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Abstract—Supporting diverse Quality of Service (QoS) 

requirements in 5G and beyond wireless systems often 

involves solving a succession of convex optimization 

problems, with varied approaches to optimally resolve each 

problem. Even when the input set is specifically 

designed/architected to segue to a convex paradigm, the 

resultant output set may still turn out to be nonconvex, 

thereby necessitating a transformation to a convex 

optimization problem via certain relaxation techniques. 

This transformation in itself may spawn yet other 

nonconvex optimization problems, highlighting the 

need/opportunity to utilize a Robust Convex Relaxation 

(RCR) framework. In this paper, we explore a particular 

class of Convolutional Neural Networks (CNNs), namely 

Deep Convolutional Generative Adversarial Network 

(DCGANs), to solve not only the QoS-related convex 

optimization problems but also to leverage the same RCR 

mechanism for tuning its own hyperparameters. This 

approach gives rise to various technical challenges. For 

example, Particle Swarm Optimization (PSO) is often used 

for hyperparameter reduction/tuning. When implemented 

on a DCGAN, PSO requires converting 

continuous/discontinuous hyperparameters to discrete 

values, which may result in premature stagnation of 

particles at local optima. The involved implementation 

mechanics, such as increasing the inertial weighting, may 

spawn yet other convex optimization problems. We 

introduce a RCR framework that capitalizes upon the feed-

forward structure of the “You Only Look Once” (YOLO)-

based DCGAN. Specifically, we use a squeezed Deep 

Convolutional-YOLO-Generative Adversarial Network 

(DC-YOLO-GAN), hereinafter referred to as a Modified 

Squeezed YOLO v3 Implementation (MSY3I), combined 

with convex relaxation adversarial training to improve the 

bound tightening for each successive neural network layer 

and to better facilitate the global optimization via a specific 

numerical stability implementation within MSY3I. 
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I. INTRODUCTION  

The cellular industry, including wireless operators and 
device manufacturers, is racing to deliver the Fifth Generation 
(5G) wireless technology to end users through three main 
service categories: Enhanced Mobile Broadband (eMBB), 
Ultra-Reliable Low-Latency Communications (URLLC), and 
massive Machine-Type Communications (mMTC). These 
service categories will support a wide range of QoS needs by 
existing and emergent applications, such as connected and 
autonomous vehicles, AR/VR, Industrial IoT, and others. While 
the concepts of network slicing and Software-Defined Networks 
(SDNs) offer a framework for supporting diverse sets of QoS, 
ultimately it comes down to the resource management algorithm 
within an operator’s control plane to ensure that these QoS sets 
are met without excessive allocation of network resources. 
Various providers that launched their own 5G networks have 
made QoS a top priority and articulated the need for new 
approaches for the envisioned Beyond 5G (B5G) networks, or 
what is referred to as “6G.” 

Efficient support for 5G/B5G/6G QoS often necessitates 
formulating nonconvex optimization problems. Examples 
include: Radio Resource Allocation (RRA) (whose aim is to 
maximize the spectral efficiency, subject to certain 
performance guarantees), Multi-Radio Access Technology 
(RAT) handling for multi-connectivity (each with its own QoS 
requirements), and Radio Resource Management (RRM) for 
connections with varied QoS requirements. The involved 
optimization formulations are, in essence, mixed integer non-
linear programming (MINLP) problems that need to be 
optimally solved. When the objective and constraint functions 
are nonconvex, these MINLPs are construed to be nonconvex. 
For instance, an RRA problem may be formulated as a problem 
of optimally assigning frequency-time blocks (integer 
variables) to a number of served connections while 
simultaneously determining the appropriate transmit powers 
(continuous variables) for these blocks over various frequency 
subcarriers.   

Prototypical approaches to solving a nonconvex MINLP 
problem involve transforming it into a convex surrogate, e.g., 
via  reformulation, convex approximation, or a series of convex 
relaxations. Typically, convex relaxations are derived on a 
problem-by-problem basis, but there are indeed forays, such as 
Langevin Diffusions (with the possibility of premature 



 

 

stagnation of particles at local optima) for nonconvex problems, 
Alternating Direction Method of Multipliers (ADMM) for 
nonconvex and nonsmooth functions, and yet others, such as for 
transforming a nonconvex function to the sum of a smooth 
function, a concave continuous function, and a convex lower 
semi-continuous function [1]. Once the nonconvex function has 
been transformed into a decomposed form, other general-
purposes approaches, such as Convex Relaxation Regression 
(CoRR) and Lassere’s Semidefinite Programming (SDP) 
Relaxation (a.k.a., Linear Matrix Inequality or LMI) can be 
used. From a numerical implementation standpoint, the 
aforementioned techniques may not be optimal, in terms of 
transparency at each neural network layer; this is addressed by  
the proposed RCR framework. 

