

AI-based Robust Convex Relaxations for Supporting

Diverse QoS in Next-Generation Wireless Systems

Steve Chan
Vit Tall and University of Arizona

Orlando, USA
schan@vittall.org

Marwan Krunz
University of Arizona

Tucson, USA
krunz@arizona.edu

Bob Griffin
University of Arizona

Tucson, USA
bobgriffin@me.com

Abstract—Supporting diverse Quality of Service (QoS)

requirements in 5G and beyond wireless systems often

involves solving a succession of convex optimization

problems, with varied approaches to optimally resolve each

problem. Even when the input set is specifically

designed/architected to segue to a convex paradigm, the

resultant output set may still turn out to be nonconvex,

thereby necessitating a transformation to a convex

optimization problem via certain relaxation techniques.

This transformation in itself may spawn yet other

nonconvex optimization problems, highlighting the

need/opportunity to utilize a Robust Convex Relaxation

(RCR) framework. In this paper, we explore a particular

class of Convolutional Neural Networks (CNNs), namely

Deep Convolutional Generative Adversarial Network

(DCGANs), to solve not only the QoS-related convex

optimization problems but also to leverage the same RCR

mechanism for tuning its own hyperparameters. This

approach gives rise to various technical challenges. For

example, Particle Swarm Optimization (PSO) is often used

for hyperparameter reduction/tuning. When implemented

on a DCGAN, PSO requires converting

continuous/discontinuous hyperparameters to discrete

values, which may result in premature stagnation of

particles at local optima. The involved implementation

mechanics, such as increasing the inertial weighting, may

spawn yet other convex optimization problems. We

introduce a RCR framework that capitalizes upon the feed-

forward structure of the “You Only Look Once” (YOLO)-

based DCGAN. Specifically, we use a squeezed Deep

Convolutional-YOLO-Generative Adversarial Network

(DC-YOLO-GAN), hereinafter referred to as a Modified

Squeezed YOLO v3 Implementation (MSY3I), combined

with convex relaxation adversarial training to improve the

bound tightening for each successive neural network layer

and to better facilitate the global optimization via a specific

numerical stability implementation within MSY3I.

Keywords—Quality of Service, 5G Networks, Nonconvex

Optimization, Convex Relaxation, Particle Swarm Optimization,

Deep Convolutional Generative Adversarial Networks, Numerical

Implementation, You Only Look Once, Mixed Integer Non-linear

Programming, Robust Convex Relaxation Framework.

I. INTRODUCTION

The cellular industry, including wireless operators and
device manufacturers, is racing to deliver the Fifth Generation
(5G) wireless technology to end users through three main
service categories: Enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communications (URLLC), and
massive Machine-Type Communications (mMTC). These
service categories will support a wide range of QoS needs by
existing and emergent applications, such as connected and
autonomous vehicles, AR/VR, Industrial IoT, and others. While
the concepts of network slicing and Software-Defined Networks
(SDNs) offer a framework for supporting diverse sets of QoS,
ultimately it comes down to the resource management algorithm
within an operator’s control plane to ensure that these QoS sets
are met without excessive allocation of network resources.
Various providers that launched their own 5G networks have
made QoS a top priority and articulated the need for new
approaches for the envisioned Beyond 5G (B5G) networks, or
what is referred to as “6G.”

Efficient support for 5G/B5G/6G QoS often necessitates
formulating nonconvex optimization problems. Examples
include: Radio Resource Allocation (RRA) (whose aim is to
maximize the spectral efficiency, subject to certain
performance guarantees), Multi-Radio Access Technology
(RAT) handling for multi-connectivity (each with its own QoS
requirements), and Radio Resource Management (RRM) for
connections with varied QoS requirements. The involved
optimization formulations are, in essence, mixed integer non-
linear programming (MINLP) problems that need to be
optimally solved. When the objective and constraint functions
are nonconvex, these MINLPs are construed to be nonconvex.
For instance, an RRA problem may be formulated as a problem
of optimally assigning frequency-time blocks (integer
variables) to a number of served connections while
simultaneously determining the appropriate transmit powers
(continuous variables) for these blocks over various frequency
subcarriers.

