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Abstract—This paper proposes a reinforcement learning-based
approach for distribution network reconfiguration (DNR)
to enhance the resilience of the electric power supply.
Resilience enhancements usually require solving large-scale
stochastic optimization problems that are computationally
expensive and sometimes infeasible. The exceptional performance
of reinforcement learning techniques has encouraged their
adoption in various power system control studies, specifically
resilience-based real-time applications. In this paper, a
single agent framework is developed using an Actor-Critic
algorithm (ACA) to determine statuses of tie-switches in a
distribution feeder impacted by an extreme weather event. The
proposed approach provides a fast-acting control algorithm that
reconfigures the feeder topology to reduce or even avoid load
shedding. The problem is formulated as a discrete Markov
decision process in such a way that a system state captures the
system topology and its operational characteristics. An action
is made to open or close a specific set of tie-switches after
which a reward is calculated to evaluate the practicality and
advantage of that action. The iterative Markov process is used
to train the proposed ACA under diverse failure scenarios and is
demonstrated on the 33-node distribution feeder system. Results
show the capability of the proposed ACA to determine proper
switching action of tie-switches with accuracy exceeding 93%.

Index Terms—Actor critic, Markov decision process, network
reconfiguration, reinforcement learning, resilience.

NOMENCLATURE
A Node-branch incidence matrix
Ein, Eu Number of training/testing episodes
e,n Number of graph edges/nodes
Ep, Nop Set of graph edges/nodes
i, J Index of distribution line/tie-switches
0] Agent observation
N, Ny Number of distribution lines/tie-switches
R Reward value
s State value
t Index of trial iteration
Vi (Oy) policy value function
@ Action by the actor-network
B Discount factor
13 Policy network parameter
me(o|O¢)  Unbounded Gaussian policy
P Value function network parameter

0 Q-value function parameter
Qo(st,¢)  Critic policy evaluation function

I. INTRODUCTION

A. Motivation and Background

The frequency and intensity of extreme weather events
have increased in recent years, yielding prolonged outages
and significant economic losses [1], [2]. In 2008, 200
million people in China experienced a severe ice storm
resulting in direct losses exceeding 2 billion U.S. dollars
[3]. Superstorm Sandy of October 2012 caused over eight
million customers to lose power across 15 states in the
United States [4]. Fast and efficient restoration of lost
loads due to extreme events is one of the most important
attributes to achieve resilient operation of power systems
and reduce their economic and community impact [5], [6].
Because of the increased vulnerability of power distribution
systems to extreme weather events, a proper restoration
strategy is required to enhance distribution system resilience.
This can be achieved via microgrid formation [7], network
reconfiguration [8], and utilization of distributed energy
resources (DERs) [9]. However, determining proper restoration
decisions in a fast-paced manner is computationally expensive
and time consuming, specifically for large-scale systems.
Therefore, implementing a restoration resilience enhancement
strategy that provides proper decisions considering the system
operational constraints has become important.

B. Relevant Literature

Several studies have been conducted to improve the
restoration performance of distribution systems against
extreme weather events. A spectral clustering algorithm
has been employed to determine optimal network partitions
under tight potential N — k£ (i.e., & > 1) contingencies
[10]. A risk-based defensive islanding approach has been
studied in [11] to reduce the impact of cascading failures
on transmission systems for enhanced restoration against
hurricanes. Resilience-based microgrid formation frameworks
have been proposed to enhance the restoration of critical
loads in both radial and meshed networks [12]. An
evolutionary algorithm approach has been proposed in [13]
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to improve restoration behavior of lost loads via dispatching
tie-switches in distribution feeders. In [14], a heuristic
approach integrated with a fuzzy multi-objective function
has been proposed to determine the sequence of line
energizing for enhanced restoration. A mixed-integer linear
programming optimization-based formulation has been used
to retain critical loads through microgrid formation after an
extreme event [15]. Most of these studies have leveraged
analytical and heuristic-based techniques to enhance the
restoration of distribution systems. Despite the significant
contributions of these methods, their efficacy depends mainly
on the accuracy of the system models and degree of
approximations. Also, the computational complexity of these
methods increases dramatically with the system size imposing
scalability challenges.