Historically, various neural network architectures have been 
experimented with for tackling nonconvex MINLP problems. 
Each has had its drawbacks, and as one simple example, in 
several instances, performance tends to degrade with continued 
training [2]. One approach that has gained great interest due to 
its robustness and accuracy leverages convex relaxation 
adversarial training aboard a DCGAN [3]. However, the 
computational cost has often been quite high [4], as in the case 
of the YOLO implementation for DCGAN, which is often 
referred to as a DC-YOLO-GAN. Accordingly, to reduce the 
computational cost, the notion of fire modules/layers from 
SqueezeNet (a deep neural network) was utilized to replace 
convolution layers (a.k.a. Conv) with Fire Layers (FL) [5], and 
a SqueezeDet adaptation was incorporated for the replacement 
of certain Conv with Special Fire Layers (SFL) [6]. In essence, 
this process optimized the DCGAN. The FL and SFL reduced 
network is referred to as a Modified Squeezed YOLO v3 
Implementation (MSY3I). Prior research showed that although 
the number of parameters in MSY3I are reduced in comparison 
to a prototypical YOLO implementation, the average precision 
and accuracy remain relatively high [7].  

Given its advantages in terms of the reduced number of 
hyperparameters to tune, Particle Swarm Optimization (PSO) is 
often implemented within a DCGAN, [8, 9]. However, a 
challenge arises when instantiating PSO aboard the DCGAN, as 
the continuous or discontinuous hyperparameters must be 
converted to discrete values (e.g., integers) [10]; yet, rounding 
the calculated velocities to discrete integer values creates an 
artificial paradigm, wherein particles may stagnate prematurely. 
Certain techniques, such as increasing the inertia (allowing 
particles to advance past their current local optimum) can 
somewhat obviate this issue [11], but a final challenge remains 
in addressing the original intent of convex optimization for 
enhanced 5G QoS via the convex optimization problem of 
hyperparameter reduction/tuning — effectuating an RCR 
adversarial training mechanism aboard the utilized MSY3I. 
Perhaps, the irony can best described as follows. Producing the 
tightest possible relaxation for the neural network layers of the 
MSY3I turns out to be no easier than the original problem of 
providing the tightest possible relaxation for solving 5G QoS 
convex optimization problems. 

The remainder of this paper is organized as follows. Section 

II provides background and presents related work. Section III 

discusses three numerical challenges: effectuating an RCR 

adversarial training mechanism via MSY3I; reducing the 

computational cost via fire layers; and utilizing adaptive inertia 

weighting to operationalize PSO (to mitigate against the 

premature stagnation of particle velocities when implementing 

PSO onto the MSY3I). Common solution set mechanics are 

described. Section IV articulates the experimentation findings. 
Section V provides concluding thoughts and outlines future 

work. 

II. BACKGROUND AND RELATED WORKS 

 Obtaining the globally optimal solution to an MINLP 
problem requires exploring a vast  search space. This can be 
done through robust mixed-integer convex relaxations of the 
MINLP. Underscoring the robustness aspect, the Institute for 
Operations Research at ETH Zurich phrases it quite nicely: “… 
it is necessary to identify those key combinatorial substructures, 
induced by integral variables, which can be leveraged so as to 
improve the involved bound tightening and global optimization 
algorithms” [12].  

A. Traversing the Search Space 

1) Stochastic Search 

Stochastic search approaches are essentially general-

purpose problem-agnostic algorithms that can utilize 

qualitative or quantitative (computational) modules tailored to 

the considered problem and/or are combined with problem-

specific algorithms. Most referenced algorithms reside within 

the swarm intelligence subfield of AI. They include, among 

others, genetic, differential evolution, colony optimization, and 

PSO algorithms. These algorithms share the commonality that 

several search entities are created and individually utilized in 
hyper-locale optimization actions while contemporaneously 

liaising with each other to derive a globally optimal solution. 

