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Abstract—After the occurrence of an extreme event, movable
energy resources (MERs) can be an effective way to restore criti-
cal loads to enhance power system resilience when no other forms
of energy sources are available. Since the optimal locations of
MERs after an extreme event are dependent on system operating
states (e.g., loads at each node, on/off status of system branches,
etc.), existing analytical and population-based approaches must
repeat the entire analysis and computation when the system
operating states change. Conversely, deep reinforcement learning
(DRL)-based approaches can quickly determine optimal or near-
optimal locations despite changes in system states if they are
adequately trained with a variety of scenarios. The optimal
deployment of MERs to improve power system resilience is
proposed using a Deep Q-Learning-based approach. If they are
available, MERs can also be used to supplement other types of
resources. Following an extreme event, the proposed approach
operates in two stages. The distribution network is modeled as
a graph in the first stage, and Kruskal’s spanning forest search
algorithm (KSFSA) is used to reconfigure the network using tie-
switches. The optimal or near-optimal locations of MERs are
determined in the second stage to maximize critical load recovery.
A case study on a 33-node distribution test system demonstrates
the effectiveness and efficacy of the proposed approach for post-
disaster routing of MERs.

Index Terms—Deep Q Network, distribution system, movable
energy resources, reinforcement learning, resilience.

I. INTRODUCTION

Over the last decade, the frequency of extreme events,
both natural (e.g., hurricanes, wildfires, ice or hail storms,
and earthquakes) and man-made (e.g., cyber and physical at-
tacks), has increased dramatically. For example, there were 20
weather related catastrophic events in the United States in 2021
alone, each with costs surpassing $1 billion [1]. Such extreme
events have resulted in damage to important power system
equipment resulting in system-wide extended power outages.
The electric companies’ goal of delivering reliable and resilient
electrical supply to its customers has been compromised by
catastrophic weather events and subsequent outages. As a
result, effective power distribution service restoration (PDSR)
procedures must be established in order to reduce the impact of
these incidents on end-user customers. PDSR’s major goal is
to reduce load curtailments and outage duration by making the
best use of available resources. Smart grid technologies, such
as microgrid formation, network reconfiguration (NR), repair
crew dispatch, distributed generation (DG), energy storage,
movable energy resources (MERs), and combinations of these

methods and techniques, have proven to be the most effective
PDSR solutions in this context.

In the literature, several analytical and intelligent search
techniques for PDSR based on MERs have been developed
to improve the reliability and resilience of the distribution
system. A robust optimization framework based on two stages
has been developed in [2] for routing and scheduling MERs
to enhance the resilience of distribution systems. A two-stage
PDSR strategy based on mixed-integer linear programming
(MILP) has been proposed in [3] to enhance seismic resilience
of distribution systems with MERs. A mixed integer linear
programming-based PDSR strategy has been proposed in [4]
for an active distribution system, where routing and scheduling
of mobile energy storage systems is performed for enhanced
resilience. In [5], a two-stage optimization strategy has been
proposed to enhance distribution system resilience with mobile
energy storage units, where dynamic microgrid formation is
also considered. A genetic algorithm-based approach has been
developed in [6] to enhance distribution system reliability
using MERs. The analytical and population-based intelligent
search techniques utilized for PDSR based on MERs to
enhance distribution system reliability and resilience have
the following shortcomings. The accuracy and efficacy of
analytical-based approaches are dependent on the accuracy of
the models utilized, with accurate models imposing scalability
challenges. Furthermore, mathematical models are typically
derived using many approximations and require entire system
information. Due to the enormous search space, population-
based approaches, on the other hand, are computationally
intensive, especially as system sizes increase.

Since learning-driven models can address uncertainty by
extracting information from previous data, they have been
utilized to overcome the shortcomings of analytical and
population-based approaches. Furthermore, because of their
capacity to employ information gathered from previous data
to solve for new scenarios, learning-driven models do not
need to be solved whenever new scenarios are encountered.
Reinforcement learning (RL)-based systems are among the
learning-driven approaches that can learn from experiences
during online operations [7], [8]. Also, RL-based approaches
are the best fit for online decision-making applications. There-
fore, a learning-based approach for after-event MER dispatch
is investigated in this paper for distribution system resilience
enhancement.