Reinforcement learning (RL) approaches have been
used to provide a fast-acting control algorithm for
high-dimension stochastic optimization problems [16]. Several
deep reinforcement learning (DRL) methods have been
proposed to improve resilience of electric power systems
[17]. A soft actor-critic algorithm could potentially improve
voltage stability of transmission systems during a hurricane
based on dispatching shunt resources [18]. In [19], a
DRL-based protection scheme has been used to improve
the operational efficiency of microgrids integrated with
market participation constraints. An optimal rescheduling
strategy has been used to train an RL-based network for
improved resilience during hurricanes [20]. RL-based optimal
control algorithms have been used to improve the operational
performance of microgrids after a disaster [21]. RL-based
approaches provide a pathway to overcome some of the
challenges of analytical and population-based search methods.
In addition, learning-driven models have the capability to
apply lessons from experiences during online operations [22].
Also, RL-based methods can be easily integrated into online
decision-making process once fully trained and implemented.
However, the role of RL in DNR for improved resilience is
still under investigation.

C. Contributions and Organization

This paper proposes a DRL-based approach to control
tie-switches of distribution circuits to enhance the operational
resilience of the power supply during disruptive events.
The proposed algorithm is developed leveraging a DNR
strategy to reduce/eliminate the amount of load curtailment.
A single-agent Actor-Critic Algorithm (ACA) is used to
train an RL-based model under multiple line outages in a
distribution system. A Markov Decision Process (MDP) is
used to formulate the sequential iterative learning process
for the agent. An action implies connecting tie-switches to
modify the system topology, while a system state provides
information about the system operating conditions and
availability of system components. A reward function is
used to assess the appropriateness of the executed action.
A proper action should satisfy the traverse constraint and
radiality constraint of the distribution system. The sequential

MDP is repeated for numerous failure scenarios until the
agent is fully-trained. The trained ACA provides a set
of tie-switches to be reconnected for enhanced resilient
operation after an extreme event. The proposed algorithm
provides a corrective and restorative resilience enhancement
strategy that can be adopted for real-time applications. The
ACA is demonstrated on the 33-node distribution feeder for
validation. The contributions of this paper are: (1) Develop
a RL-based model to control tie-switches of distribution
power systems; (2) Provide a resilience enhancement strategy
leveraging network reconfiguration approach; and (3) Validate
the capabilities of ACA to improve system performance during
an extreme event.

The remainder of the paper is organized as follows.
The mathematical formulation of the ACA is explained in
Section II. Section III describes the ACA for the DNR
problem. A case study on the 33-node system is used to
validate the proposed work in Section IV. Finally, in section V,
there are some concluding remarks.

II. ACTOR CRITIC ALGORITHM

RL-based approaches rely mainly on estimating optimal
value functions and discovering the optimal policy for a given
problem environment. Various methods have been used to
estimate the value functions, including dynamic programming
and backward induction methods [23]. Reinforcement learning
involves a repetitive sequential Markov decision process from
samples of states, actions, and rewards. The Markov game
consists of an uncertain environment where an agent makes an
action to maximize cumulative reward. The state representing
a specific condition of the environment changes based on
the executed action. In some problems where the action
space is significantly large, or the problem environment is
highly non-linear, temporal difference approaches have been
used to overcome these challenges including Q-learning, deep
Q-networks, and ACAs [24].

In ACA, a single- or multi-agent framework is formulated
as a Markov game where it is required to maximize the
discounted returns of the agents. The ACA includes an actor
network and a critic network. The former is trained to
determine the proper actions, whereas the latter is trained
to determine the optimal policy upon which the actor makes
proper actions. A policy is defined to be the mapping process
from the environment state to the action space. The goal of
each agent is to find a policy that maximizes its total rewards.
A single agent has one actor network to provide appropriate
actions with a policy that can be expressed as follows.

Ot N7T§(O[t|0t), (1)

In each iteration, the policy is updated to maximize the
expected return of an agent in the fundamental ACA model.
A policy is evaluated as follows.

Vw(Ot) E [Qe(st, Oét)] (2
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The expression provided in (4) is used to minimize the
residual squared error of a soft Bellman function to train value
functions of the actor network.