On the one hand, the challenge in utilizing these algorithms 

resides in the fact that if the chosen swarm size is too small, the 

algorithm will more likely gravitate to a local minimum without 

ascertaining a globally optimal solution; on the other hand, if 

the chosen swarm size is too large, the likelihood of 

ascertaining a viable globally optimal solution increases, but 

the computational overhead increases as well.  

While the methods encompassing genetic and evolutionary 

algorithms cannot prove optimality of the solution, PSO applies 

the dual approach of global exploration and local search 
methods to ascertain an optimum solution. PSO is a meta-

heuristic algorithm, i.e., no guarantee that a globally optimal 

solution can be found for some classes of problems. However, 

even relatively small swarm sizes are fairly consistent in 

providing “good enough” near-optimum solutions in relatively 

few iterations [13]. Hence, PSO is often utilized to solve MILP 

and MINLP problems. 

 

2) Implementation of PSO Search  

Fundamentally, a PSO approach simulates a set of particles 

or candidate solutions that traverse the search space. The 

method for PSO initializes the swarm at a random point within 

the space. Each particle has an assigned position	and a velocity. 

The objective function is evaluated for each particle, and a 

global optimum 𝐺 is ascertained. Iteratively, the position and 

velocity	for each particle progress towards its individual best, 



 

 

represented by the vector I, as well as the global best, 

represented by the vector 𝐺,	as shown in Equations 1 and 2, 

respectively: 

 𝑥!(#$%) =	𝑥!(#) +	𝑣!(#$%) (1) 

 𝑣!(#$%) = 𝜄(#)𝑣!(#) +	𝛼%[𝛽%,!	( 𝐼! −	𝑥!(#))] +		𝛼)[𝛽),!	( 𝐺 −	𝑥!(#))]  (2) 

where 𝑥!(#)	 and 𝑣!(#)  denote, respectively, the position and 

velocity of particle 𝑖  at generation [time step] 𝑘  with particle 

inertia  𝜄(#), which induces a certain momentum with regards to 
the involved particles; the parameters  𝛽%,!	 and 𝛽),!	  are 

uniformly distributed random variables over [0,1], 𝛼%and 𝛼) are 
acceleration constants, and 𝐼! denotes particle i’s optimum; the 
solution to (1) and (2) gives the global optimum [14]. 

An initial challenge arises when integrating PSO search into 
the DC-YOLO-GAN implementation, as most of the 

parameters are continuous or discontinuous, and they need to 

be transformed to discrete values (e.g., integers). To maximally 

preserve the original semantics, each attribute of a PSO particle 

is a distribution over its possible values rather than a specific 

value [9]. In addition to inertia  𝜄(#), the (cognitive component) 

vector I represents the individual best position in the search 

space that the involved particle has seen, and the (social 

component) vector G represents the best position in the search 

space that any particle in the swarm has seen; these three 

parameters — inertia, cognitive component, and social 

component — dictate a particle’s behavior [9]. Furthermore, the 

updated velocity 𝑣!(#) is added to the particle’s position 𝑥!(#), 
thereby moving the particle through the search space. However, 

as the position 𝑥!(#)	represents a set of parameters, the rounding 

of the calculated velocities 𝑣!(#)to discrete integer values creates 

an artificial environment, wherein particles may stagnate 

prematurely (i.e., get trapped into local optima [15]) with a non-

graceful degradation of the particle inertia 𝜄(#).  
Certain techniques, such as increasing the inertia (e.g., 

weighting the distance from the particle’s local optimum) allow 

the involved particles to progress past their current local 

optimum instead of stagnating prematurely; these techniques 

beget calculating varying inertial weights. The chosen platform 

for the experimentation herein is the GNU Octave platform. As 

a numerical computation platform, it is mostly compatible with 

comparable platforms, such as MATLABTM; as GNU Octave is 

released under a GNU GPLv3 license, the source code was 

modified for the experiments conducted herein,  which resulted 
in a Modified GNU Octave (M-GNU-O) platform [16], that can 

better leverage certain accelerants to deal with the PSO 

adaptive inertial weighting issue (yet another convex 

optimization problem) [17] as well as the various convex 

relaxations discussed herein. 

The selection of the PSO was predicated upon its 

performance robustness (good performance even under a small 

swarm size) and ability to converge in relatively few iterations. 

