of the reduced number of
hyperparameters to tune, Particle Swarm Optimization (PSO) is
often implemented within a DCGAN, [8, 9]. However, a
challenge arises when instantiating PSO aboard the DCGAN, as
the continuous or discontinuous hyperparameters must be
converted to discrete values (e.g., integers) [10]; yet, rounding
the calculated velocities to discrete integer values creates an
artificial paradigm, wherein particles may stagnate prematurely.
Certain techniques, such as increasing the inertia (allowing
particles to advance past their current local optimum) can
somewhat obviate this issue [11], but a final challenge remains
in addressing the original intent of convex optimization for
enhanced 5G QoS via the convex optimization problem of
hyperparameter reduction/tuning — effectuating an RCR
adversarial training mechanism aboard the utilized MSY3I.
Perhaps, the irony can best described as follows. Producing the
tightest possible relaxation for the neural network layers of the
MSY3I turns out to be no easier than the original problem of
providing the tightest possible relaxation for solving 5G QoS
convex optimization problems.

The remainder of this paper is organized as follows. Section
II provides background and presents related work. Section III
discusses three numerical challenges: effectuating an RCR
adversarial training mechanism via MSY3I; reducing the

computational cost via fire layers; and utilizing adaptive inertia
weighting to operationalize PSO (to mitigate against the
premature stagnation of particle velocities when implementing
PSO onto the MSY3I). Common solution set mechanics are
described. Section IV articulates the experimentation findings.
Section V provides concluding thoughts and outlines future
work.

II. BACKGROUND AND RELATED WORKS

Obtaining the globally optimal solution to an MINLP
problem requires exploring a vast search space. This can be
done through robust mixed-integer convex relaxations of the
MINLP. Underscoring the robustness aspect, the Institute for
Operations Research at ETH Zurich phrases it quite nicely: “...
it is necessary to identify those key combinatorial substructures,
induced by integral variables, which can be leveraged so as to
improve the involved bound tightening and global optimization
algorithms” [12].

A. Traversing the Search Space

1) Stochastic Search

Stochastic search approaches are essentially general-
purpose problem-agnostic algorithms that can utilize
qualitative or quantitative (computational) modules tailored to
the considered problem and/or are combined with problem-
specific algorithms. Most referenced algorithms reside within
the swarm intelligence subfield of Al. They include, among
others, genetic, differential evolution, colony optimization, and
PSO algorithms. These algorithms share the commonality that
several search entities are created and individually utilized in
hyper-locale optimization actions while contemporaneously
liaising with each other to derive a globally optimal solution.
On the one hand, the challenge in utilizing these algorithms
resides in the fact that if the chosen swarm size is too small, the
algorithm will more likely gravitate to a local minimum without
ascertaining a globally optimal solution; on the other hand, if
the chosen swarm size is too large, the likelihood of
ascertaining a viable globally optimal solution increases, but
the computational overhead increases as well.

While the methods encompassing genetic and evolutionary
algorithms cannot prove optimality of the solution, PSO applies
the dual approach of global exploration and local search
methods to ascertain an optimum solution. PSO is a meta-
heuristic algorithm, i.e., no guarantee that a globally optimal
solution can be found for some classes of problems. However,
even relatively small swarm sizes are fairly consistent in
providing “good enough” near-optimum solutions in relatively
few iterations [13]. Hence, PSO is often utilized to solve MILP
and MINLP problems.

2) Implementation of PSO Search

Fundamentally, a PSO approach simulates a set of particles
or candidate solutions that traverse the search space. The
method for PSO initializes the swarm at a random point within
the space. Each particle has an assigned position and a velocity.
The objective function is evaluated for each particle, and a
global optimum G is ascertained. Iteratively, the position and
velocity for each particle progress towards its individual best,



represented by the vector I, as well as the global best,
represented by the vector G, as shown in Equations 1 and 2,
respectively:
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where xi(k) and vl.(k) denote, respectively, the position and
velocity of particle i at generation [time step] k with particle
inertia (9, which induces a certain momentum with regards to
the involved particles; the parameters f;; and f,; are
uniformly distributed random variables over [0,1], a¢;and a, are
acceleration constants, and I; denotes particle i’s optimum; the
solution to (1) and (2) gives the global optimum [14].

