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Abstract—The extensive integration of communication,
computation, and control technologies into cyber-physical power
systems (CPPSs) has increased the vulnerabilities of CPPSs to
cyberattacks. This calls for developing solutions that assess and
reduce the impacts of cyber-induced failures on CPPSs. This
paper proposes a defensive islanding strategy to isolate impacted
parts of the CPPS and form self-sufficient islanded grids with an
objective of minimum load curtailment. The defensive islanding
aims to split a power system into smaller grids to improve
its resilience against a potential extreme event. A clustering
approach that leverages the hierarchical spectral clustering
method is utilized for the optimal defensive islanding. The
proposed approach captures the fragility behavior and loading
conditions of power system components due to cyber-induced
failures. A graphical-based coupling framework is used to map
the impacts of cyber failures into operation of power system
components. The proposed method is demonstrated on a modified
33-node distribution feeder system integrated with distributed
energy resources. The amount of load curtailment and radiality
constraints have been used to evaluate the performance of the
proposed clustering strategies. The results show the capability
of the proposed algorithm to create islands considering the
cyber-induced failures for enhanced resilience.

Index Terms—Cyber-induced failures, cyber-physical system,
islanding, microgrid, resilience.

I. INTRODUCTION

Modern power systems are inundated with the rapid
deployment of information, computation, and communication
technologies. The deep coupling between information and
power system through various communication means has
transformed power systems into cyber-physical power systems
(CPPSs) [1], [2]. Though this integration has enabled
diverse applications of automation and control for enhanced
performance of CPPS, vulnerabilities of power systems to
cyber failures and cyberattacks have increased dramatically
[3], [4], which can lead to major blackouts [5]. For example,
the cyberattack on the Ukrainian power grid on December
2015 resulted in a blackout that affected 225,000 residents [6].
In CPPSs, the impact of cyber-induced failures have gained
noticeable interest in reliability-based and resilience-based
studies [7]. Other studies have focused on detection and
mitigation techniques of cyberattacks [8]. However, the role
of islanding techniques to enhance resilience of CPPS against
cyber-induced failures is still under investigation. Clustering
approaches, which are effective approaches for determining

optimal islanding, rely mainly on the properties of the
physical layer solely giving less interest to coupling behavior
of cyber-layers. Therefore, implementing a resilience-based
enhancement strategy due to cyber-induced failures has
become important than ever.

Several methods have been proposed to enhance the
resilience of power systems using islanding and microgrid
formation strategies. A spectral clustering algorithm has been
employed to determine optimal network partitions under tight
potential N − k (i.e., k > 1) contingencies [9]. A risk-based
defensive islanding approach has been studied in [10] to reduce
the impact of cascading failures on transmission systems for
enhanced resilience against hurricanes. In [11], a multi-layer
constrained clustering technique has been investigated to
split a power system into islands while minimizing power
disruptions. Also, a clustering approach has been integrated
with frequency measurements of inverter-based resources
to create islanded grids based on transient responses of
renewable energy resources [12]. In [13], a resilience-based
microgrid formation framework has been proposed to enhance
the restoration of critical loads in both radial and meshed
networks. Most of these studies have focused on transmission
level due their highly meshed topology. Despite the significant
contributions of these methods to enhance islanding strategies,
impacts of cyber-induced failures on microgrid formation of
distribution CPPSs require further investigation.

The impact of cyber-induced failures on the operational
performance of CPPS has gained significant interest. A
CPPS model representing the IEEE 118-bus system integrated
with a communication network has been used to assess the
impact of malware-induced cyberattacks [14]. An exploration
approach to identify the most vulnerable components to
malicious external attacks in nuclear power plants has been
studied in [15]. A resilience-based mechanism to improve
the recovery rate of communication links impacted by a
cyberattack has also been proposed in [16]. A defensive
enhancement scheme has been proposed in [17] to reduce the
likelihood of cyber-induced failures in waste water treatment
systems, as seen in Oldsmar, Florida in February 2021 [18]
and San Francisco, California in January 2021 [19]. In [20],
the impact of cyber-induced depended failures on composite
power system reliability has been investigated. Also, a CPPS



model has been proposed in [21] to capture the propagation
of cyber failures into distribution power systems for reliability
evaluation. The role of cyber-induced failures in islanding
strategies is still underdeveloped. Also, most of these studies
have focused on performance evaluation against cyber-induced
failures rather than defensive islanding of CPPS. Therefore,
an islanding method that captures the correlation between
physical operating conditions and cyber fragility behavior in
CPPSs is required for enhanced resilience.