Prototypical approaches to solving a nonconvex MINLP
problem involve transforming it into a convex surrogate, e.g.,
via reformulation, convex approximation, or a series of convex
relaxations. Typically, convex relaxations are derived on a
problem-by-problem basis, but there are indeed forays, such as
Langevin Diffusions (with the possibility of premature

stagnation of particles at local optima) for nonconvex problems,
Alternating Direction Method of Multipliers (ADMM) for
nonconvex and nonsmooth functions, and yet others, such as for
transforming a nonconvex function to the sum of a smooth
function, a concave continuous function, and a convex lower
semi-continuous function [1]. Once the nonconvex function has
been transformed into a decomposed form, other general-
purposes approaches, such as Convex Relaxation Regression
(CoRR) and Lassere’s Semidefinite Programming (SDP)
Relaxation (a.k.a., Linear Matrix Inequality or LMI) can be
used. From a numerical implementation standpoint, the
aforementioned techniques may not be optimal, in terms of
transparency at each neural network layer; this is addressed by
the proposed RCR framework.

Historically, various neural network architectures have been
experimented with for tackling nonconvex MINLP problems.
Each has had its drawbacks, and as one simple example, in
several instances, performance tends to degrade with continued
training [2]. One approach that has gained great interest due to
its robustness and accuracy leverages convex relaxation
adversarial training aboard a DCGAN [3]. However, the
computational cost has often been quite high [4], as in the case
of the YOLO implementation for DCGAN, which is often
referred to as a DC-YOLO-GAN. Accordingly, to reduce the
computational cost, the notion of fire modules/layers from
SqueezeNet (a deep neural network) was utilized to replace
convolution layers (a.k.a. Conv) with Fire Layers (FL) [5], and
a SqueezeDet adaptation was incorporated for the replacement
of certain Conv with Special Fire Layers (SFL) [6]. In essence,
this process optimized the DCGAN. The FL and SFL reduced
network is referred to as a Modified Squeezed YOLO v3
Implementation (MSY3I). Prior research showed that although
the number of parameters in MSY3I are reduced in comparison
to a prototypical YOLO implementation, the average precision
and accuracy remain relatively high [7].

Given its advantages in terms of the reduced number of
hyperparameters to tune, Particle Swarm Optimization (PSO) is
often implemented within a DCGAN, [8, 9]. However, a
challenge arises when instantiating PSO aboard the DCGAN, as
the continuous or discontinuous hyperparameters must be
converted to discrete values (e.g., integers) [10]; yet, rounding
the calculated velocities to discrete integer values creates an
artificial paradigm, wherein particles may stagnate prematurely.
Certain techniques, such as increasing the inertia (allowing
particles to advance past their current local optimum) can
somewhat obviate this issue [11], but a final challenge remains
in addressing the original intent of convex optimization for
enhanced 5G QoS via the convex optimization problem of
hyperparameter reduction/tuning — effectuating an RCR
adversarial training mechanism aboard the utilized MSY3I.
Perhaps, the irony can best described as follows. Producing the
tightest possible relaxation for the neural network layers of the
MSY3I turns out to be no easier than the original problem of
providing the tightest possible relaxation for solving 5G QoS
convex optimization problems.

The remainder of this paper is organized as follows. Section

II provides background and presents related work. Section III

discusses three numerical challenges: effectuating an RCR

adversarial training mechanism via MSY3I; reducing the

computational cost via fire layers; and utilizing adaptive inertia

weighting to operationalize PSO (to mitigate against the

premature stagnation of particle velocities when implementing

PSO onto the MSY3I). Common solution set mechanics are

described. Section IV articulates the experimentation findings.
Section V provides concluding thoughts and outlines future

work.

II. BACKGROUND AND RELATED WORKS

 Obtaining the globally optimal solution to an MINLP
problem requires exploring a vast search space. This can be
done through robust mixed-integer convex relaxations of the
MINLP. Underscoring the robustness aspect, the Institute for
Operations Research at ETH Zurich phrases it quite nicely: “…
it is necessary to identify those key combinatorial substructures,
induced by integral variables, which can be leveraged so as to
improve the involved bound tightening and global optimization
algorithms” [12].