An initial challenge arises when integrating PSO search into
the DC-YOLO-GAN implementation, as most of the
parameters are continuous or discontinuous, and they need to
be transformed to discrete values (e.g., integers). To maximally
preserve the original semantics, each attribute of a PSO particle
is a distribution over its possible values rather than a specific
value [9]. In addition to inertia ¢, the (cognitive component)
vector / represents the individual best position in the search
space that the involved particle has seen, and the (social
component) vector G represents the best position in the search
space that any particle in the swarm has seen; these three
parameters — inertia, cognitive component, and social
component — dictate a particle’s behavior [9]. Furthermore, the
updated velocity vi(k) is added to the particle’s position xl.(k),

thereby moving the particle through the search space. However,
()

as the position x;" represents a set of parameters, the rounding

of the calculated velocities vi(k) to discrete integer values creates
an artificial environment, wherein particles may stagnate
prematurely (i.e., get trapped into local optima [15]) with a non-
graceful degradation of the particle inertia ().

Certain techniques, such as increasing the inertia (e.g.,
weighting the distance from the particle’s local optimum) allow
the involved particles to progress past their current local
optimum instead of stagnating prematurely; these techniques
beget calculating varying inertial weights. The chosen platform
for the experimentation herein is the GNU Octave platform. As
a numerical computation platform, it is mostly compatible with
comparable platforms, such as MATLAB™; as GNU Octave is
released under a GNU GPLv3 license, the source code was
modified for the experiments conducted herein, which resulted
in a Modified GNU Octave (M-GNU-O) platform [16], that can
better leverage certain accelerants to deal with the PSO
adaptive inertial weighting issue (yet another convex
optimization problem) [17] as well as the various convex
relaxations discussed herein.

The selection of the PSO was predicated upon its
performance robustness (good performance even under a small
swarm size) and ability to converge in relatively few iterations.
As an architectural construct, the discussed DCGAN

instantiation exhibits robust performance for the case herein,
while other constructs may degrade in performance with
prolonged training. For the 5G/B5G/6G functions needed for
QoS, the PyTorch Machine Learning library was utilized, and
the PyTorch implementation of the neural network framework,
YOLO v3, was utilized; accordingly, the specific DCGAN
implementation was that of DC-YOLO-GAN.

B. Resolving Gradations of Mixed-integer Convex
Relaxations to Facilitate Convex Optimizations

Hybridizing local and global optimization algorithms has
become an accepted strategy for deriving valid bounds for near-
optimal convex optimization solutions [18]. This can also be
operationalized by denoting and resolving gradations of mixed-
integer convex relaxations. Accordingly, the nonlinearities are
typically replaced by convex under-estimators and concave
over-estimators. The tightest convex under-estimator and the
tightest concave over-estimator are referred to as the convex
envelope and the concave envelope of a function, respectively.
Prior findings indicate that RCR, which facilitates convex
optimization-based methods, can be well addressed by a MSY31
combined with convex relaxation adversarial training.

1) Squeezed YOLO v3 Implementation

Darknet, an open-source neural network written in C and
CUDA, is a CNN implementation framework for the widely
YOLO [19]. YOLO v2 utilizes a variant of Darknet-19, which
starts with a 19-layer neural network, supplemented with 11
additional layers, thereby yielding a 30-layer convolutional
architecture for YOLO v2. As documented in the literature, the
performance of YOLO v2 is sub-optimal for the need described
herein [20]; hence, a variant of YOLO v3 was selected. YOLO
v3 utilizes a variant of Darknet-53, which starts with a 53-layer
network that is supplemented with 53 additional layers, thereby
yielding a 106-layer convolutional architecture for YOLO v3.
Compared with YOLO v2, the classification performance of
YOLO v3 is greatly enhanced, but prior experimental findings
show that the computational performance is slower. This should
be axiomatic, as a search space approach for a 106-layer YOLO
network, even with the constraining decision of only optimizing
the number of neurons in the layers at ten test values each, would
still necessitate the training of 10'% models. Hence, to decrease
the number of parameters for the YOLO instantiation, the use of
fire layers (of SqueezeDet) to optimize the network structure
segues to a MSY3I. In essence, certain SFLs replace certain
Conv layers, and the number of hyperparameters as well as the
number of filters of the compression portion of the fire layers
are reduced; prior research has indicated that the number of
model parameters in MSY3I will be lower than that of just
YOLO v3 with only the slightest degradation in performance [5,
6]

