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Abstract—This paper proposes an approach based on graph
theory and coalitional game theory for pre-positioning of movable
energy resources (MERs) to improve the resilience of the electric
power supply. By utilizing the weather forecasting and monitor-
ing data, the proposed approach determines staggering locations
of MERs in order to ensure the quickest possible response
following an extreme event. The proposed approach starts by
generating multiple line outage scenarios based on fragility curves
of distribution lines, where the k-means method is used to create
a set of reduced line outage scenarios. The distribution network
is modeled as a graph and distribution network reconfiguration
is performed for each reduced line outage scenario. The expected
load curtailment (ELC) corresponding to each location is calcu-
lated using the amount of curtailed load and probability of each
reduced scenario. The optimal route to reach each location and its
distance is determined using Dijkstra’s shortest path algorithm.
The MER deployment cost function associated to each location
is determined based on the ELC and the optimal distance. The
MER deployment cost functions are used to determine candidate
locations for MER pre-positioning. Finally, the Shapley value, a
solution concept of coalitional game theory, is used to determine
the sizes of MERs at each candidate location. The proposed
approach for pre-positioning of MERs is validated through a
case study performed on the 33-node distribution test system.

Index Terms—Coalitional game, movable energy resources,
network reconfiguration, resilience, spanning forest.

NOMENCLATURE

N set of players of a coalitional game
V characteristic function
S a coalition that is subset of N
2N possible set of coalitions
ELCi expected load curtailment of location i
CDFi capacity distribution factor of location i
ψi Shapley value of player i
K the number of reduced scenario
Pr(j) probability of the jth reduced scenario
β1, β2 cost function weighting coefficients
ωm critical load factor at node m
PMER−tot total MER capacity
PDSR effective power distribution service restoration
MER movable energy resource

I. INTRODUCTION

A. Motivation and Background

Over the last decade, the frequency of extreme events,
both natural (e.g., hurricanes, wildfires, ice or hail storms,
and earthquakes) and man-made (e.g., cyber and physical

attacks), has increased dramatically. For example, there were
20 weather related catastrophic events in the United States in
2021 alone, each with costs surpassing $1 billion [1]. Such
extreme events have resulted in severe damages to important
power system equipment resulting in system-wide extended
power outages. The electric companies’ goal of delivering
reliable and resilient electrical supply to its customers has been
compromised by catastrophic weather events and subsequent
outages. As a result, PDSR procedures must be established in
order to reduce the impact of these incidents on end-user cus-
tomers. PDSR’s major goal is to reduce load curtailments and
outage duration by making the best use of available resources.
Smart grid technologies, such as microgrid formation, network
reconfiguration, repair crew dispatch, distributed generation,
energy storage, MERs, and combinations of these methods
and techniques, have proven to be the most effective PDSR
solutions.

MERs are mobile and versatile resources that can be rede-
ployed quickly from staggering locations to fault locations.
They are versatile in the notion that they can be built to
variable size and quickly integrated into the distribution grid
after a disaster. These resources can be designed to supply up
to a few megawatts of load. When part of a distribution system
is islanded due to equipment failures or damages, MERs can
be deployed to supply local and isolated critical loads if no
other resources are available.

B. Relevant Literature

Deployment of MERs for PDSR has gained significant
momentum. A two-stage robust optimization framework has
been developed in [2] for routing and scheduling MERs to
enhance the resilience of distribution systems. A two-stage
PDSR strategy based on mixed-integer linear programming
(MILP) has been proposed in [3] to enhance seismic resilience
of distribution systems with MERs. A mixed integer linear
programming-based PDSR strategy has been proposed in [4]
for an active distribution system, where routing and scheduling
of mobile energy storage systems is performed for enhanced
resilience. In [5], a two-stage optimization strategy has been
proposed to enhance distribution system resilience with mobile
energy storage units, where dynamic microgrid formation is
also considered. The majority of the aforementioned studies
primarily focus on coordinating and dispatching MERs with
other PDSR techniques for service restoration, without con-
sidering MER pre-positioning.



C. Contributions and Organization

In our previous work [6], a distribution service restoration
strategy has been proposed where the minimum sizes of MERs
are determined for resilience enhancements. In this paper, we
propose an approach based on graph theory and coalitional
game theory for pre-positioning of MERs. High wind speed is
taken as an example of weather-related extreme events. A set
of line outage scenarios is generated based on forecasted wind
speed. Generated scenarios are then reduced using the k-means
method. The reduced scenarios are used to determine expected
load curtailments when MERs are placed at each node. The
MER deployment cost function of each node is determined
using expected load curtailment and the optimal distance of
MER deployment location calculated using Dijkstra’s shortest
path algorithm. A certain number of candidate locations of
MERs is selected based on the MER deployment cost function.
The candidate locations thus selected are treated as players of a
game. Since the players are allowed to form coalitions among
themselves to maximize the expected critical load recovery,
the game is a coalitional game. Shapley value, one of the
solution concepts of coalitional game theory, is then used
to determine sizes of MERs at each candidate location. The
proposed approach is validated through a case study on a
distribution test system.

