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Abstract—Fog computing has been advocated as an enabling technol-

ogy for computationally intensive services in smart connected vehicles.

Most existing works focus on analyzing the queueing and workload pro-

cessing latencies associated with fog computing, ignoring the fact that

wireless access latency can sometimes dominate the overall latency.

This motivates the work in this paper, where we report on a five-month

measurement study of the wireless access latency between connected

vehicles and a fog/cloud computing system supported by commercially

available LTE networks. We propose AdaptiveFog, a novel framework for

autonomous and dynamic switching between different LTE networks that

implement a fog/cloud infrastructure. AdaptiveFog’s main objective is to

maximize the service confidence level, defined as the probability that

the latency of a given service type is below some threshold. To quantify

the performance gap between different LTE networks, we introduce a

novel statistical distance metric, called weighted Kantorovich-Rubinstein

(K-R) distance. Two scenarios based on finite- and infinite-horizon

optimization of short-term and long-term confidence are investigated.

For each scenario, a simple threshold policy based on weighted K-R

distance is proposed and proved to maximize the latency confidence

for smart vehicles. Extensive analysis and simulations are performed

based on our latency measurements. Our results show that AdaptiveFog

achieves around 30% to 50% improvement in the confidence levels of

fog and cloud latencies, respectively.

Index Terms—Fog computing, cloud computing, connected vehicle,

low-latency, measurement study.

1 INTRODUCTION

Ultra-reliable low-latency communication (URLLC) and
processing are critical for supporting newly emerging
intelligent transportation services (ITS), such as con-
gestion avoidance, accident prevention, active control
intervention, autonomous driving, and intelligent driver
assistance (e.g., route computation, searchable maps,
etc.). Due to the limited energy, processing, and storage
capacities of the in-vehicle computer, various industry
consortiums and standardization bodies (e.g., [2], [3])
have been promoting the use of high-performance cloud
data centers (CDCs) for external data storage (e.g., high-
definition maps) and processing for connected vehicles.
The physical connectivity between vehicles and CDCs
may span several wireless and wired links, each having
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its own traffic dynamics, medium access mechanisms,
and connection intermittency. As a result, the end-to-end
communication path may exhibit unacceptable latency
and link disruptions. This motivates the need for better
solutions that are more suitable for fast-response and
highly reliable services. Fog computing has recently been
introduced as a promising approach to offload (partially
or fully) the computational load from CDCs to local fog
nodes, hence reducing the end-to-end latency [4]. Sup-
porting smart vehicular applications via fog computing
has the potential to significantly reduce the communica-
tion latency and improve service reliability [5], [6].

Fog computing has also been advocated by mobile
network operators (MNOs) as a way to create new
business opportunities, increase revenues, and reduce
capital expenditures (CAPEX). Major MNOs, including
AT&T, Verizon, and Deutsche Telekom, have announced
plans to integrate fog computing into their network
infrastructure to support emerging applications such as
robotic manufacturing, autonomous cars, and augment-
ed/virtual reality (AR/VR) [7]. LTE is readily available
to support high-speed and low-latency wireless solutions
on a global scale, and therefore is a good candidate to
facilitate MNO-based fog computing. Recent rollouts of
5G networks are primarily based on the non-standalone
(NSA) mode, which relies on existing LTE core net-
works and base stations [8]. Therefore, analyzing and
modeling the wireless access latency in existing LTE
systems allow us to better understand the fundamental
issues that would affect the practical implementation
of URLLC in LTE and 5G as well as their evolution
towards B5G and 6G systems [9]. According to 3GPP,
the round-trip-time (RTT) for user equipments (UEs)
connected via LTE networks should be in the order
of 10 ms in ideal conditions [10]. Such RTT value is
negligible when compared to other types of latencies in
a fog computing system, including data processing and
queueing delays. Unfortunately, recent reports as well
as our own measurements suggest that the 10 ms target
latency is unattainable by most existing commercial LTE
operators. In fact, recent studies [11]–[13] indicate that
the wireless connection between moving a vehicle and
the LTE network can sometimes experience frequent
disconnections, retransmission, and high wireless access
latency that dominate the overall end-to-end latency.

While there has been numerous studies of the wireless
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access latency in LTE networks (e.g., [11]), to date there
has been no long-term systematic study of the latency
between moving vehicles and cloud/fog servers over
commercial LTE networks. In fact, due to the time-
varying network topology, diverse application require-
ments, and highly dynamic traffic demand, modeling
and optimizing the latency in an LTE-based vehicular
systems are quite difficult.

This paper first empirically analyzes the observed
latency in vehicle-to-cloud/fog solutions for connected
vehicular systems supported by a multi-operator LTE
network. Based on this analysis, we propose a novel
optimization framework, called AdaptiveFog, which can
be used by a smart vehicle to dynamically switch be-
tween MNO networks that offer fog and cloud services
on the move. We use a smart phone app, built on
Android API and run on a Google Pixel 2 phone located
inside a vehicle, to obtain five-month-long measure-
ments of fog/cloud latencies associated with two major
LTE MNOs. These measurements are used to evaluate
the impact of handover, driving speed, MNO network,
fog/cloud server, and location on the service latency.

