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Abstract—Distribution network reconfiguration (DNR) has
proved to be an economical and effective way to improve the
reliability of distribution systems. As optimal network con-
figuration depends on system operating states (e.g., loads at
each node), existing analytical and population-based approaches
need to repeat the entire analysis and computation to find the
optimal network configuration with a change in system operating
states. Contrary to this, if properly trained, deep reinforcement
learning (DRL)-based DNR can determine optimal or near-
optimal configuration quickly even with changes in system states.
In this paper, a Deep Q Learning-based framework is proposed
for the optimal DNR to improve reliability of the system. An
optimization problem is formulated with an objective function
that minimizes the average curtailed power. Constraints of the
optimization problem are radial topology constraint and all nodes
traversing constraint. The distribution network is modeled as a
graph and the optimal network configuration is determined by
searching for an optimal spanning tree. The optimal spanning
tree is the spanning tree with the minimum value of the average
curtailed power. The effectiveness of the proposed framework is
demonstrated through several case studies on 33-node and 69-
node distribution test systems.

Index Terms—Deep Q Network, distribution system reliability,
network reconfiguration, reinforcement learning, spanning tree.

I. INTRODUCTION

The goal of electric utilities is to reliably and economically
supply electricity to their customers through utilization of
available resources. Since power interruptions are mostly due
to failure of the distribution system components [1], enhancing
the reliability of distribution systems is inevitable to provide
uninterruptible electric power supply to customers. Reliability
of distribution systems can be enhanced in two ways: (a)
optimal utilization of available resources using smart grid
technologies and (b) installation of redundant resources. The
option of installing redundant resources is not economical
and waste of resources. Therefore, sophisticated smart grid
technologies should be developed to optimally utilize dis-
tribution system resources in an optimum manner. In this
context, distribution network reconfiguration (DNR) is one of
such smart grid technologies to provide economic and reliable
supply of electricity. DNR can optimize existing resources by
modifying the configuration of distribution networks through
changing status of sectionalizing and tie-switches.

Several analytical and population-based intelligent search
approaches have been proposed in the literature to solve the

DNR problem. A genetic algorithm-based DNR has been
proposed in [2] for power quality and reliability improve-
ment. Similarly, genetic algorithm has been used for DNR
to improve the reliability and optimal placement of distributed
generators in [3]. In [4], mixed-integer quadratic programming
has been used for reliability constrained power loss mini-
mization. In [5], neighbor search algorithm has been used
for DNR to improve the reliability and reduce the loss by
taking into account the uncertainties of data. A review on
DNR approaches that improve the reliability and reduce the
power loss is provided in [6]. Analytical and population-based
intelligent search methods used for DNR to improve reliability
has the following shortfalls. Accuracy and effectiveness of
analytical-based methods for DNR depend upon the accuracy
of models used, where accurate models impose scalability
challenges. Also, mathematical models are usually derived
based on several approximations and they require complete
system information. Population based methods, on the other
hand, are computationally expensive due to the large search
space, especially when system sizes increase.

In addition to population-based intelligent search tech-
niques and analytical methods, learning-driven approaches
are gaining significant attention for optimal DNR. In [7],
batch-constrained reinforcement learning has been used for
the dynamic DNR with the objective of minimizing network
operational costs. In [8], network power loss and number of
switching actions in distribution network are minimized using
deep learning. Reinforcement learning has also been used
to simultaneously reduce network power loss and improve
voltage profiles [9], where loop-based encoding is leveraged
with Noisy Net deep Q learning to improve training ef-
fectiveness and computational efficiency. In [10], deep Q
learning has been implemented to minimize switching actions
while performing the DNR. The work presented in [10] has
been tested for the computational cost and the scalability
as compared to brute-force search algorithm and the genetic
algorithm. Although there are several similarities between
DNR for different objectives, optimum DNR for reliability
improvement is a challenging task since it requires estimating
energy not supplied for each possible configuration. Therefore,
developing intelligent learning-based approaches for DNR to
improve the reliability is pivotal.