The remainder of the paper is laid out as follows. The
mathematical modeling of the MER pre-positioning problem is
explained in Section II. The proposed approach and solution
algorithm are described in Section III. A case study on the
33-node system is used to validate the proposed work in
Section IV. Section V provides some concluding remarks.

II. MATHEMATICAL MODELING

This section presents the graph theoretic modeling of dis-
tribution network and road network, and the coalitional game
theoretic model of the MER pre-positioning problem under
study for resilience enhancement of the distribution system.

A. Graph Theoretic Modeling of Distribution Network

Distribution systems are equipped with sectionalizing
switches (normally closed) and tie-switches (normally open).
When all the switches of a distribution network are closed,
a meshed network is formed, and the meshed network thus
formed can be represented by an undirected graph G = (N,E),
where N is a set of nodes (or vertices) and E is a set of edges
(or branches).

1) Spanning Tree: A spanning tree is defined as a subset
of the undirected graph G = (N,E) that has a minimal
number of edges linking all vertices (or nodes). In a spanning
tree, the number of edges is one less than the number of
vertices. There are no cycles in a spanning tree, and all of
the vertices are connected [7]. A linked graph can have many
spanning trees, each of which has the same number of edges
and vertices. Each of the undirected graph G’s edges has a
specific value (or weights). The edge weights vary depending
on the problem. The sum of all edge weights of a spanning
tree is minimized when establishing the minimum spanning

tree. Fig 1(a) shows a spanning tree of a hypothetical 12-node
system. The spanning tree shown in the figure consists of all
system nodes (i.e., 12) and 11 closed branches (edges).
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Fig. 1. (a) A spanning tree; and (b) a spanning forest of a hypothetical 12-
node system

2) Spanning Forest: In graph theory, a forest is a dis-
connected union of trees. A spanning forest is a forest that
covers all vertices of the undirected graph G and consists of
a set of disconnected spanning trees [7]. When all spanning
trees are connected, each vertex of the undirected graph G is
included in one of the spanning trees [8]. On the other hand,
when a disconnected graph has many connected components,
a spanning forest is formed and it contains a spanning tree
of each component [9]. Fig. 1(b) shows the spanning forest
formed as a result of disconnection of two additional branches
(2–3 and 3–10) in the spanning tree presented in Fig. 1(a). The
spanning forest shown in Fig. 1(b) consists of three spanning
trees (ST-1, ST-2, and ST-3).

In this paper, Kruskal’s algorithm [10] is used to search for
the optimal spanning forest. Kruskal’s spanning forest search
algorithm (KSFSA) starts by constructing a forest F with
each graph vertex acting as a single tree based on the given
undirected graph. Since KSFSA is a greedy algorithm, it goes
on connecting the next least-weight edge that avoids loop or
cycle to the forest F at each iteration. The resulting forest F
after the last iteration is the optimal spanning forest. Fig. 2
shows the flowchart of KSFSA.

B. Graph Theoretic Modeling of Road Network

The meshed configuration of the road network is modeled
as an undirected graph Gr = (Nr,Er), where Nr is a set of
nodes and Er is a set of road edges. The weight of each road
edge is determined by its length.

1) Dijkstra’s Shortest Path Algorithm (DSPA): Since mul-
tiple routes from the initial location of MERs to the final
location may be possible, determining the best route can
significantly minimize the MER deployment cost function.
In this work, DSPA is used to find the shortest (optimal)
path between two different nodes of a road network graph.
DSPA uses the least edge weight to calculate the shortest path
from the initial location to the destination. DSPA can only be
applied in case of the graph with non-negative edge weights
[11]. DSPA is appropriate for this study since the length of
each road edge (which is non-negative) is used to calculate
edge weights.
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Fig. 2. Flowchart of Kruskal’s spanning forest search algorithm

C. Coalitional Game Theory and Shapley Value

In game theory, coalitional game refers to the game where
players can establish alliances or coalitions with one another
to maximize coalitional and individual utilities. Since coali-
tions among players are formed to increase their individual
incentives, a coalition must always result in equal or greater
incentives than individual player’s incentives [12]. A coali-
tional game is defined by assigning a value to each of the
coalitions. The coalitional game is composed of the following
two components:

• A finite players’ set N, known as the grand coalition.
• A characteristic function V (S) : 2N → R that maps the

set of all possible player coalitions to a set of coalitional
values that satisfy V (ϕ) = 0.