2) Convex Relaxation Adversarial Training

In addition to analyzing its performance, MSY3I must be
examined for robustness, and this often relates to the
performance of the layer-wise optimal convex relaxations
implemented within the involved DCGAN (or MSY3I in this
case) [21]. In essence, a certain convex relaxation is posited for
the purpose of ascertaining an upper bound for a worst-case
instability scenario. This is of critical importance, as



prototypical DCGANSs exhibit non-graceful degradation in
performance even at imperceptible perturbation levels, which
results in numerical instability. Given the abundance of
perturbations/variability in contemporary environs, a
prototypical approach for mitigating numerical instability, such
as batch normalization (batchnorm), can have counterproductive
consequences if not implemented in a proven fashion.
Batchnorm is a method for imbuing stability into a neural
network via normalization of the input layer, such that each layer
can learn a bit more independently of other layers. Simply
applying batchnorm to all the layers of the neural network can
result in oscillation and instability. Prior research has shown that
this instability can be avoided by selectively applying
batchnorm, e.g., only at the generator output layer and/or the
discriminator input layer (the adversarial components of a
DCGAN).

To verify the performance of the layer-wise convex
relaxations implemented in MSY3I, a hybridized approach
vector is utilized in our work: (1) exact (complete), and (2)
relaxed (incomplete). Prototypical exact verifiers are predicated
upon Mixed Integer Programming (MIP) (specifically, MINLP
for the experimentation discussed herein), Branch-and-Bound
(BnB), or Satisfiability Modulo Theories (SMT). By definition,
these exact verifiers are not beset by false positives or false
negatives, but they must contend with resolving NP-hard
optimization problems, which in turn obviates their scalability.
Prototypical relaxed verifiers are predicated upon MILP or
Mixed-Integer Convex Programming (MICP), which is more
compact than MILP. MILP/MICP can be more quickly resolved
and are more scalable, but their effectiveness (i.e., false
negative rate) degrades quickly [22], thereby potentially
obviating the ability to verify robustness. Hence, it can be seen
that there are two aspects of relaxation: (1) convex relaxations
implemented at each layer of the MSY?3I, and (2) the relaxation
schema verifier implemented to ascertain robustness of the
MSY3I both layer-wise and overall [23]. These are the key
elements of the RCR framework, which has a counterpoised
objective of the tightest possible relaxation.

3) Facilitated RCR

Ultimately, the final rendition of the MSY3I is dictated by
the PSO deployment; the PSO determines the reduction in the
number of hyperparameters and the tuning thereof for the
MSY3I. In turn, the M-GNU-O facilitates the adaptive inertial
weighting to facilitate more robust PSO performance by
addressing the premature particle velocity stagnation issue.

III. NUMERICAL CHALLENGES AND SOLUTIONS

To the extent that RCR is a key enabler of computationally
tractable SG/B5G/6G solutions, its underlying architecture is
central to the equation. While certain mathematical approaches
hold great promise, their implementation may present a barrier
due to various numerical issues. Our RCR “architectural stack,”
shown in Figure 1, tackles three successive challenges: (1)
effectuating an RCR paradigm via MSY3I, (2) reducing the
computational costs via PSO-tuned MSY31, and (3) utilizing
adaptive inertial weighting via M-GNU-O to operationalize the
PSO. M-GNU-O serves as a key enabler for facilitating (3),

which in turn facilitates (2), and in turn enables the bespoke
MSY3I to effectuate an RCR paradigm.
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Fig. 1. RCR architectural stack and components

As noted in Section II-A-1, initialization of the swarm size
in PSO is critical, as it impacts how robustly and quickly the
involved optimization algorithm converges to a globally optimal
solution. Furthermore, a nonoptimal initialization schema can
segue to unstable gradients, which may have a profound impact
on the stability of the involved optimization algorithms. For
example, parameter updates that are excessively large (i.e.,
exploding gradient) or excessively small (i.e., vanishing
gradient) may obviate the intended MSY3I deep learning.

Along this vein, the choice of the YOLO version to be
utilized in deep learning is nontrivial. The reviews of recent
versions of YOLO (e.g., v5) or even other variants (e.g., PP-
YOLO) are still forthcoming, and peer-reviewed publications
are not yet available. Our selection criteria narrowed to the
YOLO version that could interoperate with the more robust set
of 5G/BFG/6G-related tools. Given the performance
disadvantages of YOLO v1 and v2, they were ruled out. YOLO
v4 is a Darknet implementation, and YOLO v3 and v5 are
PyTorch implementations; as the PyTorch library has a
repertoire of S5G/BFG/6G-related tools, the choice was
narrowed to YOLO v3 and v5. Because YOLO v5 has not been
peer-reviewed yet, the decision was made to proceed with
YOLO v3.