) =By, | L (V600 - Qo(seon)?] @

The gradient of (4) to sample actions from the current policy
is determined as follows.

Vdo(¥) = VyVi(0r) [V (Or) — Qolse,an)] (5

To update the Q-parameters of the basic actor, the following
expression can be used.

1 . 2
JQQ (9) = E(st,oq) {2 (Qﬁ(stvat) - Q(St,&t)) } (6)
The value of Q-function (6) is optimized as follows:

Vodg, () = VeQo(st, ar) {QQ(Sta ar) — Q(st, Oft)} (7

The presented algorithm leverage A2C framework explained
in [22]. Detailed explanation of the proposed ACA is provided
in our previous work in [18] for further illustration.

III. THE PROPOSED ACA-DNR

This section explains the adoption of ACA for resilience
enhancement of distribution systems. First, it discusses the
graph theoretic representation of a distribution network for
topology reconfiguration. Then, it describes the ACA-DNR
environment and the algorithm execution procedure.

A. Formulation of DNR

A distribution power system can be represented as a
undirected graph Gp» = (N, E5), where Ny is a set of vertices
corresponding to buses or nodes in the power system and
Ep is a set of edges referring to distribution line segments,
transformers, sectionalizers, and tie-switches [25]. Changing
the status of sectionalizers and tie-switches provides different
topologies of a distribution feeder. For enhanced resilience,
minimal amount of load curtailment should be achieved. Also,
node traversing and radiality constraints should be fulfilled for
feasible operation of the distribution system.

1) Traversing Constraint

In the absence of DERSs, only the main substation can supply
energy to load nodes. There should be at least one path from
the source to the load node. In other words, all system nodes
should be connected together without the existence of islanded
nodes.

2) Radiality Constraint

Radiality requirements should be satisfied in distribution
systems to align with the existing protection coordination
schemes and voltage regulation fundamentals. A node-branch
incidence matrix A can be constructed using (8) for a
distribution network, such that A € R™*¢. The radiality
constraint is satisfied if matrix A is a full rank matrix.

+1 if branch y starts at node x
azy = § —1 if branch y ends at node z ®)

0 otherwise

B. ACA environment

This section formulates the DNR problem as an MDP
representing the ACA approach. The MDP is a sequential
process where a reward value is calculated based on a specific
action to change the problem environment from one state to
another. The better the action is, the higher the reward will
be. The states, the actions, and the rewards are formulated as
follows.

1) States:
The state set describes the system conditions and
the required information to fully observe the system

characteristics. In this paper, the state is represented by a
vector of on/off status of network branches, including both
distribution lines and tie-switches, as follows.

1

2) Action:

In the proposed problem, a discrete action represents
changing the status of a specific tie-switch. A vector of
on/off status of network tie-switches is fed into the problem
environment at each iteration. The action vector is formulated
as follows.

1
aj: 0

3) Reward:

A proper reward value should be defined to assess the
effectiveness of the actions. An agent is encouraged to
determine the best set of tie-switches to be turned on for
a specific failure scenario. A discrete reward function is
formulated where a value of —1 is given for each wrong action
and a value of 10 when reaching a feasible solution.

The total reward at time step ¢ is computed as follows.

1
R:{O
-1

C. Training and Execution Algorithms

if line is connected
e Nie Niy+Ns  (9)
if line is not connected

if tie-switch is connected .
, Vj € Ng

e . . (10)
if tie-switch is not connected

if all constraints are satisfied (an

if any constraint is violated

The proposed ACA agent is trained to determine the set
of tie-switches to be connected for improved resilience. The
agent is subjected to different failure scenarios from a list of
potential failures. For each failure scenario, the agent takes
an action and a reward is calculated. The process is repeated
till the ACA converges. The training and testing steps for the
ACA are summarized in Algorithm 1 and Algorithm 2 below.

IV. IMPLEMENTATION AND RESULTS

The proposed approach is applied on the 33-node
distribution feeder for validation. The proposed ACA model
is formulated to control tie-switches of the distribution feeder
for enhanced resilience leveraging DNR approach.