The characteristic function, representing the worth or value
of each coalition, is defined in every coalitional game. The
characteristic function of a coalition is the aggregated worth
of all coalition members.

1) The Shapley Value: The Shapley value is a solution
paradigm of coalitional game theory. The Shapley value is an
approach to allocate the overall earnings to individual players
when all participants participate in the game. The Shapley
value of a coalitional game is expressed as follows [13].

ψj(V ) =
∑

S∈2N,j∈S

(|S| − 1)!(n− |S|)!
n!

[V (S)−V (S\{j})] (1)

where n = |N| is the total number of players.

III. PRE-POSITIONING OF MERS

This section presents event modeling, scenario generation
and reduction, and formulation of the coalitional game.

A. Extreme Event Modeling and Scenario Generation
In this work, the weather-related fragility curve is used

to model extreme events and generate multiple line outage
scenarios. A fragility curve is applied to characterize the
performance and vulnerabilities of different system compo-
nents confronting uncertain weather-related extreme events.
The failure probabilities of each component are obtained by
mapping the weather forecast and monitoring data to the
fragility curve [14]. We have taken the multiple line outages
caused by high wind speeds as an example of a weather-related
extreme event in this study. Mathematically, the probability of
line outages caused by high wind speeds can be represented
as follows [15].

Pl(w) =

 Pl, if w < wcrl

Pl hw(w), if wcrl ≤ w < wcpse

1, if w ≥ wcpse

(2)

where Pl is the probability of line failure as a function of
wind speed w; Pl is the failure probability at normal weather
condition; Pl hw is the probability of line failure at high wind;
wcrl is the critical wind speed (i.e., the speed above which the
distribution lines start experiencing failure); and wcpse is the
speed above which the distribution lines completely collapse.

B. Scenario Reduction Using k-means Method
The accuracy of an approach is always improved when

a large number of line outage scenarios is used. However,
solving the problem with a large number of scenarios takes a
long time. The generated line outage scenarios are, therefore,
reduced using the k-means method in this work to make the
proposed approach computationally tractable. The k-means
method is an iterative procedure that attempts to split a
set of scenarios into a set of unique clusters. It attempts
to minimize distance between scenarios in the same cluster
while maximizing the distance between different clusters. In
addition, when scenarios are assigned to a cluster, the distance
between them and the cluster centers is kept to a minimum
[16].

C. Selection of Candidate MER Locations
For the selection of candidate MER locations, the MER

deployment cost function is used, which is calculated based on
the expected load curtailment (ELC) of each location and the
optimal distance of MER deployment location from the initial
MER location. The ELC corresponding to the ith location is
determined using the amount of curtailed critical load for each
reduced line outage scenario as follows.

ELCi =
K∑
j=1

Pr(j)× LCi(j), (3)

where K is the total number of reduced scenarios; Pr(j) is
the probability of the jth reduced scenario; and LCi(j) is the
critical load curtailment of the jth reduced scenario for MER
deployment location i, which is calculated as follows.

LCi(j) =
N∑

m=1

ωm∆Pmi(j), (4)



where ∆Pmi(j) is the load curtailment at node m of the jth

reduced scenario for MER deployment location i; ωm is the
critical load factor at node m; and N is the total number of
nodes in the system.

While computing the critical load curtailment, the nodal
power balance constraints and radiality constraint should al-
ways be satisfied, which are described below.

(a) Node power balance constraints: The power balance
constraint at each node of the system can be expressed as
follows. ∑

r∈Ωg(r)

Pg,r +
∑

l∈ΩL(r)

Pl,r = PD,r (5)

where Ωg(r) is the set of sources (including MER) connected
to node r; ΩL(r) is the set of lines connected to node r; Pg,r

is the power injected from source r; PD,r is the load at node
r; and Pl,r is the line power flow from node l to node r.

(b) Radiality constraint: A distribution system must al-
ways meet the radiality requirement. Therefore, each potential
configuration should be radial (i.e., the radiality constraint
should be met for each spanning tree of the network). Each
spanning tree of the network is represented by a sub-graph
Gs = (Ns,Es), where Ns is a set of nodes (or vertices) and
Es is a set of edges (or branches) in the sub-graph. For the sub-
graph, a node-branch incidence matrix should be constructed.
If ns = |Ns| denotes the number of nodes and es = |Es|
denotes the number of edges of a particular spanning tree, then
the node-branch incidence matrix A ∈ Rns×es is the matrix
with element aij calculated based on (6). If the node-branch
incidence matrix A is full ranked, then the radiality constraint
is satisfied.

aij =


+1 if branch j starts at node i
−1 if branch j ends at node i
0 otherwise

(6)

The second component of the MER deployment cost func-
tion is the optimal distance of MER deployment location from
the initial MER location, which is determined using the DSPA.
The MER deployment cost function of the ith location is
expressed as follows.