Based on our measurements, we observe that none of
the MNOs consistently offers better latency performance
than the other. Also, the instantaneous latency varies
significantly between measurements. However, the s-
tatistical features, including the empirical probability
distribution function (PDF) of latency, remain relatively
stationary at any given vehicle location. Accordingly,
we investigate the confidence level of a vehicular ser-
vice, defined by the probability that a tolerable latency
threshold can be guaranteed for the supported-type of
service, across a city-wide geographical area. An em-
pirical spatial statistical model is established using our
dataset. We observe that although the difference between
the mean values of cloud and fog latencies can be as
low as 10-20 ms, the difference between the confidence
levels offered by cloud and fog servers can be very
high (e.g., as high as 58.6%). A weighted Kantorovich-
Rubinstein (K-R) metric is then introduced to quantify
the performance difference between the confidence lev-
els of various MNO networks, taking into consideration
the heterogeneity in the demands and priorities of dif-
ferent services. We then formulate the MNO selection
and server adaptation problem as a Markov decision
process. To capture short-term and long-term factors in
our optimization, we investigate two scenarios: (1) finite-
horizon decision making, in which the main objective of
a vehicular user is to maximize the average confidence
over a given forecasting window, and (2) infinite-horizon
decision making, where the user aims at maximizing the
long-term confidence. We propose a simple threshold
policy for deciding when and where to switch between
MNO networks based on the weighted K-R distance. We
prove that the proposed threshold policy achieves the
optimal performance with low computational complex-
ity. Extensive simulations are conducted to evaluate the
performance of AdaptiveFog. Numerical results show

that AdaptiveFog achieves 30% to 50% improvement in
the confidence level for fog/cloud latencies, especially
when applied to applications with stringent latency re-
quirements (e.g., active road safety applications).

2 RELATED WORK

The concept of fog computing and its relation to cloud
and mobile edge computing can sometimes be blurry.
In this paper, we use the term fog computing to refer
to a generalized architecture that includes cloud, edge,
and clients [4]. We also use terms fog node and fog server
interchangeably to denote the servers placed at the edge
of the network. We use the term cloud server to denote
the high-performance server installed at the CDC.
Fog Computing-assisted Networking Systems: Com-
pared to a CDC, a fog node is a cost-effective yet
resource-limited computational device [14], [15]. Most
previous works focused on developing new methods
and architectures to improve the utilization of fog re-
sources. For example, in [16], Zeng et al. studied the task
scheduling and resource management problem to mini-
mize the task completion time. Tong et al. [17] proposed a
hierarchical architecture to improve the resource utiliza-
tion of a fog computing system. Yu et al. [18] considered
the application provision problem under bandwidth and
delay requirements in a fog-enabled Internet-of-Things
(IoT) system. Garcia-Saavedra et al. [19] proposed an
analytical framework, called FluidRAN, that minimizes
the aggregated operator expenditure by optimizing the
design of the virtualized radio access network. Inaltekin
et al. [20] introduced an analytical framework to derive
the optimal location of the virtual controller for balanc-
ing latency and reliability in a fog computing system. In
[21], Deng et al. derived the optimal workload allocation
solution for fog nodes and CDCs so as to maximize the
utilization of the computational resources. Joint resource
allocation for different network entities, such as cloud,
fog, and IoT users, has also been investigated using
hierarchical frameworks [22], [23].
Fog Computing-supported Smart Vehicles: Connected
vehicle has recently been promoted by both industry
and standardization bodies as a key enabler of emerging
smart vehicule applications, such as intelligent driver as-
sistance and autonomous driving [2], [24]. Premsankar et
al. [5] studied the placement of edge computing servers
for vehicular applications. An effective heuristic method
was proposed to deploy fog servers based on knowledge
of road traffic within each deployment area. Lee et al.
[25] proposed an in-kernel TCP scheduler to mitigate the
network latency of connected vehicles with redundant
transmissions. Joint optimization of communication and
computational resources has been studied in connected
autonomous vehicles as well as UAVs [26]–[29].
Performance Evaluation: There have been quite a few
studies on the performance of vehicular networks sup-
ported by a wireless infrastructure. For instance, Bedogni
et al. [30] analyzed a real-world GPS trajectory dataset to
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TABLE 1: Statistics of collected RTT samples over two MNO networks in Tucson, Arizona

Traces
L1

Fixed
L2

Fixed
All

Fixed
R1 (Driving)

(6.1m/s)
R2 (Driving)

(15.7m/s)
All

Driving

MNO 1

Fog
Latency
(ms)

Mean 62 72 70 83 96 88
STD 18 16 18 28 29 34
Median 55 71 68 77 91 85
Conf. 90% 85 86 85 115 121 120

Cloud
Latency
(ms)

Mean 74 87 85 94 108 96
STD 15 15 21 26 29 33
Median 71 88 86 92 108 94
Conf. 90% 88 100 104 124 129 128

MNO 2

Fog
Latency
(ms)

Mean 72 64 72 85 80 83
STD 14 17 15 52 46 51
Median 71 93 71 69 67 66
Conf. 90% 84 87 86 132 112 131

Cloud
Latency
(ms)