A. Traversing the Search Space

1) Stochastic Search

Stochastic search approaches are essentially general-

purpose problem-agnostic algorithms that can utilize

qualitative or quantitative (computational) modules tailored to

the considered problem and/or are combined with problem-

specific algorithms. Most referenced algorithms reside within

the swarm intelligence subfield of AI. They include, among

others, genetic, differential evolution, colony optimization, and

PSO algorithms. These algorithms share the commonality that

several search entities are created and individually utilized in
hyper-locale optimization actions while contemporaneously

liaising with each other to derive a globally optimal solution.

On the one hand, the challenge in utilizing these algorithms

resides in the fact that if the chosen swarm size is too small, the

algorithm will more likely gravitate to a local minimum without

ascertaining a globally optimal solution; on the other hand, if

the chosen swarm size is too large, the likelihood of

ascertaining a viable globally optimal solution increases, but

the computational overhead increases as well.

While the methods encompassing genetic and evolutionary

algorithms cannot prove optimality of the solution, PSO applies

the dual approach of global exploration and local search
methods to ascertain an optimum solution. PSO is a meta-

heuristic algorithm, i.e., no guarantee that a globally optimal

solution can be found for some classes of problems. However,

even relatively small swarm sizes are fairly consistent in

providing “good enough” near-optimum solutions in relatively

few iterations [13]. Hence, PSO is often utilized to solve MILP

and MINLP problems.

2) Implementation of PSO Search

Fundamentally, a PSO approach simulates a set of particles

or candidate solutions that traverse the search space. The

method for PSO initializes the swarm at a random point within

the space. Each particle has an assigned position	and a velocity.

The objective function is evaluated for each particle, and a

global optimum 𝐺 is ascertained. Iteratively, the position and

velocity	for each particle progress towards its individual best,

represented by the vector I, as well as the global best,

represented by the vector 𝐺,	as shown in Equations 1 and 2,

respectively:

 𝑥!(#$%) =	𝑥!(#) +	𝑣!(#$%) (1)

 𝑣!(#$%) = 𝜄(#)𝑣!(#) +	𝛼%[𝛽%,!	(𝐼! −	𝑥!(#))] +		𝛼)[𝛽),!	(𝐺 −	𝑥!(#))] (2)

where 𝑥!(#)	 and 𝑣!(#) denote, respectively, the position and

velocity of particle 𝑖 at generation [time step] 𝑘 with particle

inertia 𝜄(#), which induces a certain momentum with regards to
the involved particles; the parameters 𝛽%,!	 and 𝛽),!	 are

uniformly distributed random variables over [0,1], 𝛼%and 𝛼) are
acceleration constants, and 𝐼! denotes particle i’s optimum; the
solution to (1) and (2) gives the global optimum [14].

An initial challenge arises when integrating PSO search into
the DC-YOLO-GAN implementation, as most of the

parameters are continuous or discontinuous, and they need to

be transformed to discrete values (e.g., integers). To maximally

preserve the original semantics, each attribute of a PSO particle

is a distribution over its possible values rather than a specific

value [9]. In addition to inertia 𝜄(#), the (cognitive component)

vector I represents the individual best position in the search

space that the involved particle has seen, and the (social

component) vector G represents the best position in the search

space that any particle in the swarm has seen; these three

parameters — inertia, cognitive component, and social

component — dictate a particle’s behavior [9]. Furthermore, the

updated velocity 𝑣!(#) is added to the particle’s position 𝑥!(#),
thereby moving the particle through the search space. However,

as the position 𝑥!(#)	represents a set of parameters, the rounding

of the calculated velocities 𝑣!(#)to discrete integer values creates

an artificial environment, wherein particles may stagnate

prematurely (i.e., get trapped into local optima [15]) with a non-

graceful degradation of the particle inertia 𝜄(#).
Certain techniques, such as increasing the inertia (e.g.,

weighting the distance from the particle’s local optimum) allow

the involved particles to progress past their current local

optimum instead of stagnating prematurely; these techniques

beget calculating varying inertial weights. The chosen platform

for the experimentation herein is the GNU Octave platform. As

a numerical computation platform, it is mostly compatible with

comparable platforms, such as MATLABTM; as GNU Octave is

released under a GNU GPLv3 license, the source code was

modified for the experiments conducted herein, which resulted
in a Modified GNU Octave (M-GNU-O) platform [16], that can

better leverage certain accelerants to deal with the PSO

adaptive inertial weighting issue (yet another convex

optimization problem) [17] as well as the various convex

relaxations discussed herein.