This paper proposes a deep reinforcement learning (DRL)-
based framework for after-event dispatch of MERs to enhance
distribution system resilience. The proposed DRL approach
is based on the training of a neural network that makes
the best decision based on previous experiences [9]. Given
a specific decision, the sequential decision process gives a
reward value as a function of system outcome. The objective
of the proposed DRL agent is to minimize critical load
curtailment. To ensure realistic representation of distribution
system operations, system constraints including radiality and
power balance constraints are considered. In the training phase
of the proposed framework, Q values are predicted using
forward propagation of a deep neural network (DNN). Actions
are selected using the Epsilon-Greedy algorithm. When actions
are passed through the training environment, the DRL agent
gets rewarded (or penalized) based on its performance. Target
Q values are calculated based on the reward. The mean squared
error (MSE), which is the most commonly employed loss
function for regression, is computed using the predicted and
target Q values. Errors are then back-propagated to update the
weights of DNN. The trained DRL agent is then used to find
the optimal or near-optimal locations for MER deployment.
The proposed framework is validated through a case study
on a 33-node distribution test system, and the results show
that the proposed framework can effectively find an optimal
network configuration and MER deployment locations thereby
minimizing critical load curtailment.

The remainder of the paper is laid out as follows. The
mathematical formulation of the after-event reconfiguration
and MER deployment problem is explained in Section II.
The proposed framework and solution approach are described
in Section III. A case study on the 33-node system is used to
validate the proposed work in Section IV. Section V provides
some concluding remarks.

II. MATHEMATICAL MODELING

This paper combines network reconfiguration (first stage)
and MERs routing (second stage) to minimize load curtail-
ments after extreme events. The graph theory-based modeling
of the distribution network and the mathematical formulation
of the problem under study are presented in this section. In
addition, states, actions, and the reward function are described
in the context of the problem.

A. Graph Theoretic Modeling of Distribution Network

Distribution systems are equipped with sectionalizing
switches (normally closed) and tie-switches (normally open).
When all the switches of a distribution network are closed,
a meshed network is formed, and the meshed network thus
formed can be represented by an undirected graph § = (N, &),
where N is a set of nodes (or vertices) and € is a set of edges
(or branches). For the MER deployement problem proposed
in this paper, the status of tie switches are changed in such
a way that radiality is always maintained and microgrids are
formed after deployment of MERs.

1) Spanning Tree: A spanning tree is defined as a subset of
the undirected graph G = (N, &) that has a minimal number
of edges linking all vertices (or nodes). In a spanning tree,
the number of edges is one less than the number of vertices.
There are no cycles in a spanning tree, and all of the vertices
are connected [10]. A linked graph can have many spanning
trees, each of which has the same number of edges and
vertices. Each of the undirected graph G’s edges has a specific
value (or weights). The edge weights vary depending on the
problem. The sum total of all edge weights of a spanning tree
is minimized when establishing the minimum spanning tree.
Fig 1 shows a spanning tree of a hypothetical 12-node system.
The spanning tree shown in the figure consists of all system
nodes (i.e., 12) and 11 closed branches (edges).

® Node
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— Closed branch

Fig. 1. A spanning tree of a hypothetical 12-node system

2) Spanning Forest: In graph theory, a forest is a discon-
nected union of trees. A spanning forest is a forest that covers
all vertices of the undirected graph G and consists of a set
of disconnected spanning trees [10]. When all spanning trees
are connected, each vertex of the the undirected graph G are
included in one of the spanning trees [11]. On the other hand,
when a disconnected graph has many connected components,
a spanning forest is formed and it contains a spanning tree of
each component [12]. Fig. 2 shows the spanning forest formed
as a result of disconnection of two addition branches (2—-6 and
3-10) in the spanning tree presented in Fig. 1. The spanning
forest shown in Fig. 2 consists of three spanning trees (ST-1,
ST-2, and ST-3).

'@ Node

Fig. 2. A spanning forest of the hypothetical 12-node system (in Fig. 1)

In this paper, Kruskal’s algorithm [13] is used to search
for the optimal spanning forest. The Kruskal’s spanning forest
search algorithm (KSFSA) starts by constructing a forest F'
with each graph vertex acting as a single tree based on the
given undirected graph. Since KSFSA is a greedy algorithm,
it goes on connecting the next least-weight edge that avoids
loop or cycle to the forest F' at each iteration. The resulting
forest F' after the last iteration is the optimal spanning forest.
Fig. 3 shows the flowchart of KSFSA.