In addition to the CNN framework, the selection and
utilization of various functions from the available ML
libraries/toolkits are also important. By way of background
information, Facebook operates two well-known open-source



ML libraries/toolkits: PyTorch and the Convolutional
Architecture for Fast Feature Embedding (Caffe2). In March
2018, the Caffe2 repository was merged into the PyTorch
repository on Github. Maintainers, core developers, and users
noted several incompatibility issues (although Open Neural
network Exchange or ONNX is intended to help resolve that)
Typically, the onus is on SG/BFG/6G researchers/programmers
to understand and address the intricacies of the underlying
numerical implementation. In this case, the numerical stability
implementation challenge was nearly on par with the devising
of the numerical stability strategy itself.

IV. EXPERIMENTATION FINDINGS

For the experiments described herein, we utilized two
different RCR paradigms with different versions of components
at the MSY3I level (MSY3I #1 and MSY3I #2), augmented
with a TensorFlow-based DCGAN implementation, which is
considered stable. MSY3I #1 was targeted for solving QoS
convex optimization problems. As such, it required a high
degree of numerical stability; accordingly, PyTorch v0.4.1 was
utilized. MSY3I #2 was intended for solving 5G/BFG/6G-
related functions (e.g., STFT), with lower utilization rate.
Accordingly, the recently released PyTorch v1.7.0 was utilized,
allowing MSY3I #2 to focus on its intrinsic stability training,
so as to mitigate against the numerical instability issues from
PyTorch v1.7.0 (as contrasted to v0.4.1). A “forward stable”
TensorFlow-based DCGAN implementation (hereinafter,
DCGAN #3) was utilized via an additional generator (hence, a
mixture of generators) to assist in mitigating mode failure
(a.k.a. mode collapse), which occurs when two competing
neural networks that are being trained concurrently fail to
converge or have an unusual convergence. Note that a forward
stable DCGAN does not amplify perturbations of the input set,
e.g., due to noise. The experimental testbed with the described
components is delineated in Figure 2.
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Fig. 2. Experimentation with a stable RCR, composed of two MSY3I
implementation that are augmented with a third DCGAN.

The selection and utilization of various functions from the
available ML libraries/toolkit is crucial. It is equally important
for the SG/BFG/6G researcher/programmer to understand and

contend with the implementation intricacies (e.g., signature,
dependency, etc.) of the numerical algorithms being utilized.
For example, signature consistency intricacies have been
shown to result in errors or incorrect results. Likewise,
dependency intricacies are also an issue, as they introduce
variances that result in errors or incorrect outcomes [26].

A. STFT Signature Consistency Challenges

Short-time Fourier transform (STFT) is a key functionality
in many OFDM-based wireless systems and is often used as the
basis for signal detection and classification in 5G and beyond.
Previous PyTorch implementations of STFT (including the
spectrogram transform) had slower performance than Librosa,
a well-known Python package for signal processing and
analysis [24]. Accordingly, the developers changed the function
signature to be consistent with Librosa at v0.4.1 (various
PyTorch versions are available at
https://pypi.org/project/torch/0.4.1/#history). The significance
is that the STFT signature for PyTorch versions prior to v0.4.1
can cause errors or return incorrect results [25].

B. STFT Dependency Challenges

In SciPy et al., it was noted that the various implementations
of STFT in TensorFlow often introduce a phase skew
dependency on the stored window which, if not addressed
during the conversion, would have severe effects on any ensuing
processing or phase analysis [26]. Hence, when phase
information is processed, it is crucial to be aware of the phase
conventions by which the STFT is being computed and adjust
the processing schema accordingly. For example, conversion
between conventions typically equates to point-wise
multiplication of the STFT with an a priori determined matrix of
phase factors.