The selection of the PSO was predicated upon its

performance robustness (good performance even under a small

swarm size) and ability to converge in relatively few iterations.

As an architectural construct, the discussed DCGAN

instantiation exhibits robust performance for the case herein,

while other constructs may degrade in performance with

prolonged training. For the 5G/B5G/6G functions needed for

QoS, the PyTorch Machine Learning library was utilized, and

the PyTorch implementation of the neural network framework,
YOLO v3, was utilized; accordingly, the specific DCGAN

implementation was that of DC-YOLO-GAN.

B. Resolving Gradations of Mixed-integer Convex

Relaxations to Facilitate Convex Optimizations

 Hybridizing local and global optimization algorithms has
become an accepted strategy for deriving valid bounds for near-
optimal convex optimization solutions [18]. This can also be
operationalized by denoting and resolving gradations of mixed-
integer convex relaxations. Accordingly, the nonlinearities are
typically replaced by convex under-estimators and concave
over-estimators. The tightest convex under-estimator and the
tightest concave over-estimator are referred to as the convex
envelope and the concave envelope of a function, respectively.
Prior findings indicate that RCR, which facilitates convex
optimization-based methods, can be well addressed by a MSY3I
combined with convex relaxation adversarial training.

1) Squeezed YOLO v3 Implementation
 Darknet, an open-source neural network written in C and
CUDA, is a CNN implementation framework for the widely
YOLO [19]. YOLO v2 utilizes a variant of Darknet-19, which
starts with a 19-layer neural network, supplemented with 11
additional layers, thereby yielding a 30-layer convolutional
architecture for YOLO v2. As documented in the literature, the
performance of YOLO v2 is sub-optimal for the need described
herein [20]; hence, a variant of YOLO v3 was selected. YOLO
v3 utilizes a variant of Darknet-53, which starts with a 53-layer
network that is supplemented with 53 additional layers, thereby
yielding a 106-layer convolutional architecture for YOLO v3.
Compared with YOLO v2, the classification performance of
YOLO v3 is greatly enhanced, but prior experimental findings
show that the computational performance is slower. This should
be axiomatic, as a search space approach for a 106-layer YOLO
network, even with the constraining decision of only optimizing
the number of neurons in the layers at ten test values each, would
still necessitate the training of 10106 models. Hence, to decrease
the number of parameters for the YOLO instantiation, the use of
fire layers (of SqueezeDet) to optimize the network structure
segues to a MSY3I. In essence, certain SFLs replace certain
Conv layers, and the number of hyperparameters as well as the
number of filters of the compression portion of the fire layers
are reduced; prior research has indicated that the number of
model parameters in MSY3I will be lower than that of just
YOLO v3 with only the slightest degradation in performance [5,
6]

2) Convex Relaxation Adversarial Training
In addition to analyzing its performance, MSY3I must be

examined for robustness, and this often relates to the
performance of the layer-wise optimal convex relaxations
implemented within the involved DCGAN (or MSY3I in this
case) [21]. In essence, a certain convex relaxation is posited for
the purpose of ascertaining an upper bound for a worst-case
instability scenario. This is of critical importance, as

MSY3I to process yet other convex optimizations) is itself

comprised of a succession of convex optimizations problems.