Mean 87 74 88 119 125 124
STD 13 13 17 50 47 54
Median 88 71 90 108 117 109
Conf. 90% 99 87 102 166 133 100

4. We observe noticeably different patterns in some
locations than others. In other words, compared to the
time of measurements, the geographical heterogeneity
contributes more to the diversity in the RTT statistics.
In Table 1, we present the key statistics of collected RTT
samples, including the mean, STD, and median, at two
fixed locations (labeled as “L1 fixed” and “L2 fixed”)
and for two driving routes (labeled as “R1 (Driving)”
and “R2 (Driving)” at average driving speeds of 6.1
m/s and 15.7 m/s, respectively). We also present the
combined RTT statistics for the fix and driving scenarios
(labeled as “All Fixed” and “All Driving”, respective-
ly). It can be observed that the RTTs experienced over
the two different MNO networks can vary significantly
in some locations/driving routes. Neither MNO shows
consistent advantage over the other across all the service
area in terms of latency performance. When taking into
consideration of all the traces, both MNOs exhibit similar
latency performance in terms of mean and STD at a
fixed location. However, the driving traces of different
MNOs exhibit more noticeable differences in terms of
STD, mean, and median values. One of the main reasons
for this behavior is that the eNB deployment densities
and locations of different MNOs can be quite different,
as shown in Figure 2(b). We will give a more detailed
discussion about various issues that can affect the latency
in Section 5.

4.2 Model Evaluation

Weighted Confidence: Most latency-sensitive vehicular
applications do not observe noticeable performance d-
ifference as long as the resulting RTT is below their
tolerable thresholds [32]. For example, it is reported in
[12] that for active road safety applications, such as collision
avoidance, emergency alert, and active control interven-
tion for crash prevention, the maximum tolerable service
latency is around 100 ms. For cooperative traffic efficiency
applications which are used to improve the traffic flow
and enhance the traffic coordination, less than 200 ms of
latency is considered as sufficient. For most infotainment
applications, up to 500 ms of latency is tolerable.

We consider the proportionally weighed confidence level as
the main metric for evaluating the latency performance
of a connected vehicular system. This metric is formally
introduced as follows. Suppose that each UE can request
a finite set of services, denoted as M, each with its own
maximum tolerable latency, denoted as ri for service
type i. The confidence level Fi of service type i is the
probability that maximum tolerable latency ri can be
satisfied:

Fi = Pr (x ≤ ri) (1)

where x is the latency. The confidence level can be
directly calculated from a mathematical model, e.g., a
probability distribution function that estimates real la-
tency values. However, recent results in [11], [25] as well
as our own measurements indicate that the observed
latency in modern cellular systems is too complex to
be accurately captured by any well-known probability
distribution function nor it can be directly derived via
a simple mathematical equation. Compared to existing
works, which first formulate mathematical models and
then present the corresponding simulation results, in
this paper, we take a different approach where we
first conduct extensive measurements over commercial
cellular networks deployed by two major MNOs and
then analyze each of the possible factors that impact
latency, including fog node placement, uplink/downlink
transmission, handover, and driving behavior. Finally,
we establish an empirical probability distribution of the
confidence level Fi for each supported service i. Note
that for each specific service with a given ri, Fi will have
a fixed value at each location.

Compared to traditional metrics, such as the mean,
minimum, and instantaneous latency, the confidence
level is a more realistic and practical metric, because, for
most vehicular applications, it is critical to quantify the
chance that a certain latency threshold can be guaranteed
by the wireless access network. Furthermore, as we show
later, although the difference between the mean values
of fog and cloud latency can be as low as 10 to 20 ms (see
Table 1), the difference between their confidence levels
can be significant, e.g., as high as 58.6% (see Section 6).
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Different types of services can have different prob-
abilities of being requested as well as priorities to be
served. For example, cooperative traffic efficiency ap-
plications may be requested more often in low-speed
traffic congestion areas compared to active road safety
applications, which are assigned with a higher prior-
ity compared to infotainment applications. To include
these factors into the latency performance analysis, we
assign each service type i with a weighting factor wi.
The proportionally weighed confidence level F̂ is then
defined as the aggregated confidence levels with all the
supported services being served at their corresponding
tolerable latency thresholds:

F̂ =
∑

i∈M

wiFi. (2)

Note that (2) is a general performance metric that can
be applied to a wide range of applications under various
scenarios. For example, by settling wi to the probability
that type i service will be requested, wiFi is equivalent
to the probability that service i is requested by the UE
is served with satisfactory latency performance.
Distance Metric: To quantify the difference between the
latency performance for different wireless access net-
works (e.g., MNO networks), we introduce the weighted
Kantorovich-Rubinstein (K-R) distance, defined as:

K(F,G) =
∑

i∈M

wi (Fi −Gi) (3)

where Fi and Gi are the empirical cumulative distribu-
tion functions (CDFs) of latency offered by two different
MNOs.