B. Problem Formulation

This subsection presents the objective function and the
constraints of the problem under consideration.
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Fig. 3. Flowchart of Kruskal’s spanning forest search algorithm

1) Objective Function: As a result of an extreme event,
some or all parts of the system may lose power supply. Under
such a circumstance, tie-switches should be used to reconfigure
the network, and MERs should be deployed to enhance the
distribution system’s resilience. Therefore, the objective of the
after-event MER routing problem under consideration is to
minimize the critical load curtailment of the system since it
can capture the severity of the multiple line outages and is
directly affected by the topology or configuration and MER
deployment locations in a distribution system. Mathematically,
the objective function of the critical load curtailment mini-
mization is expressed as follows.

N
MinZwiAPi, 1)
i=1
where AP; is the load curtailment at node ¢; w; is the critical
load factor at node 7; and N is the total number of nodes in
the system.

2) Constraints: The problem under consideration is sub-
jected to various constraints including nodal power balance
constraints and radiality constraint.

(a) Node power balance constraints: The power balance
constraints at each node of the system can be expressed as

follows.
> P+ Y, Py=Pp, 2
JEQ, () 1€QL(j)

where Qg (j) is the set of sources (including MER) connected
to node j; Q7,(j) is the set of lines connected to node j; Py ;
is the power injected from source j; Pp ; is the load at node
J; and P ; is the line power flow from node [ to node j.

(b) Radiality constraint: A distribution system must al-
ways meet the radiality requirement. Therefore, each potential
configuration should be radial (i.e., the radiality constraint
should be met for each spanning tree of the network). Each
spanning tree of the network is represented by a sub-graph
Gs = (Ns, E5), where N is a set of nodes (or vertices) and
€ is a set of edges (or branches) in the sub-graph. For the sub-
graph, a node-branch incidence matrix should be constructed.
If n = |N,| denotes the number of nodes and e = |€,| denotes
the number of edges of a particular spanning tree, then the
node-branch incidence matrix A € R™*¢ is the matrix with
element a;; calculated as follows [14].

+1

a,-j = —1

if branch j starts at node ¢
if branch j ends at node ¢ 3)

0 otherwise

If the node-branch incidence matrix A is full ranked, then
the radiality constraint is satisfied.

C. States, Actions, and Reward Function

The choice of states, actions, and the reward function plays a
critical role for the proper training of a reinforcement learning
(RL) agent. States, actions, and reward function must be,
therefore, chosen with careful consideration. For the MER
routing problem under consideration, a vector of on/off status
of the network edges after reconfiguration is taken as the state.
The action is a vector of MER deployment locations. The cost
function at time step ¢ is expressed as follows.

Cy = LCFE — Lomim, “4)

where LOEL is the critical load curtailment at time step ¢ as
a result of the action taken by the RL agent; and LC[™™" is
the minimum critical load curtailment at time step t.

The total reward at time step ¢ is computed as follows.

100 . . .
if all constraints are satisfied
Ry = { 1+Cy 5

—p if any constraint is violated

where p denotes the penalty factor.

III. REINFORCEMENT LEARNING FOR MER ROUTING

This work leverages recently advanced reinforcement learn-
ing techniques for after-event MER routing to minimize the
critical load curtailment following an extreme event. This
section provides a brief overview of Deep Q learning and its
training attributes.

A. Deep Q Learning

The four main integrands of a reinforcement learning (RL)-
based system are policy, reward, value functions, and the
environment model. An agent decides what action to take
based on the policy. The policy establishes a relationship
between states and actions. When the agent performs a task, it
is rewarded (or penalized). The value function determines the
expected value of cumulative reward when an agent follows
a policy. There are a variety of algorithms for RL. A number



of factors influence the choice of an algorithm, such as the
nature of states (continuous or discrete), the action-space
(continuous or discrete), and so on. The action-space for
the MER routing problem under consideration is discrete,
making Q-Learning an appropriate option for the task. Basic
Q-Learning, on the other hand, necessitates large look-up
tables to store state-action values. As an action-value function
approximator, a deep neural network (DNN) is employed to
avoid the usage of large look-up tables. The addition of DNN
to the basic Q-Learning framework transforms it into a Deep
Q Network (DQN). The update rule for action-value function
in Q-learning is defined as follows [7].

Q(St, Ap) < Q(St, Ap) + a X [Re 6
+7 X mgXQ(StH,AtH) —Q(Ss, Ar)] ©

where A; and S; are the action and state of an agent at ¢
iteration; (S, A;) is the action-value function at t™ iteration;
Q(St41, Agy1) is the action-value function at (t+1)™ iteration;
o is the learning rate; and -y is the reward discount factor.