This paper proposes a deep reinforcement learning (DRL)-
based framework for DNR to improve the reliability of dis-
tribution systems. In the proposed optimization framework,
the average curtailed power is used as an objective function.
In addition to operation and technical constraints, all-node-
traversing and radiality constraints are considered. In the train-
ing phase of the proposed framework, Q values are predicted
using forward propagation of a deep neural network (DNN).
Actions are selected using Epsilon-Greedy algorithm. When
actions are passed through the training environment, the DRL
agent gets rewarded (or penalized) based on its performance.
Target Q values are calculated based on the reward. The mean
squared error (MSE), which is the most commonly employed
loss function for regression, is computed using the predicted
and target Q values. Errors are then back-propagated to update
the weights of DNN. The trained DRL agent is then used to
find the best network configuration. The proposed framework
is validated through case studies on several distribution test
systems, and the results show that the proposed framework can
effectively find a network configuration with high reliability
level.

The main contributions of this paper are summarized as
follows:

o The proposed work represents an advancement over exist-
ing DNR approaches that either use approximate mathe-
matical models or heuristic techniques. In contrary to ex-
isting analytical and population-based methods, learning-
driven methods provide a flexibility for optimal DNR
for changing system states (change of loads, addition of
distributed energy sources, etc.) since they do not need
to repeat the entire calculation processes when there is
a change in system states. If trained properly, DRL can
find the optimal or near-optimal network configuration in
almost real-time.

o This papers provides a framework for optimal network
reconfiguration with an objective of reliability enhance-
ment. Formulating an objective function for reliability
enhancement through DNR has been a challenging task
because the the reliability level needs to be evaluated for
each system configuration.

The rest of the paper is arranged as follows. Section II
explains problem formulation for proposed DNR. Section
IIT describes the proposed framework and solution approach.
Section IV validates the proposed work through case studies.
Section V provides concluding remarks.

II. PROBLEM FORMULATION

This section explains the formulation of the objective func-
tion and the constraints of the DNR problem.

A. Objective Function

Reliability is one of the major factors that indicates the
performance of the system. Reliability of distribution systems
can be quantified using several reliability indices including
system average interruption frequency index (SAIFI), system
average interruption duration index (SAIDI), customer average

interruption duration index (CAIDI), and average curtailed
power. The average curtailed power is taken as the objective
function for the problem under consideration since it can
capture the severity of the outages and is directly affected
by the topology or configuration of a distribution network.
Therefore, in this work, the objective of the DNR is to
minimize the total annual energy not supplied by the system.
Mathematically, the average curtailed power can be expressed
as follows.

Average Curtailed Power = Z Py Uy, (D
keQy,

where P;j is the power demand at node k; € is the set
of nodes with power demand; and Uy, is the average annual
power unavailability duration at node k, which can be defined
as follows.
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where )\; is the failure rate of branch (or edge) I; r; is the
outage duration (or repair time) of branch (or edge) /; and
Q. is the set of branches (or edges) between substation node
and node k.

B. Constraints

During the process of selection of the optimal configu-
ration of the distribution network, two constraints (radiality
constraint and all-node-traversing constraint) should always be
satisfied.

« Radiality constraint: Radiality constraint is always main-
tained in a distribution system in order to design the
protection coordination schemes. Each candidate config-
uration should have a radial topology since most of the
practical distribution systems do not have loop structure.

o All-node-traversing constraint: A distribution system op-
erator should always configure the network in such a way
that all loads are supplied with power in non-contingent
scenarios. Therefore, for each candidate configuration,
all-node-traversing constraint should always be satisfied.

If we search for a spanning tree, both of the aforementioned
constraints are satisfied. In order to search for the spanning
tree, we have to represent the distribution network as an
undirected graph § = (N, &), where N is a set of nodes
(or vertices) and € is a set of edges (or branches). For the
graph, a node-branch incidence matrix can be constructed after
satisfying all-node-traversing constraint. If the node-branch
incidence matrix is full ranked, then the radiality constraint
is satisfied.

III. PROPOSED FRAMEWORK

This work leverages recently advanced reinforcement learn-
ing techniques for DNR to improve reliability of distribution
systems. This section provides a brief overview of Deep Q
learning, reward function, and training attributes of the Deep
Q learning.