The weighted K-R distance in (3) corresponds to the
weighted difference between the confidence levels of
different services at their maximum tolerable thresholds.
Generally speaking, the UE should always choose the
LTE network that provides a higher confidence lev-
el to achieve a better latency performance guarantee.
However, there is a cost for switching between LTE
networks. This cost is related to the extra price paid
to multiple MNO networks, extra latency for the UE
to disconnect from one MNO and reconnect to another,
and/or extra energy and processing resource consumed
during the switching. Therefore, the UE needs to not
only consider the current performance of each MNO but
also the performance that can be offered by the MNOs
in the future as well as the switching cost, i.e., the UE
should choose a single MNO or a sequence of MNOs to
maximize the confidence of maintaining the guaranteed
services at the minimal cost incurred when switching
back-and-forth between different networks.
Model Updating: The probability distribution of the
latency in some specific locations can be affected by
some unexpected events, e.g., road work and/or traffic
accidents. In this case, the UE should also be able to
detect the change and adjust the empirical PDF accord-
ing to the updated latency traces. Several approaches
can be applied to detect the change of empirical PDF
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Fig. 5: Switching cost Υ(ct) where ct is the extra latency

caused by switching from one network (with CDF in dashed

line) to another (with CDF in solid line).

using updated samples [33]. Applying and compar-
ing the model/statistic-changing detection methods in
AdaptiveFog is out of the scope of this paper and will
be left for future research.

4.3 Network/Server Selection and Adaptation

Driving Behavior Modeling: In addition to the network
infrastructure, the latency performance of the UE can
also be affected by human-related factors such as the
driving routine, and driver’s behavior. Many existing
works as well as our own measurements indicate that the
driving location and speed of a vehicle typically follow
a Markov behavior, that is the future state of the vehicle
including its location and speed only depends on the
current state. We apply the driving location and speed
data collected in our measurement campaign to calculate
the empirical state transition probability of the UE when
driving through different locations with different speeds.
Network Adaptation: The main objective of our network
adaptation design is to maximize the long-term confi-
dence minus the possible cost incurred due to MNO
switching while the UE is driving through different
locations. We consider a slotted decision making process
and assume in each time slot t, the UE can only choose
one MNO’s network. With some abuse of the notation,
we use k to denote the selected MNO as well as its
LTE network. We also use j to denote the fog or cloud
server selected by the UE. As will be shown in Section
6, the cloud latency is often larger than the fog latency.
However, a cloud server has much more computational
resources compared to a fog server and therefore can
still be considered as the preferred choice for workload
outsourcing if the latency requirement is not stringent.
We write the utility obtained by the UE in time slot t as
follows:

ut(kt, jt) =
∑

i∈M

wiFi,t (st, kt, jt)− 1 (kt 6= kt−1)Υ (ct) (4)

where we use subscript t to denote the parameters in
time slot t. 1 (·) is the indicator function. Υ(ct) is the
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reduction in the confidence level caused by switching
between different wireless access networks, where ct is
the cost of switching in terms of the extra latency for
the UE to disconnect from one MNO and reconnect
to another, the extra energy and processing resource
consumed during the switching, and the extra price
paid to multiple MNO networks. Figure 5 illustrates the
reduction of confidence level Υ(ct) caused by ct. st is
the state at time t, which includes the location, speed,
and currently connected MNO network. Fi,t(st, kt, jt) is
the confidence level when MNO kt is selected by the UE.

To capture the scenarios where a connected vehicle
may need to optimize its short-term or long-term latency
performance, we investigate two decision making pro-
cesses at the UE: finite-horizon and infinite horizon. In
the first scenario, the UE tries to maximize the confidence
level for a given duration of time in the future. For ex-
ample, the UE may drive through a sequence of complex
intersections that requires high confidence of latency
guarantee. In this case, the UE will carefully decide a
sequence of MNOs to be connected with when driving
into different locations at different times. Suppose the
UE tries to maximize its confidence level in the next T

time slots of driving. The optimal policy for the UE to
select the optimal MNO and fog/cloud server can be
written as

π (st) = arg max
〈kt,jt〉

E

(

T
∑

τ=t

uτ (kτ , jτ )

)

(5)

where E (·) is the expectation.
In the infinite horizon scenario, the UE focuses on

optimizing the confidence level for a long-term driving
experience. For example, the UE may not know the final
destination or that the route may consist of a very large
number of time slots. In this case, we can write the
optimal policy for the UE to select the optimal MNO
and fog/cloud server as

π′ (s) = argmax
〈k,j〉

E

(

lim
T→∞

T
∑

t=1

γtut (k, j)

)

(6)

where 0 < γ ≤ 1 is the discount factor specifying how
impatient the UE is, i.e., the smaller the γ the more the
UE cares about the short-term latency. γ also ensures the
accumulated latency of the UE to be finite.