Algorithm 1 - Training of the ACA Framework
1: Define hyper-parameters of ACA
2: for episode = 1 to Fy,. do
3:  Create failure scenario
4:  Reset the environment to default settings
5
6

while Constraints not fulfilled and step < N do
Generate an action (set of connected tie-switches)
using the actor network

7: Evaluate the value of the current state using the critic
network

8: Execute the action on the environment

9: Compute the reward value

10: Observe the new state

11: Reset the environment, if terminal reached.

12: Update the weights of the actor network using (5)

13: Update the weights of the critic network using (7)

14:  end while

15: end for

Algorithm 2 - Testing of the ACA Framework
1: for episode = 1 to Fy; do
2:  Create failure scenario
3:  Reset the environment to default settings
4:  Generate an action using the Actor network
5
6
7:

Execute the action on the environment
. Count success if terminal condition is fulfilled
end for

A. System under Study

The 33-node distribution test system is a radial distribution
system with 33 nodes, 32 branches, and 5 tie-lines (37
branches) with total load of 3.72 MW [26]. The proposed
algorithm is implemented on the original system to validate
the effectiveness of the proposed algorithm to adapt to existing
system characteristics. A list of tie-switches and vulnerable
lines is summarized in Table I and shown in Fig. 1.

B. Case Studies

The proposed ACA model is trained for three cases based
on the number of failed lines as follows: (a) Case C;: single
line failure, (b) Case Cs: two-line failures, and (c) Case Cj:
randomly selected failures between one and four lines. The
training is performed for 30,000 episodes with a maximum of
ten iterations per episode. Also, a stopping criterion is adopted
to terminate the training process if the average reward value
exceeds a specific threshold for 100 consecutive episodes. This
is due to the high step impact from one episode to another

TABLE I
LIST OF VULNERABLE LINES AND TIE-SWITCHES

Tie-Switch | Connecting nodes || Vulnerable lines | Connecting nodes
SW1 21-8 L1 3-23
SWo 9-15 Lo 5-6
SW3 12-22 L3 21-22
SWy 18-33 Ly 10-11
SWs 25-29 Ly 29-30

(O Node/Bus Tie-switch

Impacted line

23 24 25 29 30 31 32 33

Substation

1 2 19

Fig. 1. Schematic diagram of the 33-node distribution feeder

TABLE 11
HYPER-PARAMETER SETTINGS OF THE ACA FOR 33-NODE SYSTEM
Hyper-parameters Values
Number of hidden layers 3
No. of neurons in hidden layers 100, 100, 100

Learning rate 10-3
Reward discount factor 0.99

Activation function of output layer Sigmoid
Activation function of hidden layers ReLU
Optimizer Adam

causing potential instability in the ACA networks [18]. The
hyper-parameter settings of the actor and critic networks of
the proposed framework are shown in Table II.

1) Training: In each training episode, the system is
initialized with a random state representing the status of all
the system lines. A set of failed lines is selected randomly
from the set of vulnerable lines. An action is generated using
the actor network and a corresponding value is computed
using the critic network for the given system state. A reward
value is calculated based on the obtained new system state.
The process is repeated for all aforementioned cases. For
evaluation, the running mean of the episodic rewards and
the number of iterations per episode are calculated using a
window of 100 episodes. The proposed DRL-based approach
takes approximately 4 milliseconds to execute on a PC with
a 64-bit Intel 17 core processor running at 3.15 GHz, 16 GB
RAM, and Windows OS.

Fig. 2 and Fig. 3 show the running mean and number
of iterations per episode for cases C; and C5. The average
reward value increases as the number of training episodes

| - Exactvalue Movingaverage|

o

Iterations
N w S o o ~ @ ©
Rewards

-10
2000 0 500

o

500

1000
Episodes

1500 1000

Episodes

1500 2000

Fig. 2. Reward and iterations per episode for C
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Fig. 3. Reward and iterations per episode for Co

increases, as anticipated. The average reward value reaches
the saturation level in less than 1,500 episodes in C; yielding
the effectiveness of the proposed algorithm to turn on a proper
tie-switch to maintain system constraints. In C5, the average
reward reaches saturation around 5,000 episodes. This is due
to the existence of more than one possible action for a specific
failure scenario. For instance, failure of L4 (nodes 10-11) and
L5 (nodes 29-30) can be mitigated by turning on either SW,
and SW5 (nodes 18-33 and 9-15) or S, and SW3 (nodes
18-33 and 12-22). On the other hand, the number of iterations
per episode decreases as the ACA networks are trained. As
the average value of iterations per episode reaches one, the
trained ACA is capable of determining the set of tie-switches
that maintain radiality constraints and eliminate the amount of
load curtailments within one decision iteration.