Ci = β1 × ELCi + β2 × di, (7)

where ELCi is the expected load curtailment corresponding to
the ith location; di is the optimal distance of MER deployment
location i from the initial MER location; and β1 and β2 are
weighting coefficients which sum to unity.

A certain number of candidate MER locations is selected
based on least MER deployment cost functions. Determination
of the optimum number of candidate MER locations is beyond
the scope of this work.

D. Computation of Characteristic Functions of the Coalitional
Game Model

A coalitional game model is formulated considering candi-
date MER locations as players of the game. The list of all
possible coalitions of candidate MER locations is generated.

For example, if three candidate MER locations (L1, L2, and
L3) are selected, the set of all possible coalitions, denoted by
2N, is as follows.
2N = {ϕ, {L1}, {L2}, {L3}, {L1, L2}, {L1, L3},

{L2, L3}, {L1, L2, L3}},
where ϕ denotes an empty set.

For each set of coalitions, the expected critical load recov-
ery (ECLR) is computed by taking the difference of ELCs
before and after MER placement. The ECLR serves as the
characteristic function of each coalition.

E. Determination of MER Sizes at Candidate Locations

After computation of characteristic functions of all possible
sets of coalitions, Shapley values of each candidate MER
location are determined using (1). Based on the Shapley
values, the capacity distribution factor (CDF) of the candidate
MER location, i, is determined as follows.

CDFi =
ψi∑n

k=1 ψk
, (8)

where ψi is the Shapley value of the ith location; and n is the
number of candidate MER locations.

Now, the total size of MERs is distributed among different
candidate MER locations based on CDF as follows.

PMER−i = CDFi × PMER−tot (9)

where PMER−i is the size of MER at the ith candidate
location; and PMER−tot is the total MER capacity.

The flowchart of the proposed approach for pre-positioning
of MERs is shown in Fig. 3.

IV. CASE STUDY AND DISCUSSION

A. System Description

To demonstrate the effectiveness of the proposed approach,
the 33-node system is used for numerical simulations. The
33-node distribution test system is a radial distribution system
with 33 nodes, 32 branches, and 5 tie-lines (37 branches)
[17]. All branches (including tie-lines) are numbered from 1 to
37. The system’s overall load is 3.71 MW. The locations and
amounts of critical loads considered for the 33-node system
are shown in Table I. A road network for the 33-node system
is considered, which is shown in Fig. 4.

B. Implementation and Results

For the implementation of the proposed approach, multiple
line outage scenarios are generated by considering a high wind
speed event as an example of a weather-related extreme event.
The critical wind speed of 30 m/s and the collapse speed of 55
m/s are assumed for the fragility model (2) under consideration
[15]. The failure probability of 0.01 is considered at normal
weather conditions. The wind fragility curve for distribution
lines adopted in the work is as shown in Fig. 5. In this paper,
10,000 random outage scenarios are generated and the k-means
method is used to reduce the generated scenarios into 200
reduced outage scenarios for wind speed of 38 m/s. The k-
means method outputs 200 reduced line outage scenarios along
with their probabilities.



TABLE I
LOCATIONS OF CRITICAL LOADS FOR THE 33-NODE SYSTEM

Nodes 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 27 28 29 30 33
Critical Loads (kW) 60 30 60 200 200 60 30 25 45 45 45 45 45 45 60 60 60 60 60 30

TABLE II
CHARACTERISTIC FUNCTIONS OF POSSIBLE COALITIONS FOR THE 33-NODE SYSTEM

Coalitions 7 8 9 21 7, 8 7, 9 7, 21 8, 9 8, 21 9, 21 7, 8, 9 7, 8, 21 7, 9, 21 8, 9, 21 7, 8, 9, 21
ECLR (kW) 108.6 110.1 114.3 110.1 218.7 222.9 218.7 215.7 211.4 215.7 313.9 309.7 313.9 296.8 366.4

Start Read system data

Determine MER 
deployment cost 
function of each 

location

Stop

Generate a set of 
reduced scenarios 
using the k-means 

method

Compute characteristic 
function, which is 

expected critical load 
recovery 

Compute the size of 
MER at each 

candidate location

Compute the Shapley 
value corresponding to 
each candidate MER 

location

Compute the Capacity 
Distribution Factor of 
each candidate MER 

location

Yes No

Generate a set of line 
outage scenarios based 
on weather forecasting 

and monitoring data

Select a certain 
number of candidate 

MER locations

Select a coalition from 
the set of possible 

coalitions of candidate 
MER locations

Place MERs at each 
location in the 

coalition

Compute the expected 
load curtailment for 

that particular 
coalition

All 
coalitions 
evaluated?

