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Abstract—This paper proposes a deep reinforcement learning
(DRL) based approach for post-disaster critical load restora-
tion in active distribution systems to form microgrids through
network reconfiguration to minimize critical load curtailments.
Distribution networks are represented as graph networks, and
optimal network configurations with microgrids are obtained by
searching for the optimal spanning forest. The constraints to the
research question being explored are the radial topology and
power balance. Unlike existing analytical and population-based
approaches, which necessitate the repetition of entire analyses
and computation for each outage scenario to find the optimal
spanning forest, the proposed approach, once properly trained,
can quickly determine the optimal, or near-optimal, spanning
forest even when outage scenarios change. When multiple lines
fail in the system, the proposed approach forms microgrids
with distributed energy resources in active distribution systems
to reduce critical load curtailment. The proposed DRL-based
model learns the action-value function using the REINFORCE
algorithm, which is a model-free reinforcement learning tech-
nique based on stochastic policy gradients. A case study was
conducted on a 33-node distribution test system, demonstrating
the effectiveness of the proposed approach for post-disaster
critical load restoration.

Index Terms—Active distribution systems, microgrid forma-
tion, network reconfiguration, reinforcement learning, resilience.

I. INTRODUCTION

Resilience enhancement strategies have gained significant
interest during the last decade due to the high reliance on
electricity access and availability, especially during and after
disruptive events. The frequency and intensity of extreme
weather- and cyber-related events have increased dramati-
cally resulting in significant infrastructure damage and socio-
economic losses [1], [2]. To reduce the negative impacts of dis-
ruptive events, fast and efficient restoration strategies provide
a potential pathway for enhanced resilience in power systems
operations [3], [4]. Restorative strategies aim to return the
system to normal or semi-normal operations and performance
through recovering failed components or executing redundant
solutions [5]. Post-disaster load restoration can be achieved
through microgrid formation [6], network reconfiguration [7],
and allocation of distributed energy resources (DERs) [8].
However, a few challenges still exist to determine proper post-
event actions in a fast-paced manner, including computational
burdens, time constraints, and system size. Therefore, pro-
viding a load restoration strategy to improve the resilience

of distribution systems considering the system operational
constraints has become important.

Several studies have been conducted to enhance the load
restoration mechanisms in distribution systems against severe
outage events. Resilience-based microgrid formation frame-
works have been proposed to enhance the restoration of critical
loads in both radial and meshed networks [9]. An expert
system-based approach has been developed to control tie-
switches of distribution feeders for improved load restoration
behavior [10]. A microgrid formation strategy has been used to
retain critical loads after an extreme event, leveraging mixed-
integer linear programming optimization methods [11]. An
optimal network partitioning algorithm has been developed in
[12] to improve system resilience through spectral clustering
under N — k (i.e., £ > 1) contingencies. A heuristic-based
fuzzy multi-objective approach has also been developed to
minimize the number of tie-switch operations of radial systems
for reduced load curtailment [13]. An approximate dynamic
programming methodology has been formulated in [14] to
determine optimal switching decisions for network recon-
figuration of distribution systems during hurricanes. Despite
the significant contributions of these methods, the degree
of approximation and linearization adopted in the problem
formulation play a vital role in the obtained results. The
studied approaches have focused mainly on analytical and
heuristics-based techniques giving less importance to artificial
intelligence-based approaches. Additionally, the capability of
these methods to model large-scale systems decreases expo-
nentially, with the system size imposing additional computa-
tional limitations.

The emerging advancement of reinforcement learning (RL)
based approaches has encouraged their adoption in control-
based resilience enhancement strategies. The integration of
deep neural network structure to RL-based methods has shown
a wide range of promising pathways to improve resilience of
electric power systems [15]. A post-disaster RL-based opti-
mization framework has been developed to enhance resilience
of islanded microgrids through energy storage management
and load shedding strategies [16]. Recent studies have lever-
aged model-free reinforcement learning algorithms to learn
the value of an action in a particular application (Q-learning
approaches) [17] and actor-critic approaches [18] to improve
load restoration schemes of distribution systems. RL-based
approaches have the capability to learn from experiences.



Moreover, once a deep reinforcement learning (DRL) model is
fully trained, it can be easily integrated into the online decision
making process for enhanced resilience. Due to the numerous
DRL control-based approaches, further investigation is still
required to validate the efficiency and effectiveness of these
methods in resilience-based load restoration problems.