This paper proposes a clustering approach to split
distribution systems into microgrids based on assessing
their vulnerabilities to cyber-induced failures. The proposed
algorithm leverages the hierarchical spectral clustering
approach based on graph network representation of the
cyber-physical system under study. The clustering approach
isolates the distribution system at the most vulnerable
components yielding a defensive preparedness scheme for
enhanced resilience. The potential impacts of a cyber
failure scenario is reflected on the power system using a
graphical-based coupling framework between cyber layers and
physical layers. The list of vulnerable components is obtained
by integrating the steady-state parameters (power flows) of the
physical system with the fragility behavior (failure probability)
of cyber components. The minimal amount of load curtailment
and radiality constraints are used to validate the efficiency of
the obtained islands for enhanced restoration performance. The
proposed algorithm is tested on a modified 33-node system
integrated with distributed energy resources.

The rest of the paper is organized as follows: Section II
describes the defensive islanding approach for CPPS. Section
III explains the hierarchical spectral clustering method and
the clustering evaluation criteria. Section IV illustrates the
implementation procedures on the 33-node distribution feeder
and discusses the results. Section V provides some concluding
remarks.

II. CYBER RESILIENCE-BASED DEFENSIVE ISLANDING

This section describes the representation of a cyber-physical
power system as a graph network. Also, it illustrates
a defensive islanding approach using graphical clustering.
Finally, a few weighting functions are proposed to capture
both the physical and cyber features for proper clustering.

A. Graphical Representation of Cyber-Physical Power System
CPPSs are usually divided into of a physical layer

representing the power grid and a cyber layer including
communication and computation systems. According to
complex network theory, both physical and cyber layers can be
represented as graph networks [2]. A physical power system
is represented by a undirected graph GP = (NP,EP), where
NP is a set of vertices corresponds to buses or nodes in
the power system and EP is a set of edges referring to
transmission line segments or transformers. Following the
same convention, the cyber layer can be represented as a
undirected graph GC = (NC,EC), where NC is a set of vertices
that correspond to communication routers and control centers

in the cyber system and EC is a set of edges representing the
communication channels between the information nodes.

The coupling between the information equipment and
power system components shows the strong inter-dependency
between the cyber and physical layers. In a conventional
CPPS, the communication network is responsible for
transferring measurements from power system sensors and
sending decision control signals to power system actuators [2].
Various studies have been conducted to present a coupling
model of the physical and cyber layers [7], [21], [22];
however, such coupling differs based on the system under
study, the level of interaction among different layers, and
the scope of the study. This paper focuses on propagating
the impact of cyber-induced failures into a power system.
The presented coupling model between communication and
physical layers is adopted from [23] and summarized as
follows. A node-switch incidence matrix Ans ∈ RNP×NC

that represents the communication channel between a physical
node and its terminal in the cyber layer can be constructed as
follows.

ansi,j =

{
1 if node i is connected to switch j

0 otherwise
(1)

Also, a branch-switch incidence matrix Abs ∈ REP×NC

describing the relationship between a physical edge and its
assigned communication router can be formulated as follows.

absi,j =

{
1 if branch i is connected to switch j

0 otherwise
(2)

Finally, a switch-switch incidence matrix Ass ∈ RNC×NC

can be used to describe the existing communication topology,
such as star, ring, or meshed, and can be formed as follows.

assi,j =

{
1 if switch i is connected to switch j

0 otherwise
(3)

B. Defensive Islanding
Defensive islanding aims to split a power system

into smaller independent grids and isolate the vulnerable
components based on constrained clustering. The defensive
islanding approach provides a proactive strategy to exclude
the vulnerable system components for enhanced resilience
operation. Existing islanding approaches rely mainly on the
topology and loading conditions of the physical electric power
system [10], [24]. However, the integration of communication
and cyber components introduces further challenges on
clustering a CPPS [23]. For instance, during an extreme
weather event, the communication channels connecting the
power system components, such as circuit breakers, and
tie-switches, to the main control center can be compromised.
Though power components can still operate reliably, the
vulnerabilities introduced in the cyber layer to measure,
monitor, and control power systems will reduce the resilient
operation.