As an architectural construct, the discussed DCGAN 

instantiation exhibits robust performance for the case herein, 

while other constructs may degrade in performance with 

prolonged training. For the 5G/B5G/6G functions needed for 

QoS, the PyTorch Machine Learning library was utilized, and 

the PyTorch implementation of the neural network framework, 
YOLO v3, was utilized; accordingly, the specific DCGAN 

implementation was that of DC-YOLO-GAN. 

 

B. Resolving Gradations of Mixed-integer Convex 

Relaxations to Facilitate Convex Optimizations 

 Hybridizing local and global optimization algorithms has 
become an accepted strategy for deriving valid bounds for near-
optimal convex optimization solutions [18]. This can also be 
operationalized by denoting and resolving gradations of mixed-
integer convex relaxations. Accordingly, the nonlinearities are 
typically replaced by convex under-estimators and concave 
over-estimators. The tightest convex under-estimator and the 
tightest concave over-estimator are referred to as the convex 
envelope and the concave envelope of a function, respectively. 
Prior findings indicate that RCR, which facilitates convex 
optimization-based methods, can be well addressed by a MSY3I 
combined with convex relaxation adversarial training. 

1) Squeezed YOLO v3 Implementation 
 Darknet, an open-source neural network written in C and 
CUDA, is a CNN implementation framework for the widely 
YOLO [19]. YOLO v2 utilizes a variant of Darknet-19, which 
starts with a 19-layer neural network, supplemented with 11 
additional layers, thereby yielding a 30-layer convolutional 
architecture for YOLO v2. As documented in the literature, the 
performance of YOLO v2 is sub-optimal for the need described 
herein [20]; hence, a variant of YOLO v3 was selected. YOLO 
v3 utilizes a variant of Darknet-53, which starts with a 53-layer 
network that is supplemented with 53 additional layers, thereby 
yielding a 106-layer convolutional architecture for YOLO v3. 
Compared with YOLO v2, the classification performance of 
YOLO v3 is greatly enhanced, but prior experimental findings 
show that the computational performance is slower. This should 
be axiomatic, as a search space approach for a 106-layer YOLO 
network, even with the constraining decision of only optimizing 
the number of neurons in the layers at ten test values each, would 
still necessitate the training of 10106 models. Hence, to decrease 
the number of parameters for the YOLO instantiation, the use of 
fire layers (of SqueezeDet) to optimize the network structure 
segues to a MSY3I. In essence, certain SFLs replace certain 
Conv layers, and the number of hyperparameters as well as the 
number of filters of the compression portion of the fire layers 
are reduced; prior research has indicated that the number of 
model parameters in MSY3I will be lower than that of just 
YOLO v3 with only the slightest degradation in performance [5, 
6]  

2) Convex Relaxation Adversarial Training 
In addition to analyzing its performance, MSY3I must be 

examined for robustness, and this often relates to the 
performance of the layer-wise optimal convex relaxations 
implemented within the involved DCGAN (or MSY3I in this 
case) [21]. In essence, a certain convex relaxation is posited for 
the purpose of ascertaining an upper bound for a worst-case 
instability scenario. This is of critical importance, as 









 

 

MSY3I to process yet other convex optimizations) is itself 

comprised of a succession of convex optimizations problems. 

Indeed, many of the intermediate enabling steps involve 

Quadratic Programming (QP) step-down algorithms, including 

Quadratically Constrained Quadratic Programming (QCQP), 
which would compute the QCQP special class convex 

optimization problem in polynomial time. A QCQP takes the 

following general form: 

  

       minimize	
*

U(	%
)
)𝑥@	𝑃?𝑥 +	𝑞?@𝑥	 +	𝑟?Y 

  

      subject to (	%
)
)𝑥@	𝑃!𝑥 +	𝑞!@𝑥	+ 𝑟! 	≤ 0, 𝑖 = 1,… ,𝑚  

 

  Ax = b 

 

      where P0, …, Pm are n-by-n matrices;  Pi  ∈ 𝐒$,  (7) 

and x ∈ Sn is the optimization variable 
           

Accordingly, there are two envelopes for this aspect of 

discerning a gradation among convex optimization problems: 

(1) if P1 , …, Pm  ∈ 𝐒$$,  , where 𝐒$$, 	denotes the set of positive 

semidefinite matrices, the involved problem is convex, and (2) 

a QP with a semi-definite Hessian is still convex. 