Instead of updating the action-value function iteratively, the
DNN is trained and the action-value function’s parameters are
optimized to minimize the mean-squared error (MSE) loss
function (i.e., regression loss function), which is expressed
as follows [15].

L(0) = E[(Q(S;, A|0) — y)?], (7N

where E denotes expectation operator; 6 denotes the parameter
of action-value function Q(Sy, A;); and y; denotes the target
action-value function, which is defined as follows.

yr = R(Se, Ar) — v x Q(St, Ag; 6). ®)

In (8), R(S;, A;) denotes the reward function at the "
iteration; ¢ denotes the parameter of the target DQN; and
Q(St, A¢; @) denotes the action-value function of the target
DQN.

B. Training Attributes

The experience replay memory-based training of DQN is
performed for a certain number of episodes (r,p). The param-
eters 6 of the main DQN are initialized with some random
values and the parameters ¢ of the target DQN are set equal
to that of the main DQN. Each episode starts by initializing the
system with a random state, which is a vector of on/off status
of the network branches (or edges) after reconfiguration. In
each time step, the predicted Q values corresponding to each
action is computed based on forward propagation of DNN.
For the selection of actions, the Epsilon-Greedy (exploration-
exploitation) algorithm [16] is used. The value of exploration
rate, ¢, is initialized at 1. The epsilon is updated after each
episode as follows.

Eold — €min
0.25 X nep
where &,,;, 1S the minimum exploration rate. The tar-

get Q value of the DQN is computed using (8). The
experience replay memory is appended with transition

€))

Enew = Eold —

(St, A, Ri+1(St, Ar)). MSE losses for each time step ¢ are
computed based on (7) using the predicted Q-value of the main
DQN and target Q-values. The parameters of the main DQN
are updated by back-propagating these MSE losses. After a
certain number of iterations, the parameters of the target DQN
are periodically updated.

Algorithm 1 provides the procedure of training the proposed
DRL-based MER routing problem.

Algorithm 1: Training of the proposed DRL-based
MER routing problem

Input : System data including line data, load data,
on/off status of branches, etc.

Initialize experience replay memory M

Initialize parameters 6 of main DQN with random
values

Set target DQN parameters ¢ equal to main DQN
parameters, i.e., ¢ < 0

for episode <— 1 to n, do

Initialize the system with a random state (here, a

vector of line/branch status)

for t < 1 to T do

Generate action-value function Q based on
current state

Calculate the reward function R;11(St, Ay)
after passing the state and action-value
function through reward generator

Append the experience replay memory M with
transition (S, A¢, Ri11(S, At))

if length(M)> batch_size then

Randomly select a minibatch

Calculate DQN Loss Function based on
main Q-function and target Q-function

Perform back-propagation to update
parameters 6 of main DQN

Periodically update parameters ¢ of target
DQN

Oiltput : MER deployment locations

IV. CASE STUDY AND DISCUSSION

A. System Description

To demonstrate the effectiveness of the proposed approach,
the 33-node system is used for numerical simulations. The
33-node distribution test system is a radial distribution system
with 33 nodes, 32 branches, and 5 tie-lines (37 branches)
[17]. As shown in Fig. 4, all branches (including tie-lines)
are numbered from 1 to 37. The system’s overall load is 3.71
MW.

The locations and amounts of critical loads considered for
the 33-node system are shown in Table I. The hyper-parameter
settings of the main and target DQNSs of the proposed frame-
work for the 33-node system are shown in Table II.



TABLE I
LOCATIONS OF CRITICAL LOADS FOR THE 33-NODE SYSTEM

Nodes 4 5 6 7 8 9 10 | 11 18 | 19 | 20 [ 21 | 22 | 23 | 26 | 27 | 28 | 29 | 30 | 33
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Fig. 4. 33-node distribution test system 0 2000 4000 6000 3000 10000
Episodes
TABLE II Fi Total £ traini .
HYPER-PARAMETER SETTINGS OF MAIN AND TARGET DQNS FOR ig- 5. Total rewards of training episodes
33-NODE SYSTEM Lo
Hyper-parameters Values ‘ 4 5'73' THTET 37 L R 36--11-":1--.
Number of hidden layers 3 "'% '2'3“'24“"'.'2'5'"2'7'"2'3 Ul o Y 8 :
1
No. of neurons in hidden layers 10, 10, 10 IL-319 .Zfr.-.27.--2§iz9_29__§(15 5160]7 i
Learning rate 1073 > 3 515"16 !
Reward discount factor 0.99 S/S B e 9I5|
— - - 4 5 718 10 1 12 13 |14
Activation function of output layer Linear | ° Z 3 e—o -4 ‘%o—o—o ° !
Activation function of hidden layers ReLU | )23 dee 8 g 0 T2 134
] 33
Optimizer _ Adam 18 ~ 1,2....37: Bdges
Replay memory size 10000 1,2,...,33: Nodes
Batch size 200 19-1201-37-""" 35 X : Branch with outage
Target DQN parameters update rate 50 iterations 19" 0" 21 20
IL-6 IL-5