Islanding is classified as a clustering problem within the
context of graph theory [10]. Clustering a graph network is



the process of identifying the list of edges (transmission lines)
that can be disconnected to maintain minimal discrepancies
among the connecting vertices (buses) [24]. This is usually
achieved via assessing the correlation between vertices in
a specific graph, and then, removing the edges having the
least correlation values. Various methods have been used to
evaluate the correlation within a graph network in terms of
edge weights [9], [12], [25]. In electric power system studies,
the following edge weight functions have been used:
1) Topology: Wi,j = 1, where (i, j) ∈ E

2) Admittance: Wi,j = Yi,j = 1/Zi,j where Zi,j is the line
impedance between buses i and j.

3) Power flow: Wi,j = (|Pi,j | + |Pj,i|)/2 where Pi,j is the
real power flow from bus i and bus j.

4) Optimal Power flow: Wi,j = (|P ∗
i,j |+ |P ∗

j,i|)/2 where P ∗
i,j

is the real power flow from bus i and bus j based on solving
the optimal power flow problem.

C. Resilience-based Clustering
Different edge weight functions can be used to evaluate the

characteristics and properties of a specific graph. In power
system graphical representation, the topology weight function
measures pure connectivity of a network whereas admittance
weight matrix reveals the strength of graph edges (electrical
distances). Also, power flow and optimal power flow weights
are used to measure the loading level of transmission lines.
However, these weight functions do not capture the fragility
of system components during an extreme event [24]. In
resilience-based studies, edge weights can be calculated based
on the probability of failure of system components [26]. The
weight matrix can be represented as Wi,j = 1 − fi,j where
fi,j is the failure probability of an edge connecting buses i
and j, which can be computed using fragility curve models
[27]. Despite the capability to capture the vulnerability level
of system components, the resilience-based weight function
does not account for the loadability characteristics of system
components.

A proper weight function that captures both the fragility
and loadability features of graph edges will provide a better
clustering against severe events. Four weight functions are
proposed by integrating the steady-state solution of power flow
and optimal power flow with the fragility behavior of power
system components due to cyber-induced failures, which are
explained as follows.
1) Integrated power flow and component availability: Wi,j =

((|Pi,j |+ |Pj,i|)/2)(1− fi,j). Each element in the weight
matrix corresponds to the multiplication of the average
power flow and the probability of success for the
corresponding edge.

2) Integrated optimal power flow and component availability:
Wi,j = ((|P ∗

i,j | + |P ∗
j,i|)/2)(1 − fi,j). Each element in

the weight matrix corresponds to the multiplication of the
optimal real power flow and the probability of success for
the corresponding edge.

3) Integrated normalized power flow and component
unavailability: Wi,j = ((|P̂i,j | + |P̂j,i|)/2)(fi,j), where P̂

is the normalized power flow between i and j.
4) Integrated normalized optimal power flow and component

unavailability: Wi,j = ((|P̂ ∗
i,j |+ |P̂ ∗

j,i|)/2)(fi,j), where P̂ ∗

is the normalized optimal power flow between i and j.
The normalized power flow values are selected to map the

loadability level of transmission lines on a scale from zero
to one—higher values imply higher loadability. Also, this
ensures that same priority is given to both probability of failure
(fragility feature) and power flow (loadability feature), since
both reside within the same range. The probability of failure of
a physical component can be computed using the probability of
failure of the corresponding communication link as described
in [23] and summarized as follows.

fi,j =


fns
i,j if node channel assigned to edge(i,j) fails
fs
i,j if switch connected to edge(i,j) fails
f bs
i,j if branch channel assigned to edge(i,j) fails
0 otherwise

(4)

III. SPECTRAL CLUSTERING FOR DEFENSIVE ISLANDING

This section explains hierarchical spectral clustering method
to create defensive islands. Also, it provides a brief description
of the clustering evaluation criteria including minimal amount
of load curtailment and radiality constraints.