5 LATENCY ANALYSIS IN LTE-BASED FOG

COMPUTING

The RTT between the UE and the fog node can be
affected by the following factors:
Fog Node Placement: Most existing works assume that
by simply deploying fog servers at or near the eNB
(the closest network element to users), one can minimize
the RTT between the UE and the fog server [2], [7],
[34]. However, as observed in [11], eNBs are typically
installed at inaccessible locations (e.g., the top of a hill,
lamp posts, and street cabinets), and therefore cannot

offer sufficient space and resources (e.g., electric power
and cooling load) for servers. In addition, allowing the
computational workload sent by the UE to be redirected
to a co-located server at the eNB instead of being for-
warded to the higher layer of LTE network, i.e., service-
gateway (S-GW) and ePC, via S1 interface will also
require a total redesign of LTE interfaces. In commercial
LTE systems, UE data packets pass through many IP
routing hops within the ePC [25]. The addresses of these
internal IP hops are hidden from public access. The UE
can only get a private subnet IP address that is translated
to a public address at the packet-gateway (P-GW). In
fact, in our measurements, we observe that in each MNO
network, the IP address of the first hop IP address iden-
tified by “traceroute” remains the same across different
cities. This is typical for IPv4-based networks, where
IP addresses are scarce. In this case, an Internet-based
application at the UE perceives the entire ePC as a single
routing hop. To minimize the RTT between the UE and
the fog node, the fog node should be placed close to the
first public IP address, also referred to as the first node
in ePC, that can be identified.
Uplink Latency: We consider the scenario where the
UE submits its workload using the data-only best-effort
service offered by MNOs. In this case, the UE must first
initiate the uplink data transmission by submitting a
one-bit scheduling request (SR) to the physical uplink
control channel (PUCCH), informing the eNB about the
upcoming packet arrivals. The UE will then wait for the
eNB to schedule a grant that specifies the radio resources
for uplink transmission. If the UE does not receive the
uplink resources from the eNB, it will resend the SR on
PUCCH based on the SR periodicity from 5ms to 80ms
(in LTE Release 9, new 1 ms and 2 ms SR periodicities
have been added.) [35].
Downlink Latency: The eNB will feedback the pro-
cessing result to the UE when it becomes available.
In LTE-FDD, a 1 ms subframe is considered to be the
typical wireless transmission time interval between the
UE and the eNB. There is also a frame alignment time
(typically 0.5 ms) and UE processing latency (1.5 ms).
If the delivery fails, the UE will feed back a negative
acknowledgment (NACK) after 4 subframes, which will
then trigger a Hybrid ARQ (HARQ) retransmission,
bringing the total delay to 8 ms.
Handover: One of the main factors that cause service
interruption, drop of connection, and increased latency
for the UE is handover between two eNBs. The handover
decision is typically initiated by the UE via its connected
eNB when the measured downlink signal power drops
off below a certain threshold. In particular, the UE
starts measuring the signal strength of a neighboring
eNB when the received signal power of the current
eNB is below the threshold value. The UE will then
report the result to the source eNB. Because signal
strength measurements and neighboring cell search are
conducted by the UE, even in the idle state during
DRX periods, their associated latency is negligible. Once
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Fig. 6: PDF of (a) cloud and (b) fog latency at a fixed location.
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Fig. 8: PDFs of MNO 2’s (a) cloud and (b) fog latency during
driving.

the downlink measurement results reported by the UE
satisfy certain conditions, the source eNB will initiate the
handover process by sending a radio resource control
(RCC) reconfiguration message to the UE. This message
specifies the identity of the target eNB. According to [36],
the maximum allowed delay for RCC reconfiguration
is 15 ms. The source eNB will also send a handover
request message to the target eNB. Once it receives
the request, the target eNB will allocate the required
resources in its cell and will also assign a new Radio
Network Temporary Identifier (RNTI) to the UE. The
handover can be based on the S1 interface between two
eNBs without requiring coordination through higher-
level components, such as MME and P-GW. If the S1
interface is unavailable, the handover will be processed
by the MME via the X1 interface. From the UE’s perspec-
tive, it is impossible to differentiate these two types of
handover. In fact, it is generally impossible for the UE
to tell which handover procedure has been executed.

6 EMPIRICAL MODELING

6.1 Cloud vs. Fog Latency

Latency and Reliability Tradeoff: We present the his-
togram as well as the empirical PDF for cloud and fog
latencies when measured at a fixed location (university
lab) in Figure 6. It can be observed that the PDF of
fog latency is dual modal, with the first and second
peaks occurring at around 54 ms and 87 ms. The 33
ms difference between the two peaks is mainly caused
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and 150 ms). The size of the shaded areas in different colors
correspond to the K-R distance between cloud and fog latencies
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Fig. 11: PDFs of MNO 2’s (a) cloud and (b) fog latencies in a
multistory parking lot.

by SR retransmission periodicity (around 20 to 40 ms)
and HARQ retransmission delay (around 1 to 8 ms).
In [11], the authors observed a sawtooth RTT pattern
caused by the SR retransmission periodicity at 20 ms
with around 40 ms amplitude in a fixed lab location.
Because our latency traces are recorded every 500 ms,
we did not observe a clear sawtooth pattern. However,
the SR retransmission still contributes to the second peak
of the latency traces. as shown in Figure 6(a). From
Figures 6(a) and 6(b), we can observe that the Internet
connection between the LTE network and the cloud
server contributes to approximately 12 ms of extra delay
in the overall RTT. It is interesting to observe that for
most of the collected traces, the STD of the cloud latency
is less than that of the fog latency. This means that the
extra delay and Internet connection variability somehow
compensate for the latency variation of the wireless
link between UE and ePC. The above observation also
verifies the recent study reported in [20], where the
authors suggest that although the cloud server normally
has higher average latency compared to the fog node, the
service latency between the UE and cloud exhibits less
uncertainty, i.e., lower STD, compared to that between
UE and fog node.