This paper proposes a DRL-based framework for post-
disaster critical load restoration (PDCLR) in active distribution
systems. The proposed approach is based on the training
of a neural network that makes the best decision based on
previous experience. Given a specific decision, the sequential
decision process gives a reward value as a function of system
outcome. The objective of the proposed agent is to minimize
critical load curtailment. To ensure realistic representation
of distribution system operations, system constraints, such
as radiality and power balance limitations are considered.
In the training phase of the proposed framework, an action
probability distribution is generated using forward propagation
of a deep neural network (DNN). Actions are randomly
sampled from the action probability distribution, so that when
actions are passed through the training environment, the DRL
agent gets rewarded (or penalized) based on its performance.
The discounted returns and policy gradients are calculated
based on the stored values of states, actions, and rewards. The
weights of DNN are then updated using the policy gradients.
The trained DRL agent is then used to find the best network
configuration. The proposed framework is validated through a
case study on a prototypical 33-node system. The results show
that the proposed framework can effectively find a network
configuration, thereby minimizing critical load curtailment.

The remainder of the paper is organized as follows: the
mathematical formulation of the PDCLR problem is explained
in Section II; the proposed framework and solution approach
are described in Section III; a case study on the 33-node
system is used to validate the proposed work in Section IV;
and finally, Section V, includes concluding remarks.

II. MATHEMATICAL MODELING

This section presents the graph theory-based modeling of
the distribution network and the mathematical formulation of
the PDCLR problem. Also, states, actions, and reward function
are described in the context of PDCLR.

A. Graph Theoretic Modeling of Distribution Network

Distribution systems are equipped with sectionalizing
switches (normally closed) and tie-switches (normally open).
When all switches of a distribution network are closed, a
meshed network is formed, and the meshed network can be
represented by an undirected graph G = (N, &), where N is a
set of nodes (or vertices) and € is a set of edges (or branches).
This graph is represented in spanning trees and forests, as
described below. The post disaster critical load restoration
(PDCLR) problem proposed in this paper changes the status
of sectionalizing and tie switches in such a way that radiality
is always maintained and microgrids are formed with DERs.

1) Spanning Tree: A spanning tree is defined as a subset
of the undirected graph § = (N, &) with a minimal number
of edges linking all vertices (or nodes). Each edge of the
undirected graph §G is assigned a specific weight based on
the problem being studied. For example, the edge weights
vary depending on the problem. The sum total of all edge
weights of a spanning tree is minimized when establishing
the minimum spanning tree. Fig. 1(a) shows a spanning tree
of a hypothetical 12-node system. The spanning tree shown in
the figure consists of all 12 system nodes and 11 closed edges
or branches.

® Node
--- Open branch
— Closed branch

Fig. 1. (a) A spanning tree; and (b) a spanning forest of a hypothetical 12-
node system

2) Spanning Forest: In graph theory, a forest is a discon-
nected union of trees. A spanning forest is a forest that covers
all vertices of the undirected graph G and consists of a set of
disconnected spanning trees [19]. Fig. 1(b) shows the spanning
forest formed as a result of disconnection of two additional
branches (2-3 and 3-6) in the spanning tree presented in
Fig. 1(a). The spanning forest shown in Fig. 1(b) consists of
three spanning trees (ST-1, ST-2, and ST-3).

B. Problem Formulation

This subsection presents the objective function and the
constraints of the PDCLR problem under consideration.

1) Objective Function: As a result of an extreme event,
some or all parts of the system may lose power supply.
Under such circumstances, sectionalizing and tie switches can
be used to reconfigure the network for enhanced resilience.
Therefore, the objective of the PDCLR problem is to minimize
the critical load curtailment of the system. Mathematically, the
objective function of the critical load curtailment minimization
is expressed as follows.

N
minZwiAPi, 1)
i=1
where AP; is the load curtailment at node 7; w; is the critical
load factor at node 7; and N is the total number of nodes in
the system.