Traditionally, computing the Hessian matrix for large-scale 
problems is computationally impractical [28]. However, given 

a particular Hessian matrix in a resolvable form, proxies (i.e., 

approximations) of the Hessian matrix can be obtained in 

alternative ways, e.g., Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm. However, to avoid false curvature 

information, additional initialization conditions are required. 

To accommodate this, resolving of the QCQP can assist in the 

determination of the involved trust regions (the subset of the 

objective function region that is approximated). Furthermore, 

there are a variety of trust-region methods given a sufficiently 

low-rank positive semidefinite matrix; in essence, this equates 

to computing 𝑅]I = 𝑅]c + 𝑅]n, where 𝑅]c and 𝑅]n are examined, via 

resolving the following Rank Minimization Problem (RMP) : 

 (𝑅]A   , 𝑅],) = arg  min
B 	,B

	 rank (𝑅]A  ), (8) 

subject to ^𝑅A +	𝑅, =	𝑅9𝑅A 	≥ 0𝑅,	is	diagonal  
In many instances, even when the input set is 

designed/architected to be convex, the resultant output set may 

turn out to be nonconvex. Accordingly, when the rank function 

is nonconvex and discontinuous, the RMP cannot be solved 
directly. To accommodate this, and to transform the problem to 

a convex form, the rank function is replaced with the trace 

function, giving rise to a Trace Minimization Problem (TMP): 

 (𝑅]A, 𝑅], ) = arg  min
B 	,B

	 tr (𝑅]A  ), (9) 

subject to ^𝑅A +	𝑅, =	𝑅9𝑅A 	≥ 0𝑅,	diagonal  

Because the rank function tallies the number of nonzero 

eigenvalues and the trace function computes the sum of the 

involved eigenvalues, the above equation can be reconstrued as 

an equivalent Semi-Definite Programming (SDP) problem: 

 (𝑅]A, 𝑅], ) = arg  min
B 	,B

	 tr (𝑅]A), (10) 

subject to 

⎩⎪⎨
⎪⎧ j𝑊% 𝑅A𝑅CD 𝑊)

l
𝑅A +	𝑅, = 	𝑅s𝑅𝑐	 ≥ 0𝑅,	is	diagonal

 

    

Once in this form (i.e.,  the nonconvex QCQP has been relaxed 
to a convex SDP), there are numerous SDP solvers (e.g., 

SDPT3, which is a MATLAB/GNU Octave Semi-Definite 

Programming or SDP software package) available for these 

types of problems; the aforementioned (regarding Equations 7, 

8, 9, and 10) is implemented atop the M-GNU-O platform, 

which readily supports various high-performance SDP solvers 

[16]. Prior testing was effectuated in Ilog Cplex Optimizer (a 

commercial software package for optimization) and, 

subsequently, on AD Model Builder (ADMB) (an open-source 

software package for non-linear statistical modeling) as well as 

Interior Point OPTimizer (IPOPT) (a software package for 
large-scale nonlinear optimization). 

V. CONCLUDING REMARKS AND FUTURE WORK 

This paper articulated some of the issues/intricacies of 

5G/BFG/6G-related function implementations, of various ML 

frameworks, which affected their accurate resolution of QoS 

convex optimization problems for 5G/BFG/6G. For example, 

mathematical equivalence does not necessarily segue to correct 

results when using certain functions of particular versions of 

numerical computation libraries. By way of example, in some 

cases, sub-operations needed to be combined, as performing the 

sub-operations separately would be computationally slower and 

more numerically unstable (e.g., as the softmax output 
approaches 0, the log output approaches infinity, which causes 

instability).   

To compound this issue, it was found that the optimization 

challenge of transforming nonconvex to convex optimization 

problems may spawn yet other nonconvex optimization 

problems, thereby highlighting the need/opportunity to utilize 

an RCR framework. This paper presented an RCR architecture 

(presented in Figures 1 and 2), which could not only resolve the 

tasked 5G QoS-related convex optimization problems but could 

also leverage the same RCR mechanisms for tuning its own 

hyperparameters; the RCR architectural stack achieved this via 
three distinct phases: (1) effectuating a RCR paradigm, via a 

bespoke MSY3I, (2) using a PSO to tune the MSY3I so as to 

reduce the associated computational costs, and (3) 



 

 

operationalizing the PSO via an adaptive inertial weighting 

mechanism facilitated by an M-GNU-O. For future work, an 

additional DCGAN will be added to the RCR architectural 

stack to derive further key combinatorials for optimizing 

computations.  
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