In Figures 7 and 8, we compare the empirical PDF for
cloud and fog latencies for traces collected while driving
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within two MNO networks. We observe that the mobility
of the UE contributes, on average, 10 to 20 ms of extra
latency, compared to a fixed location. As indicated in
Table 1, the driving latency traces exhibit a significantly
higher RTT variations, e.g., around 30 ms to 40 ms
increase in the 90 percentile of the confidence level for
fog and cloud latencies. This can be caused by various
factors, such as handover, data loss, and reconnection.
We will further discuss this issue later in this section.
Cloud/Fog Server Selection and Adaptation: In Figure
9, we present the CDFs for fog and cloud latencies and
compare their K-R distance under three latency thresh-
olds of 50 ms, 100 ms, and 150 ms, with the weighting
factor set to 1. We can observe that for fixed-location
traces, the minimum K-R distance between cloud and
fog latency occurs at around 85 ms, at which point the
difference between fog and cloud latency confidence is
only 0.23%. In other words, if the UE is satisfied with
the service quality as long as the latency is below 85 ms,
then offloading the workload to either cloud or fog node
will not have any noticeable difference in performance.
However, for applications that are sensitive to latency be-
low 85 ms, the fog node offers much better performance
than the CDC. For example, if the maximum tolerable
latency of the UE is 63 ms, the difference between the
confidence levels offered by cloud and fog node can be
as high as 58.6%.

For latency traces collected while driving (Figure 9
(b)), the average K-R distance between cloud and fog
latencies smaller than that of the fixed location. In par-
ticular, the minimum K-R distance occurs at 74 ms with
only 0.55% difference between the confidence levels of
cloud and fog latencies. The maximum K-R distance is
observed at 101 ms, where switching from a cloud server
to a fog server can result in over 16.5% increase in the
confidence level. This means that the delay uncertainty
due to the wireless connection plays a much more dom-
inant role in a driving scenario, compared to the fixed
location scenario.

Fog servers typically have much less computing pow-
er compared to cloud servers. For this reason, most
existing works suggest offloading only latency-sensitive
applications to fog nodes, and leave the more delay-
tolerant service workload to the CDC. The K-R distance
offers a more accurate decision threshold for identifying
the services that should be offloaded to CDC or fog
nodes. In particular, for a given LTE network at a maxi-
mum tolerable delay ri, we can write a simple threshold-
based policy for selecting fog or cloud server to process
a request of service type i:

j =

{

{Cloud Server}, if K(Gi, G
′
i) ≤ θf

{Fog Server} otherwise
(7)

where Gi and G′
i are the empirical CDFs for the cloud

and fog latencies at tolerance level ri. θf is the threshold
that specifies the difference between tolerable confidence
levels of fog and cloud latencies that can be considered
to be negligible for service type i.
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Fig. 12: CDFs and K-R distance of (a) cloud and (b) fog
latencies for the two MNOs.
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Fig. 13: PDF of MNO 1’s cloud and fog latencies during
handover between two eNBs.

6.2 Different MNOs

The latency experienced under different MNOs exhibits
significant spatial variations, depending on the locations
and density of deployed eNBs. To investigate the factors
that contributed to differences in latency performances
of different MNO networks, we need to look into specific
regions. Figures 10 and 11 depict the empirical PDF
of the measured RTT in the first level of a multi-story
parking garage for two MNO networks. For MNO 1,
the mean of the measured RTTs increases by around
10ms compared to the mean RTT for the lab location
previously presented in Figure 6. This can be caused
by the higher chances of HARQ retransmission and
in-synchronization. The RTTs observed over MNO 2’s
network suffer from a much higher increase in both the
average latency as well as its STD. This can be attributed
to a less dense deployment of eNBs in the that area
compared to MNO 1. Another reason causing the perfor-
mance degradation for MNO 2 is that its LTE network
in that area operates at 1900 MHz. MNO 1, on the other
hand, operates at a lower frequency band (850 MHz),
where the signal is more capable of penetrating through
concrete walls. This will also increase the chances of
packet loss, in-synchronization, connection drop, and
retransmission.

In Figure 12, we compare the CDFs of cloud and fog la-
tencies offered by the two MNOs. For the fog latency, we
observe that if the UE latency constraint is 88 ms, then
the difference in the confidence levels offered by the two
MNOs has a maximum value of 25.79%. MNO 2 offers a
higher confidence level for services with the maximum
tolerable latency below 131 ms. The fog latency offered
by two MNOs provide the same confidence level at 64
ms and 125 ms. The maximum difference between the
fog latency confidence level is at 80 ms. In this case,
MNO 2 offers 29.91% higher confidence than MNO 1.
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changes in these two parameters. Furthermore, the em-
pirical PDFs for v and x were obtained using only a
finite number of states. We can therefore define the state
space S as a finite set of possible intervals of speed,
location regions, and LTE network choices. We write
each instance of state as s = 〈v, x, l〉 for s ∈ S .

Action Space A: Suppose the UE has already connected
to MNO l. It can then decide whether or not to switch to
another MNO k, k 6= l, or stay with the current choice.
We assume a service request can be submitted to only
one LTE network at a time. We define the action of the
UE as a binary 1/0 choice, indicating whether or not to
switch to MNO k. We write the action set as A = {0, 1}.