2) Constraints: The proposed PDCLR problem is subjected
to various constraints, including nodal power balance and
radiality. The power balance constraints at each node of the
system can be expressed as follows:

Z P, i+ Z P j=Pp; 2

7€) 1eQr(4)



where §,(j) is the set of sources (including DER) connected
to node j; Q1,(j) is the set of lines connected to node j; Py
is the power injected from the source j; Pp ; is the load at
node j; and P, ; is the line power flow from node [ to node
7

A distribution system must always meet the radiality re-
quirement. Therefore, each potential configuration should be
radial (i.e., the radiality constraint should be met for each
spanning tree of the network). Each spanning tree of the
network is represented by a sub-graph G5 = (N, &), where
Ny is a set of nodes (or vertices) and € is a set of edges (or
branches) in the sub-graph. For the sub-graph, a node-branch
incidence matrix should be constructed. If n = |N,| denotes
the number of nodes and e = |€;| denotes the number of edges
of a particular spanning tree, then the node-branch incidence
matrix A € R™*€ is the matrix with element a;; calculated
based on (3). If the node-branch incidence matrix A is fully
ranked, then the radiality constraint is satisfied.

+1
aij = —1

if branch j starts at node ¢
if branch j ends at node ¢ 3)

0 otherwise

C. States, Actions, and Reward Function

The choice of states, actions, and reward function plays a
critical role for the proper training of a reinforcement learning
(RL) agent. For the PDCLR problem under consideration, a
vector of on/off status of network branches (or edges) is taken
as the state. The action is a vector of on/off status of network
switches and the cost function at time step ¢ is expressed as
follows:

Cy = LCf* — Lo, )

where LCHE is the critical load curtailment at time step ¢ as
a result of the action taken by the RL agent; and LC[™™ is
the minimum critical load curtailment at time step t.

The total reward at time step ¢ is computed as follows.

if any constraint is violated

100 - . .
if all constraints are satisfied
R, = {f-pct 5)

where p denotes the penalty factor.

III. PROPOSED FRAMEWORK

This work leverages recently advanced reinforcement learn-
ing techniques to minimize the critical load curtailment follow-
ing an extreme event. This section provides a brief overview
of deep reinforcement learning, the REINFORCE algorithm,
and the training attributes of the proposed approach.

A. Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learn-
ing that studies how artificial intelligent algorithms should
operate in a given scenario to maximize the caumulative reward.
RL, along with supervised and unsupervised learning, is one of
the three main machine learning techniques. The RL problem

is frequently formally described as a Markov decision process
(MDP), in which an agent remains in state S; at timestep
t, takes action A;, obtains a reward R;, and moves to the
next state Sy, based on environment dynamics guided by the
transition probability Pr(S;41|St, At). In order to maximize
its cumulative reward, the agent learns a policy 7(A¢|St),
which is a function that maps states to actions. The state
and action spaces of the MDP are high-dimensional for the
microgrid formation problems under consideration, and basic
RL algorithms cannot solve them. Deep reinforcement learning
(DRL) approaches are, therefore, utilized where deep neural
networks (DNNs) are employed as function approximators for
the policy and/or the value-function to solve MDPs.

RL algorithms can be broadly classified into value-based
and policy gradient algorithms. A value-based algorithm learns
the action-value function and takes actions based on the values
of the best action-value function. Examples of value-based
RL algorithms are Q-Learning and SARSA. A policy gradient
algorithm learns a policy directly by utilizing a policy function
and iteratively training to improve the likelihood of actions
depending on cumulative rewards. Examples of policy gradient
RL algorithms are REINFORCE and vanilla policy gradient.

REINFORCE is the most basic version of a policy gradient
algorithm. It effectively maximizes the likelihood of an action
based on the expected cumulative reward obtained after taking
that action. The simplified version of the objective function of
the REINFORCE algorithm is expressed as follows [20]:

T
J(76) = Erry [Go(r)] = Ernr, [Z VR ©)
t=0

where [E denotes the expectation operator; 6 denotes DNN
parameters; 7 is the variable representing the full trajectory
denoted 7 = Sy, Ag, R1,S1,...,5¢—-1, Ar_1, R, S; v is the
discount factor; T is the total time step; mp denotes the policy;
and G (7) denotes the return of the full trajectory starting from
t=0.

B. Training Attributes

The training of the proposed DRL framework is performed
for a certain number of episodes (n.p). Since the REINFORCE
algorithm is a policy-based algorithm, the policy parameter
(0) is initiated for a DNN that serves as a policy network.
The following maximization problem is solved using the
REINFORCE algorithm:

max J(mg) = Bz, [Go(7)] 7

For the maximization of the objective, the gradient ascent
is performed on the DNN parameters 6 and the parameters are
updated using the update rule given by (8).

0+ 0+ algJ(my) 8)

where « is the learning rate; Ay is the gradient operator; and
Ay J(mg) is the policy gradient calculated as follows [20].