The training performance of the ACA might change due to
the random initialization of the weights of the NN models.
Fig. 4 shows the mean of rewards and number of iterations
per episode for case C; for 50 different runs. It is noticeable
that the proposed ACA have almost the same performance
and converges after 1,700 episodes. This implies the high
robustness level of the ACA.

Fig. 5 shows the running mean and number of iterations
per episode for cases C3. The average reward converges in
around 12,000 episodes. The proposed ACA has the capability
to learn and make proper decisions as more training episodes
are executed. In Cj, the average reward converges in a much
slower rate due to the high variability in the environment
behavior. In other words, for a specific failure scenario, more
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Fig. 4. Reward and iterations per episode for C for 50 different runs
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Fig. 5. Reward and iterations per episode for C3

than one set of tie-switches is considered a feasible solution.
Also, the random failure scenario generation creates further
challenges to train the ACA networks.

2) Testing: To validate the efficiency of the trained models,
a total of 1000 failure scenarios are tested for each case. For
each episode, the model is required to provide a feasible set of
tie-switches to reconfigure the distribution feeder for enhanced
resilience. A successful decision is counted if the provided
decision is a proper solution. The success rates are as follows:
99.7% for case C'1, 96% for case Cy, and 93.5% for case Cs.

The trained ACA models are capable of providing a proper
reconfiguration of the 33-node feeder with relatively high
success rate. Though the efficiency rate can be improved
through various modifications of the ACA networks and
hyper-parameters tuning procedure, this paper focuses on
the capability of the proposed ACA to reconfigure a given
distribution system under a specific failure scenario. It is worth
noting that all trained ACA models are able to achieve 100%
accuracy when two iterations of decisions are allowed. In other
words, if the maximum number of iterations per episode is
two, a 100% success rate is achieved.

3) Validation: The ACA is trained to determine the set
of tie-switches to avoid load shedding. In this case, a failure
scenario is provided to visualize the impact on network
reconfiguration using the ACA model. Lines Ly and L, are
selected to fail resulting in two islands as shown in Fig. 6.

The trained ACA provides two possible network
reconfigurations, as shown in Fig. 7 and Fig. 8. Both
solutions satisfy the traversing constraint—no islands, and
radiality constraint—no circulating loops. In Fig. 7, both
SWs3 and SW, are connected, whereas switches SW3 and
SWs are connected in Fig. 8. Though other possible feasible

Substation

19 20 21 22 S,

Fig. 6. Failure of L3 and L4



Substation

19 20 21 22

Fig. 7. First possible network reconfiguration due to failure of L3 and L4

23 24 25 29 30 31 32 33

Substation

Fig. 8. Second possible network reconfiguration due to failure of L3 and L4

reconfigurations might exist, the ACA selects the decision
based on their corresponding probability of success. In other
words, connecting SW; and SW3 will result in feasible
reconfiguration solutions. However, this decision is associated
with less probability value within the trained ACA model.

V. CONCLUSION

This paper has proposed a distribution network
reconfiguration approach to control tie-switches of distribution
systems for enhanced operational resilience. The proposed
method leverages ACA to determine set of tie-switches to
be connected due to multiple line outages. An MDP was
formulated to train a single agent actor-critic model. The
process was repeated for diverse failure scenarios to train
the ACA networks. The proposed methodology was tested
on the 33-node distribution feeder. The results showed the
effectiveness of the proposed ACA to determine the set
of tie-switches that allow feasible network reconfiguration
maintaining traverse and radiality constraints. The trained
ACA was tested against single, double, and multiple failure
scenarios and showed accuracy of almost 97%. The proposed
algorithm provides the system operators with a fast-acting
algorithm to restore curtailed loads in distribution networks
after an extreme event. In the future, the characteristics of
power systems including loads, voltages, and currents will be
considered as well as scalability to large-scale systems.
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