State Transition Function Γ: The probability of tran-
siting from one possible location and driving speed
to another location and speed can be estimated from
our measurement dataset. We observe that the driving
speed as well as its probability of transiting to another
possible speed is closely related to the driving time, i.e.,
they differ between peak and non-peak hours. Therefore,
we consider different state transition probabilities at
different time slots throughout a day. To simplify our
description, we assume the state transition probability
can be considered as fixed during the time of driving,
and write the probability of transitioning from state s to
s′ when taking action a as Γ (s′, s, a) = Pr (s′|s, a).

Utility Function U : Our main objective is to maximize
the UE confidence level in successfully delivering all re-
quested services within the required latency. We assume
the UE can receive requests from a set of services M.
In each time slot, a service request of type i, i ∈ M, is
generated with service request probability pi. Let ri be
the maximum tolerable delay for type i service. To avoid
switching back-and-forth between different MNOs, we
assume a fixed cost ct for switching from one MNO to
another. We consider the instantaneous utility function
ut defined in (4).

Theorem 1: For a vehicular system with two available
MNOs, the optimal policy for the UE to decide whether
or not to switch from one MNO to another is a threshold
policy (e.g. the policy is in the form of (7)). In particular,
suppose a UE is connected to an MNO with empirical
latency CDF Ft at time slot t. Let Gt be the empirical
latency CDF of the other MNO.

(1) For finite-horizon decision making, the optimal UE
policy is given by:

π∗ (st) =

{

1, if K(Ft, Gt) ≤ ∆t − ct
0, otherwise

(8)

where ∆t =
∑

〈vt+1,xt+1〉∈V×X

Pr (〈vt+1, xt+1〉|〈vt, xt〉) Y (vt+1, xt+1) and

Y (vt+1, xt+1) (9)

=







ct, if K(Ft, Gt) < ∆t+1 − ct
−ct, if K(Ft, Gt) > ∆t+1 + ct
∆t+1 −K(Ft, Gt), otherwise.

(2) For infinite-horizon decision making, the optimal
UE policy is given by:

π′∗ (s) =

{

1, if K(Ft, Gt) ≤ γ∆− ct
0 otherwise

(10)

where ∆ =
∑

〈v′,x′〉∈V×X Pr (〈v′, x′〉|〈v, x〉)Y (v′, x′)
and

Y (v′, x′) (11)

=







ct, if K(Ft, Gt) < γ∆− ct
−ct, if K(Ft, Gt) > γ∆+ ct
−K(Ft, Gt) + γ∆, otherwise

Proof: Theorem 1 follows directly from the standard
policy iteration. We first consider the finite-horizon sce-
nario. To maximize the utility sum for a given number
of time slots, the UE must consider both the current
utility and the expected future utility obtained during
the remaining time slots, i.e., the UE maximizes the
following function:

Vt (at, st) =

(1− at)





∑

i∈M

wiFi,t (st, l) +
∑

st+1∈S

Γ (st+1, st, l)

V ∗
(

st+1, a
∗
t+1

)]

+ at

[

∑

i∈M

wiGi,t (st, k)+

∑

st+1∈S

Γ
(

s′t+1, st, k
)

V ∗
(

s′t+1, a
′∗
t+1

)

− ct



 . (12)

We can therefore write the optimal policy as

π∗ (st) = arg max
a∈{0,1}

Vt (a, st)

= arg max
a∈{0,1}

a

[

wi

∑

i∈M

(Gi,t (st, k)− Fi,t (st, l))− ct

+
∑

s′
t+1

∈S

Γ
(

s′t+1, s
′
t, k
)

V ∗
(

s′t+1, a
′∗
t+1

)

−
∑

st+1∈S

Γ (st+1, st, l)V
∗
(

st+1, a
∗
t+1

)





= arg max
a∈{0,1}

a [−K (Ft, Gt)− ct +∆t]

=

{

1, If K(Ft, Gt) ≤ ∆t − ct,

0 Otherwise,
(13)

where ∆t is given by

∆t =
∑

s′
t+1

∈S

Γ
(

s′t+1, st, k
)

V ∗
(

s′t+1, a
′∗
t+1

)

−
∑

st+1∈S

Γ (st+1, st, l)V
∗
(

st+1, a
∗
t+1

)

=
∑

st+1∈S

Pr (〈vt+1, xt+1〉|〈vt, xt〉) ·

[

V ∗
(

〈vt+1, xt+1, k〉, a
′∗
t+1

)

−V ∗
(

〈vt+1, xt+1, l〉, a
∗
t+1

)]

(14)
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Fig. 16: PDFs of latency for: (a) fog, and (b) cloud using either
AdaptiveFog or a single MNO.
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Fig. 17: Confidence level for cloud latency under (a) finite-
and (b) infinite-horizon decision making.
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Fig. 18: Confidence level of fog latency under (a) finite- and
(b) infinite-horizon decision making.
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Fig. 19: Confidence level for fog latency under: (a) finite-, and

(b) infinite-horizon, compared with myopic strategy.
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Fig. 20: Confidence level of cloud latency under: (a) finite-,

and (b) infinite-horizon, compared with myopic strategy.

of data are used as the training dataset to calculate the
network switching policy. This policy is then tested by
applying it for the rest of the week.