B. Training

The training of the proposed framework for the 33-node
system is performed for 10000 episodes. The parameters 6
of the main DQN are initialized with random values and the
parameters ¢ of the target network are set equal to 6. In
each episode, the system is initialized with a random state
and action-value function is generated based on the current
state. The reward function is calculated by passing the state
and action-value function through reward generator. Initially,
the rewards are very low but then they increase as the number
of episodes increases. Fig. 5 shows the running mean (500-
episode window) of actual rewards as the episode progresses.
It can be seen from the figure that as the number of episodes
increases, the running mean of the reward increases and almost
saturates after nearly 7000 episodes.

C. Testing and Implementation

For the testing and implementation of the trained model,
two test cases are devised with different line outage scenarios.
The two test cases are explained below.

1) Test Case-1: In this case, the outage of six lines 7, 19,
20, 22, 25, and 28 are simulated. Due to the outage of these
lines, six isolates (IL-1, IL-2, IL-3, IL-4, IL-5, and IL-6) are
formed as shown in Fig. 6. These isolates are devoid of power

Fig. 6. Test Case-I before reconfiguration and MER deployment

supply. This results in the total critical load curtailment of 870
kW.

When the outage data are given as inputs to the proposed
DRL model, three tie-switches (33, 36, and 37) are closed
and MERs are placed at nodes 4, 8, 27, and 30. This results
in the formation of two microgrids (MG-1 and MG-2) and
an isolate (IL-1), as shown in Fig. 7. In MG-1, the total
generation is 600 kW but the total critical load is 645 kW;
this results in the critical load curtailment of 45 kW. In MG-
2, the total generation exceeds the total critical load, resulting
in no critical load curtailment. The total critical load in IL-
1 is 45 kW. Therefore, the total critical load curtailment after
reconfiguration and MER deployment is 90 kW. The proposed
approach is able to recover 780 kW of critical loads for the
given outage scenario.

2) Test Case-1I: In this case, the proposed approach is
tested with a more extreme outage scenario, where outage of
the line connected to the substation node (i.e., 1) is considered
in addition to outage of lines 6, 10, 17, 19, and 25, as shown
in Fig. 8. Because of the outage of the line connected to the
substation node, this results in the power interruption at all
system nodes and the total critical load curtailment in this
scenario is 1265 kW.
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Fig. 7. Test Case-I after reconfiguration and MER deployment
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Fig. 8. Test Case-1I before reconfiguration and MER deployment

After the implementation of the proposed DRL approach
for this test case, four tie-switches 33, 34, 36, and 37 are
closed and MERs are placed at nodes 8, 20, 27, and 30. Two
microgrids (MG-1 and MG-2) are formed without any isolates,
as shown in Fig. 9. In MG-1, the total critical load is 615 kW
and the total generation is 600 kW, resulting in the critical load
curtailment of 15 kW. Similarly, in MG-2, the total critical load
is 650 kW and the total generation is 600 kW, resulting in the
critical load curtailment of 50 kW. Therefore, the total critical
load curtailment is 65 kW. The total critical load recovered by
the proposed approach is 1200 kW for the given scenario.

The proposed approach takes approximately 4 milliseconds
to execute on a PC with a 64-bit Intel i5 core processor running
at 3.15 GHz, 8 GB RAM, and Windows OS.

V. CONCLUSION

This paper has proposed a DRL-based two-stage approach
for network reconfiguration and MER routing to minimize
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Fig. 9. Test Case-II after reconfiguration and MER deployment
critical load curtailment when multiple line outages occur

following an extreme event. In the first stage, distribution
network reconfiguration is performed using tie-switches. In
the second stage, MERs are utilized to form microgrids. The
distribution network was represented by an undirected graph
and the optimal spanning forest was formed. The proposed
approach was tested and implemented on the 33-node distri-
bution test system. The two test cases exhibit the effectiveness
of the proposed approach for recovering critical loads of the
system by utilizing MERs and forming microgrids.
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