A. Deep Q Learning

A reinforcement learning (RL) is a branch of machine
learning in which an agent learns to take suitable actions
to maximize cumulative reward it gets from an uncertain
environment. In general, an RL system consists of four main
integrants: policy, reward, value functions, and environment
model. An agent decides the action to be taken based on the
policy. The policy maps states to actions. When the agent
takes an action, it gets rewarded (or penalized). Value function
calculates the expected value of cumulative reward that a
agent gets when it follows a certain policy. There are different
algorithms for RL. The choice of an algorithm depends on
many factors such as continuous/discrete nature of states,
continuous/discrete action-space, etc. For the DNR problem
under consideration, the action-space is discrete in nature,
which makes Q-Learning a suitable candidate for the problem.
However, a basic Q-Learning needs large sized look-up tables
where state-action values are stored. To avoid the use of large
sized look-up tables, a deep neural network (DNN) is used
as an action-value function approximator. The addition of
DNN in the basic Q-Learning make the framework a Deep
Q Network (DQN). The update rule for action-value function
in Q-learning is defined as follows [11].

Q(Si, Ar) < Q(St, Ar) + a X [Rig1
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where A, and S, are the action and state of an agent at ¢
iteration; (S, A;) is the action-value function at ¢™ iteration;
Q(Si11, Apy1) is the action-value function at (t+1)™ iteration;
« is the learning rate; and <y is the reward discount factor.

Instead of iteratively updating the action-value function, the
DNN is trained and the parameters of the action-value function
are optimized to minimize the mean-squared error (MSE) loss
function (i.e., regression loss function), which is expressed as
follows [12].

L(0) = E[(Q(St, Ar0) — y:)?] 4

where E denotes expectation operator; 6 denotes the parameter
of action-value function Q(Sy, A;); and y; denotes the target
action-value function, which is defined a follows.

Yt = R(St, At) — 77X mélX Q(St+1, At+1\9,) @)

In (5), R(S;, A;) denotes reward function at ¢ iteration and 6’
denotes the parameter of action-value function Q(S¢41, A¢41)-
For the DNR problem under consideration, the status of
sectionalizing and tie switches denotes the state; and the
indices of opened branches (or edges) denote the actions.

B. Reward Function

A reward function based on average curtailed power is
designed to evaluate the actions taken by the agent. For
each action (here, set of edges to be opened), firstly, all-
node-traversing constraint is checked. If this constraint is
not satisfied, a high negative reward (or penalty) is given
to the agent. After this, a node-branch incidence matrix is
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Fig. 1. Flowchart showing the training phase of the proposed framework

computed for the network configuration. If the node-branch
incidence matrix is full-ranked, this means that the network
is radial. Therefore, if radiality constraint is not satisfied, a
high negative reward (or penalty) is given to the agent. After
both the constraints are satisfied, the average curtailed power
of the network configuration is calculated using annual power
unavailability duration (U) and power demand (P, ) at each
node k.

C. Training Attributes

The training of DQN is performed for a certain number of
episodes (n.p). The initial state of the system is the state with
tie-switches open. The weights of DNN are initialized with
some random values. In each episode, the predicted Q values
corresponding to each edge of the system is computed based
on forward propagation of DNN. For the selection of actions,
the Epsilon-Greedy (exploration-exploitation) algorithm [13]
is used. The value of exploration rate i.e., epsilon (¢) is
initialized at 1. The epsilon is updated after each episode as
follows. .

Enew = €old — M (6)
Nep
where €,,;, is the minimum exploration rate. The target Q
value of the DQN is computed using (5). The MSE losses
for each episode are computed based on (4) using the actual
and target Q-values. These MSE losses are back-propagated
to update the weights of the DNN.

The flowchart shown in Fig. 1 describes the training phase

of the proposed framework.