We first evaluate the impact of applying AdaptiveFog
on the PDF of the RTT for driving scenario. We compare
the results to the single MNO case (no switching). In
Figure 16, we present the empirical PDFs as well as
the mean, STD, confidence level at 100 ms for both
fog and cloud latencies. We can observe that Adap-
tiveFog provides significant improvement in fog latency,
with around 22 ms and 2 ms reduction in the average
latency, compared with MNOs 1 and 2, respectively.
More importantly, AdaptiveFog significantly increases
the confidence of the UE by over 20% compared to
the worst performing MNO. For the cloud latency, the
average latency improvement are around 19 ms and 6
ms for MNOs 1 and 2, respectively. An improvement in
the confidence level is observed, with 25% and 4% gain
over MNOs 1 and 2, respectively.

It is obvious that the performance of AdaptiveFog
strongly depends on the switching cost. Particularly, if
the switching cost is close to zero, the UE should always
switch to the MNO network that offers the highest confi-
dence level. If the cost for switching to another network
is large, the incentive for the UE to switch to another
MNO will be reduced. In Figures 17–18, we present the
confidence level under different switching costs for both
fog and cloud latency with and without AdaptiveFog.
The confidence of AdaptiveFog approaches that of a s-
ingle MNO when the switching cost is large (e.g., switch-
ing to another MNO results in almost 50% reduction
in the confidence). To compare the latency performance
of different services, we present confidence levels under
three maximum latency tolerable thresholds, 100 ms, 120
ms, and 150 ms. As the threshold value increases, the
confidence degradation rate caused by the increase in
switching cost becomes slower. This means that, when
AdaptiveFog is applied, latency-tolerant applications be-
come less sensitive to the switching cost, compared to
latency-sensitive applications. In other words, Adaptive-
Fog is more suitable for applications that require very
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low service response time. We set the forcasting window
size in the finite-horizon case into 100 sample periods
and compare it with the infinite-horizon optimization
solutions. We can observe that, when the switching cost
is low, AdaptiveFog achieves almost 50% improvement
in confidence level for cloud latency, compared to the
single MNO case. For fog latency, Figure 18 shows that
AdaptiveFog achieves almost 30% improvement in the
confidence level for active road safety applications (e.g.,
100 ms latency tolerance threshold). We also observe
that in the finite-horizon scenario, the confidence level
is more sensitive to the switching cost compared to the
finite-horizon scenario. Note that these simulation result-
s are obtained using all of our driving traces to evaluate
the performance improvement of AdaptiveFog. In some
specific locations such as those when two MNOs exhibit
high variations in latency performance, eNB deployment
density, etc., the performance improvement achieved by
AdaptiveFog is higher.

In Figures 19 and 20, we compare the latency confi-
dence level under AdaptiveFog with the myopic strategy
[37], [38] (i.e., the UE tries to maximize the instantaneous
utility by switching to different MNOs at each time slot)
under different switching costs. As mentioned earlier,
if the switching cost is small, AdaptiveFog achieves
the same confidence level as the myopic strategy. As
the switching cost increases, the performance difference
between the two strategies will first increase and then
converge to zero at high switching costs. In other words,
the UE has no incentive to switch between networks
under either strategy when the switching cost is high.
We can also observe that, generally speaking, the gap
in the fog latency confidence level between the two
strategies is smaller than that for the cloud latency. This
is because cloud latencies experienced in the two MNO
networks exhibit more temporal and spatial variations
compared to fog latencies. Therefore, if network adap-
tation can be carefully optimized to maximize the long-
term performance, the benefit becomes more noticeable
for the overall cloud latency confidence. Note that both
AdaptiveFog and myopic strategies require information
such as the K-R distance and switching cost at all the
driving locations, and the decision thresholds must be
pre-calculated and pre-stored at the UE or fog node.
In Figures 19 and 20, we only consider a half week of
driving data for training and performance evaluation
with a limited driving time (around 2 hours per day).
The performance improvement offered by AdaptiveFog
is expected to become larger when the training and
evaluation time is longer.

9 CONCLUSIONS

This paper reported a city-wide measurement campaign
of the wireless access latency between vehicles and a
fog computing system that is connected through com-
mercially available LTE networks. We observed that
the latency performance of different LTE networks can

exhibit significant spatial variations and no MNO offers
consistently better performance than the other. A novel
networking and server adaptation framework, referred
to as AdaptiveFog, was proposed, which allows vehicles
to autonomously and dynamically connect to different
LTE networks and fog or cloud servers. The main objec-
tive of AdaptiveFog is to maximize the confidence levels
of various supported services with minimal switching
between LTE networks. An empirical spatial statistic
model was established to characterize the spatial vari-
ations in latency across various locations of the city.
We introduced the weighted K-R distance to quantify
the performance gap between different LTE networks. A
simple threshold-based policy was derived for a moving
vehicle to sequentially switch to the optimal MNO.
Extensive simulations were performed. Our results show
that AdaptiveFog achieves around 30% to 50% improve-
ment in the confidence level for fog/cloud latencies.
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