Indeed, many of the intermediate enabling steps involve

Quadratic Programming (QP) step-down algorithms, including

Quadratically Constrained Quadratic Programming (QCQP),
which would compute the QCQP special class convex

optimization problem in polynomial time. A QCQP takes the

following general form:

 minimize	
*

U(%
)
)𝑥@	𝑃?𝑥 +	𝑞?@𝑥	 +	𝑟?Y

 subject to (%
)
)𝑥@	𝑃!𝑥 +	𝑞!@𝑥	+ 𝑟! 	≤ 0, 𝑖 = 1,… ,𝑚

 Ax = b

 where P0, …, Pm are n-by-n matrices; Pi ∈ 𝐒$, (7)

and x ∈ Sn is the optimization variable

Accordingly, there are two envelopes for this aspect of

discerning a gradation among convex optimization problems:

(1) if P1 , …, Pm ∈ 𝐒$$, , where 𝐒$$, 	denotes the set of positive

semidefinite matrices, the involved problem is convex, and (2)

a QP with a semi-definite Hessian is still convex.

Traditionally, computing the Hessian matrix for large-scale
problems is computationally impractical [28]. However, given

a particular Hessian matrix in a resolvable form, proxies (i.e.,

approximations) of the Hessian matrix can be obtained in

alternative ways, e.g., Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm. However, to avoid false curvature

information, additional initialization conditions are required.

To accommodate this, resolving of the QCQP can assist in the

determination of the involved trust regions (the subset of the

objective function region that is approximated). Furthermore,

there are a variety of trust-region methods given a sufficiently

low-rank positive semidefinite matrix; in essence, this equates

to computing 𝑅]I = 𝑅]c + 𝑅]n, where 𝑅]c and 𝑅]n are examined, via

resolving the following Rank Minimization Problem (RMP) :

 (𝑅]A , 𝑅],) = arg min
B 	,B

	 rank (𝑅]A), (8)

subject to ^𝑅A +	𝑅, =	𝑅9𝑅A 	≥ 0𝑅,	is	diagonal
In many instances, even when the input set is

designed/architected to be convex, the resultant output set may

turn out to be nonconvex. Accordingly, when the rank function

is nonconvex and discontinuous, the RMP cannot be solved
directly. To accommodate this, and to transform the problem to

a convex form, the rank function is replaced with the trace

function, giving rise to a Trace Minimization Problem (TMP):

 (𝑅]A, 𝑅],) = arg min
B 	,B

	 tr (𝑅]A), (9)

subject to ^𝑅A +	𝑅, =	𝑅9𝑅A 	≥ 0𝑅,	diagonal

Because the rank function tallies the number of nonzero

eigenvalues and the trace function computes the sum of the

involved eigenvalues, the above equation can be reconstrued as

an equivalent Semi-Definite Programming (SDP) problem:

 (𝑅]A, 𝑅],) = arg min
B 	,B

	 tr (𝑅]A), (10)

subject to

⎩⎪⎨
⎪⎧ j𝑊% 𝑅A𝑅CD 𝑊)

l
𝑅A +	𝑅, = 	𝑅s𝑅𝑐	 ≥ 0𝑅,	is	diagonal

Once in this form (i.e., the nonconvex QCQP has been relaxed
to a convex SDP), there are numerous SDP solvers (e.g.,

SDPT3, which is a MATLAB/GNU Octave Semi-Definite

Programming or SDP software package) available for these

types of problems; the aforementioned (regarding Equations 7,

8, 9, and 10) is implemented atop the M-GNU-O platform,

which readily supports various high-performance SDP solvers

[16]. Prior testing was effectuated in Ilog Cplex Optimizer (a

commercial software package for optimization) and,

subsequently, on AD Model Builder (ADMB) (an open-source

software package for non-linear statistical modeling) as well as

Interior Point OPTimizer (IPOPT) (a software package for
large-scale nonlinear optimization).

V. CONCLUDING REMARKS AND FUTURE WORK

This paper articulated some of the issues/intricacies of

5G/BFG/6G-related function implementations, of various ML

frameworks, which affected their accurate resolution of QoS

convex optimization problems for 5G/BFG/6G. For example,

mathematical equivalence does not necessarily segue to correct

results when using certain functions of particular versions of

numerical computation libraries. By way of example, in some

cases, sub-operations needed to be combined, as performing the

sub-operations separately would be computationally slower and

more numerically unstable (e.g., as the softmax output
approaches 0, the log output approaches infinity, which causes

instability).