Fig. 3. Flowchart of the proposed approach for the pre-positioning of MERs
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Fig. 5. Wind fragility curve for distribution lines
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For each reduced line outage scenario, the distribution net-
work reconfiguration is performed using tie-switches present
in the network and spanning forest is formed by deploying
MER of capacity 1200 kW at a location (node). Fig. 6 shows
the case for a reduced scenario where outages of lines 3, 6,
15, 19, 25, 30, and 32 occur. In this scenario, the distribution
network is reconfigured by closing tie-switches 33, 36, and
37 using KSFSA. The tie-switches 34 and 35 are not closed
to maintain radial configuration. When the MER is deployed
at node 20, a microgrid (MG-1) and three isolates (IL-1,
IL-2, and IL-3) are formed. These isolates are devoid of
power supply. The total critical loads of IL-1, IL-2, and IL-
3 are, respectively, 75 kW, 0 kW, and 150 kW. Therefore,
when the MER is deployed at node 20, the total critical load
curtailment for this reduced scenario is 225 kW. This process
is repeated for all locations (nodes) and all reduced scenarios.
The expected load curtailment (ELC) corresponding to each
location then is determined based on load curtailment and
probability of each reduced scenario.

MERs are assumed to be initially located at the substation



node. The optimal path and distance of each node from
the substation node is computed using DSPA. If only ELC
is considered as the criterion for selecting candidate MER
location, nodes 8, 9, 15, and 21 are obtained as candidate
MER locations. Similarly, if only distance from the substation
is considered as the criterion for selecting candidate MER
location, nodes 2, 3, 4, and 19 are obtained as candidate
MER locations since these nodes are closest to the substation.
However, this work uses MER deployment cost based on both
ELC and distance from the substation, which is computed
using (7). The values of weighting coefficients β1 and β2 are
taken as 0.75 and 0.25, respectively. The four locations (nodes
7, 8, 9, and 21) with least MER deployment costs are selected
as candidate MER locations.

To compute the size of each MER, the four candidate
MER locations are treated as players of the coalitional game.
The characteristic function (here, the expected critical load
recovery) is calculated for each set of possible coalitions. The
expected critical load recovery (ECLR) is calculated by taking
the difference of ELCs before and after MER placement.
Before MER placement, the ELC of the system is 489.55 kW.
The ECLR (or characteristic functions) for all sets of possible
coalitions are shown in Table II. We can see from the table that
the ECLR for the coalition of locations 7 and 8 is equal to the
sum of ECLRs of individual locations. However, the ECLR for
the coalition of locations 8 and 9 is less than the sum of ECLRs
of individual locations. This indicates that some coalitions are
worthier than others and this property is utilized to compute
Shapley values of individual candidate MER locations. The
Shapley values and sizes of MER of each candidate location
are shown in Table III.

TABLE III
SHAPLEY VALUES AND SIZES OF MERS AT CANDIDATE LOCATIONS

Locations (nodes) Shapley values MER sizes (kW)
7 96.25 320
8 88.65 290
9 92.87 300
21 88.65 290

The proposed solution algorithm (shown in Fig. 3) takes
approximately 30 seconds to execute on a PC with a 64-bit
Intel i5 core processor running at 3.15 GHz, 8 GB RAM, and
Windows OS.

V. CONCLUSION

This paper has proposed an approach based on graph theory
and coalitional game theory for pre-positioning of movable en-
ergy resources (MERs) to improve resilience of the power sup-
ply. Multiple line outage scenarios were generated and the k-
means method was used to reduce the generated scenarios. The
proposed approach was implemented on a 33-node distribution
test system. The results showed that the proposed approach can
effectively determine the pre-positioning locations and sizes
of MERs with the least expected critical load curtailments.
Because to the use of the Shapley value, which takes into

account the average marginal contribution of each location,
the proposed approach’s main benefit is a fair allocation of
the overall MER size among different candidate locations.
The use of more accurate and better algorithms (such as the
fuzzy k-means algorithm) for reducing the generated multiple
outage scenarios and the implementation with other types of
weather-related extreme events (e.g., flooding) are some areas
of possible extensions of the work proposed in this paper.
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