The previously discussed PyTorch STFT issue (#9308 fixes
#7883 by changing STFT to have a consistent signature with
Librosa [27]) is emblematic of the numerical algorithm
implementation challenges involved. First, the substantive
portion of numerical algorithm/numerical analysis problems
cannot be solved precisely; they need to be solved in an
approximate fashion, and this is achieved by supplanting the
infinite object with a finite approximation, as simplistically
exemplified in the following Taylor-series polynomial
approximation of the exponential function and a composite
trapezoidal approximation of a definite integral, respectively:
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The approximation errors are, in essence, truncation errors.
Second, errors also stem from the limitations (i.e., round-off
errors) in the representation of real numbers within the involved
computing platform; these include not only the case of irrational
numbers (which require an infinite number of digits for their
exact representation), but also for various cases involving
rational numbers (which are often represented as floating-point
numbers). The accuracy of the floating-point representation is
underpinned by the number of significant digits utilized;



axiomatically, a higher number of significant digits equates to
a higher computational load. Third, extremely large or small
numbers cannot readily be represented in floating-point
arithmetic due to the phenomenon of overflow (an arithmetic
operation yields a resultant, which is outside the range of the
computational platform’s floating-point numbers) and
underflow (an arithmetic operation yields a resultant nonzero
fraction, which is not readily able to be represented as a nonzero
floating-point number).

Along this vein, the implementation of STFT in some of the
software libraries/toolkits (e.g., TensorFlow, among others)
does not follow either the frequency-invariant STFT convention
or the time-invariant STFT, wherein the time resolution and
frequency resolution of the STFT is the same across the time-
frequency plane, such as shown below for the latter case,
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where L denotes the time separation between the short-time
segments, and signal s is being filtered with STFT window g.
Unconventionally, the window g is stored as vector of length Lg
(typically, Lg < L), and the peak is not at g[0], as expected, but
at g[ | Lg/2 | ] with the Simplified Time-Invariant STFT
calculated, as shown in the following equation:
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Comparing (5) and (6), it can be discerned that (4) imbues a
delay as well as a phase skew that is dependent on the (stored)
window length L, [26]. Researchers have also noted that the
implementation of STFT in some of the software
libraries/toolkits does not consider s circularly, but only for n €
[o, ..., [(L = Lg) /aJ] [26]. The documentation for the utilized
functions (e.g., phased=gabphasederiv[dflag,method,...]) for
use on the modified [experimentation] GNU Octave platform
described herein (i.e., M-GNU-O) notes that “phased is scaled
such that (possibly non-integer) distances are measured in
samples ... the computation of phased is inaccurate when the
absolute value of the Gabor coefficients [of the Gabor transform,
which is a special case of STFT] is low. This is due to the fact
[that] the phase of complex numbers close to the machine
precision is almost random™ [27].

For the aforementioned reasons, our experimental
architecture utilizes specific versions of PyTorch and
TensorFlow for specific purposes. As was depicted in Figure 2,
because numerical stability is needed for RCR Paradigm #1,
PyTorch v0.4.1 was utilized for MSY3I #1. Whereas
consistency and accuracy was needed for certain key functions
(e.g., STFT) of RCR Paradigm #2, PyTorch v1.7.0 was utilized
although the overall numerical stability decreased. To
compensate/mitigate against this deficiency, we added DCGAN
#3 to prevent mode failure/mode collapse. Collectively, this
framework provides the basis for the 5G/B5G/6G testing amidst
function/method issues that have arisen within ML
libraries/toolkits. A core set was examined, which include FFT,

IFFT, Real-Valued FFT (RFFT), Inverse RFFT (IRFFT), STFT,
and Inverse STFT (ISTFT). A sampling of the issues/bugs
encountered in various libraries/toolkits/frameworks (e.g.,
Caffe, Caffe2, Julia, PyTorch, SciPy, and TensorFlow) is shown
in Figure 3.
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Fig. 3. Sample of numerical issues found in various ML libraries/toolkits.

Our experimentation period spans 4/24/18 through 12/10/20,
which aligns with the release of PyTorch v0.4.0 and the release
of PyTorch v1.7.1, respectively. During this period of time, the
5G/B5G/6G-related  research  that  necessitated  the
functions/methods of FFT, IFFT, RFFT, IRFFT, STFT, and
ISTFT triggered the modification ability of M-GNU-O as well
as an architectural testbed that would address the
aforementioned numerical issues.

C. Conversion to Semi-Definite Programming Problem

Ironically, although our original intent is to resolve QoS-
related convex optimization problems, the process involves
formulating successive gradations of convex optimizations,
with varied approaches to resolve each class of convex
optimizations. For example, the requisite adaptive inertial
weighting (used to facilitate PSO, which in turn would facilitate



MSY3I to process yet other convex optimizations) is itself
comprised of a succession of convex optimizations problems.