IV. CASE STUDIES AND DISCUSSIONS

The proposed framework is implemented on the 33-node
and 69-node distribution systems. The case study parameters
for both systems are as follows. The failure rate of each branch
is assumed proportional to its branch impedance. The highest
failure rate (in this case 0.4 failures/year or f/yr) is assigned
to the branch with the largest impedance; the lowest failure
rate (in this case 0.1 f/yr) is assigned to the branch with
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the smallest impedance; and linear interpolation is used to
determine the failure rates of remaining branches. Regarding
the outage duration (or repair rate) of each branch, its value
is assumed to be constant (6 hr is used for all case studies).
Normally-open switches (or tie switches) are assumed to be
fully reliable. The annual power unavailability duration (Uy)
of each node is determined based on the values of failure and
repair rates for each branch.

A. Case I: 33-node Distribution System

The 33-node distribution test system is 100 kVA, 12.66 kV
radial distribution system with 33 nodes, 32 branches and 5 tie-
lines. Therefore, the total number of branches in this system
is 37. All branches (including tie-lines) are numbered from
1 to 37 following our previous work [14]. The total load of
the system is 3.71 MW. The detailed data of the system is
provided in [15].

The training of the DQN for the 33-node system is per-
formed for 10,000 episodes. The initial state of the system is
the state with all tie-switches (i.e., edges 33, 34, 35, 36, and
37) are open. Initially, the rewards are very low but then they
increase as the number of episodes increases. Fig. 2 shows
the actual rewards and running mean (100-episode window) of
actual rewards as the episode progresses. It can be seen from
Fig. 2 that as the number of episodes increases, the running
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mean of the reward increases and saturates after nearly 8,000
episodes.

Fig. 3 shows the actual values and running mean (100-
episode window) of MSE losses as the episode progresses.
Fig. 3 also shows that initially MSE loss is very high but
its running mean remains low after a few episodes. Fig. 4
shows the plot of running mean (100-episode window) of the
average curtailed power as the episode progresses. From Fig. 4
we can see that the average curtailed power decreases as the
number of episodes increases and settles down after nearly
8,000 episodes. The final value of the average curtailed power
obtained during the training of the proposed framework is
23.96 MWh/yr. For this value of the average curtailed power,
the open edges (branches) are 7, 14, 26, 33, and 34.

B. Case II: 69-node Distribution System

The 69-node distribution test system is a 12.66 kV radial
distribution system with 69 nodes, 68 branches and 5 tie-lines.
Therefore, the total number of branches in this system is 73.
All branches (including tie-lines) are numbered from 1 to 73
following our previous work [14]. The total load of the system
is 3.80 MW. Detailed data of the system are given i [16].

The training of the DQN for the 69-node system is per-
formed for 10,000 episodes. The initial state of the system
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is the state with all tie-switches (i.e., edges 69, 70, 71, 72,
and 73) are open. Initially, rewards are very low but then they
increase as the number of episodes increases. Fig. 5 shows
the actual rewards and running mean (100-episode window)
of actual rewards as the episode progresses. We can see from
the Fig. 5 that as the number of episode increases, the running
mean of the rewards increases and saturates after nearly
8,000 episodes. Fig. 6 shows the actual values and running
mean (100 episode window) of MSE losses as the episode
progresses. Fig. 6 also shows that initially MSE loss is very
high but its running mean remains low after a few episodes.
Fig. 7 shows the plot of running mean (100 episode window)
of the average curtailed power as the episode progresses.
From Fig. 7 we can see that the the average curtailed power
decreases as the number of episodes increases and settles down
after nearly 8,000 episodes. The final value of the average
curtailed power obtained during the training of the proposed
framework is 28.48 MWh/yr. For this value of the average
curtailed power, the open edges (branches) are 14, 18, 21, 58,
and 69.

V. CONCLUSION

This paper has proposed a DRL-based framework to deter-
mine the configuration of a distribution network with the least
value of the average curtailed power. During the training of

the proposed framework, the weights of DNN were initialized
with random values and the system state was initialized with
the configuration with tie-switches open. The target Q values
were computed based on reward the DRL agent gets from
the environment. The predicted and target Q values were used
to update the weights of DNN. Case studies were performed
on 33-node and 69-node distribution test systems. The results
exhibit the effectiveness of the proposed framework to improve
the reliability level of distribution systems.
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