T
NgJ(0) =Erm, | > Gi(r)Aglogma(AslSe)| (9
t=0

In (9), G¢(7) denotes the discounted return from time step
t to the termination of trajectory, which can be expressed as:

T
Gi(r)=> 7" 'Ry (10)

t'=t

Algorithm 1 provides the procedure of training the proposed
DRL-based approach.

Algorithm 1: Training of the proposed approach.

Input : System data including line data, load data,
on/off status of edges, etc.

Initialize parameters 6 of policy network with random
values

for episode < 1 to n, do
Initialize the system with a random state (here, a

vector of line/branch status)

for t < 1 to T do
Get the action probabilities based on current

state and stochastically select an action
Calculate the reward function Ryy1(S:, A)
after passing the state and action through
reward generator
Store the transition (S, Ay, Ret1(St, At))
consisting of state, action, and reward
Calculate the discounted return based on (10)
Calculate the policy gradient based on (9)
Perform back-propagation to update parameters 6
of the policy network
Output : On/off status of network switches

IV. CASE STUDY AND DISCUSSION
A. System Description

To demonstrate the effectiveness of the proposed approach,
a 33-node system is used for numerical simulation. The 33-
node distribution test system is a radial distribution system
with 33 nodes, 32 branches, and 5 tie-lines (37 branches) [21].
All branches (including tie-lines) are numbered from 1 to 37.
The system’s overall load is 3.71MW. The system is modified
by adding five DERs each with 300kW capacity at nodes 4, 7,
14, 20, and 32. The lines 2, 7, 11, 19, and 28 are assumed to
be equipped with sectionalizing switches. The locations and
amounts of critical loads considered for the 33-node system are
shown in Table I. The hyper-parameter settings of the policy
neural network of the proposed framework for the 33-node
system are shown in Table II.

B. Training

The proposed DRL-based approach is trained for 10,000
episodes. During each episode, the state is randomly initialized
with an outage scenario. Based on the randomly initiated
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Fig. 2. Convergence process of Total Rewards

state, the probability distribution of actions is calculated. An
action is sampled from the action probability distribution, then
the state and action are passed into the reward generator to
calculate the reward. The states, actions, and rewards are stored
in a memory bank, which are later utilized to train the policy
neural network.

Fig. 2 shows the convergence process of Total Rewards
during training of the proposed approach. The figure shows
that the running mean (500-episode window) of the Total
Rewards is initially very low until 2,000 episodes, but it
increases as the training episode progresses and becomes
relatively stable after 8,000 episodes. Since the policy neural
network continues learning as the episodes increase, the Total
Reward gradually increases and there is lower fluctuation after
a certain number of episodes.

C. Testing and Implementation

For the testing and implementation of the proposed ap-
proach, three different test cases with different line outage
scenarios were devised, which are as follows.

1) Test Case-1: For this test case, outages were assigned to
lines 2, 3, 9, and 10. For this outage scenario, two microgrids
(MG-1 and MG-2) and two isolates (IL-1 and IL-2) can be
formed before the application of the proposed DRL approach,
as shown in Fig. 3. The microgrids are energized by DERs,
whereas the isolates are un-energized. The total critical loads
in MG-1 are 940kW and the total generation is 900kW, which
results in total critical load curtailment of 40kW in MG-1.
In MG-2, the total generation is higher than the total critical
load. In IL-1 and IL-2, the total critical loads are, respectively,
30kW and 45kW. Therefore, the total amount of curtailed
critical load is 115kW for this baseline outage scenario, before
implementing the proposed DRL-based approach.

After the implementation of the proposed approach, no
changes were made in the status of sectionalizing switches
(2,7, 11, 19, and 28), whereas three tie-switches (35, 36, and
37) were closed as shown in Fig. 4. For this configuration,
all system nodes are supplied through the substation, except
an isolate (IL-1) consisting of node 10. The total critical load
connected to node 10 is 30kW. Therefore, the total amount of
curtailed critical load is only 30kW after the implementation of
the proposed approach, recovering 85kW of the critical loads.