To compound this issue, it was found that the optimization

challenge of transforming nonconvex to convex optimization

problems may spawn yet other nonconvex optimization

problems, thereby highlighting the need/opportunity to utilize

an RCR framework. This paper presented an RCR architecture

(presented in Figures 1 and 2), which could not only resolve the

tasked 5G QoS-related convex optimization problems but could

also leverage the same RCR mechanisms for tuning its own

hyperparameters; the RCR architectural stack achieved this via
three distinct phases: (1) effectuating a RCR paradigm, via a

bespoke MSY3I, (2) using a PSO to tune the MSY3I so as to

reduce the associated computational costs, and (3)

operationalizing the PSO via an adaptive inertial weighting

mechanism facilitated by an M-GNU-O. For future work, an

additional DCGAN will be added to the RCR architectural

stack to derive further key combinatorials for optimizing

computations.

ACKNOWLEDGMENTS

The authors would like to thank Vit Tall and the University

of Arizona for the collaborative framework pertaining to this

5G/B5G/6G-related white paper series. The authors would also

like to acknowledge various organizations, such as ED2, for

their encouragement related to advancing matters within the

5G/B5G/6G ecosystem.

REFERENCES

[1] K. Khamaru and M. Wainwright, “Convergence guarantees for a class of

non-convex and non-smooth optimization problems,” Journal of Machine

Learning Research, vol. 20, pp. 1-52, 2019.

[2] H. Shin, J. Lee, Ja. Kim, Ji. Kim, “Continual Learning with Deep

Generative Replay,” Advances in Neural Information Processing

Systems, vol. 30, 2017.

[3] Y. Chen, Y. Shi, and B. Zhang, “Optimal control via neural network: a

convex approach,” Seventh International Conference on Learning

Representations, 2019, https://openreview.net/forum?id=H1MW72AcK7

[4] N. Nguyen, T. Do, T. Ngo, and D. Le, “An evaluation of deep learning

methods for small object detection,” Journal of Electrical and Computer

Engineering, vol. 2020, Apr 2020, doi: 10.1155/2020/3189691.

[5] A. Wang, M. Wang, K. Jiang, M. Cao, and Y. Iwahori, “A dual

architecture combined SqueezeNet with OctConv for lidar data

classification,” Sensors, vol. 19, Nov 2019, doi: 10.3390/s19224927.

[6] B. Wu, A. Wan, F. Iandola, P. H. Jin and K. Keutzer, “SqueezeDet:
unified, small, low power fully convolutional neural networks for real-

time object detection for autonomous driving,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017, pp. 446-454,

doi: 10.1109/CVPRW.2017.60.

[7] R. Peiming, L. Wang, W. Fang, S. Song, S. Djahel, “A novel squeeze
YOLO-based real-time people counting approach,” Int. J. of Bio-Inspired

Computation, vol. 16, pp. 94-101, Sep 2020, doi:

10.1504/IJBIC.2020.109674.

[8] F. Yei, “Particle swarm optimization-based automatic parameter selection

for deep neural networks and its applications in large-scale and high-
dimensional data,” PLOS One, Dec 2017, doi:

10.1371/journal.pone.0188746.

[9] S. Strasser, R. Goodman, J. Sheppard, S. Butcher, “A new discrete
particle swarm optimization algorithm,” Proc of the Genetic and

Evolutionary Computation Conference, pp. 53-60, doi:

10.1145/2908812.2908935.

[10] X. Liu, Q. Wang, H. Liu, and L. Li, “Particle swarm optimization with

dynamic inertia weight and mutation,” 2009 Third International
Conference on Genetic and Evolutionary Computing, Feb 2010, pp. 620–

623, doi: 10.1109/WGEC.2009.99.

[11] B. Borowska, “Dynamic inertia weight in particle swarm optimization,”
Advances in Intelligent Systems and Computing II, Nov 2017, pp. 79-88,

Springer, Cham, doi: 10.1007/978-3-319-70581-1_6.