Indeed, many of the intermediate enabling steps involve
Quadratic Programming (QP) step-down algorithms, including
Quadratically Constrained Quadratic Programming (QCQP),
which would compute the QCQP special class convex
optimization problem in polynomial time. A QCQP takes the
following general form:

minimize (( %)xT Pox+ qbx + ro)
X

subject to (%)xT Px+ qlx+r, <0,i=1,...,m
Ax=b
where P, ..., Pn are n-by-n matrices; P €St (7)

and x € S” is the optimization variable

Accordingly, there are two envelopes for this aspect of
discerning a gradation among convex optimization problems:
(1) if Py, ..., Pm €S}, , where S}, denotes the set of positive
semidefinite matrices, the involved problem is convex, and (2)
a QP with a semi-definite Hessian is still convex.
Traditionally, computing the Hessian matrix for large-scale
problems is computationally impractical [28]. However, given
a particular Hessian matrix in a resolvable form, proxies (i.e.,
approximations) of the Hessian matrix can be obtained in
alternative ways, e.g., Broyden—Fletcher—Goldfarb—Shanno
(BFGS) algorithm. However, to avoid false curvature
information, additional initialization conditions are required.
To accommodate this, resolving of the QCQP can assist in the
determination of the involved trust regions (the subset of the
objective function region that is approximated). Furthermore,
there are a variety of trust-region methods given a sufficiently
low-rank positive semidefinite matrix; in essence, this equates
to computing R1 = Rc + Ru, where Rc and R, are examined, via
resolving the following Rank Minimization Problem (RMP) :

(R, ,R,) =arg min  rank R.), 8)
R.+ R, = R,
subject to R, =20

R,, is diagonal

In many instances, even when the input set is
designed/architected to be convex, the resultant output set may
turn out to be nonconvex. Accordingly, when the rank function
is nonconvex and discontinuous, the RMP cannot be solved
directly. To accommodate this, and to transform the problem to
a convex form, the rank function is replaced with the trace
function, giving rise to a Trace Minimization Problem (TMP):

(R.,R, ) =arg gniRn tr (R,), )

R.+ R, = Ry
R. =0
R,, diagonal

subject to

Because the rank function tallies the number of nonzero
eigenvalues and the trace function computes the sum of the
involved eigenvalues, the above equation can be reconstrued as
an equivalent Semi-Definite Programming (SDP) problem:

(Re,R, ) =arg min tr(R.), (10)
174 RC]
R¢ W,

subjectto{ R. + R, = Rs
Rc =0

R,, is diagonal

Once in this form (i.e., the nonconvex QCQP has been relaxed
to a convex SDP), there are numerous SDP solvers (e.g.,
SDPT3, which is a MATLAB/GNU Octave Semi-Definite
Programming or SDP software package) available for these
types of problems; the aforementioned (regarding Equations 7,
8, 9, and 10) is implemented atop the M-GNU-O platform,
which readily supports various high-performance SDP solvers
[16]. Prior testing was effectuated in Ilog Cplex Optimizer (a
commercial software package for optimization) and,
subsequently, on AD Model Builder (ADMB) (an open-source
software package for non-linear statistical modeling) as well as
Interior Point OPTimizer (IPOPT) (a software package for
large-scale nonlinear optimization).

V. CONCLUDING REMARKS AND FUTURE WORK

This paper articulated some of the issues/intricacies of
5G/BFG/6G-related function implementations, of various ML
frameworks, which affected their accurate resolution of QoS
convex optimization problems for SG/BFG/6G. For example,
mathematical equivalence does not necessarily segue to correct
results when using certain functions of particular versions of
numerical computation libraries. By way of example, in some
cases, sub-operations needed to be combined, as performing the
sub-operations separately would be computationally slower and
more numerically unstable (e.g., as the softmax output
approaches 0, the log output approaches infinity, which causes
instability).

To compound this issue, it was found that the optimization
challenge of transforming nonconvex to convex optimization
problems may spawn yet other nonconvex optimization
problems, thereby highlighting the need/opportunity to utilize
an RCR framework. This paper presented an RCR architecture
(presented in Figures 1 and 2), which could not only resolve the
tasked 5G QoS-related convex optimization problems but could
also leverage the same RCR mechanisms for tuning its own
hyperparameters; the RCR architectural stack achieved this via
three distinct phases: (1) effectuating a RCR paradigm, via a
bespoke MSY3I, (2) using a PSO to tune the MSY3I so as to
reduce the associated computational costs, and (3)



operationalizing the PSO via an adaptive inertial weighting
mechanism facilitated by an M-GNU-O. For future work, an
additional DCGAN will be added to the RCR architectural
stack to derive further key combinatorials for optimizing
computations.
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