TABLE I
LOCATIONS OF CRITICAL LOADS FOR THE 33-NODE SYSTEM

Nodes 4 5 6 7 8 9 10 [ 1T | 18 | 19 | 20 | 21 | 22 | 23 | 26 | 27 | 28 | 29 | 30 | 33
Critical Loads (kW) || 60 | 30 | 60 | 200 | 200 | 60 | 30 | 25 | 45 | 45 | 45 | 45 | 45 | 45 | 60 | 60 | 60 | 60 | 60 | 30
TABLE II
HYPER-PARAMETER SETTINGS OF THE POLICY NEURAL NETWORK
Hyper-parameters Values
Number of hidden layers 2
No. of neurons in hidden layers 10, 10
Learning rate 10—3
Reward discount factor 0.95
Activation function of output layer Linear
Activation function of hidden layers ReLU 1,2,...37: Edges
Optimizer Adam 1,2,...,33: Nodes
O :DER node

S/S

X : Branch with outage

19 20 21 22

Fig. 3. Test Case-I before implementing the proposed DRL-based approach

2) Test Case-II: In the second test case, an outage scenario
to recover all critical loads was used. Here, outages were
assigned to lines 4, 8, 25, and 32. As a result, three microgrids
(MG-1, MG-2, and MG-3) and an isolate (IL-1) are formed
as shown in Fig. 5. The DERs in MG-1 and MG-2 can supply
all of their critical loads. Microgrid MG-3 is energized by a
DER of capacity 300kW connected to node 7. However, the
total critical load in MG-3 is 490kW, of which 190kW is left
unrecovered. The isolate IL-1 consists of node 33 with 30kW
critical load, which is devoid of power supply. Therefore, the
total amount of curtailed critical load for this case is 220kW
before implementation of the proposed approach.
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Fig. 4. Test Case-I after implementing the proposed DRL-based approach

X : Branch with outage
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Fig. 5. Test Case-II before implementing the proposed DRL-based approach

MG-2

MG-3

2,...,37: Edges
...,33: Nodes
O :DER node
X

: Branch with outage

19 20 21 22

Fig. 6. Test Case-II after implementing the proposed DRL-based approach

When the proposed DRL-based approach is implemented,
sectionalizing switch 2 is opened and tie-switches 33 and
36 are closed as shown in Fig. 6. As a result of these
changes, three microgrids (MG-1, MG-2, and MG-3) are
formed without any isolates as shown in Fig. 6. Each of the
microgrids are energized by DERs and the total generation
exceeds the total critical loads in each of them. Therefore, all
critical loads are recovered in this test case.

3) Test Case-III: In the third test case, a more extreme
outage scenario was considered, where an outage of the line
connected to the substation (i.e., line 1) occurs, in addition
to an outage of three lines (2, 12, and 23). Three microgrids
(MG-1, MG-2, and MG-3) and an isolate (IL-1) can be formed
as a result of the outage, as depicted in Fig. 7. The total
critical load curtailment in MG-1 is 95kW, whereas MG-2 and
MG-3 don’t have any curtailed critical loads. The isolate IL-
1 consists of nodes 24 and 25 which don’t have any critical
loads. Therefore, the total amount of curtailed critical loads
is 95kW in this test case before implementing the proposed
approach.

After the implementation of the proposed DRL-based ap-
proach, the status of sectionalizing switches were kept un-
changed while tie-switches 33 and 36 were closed. This results
in the formation of a microgrid MG-1 and an isolate IL-1
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Fig. 8. Test Case-III after implementing the proposed DRL-based approach

as shown in Fig. 8. Since the total generation in MG-1 is
higher than the total critical loads, there is no critical load
curtailment. Also, the isolate IL-1 doesn’t have any critical
loads. Therefore, the implementation of the proposed approach
leads to the recovery of all critical loads in this test case.

V. CONCLUSION

This paper has proposed a DRL-based approach for critical
load restoration in active distribution systems against extreme
events and multiple line outages. The proposed PDCLR uti-
lizes DERs to form microgrids by changing the status of
sectionalizing and tie switches present in the network. The
distribution network was represented by an undirected graph
and an optimal spanning forest was formed. REINFORCE,
a policy gradient reinforcement learning algorithm, was used
to train the policy neural network of the proposed DRL-
based model. The convergence process during the training
showed that the proposed approach continues learning as
the training episode progresses and becomes relatively stable
after a certain number of episodes. The proposed approach
was tested and implemented on a 33-node distribution test
system. The three test cases exhibit the effectiveness of the
proposed approach to recover critical loads of the system by
utilizing DERs and forming microgrids thereby enhancing the
distribution system resilience. Applying this research to real-
world examples, using historic outage events, and to other
types of nodal distribution test systems would be valuable for
future research.
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