[12] “Mixed integer optimization,” Accessed on: Jan. 7, 2021. [Online].

Available:https://math.ethz.ch/ifor/research/mixed-integer-

optimization.html

[13] Y. Sun and Y. Gao, “An efficient modified particle swarm optimization
algorithm for solving mixed-integer nonlinear programming problems,”

International Journal of Computational Intelligence Systems, vol. 12, Apr

2019, pp. 530-543, doi: 10.2991/ijcis.d.190402.001.

[14] M. Pourabdollah, E. Silvas, N. Murgovski, M. Steinbuch, B. Egardt,
“Optimal sizing of a series PHEV: comparison between convex

optimization and particle swarm optimization,” 4th International
Federation of Automatic Control Workshop on Engine and Powertrain

Control, Simulation and Modeling, 2015, pp. 16-22, doi:

10.1016/j.ifacol.2015.10.003.

[15] C. Worasucheep, “A particle swarm optimization with stagnation

detection and dispersion,” 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence),

Hong Kong, June 2008, pp. 424-429, doi: 10.1109/CEC.2008.4630832.

[16] S. Chan, “Mitigation Factors for Multi-domain Resilient Network
Distributed Tessellation Communications,” The Fifth International

Conference on Cyber Technologies and Cyber-Systems, 2020, pp. 66-73,

http://www.thinkmind.org/articles/cyber_2020_2_60_80061.pdf.

[17] M. Jakubcova, P. Maca, and P. Pech, “A Comparison of Selected

Modifications of the Particle Swarm Optimization Algorithm,” Journal of

Applied Mathematics, vol. 2014, June 2014, doi: 10.1155/2014/293087.

[18] R. Pellgrini, A. Serani, G. Liuzzi, F. Rinaldi, S . Lucidi, and M. Diez,

“Hybridization of Multi-Objective Deterministic Particle Swarm with
Derivative-Free Local Searches,” Mathematics, vol. 8, April 2020, doi:

10.3390/math8040546.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhardi, “You only look
once: unified, real-time object detection,” Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 779-

788, doi: 10.1109H/CVPR.2016.91.

[20] “YOLO: Real-Time Object DetectionAccessed,” Accessed on: Mar. 1,

2021. [Online]. Available: https://pjreddie.com/darknet/yolo/.

[21] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. Celik, and A. Swami,

“The limitations of deep learning in adversarial settings,” IEEE European
Symposium on Security and Privacy, 2016, pp. 372–387, doi:

10.1109/EuroSP.2016.36.

[22] B. Anderson, Z. Ma, J. Li, and S. Sojoudi, “Tightened convex relaxations
for neural network robustness certification,” Proceedings of the 59th

IEEE Conference on Decision and Control, 2020, pp. 2190-2197, doi:

10.1109/CDC42340.2020.9303750.

[23] H. Salman, G. Yang, H. Zhang, C. Hsieh, and P. Zhang, “A convex

relaxation barrier to tight robustness verification of neural networks,”

Advances in Neural Information Processing Systems, vol. 30, 2019.

[24] “Torch.stft,” Accessed on: Mar. 1, 2021. [Online]. Available:

https://pytorch.org/docs/stable/generated/torch.stft.html.

[25] “Change stft to have consistent signature with librosa #9308,” Accessed
on: Mar. 1, 2021. [Online]. Available:

https://github.com/pytorch/pytorch/pull/9308.

[26] A. Marafioti, N. Holighaus, N. Perraudin, P. Majdak, “Adversarial

Generation of Time-Frequency Features,” Proceedings of Machine
Learning Research, vol. 97, 2019, pp. 4352-4362,

http://proceedings.mlr.press/v97/marafioti19a/marafioti19a.pdf.

[27] “Function: gabphasederiv,” Accessed on: Mar. 1, 2021. [Online].

Available:https://octave.sourceforge.io/ltfat/function/gabphasederiv.html

[28] J. Rafati and R. F. Marcia, “Improving L-BFGS Initialization for Trust-

Region Methods in Deep Learning,” 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), 2018, pp. 501-508, doi:

10.1109/ICMLA.2018.00081.