A. Hierarchical Spectral Clustering
The concept of hierarchical spectral clustering has been

introduced in [24] for transmission power systems and in [25]
for distribution systems. The general idea is to split a graph
network into K sub-graphs. First, the normalized Laplacian
matrix Ln representing a specific graph is evaluated using (5).

Ln = I −D−1/2WD−1/2, (5)

where I is identity matrix, W is the edge weight matrix, and
D is the diagonal degree matrix, which can be calculated as
follows.

Dj,j =

N∑
i=1

Wj,i. (6)

The formulated Laplacian matrix is used to determine the
first K eigenvectors corresponding to the smallest eigenvalues.
The extracted eignvectors represent the coordinates of the
graph vertices in RK . Once the K coordinate vectors are
computed, the edge distance between each graph vertex, i ∈ N

and all k ∈ K vertices is computed. A specific vertex i will
be assigned to cluster k based on the minimum euclidean
distance. In other words, the minimum distance over a path
between i and k is used to allocate graph vertices into a
specific cluster. Detailed illustration of the presented method
can be found in [24].

B. Clustering Evaluation Criteria
Various methods have been used to assess the performance

of the clustering techniques [28]. The evaluation criteria vary
based on the system being assessed, the size of the graph, and
the required objectives. In this paper, two criteria are selected



t o e v al u at e t h e v ali dit y a n d ef fi ci e n c y of t h e c al c ul at e d cl ust ers,
w hi c h ar e e x pl ai n e d b el o w.

1) Mi ni m al A m o u nt of L o a d C urt ail m e nt
T h e mi ni m al a m o u nt of l o a d c urt ail m e nt is a n i n d e x t h at

c a n b e us e d t o e v al u at e t h e l e v el of r esili e n c e e n h a n c e m e nt.
T h e criti c al l o a d c urt ail m e nt c a n c a pt ur e t h e s e v erit y of t h e
m ulti pl e li n e o ut a g es d u e t o a c y b er-i n d u c e d f ail ur e a n d is
dir e ctl y aff e ct e d b y t h e t o p ol o g y a n d l o c ati o ns of distri b ut e d
e n er g y r es o ur c es ( D E Rs) i n a distri b uti o n s yst e m. T h e t ot al
l o a d c urt ail m e nt i n a distri b uti o n n et w or k c a n b e e x pr ess e d as
f oll o ws.

L C t o t =

N

i = 1

∆ P i , ( 7)

w h er e ∆ P i is t h e l o a d c urt ail m e nt at n o d e i, a n d N is t h e t ot al
n u m b er of n o d es i n t h e s yst e m.

2) R a di alit y C o nstr ai nts
R a di alit y r e q uir e m e nts s h o ul d b e s atis fi e d i n distri b uti o n

s yst e ms t o ali g n wit h t h e e xisti n g pr ot e cti o n c o or di n ati o n
s c h e m es a n d v olt a g e r e g ul ati o n f u n d a m e nt als. E a c h cl ust er
( mi cr o gri d) is r e pr es e nt e d b y s u b- gr a p h G k = ( N k , E k ), w h er e
N k is a s et of n o d es ( or v erti c es) a n d E k is a s et of e d g es ( or
br a n c h es) i n t h e s u b- gr a p h or cl ust er. A n o d e- br a n c h i n ci d e n c e
m atri x A c a n b e c o nstr u ct e d usi n g ( 8) f or e a c h cl ust er, s u c h
t h at A ∈ R n × e , w h er e n = |N k | d e n ot es t h e n u m b er of n o d es
a n d e = |E k | d e n ot es t h e n u m b er of e d g es of a p arti c ul ar
cl ust er. R a di alt y c o nstr ai nt is s atis fi e d if m atri x A is a f ull
r a n k m atri x.

a i, j =






+ 1 if br a n c h j st arts at n o d e i

− 1 if br a n c h j e n ds at n o d e i

0 ot h er wis e

( 8)

C. I nt e gr at e d Al g orit h m
Al g orit h m 1 pr o vi d es t h e pr o c ess of d ef e nsi v e isl a n di n g t o

s plit a distri b uti o n s yst e m i nt o s m all er gri ds c o nsi d eri n g t h e
r ol e of c y b er-i n d u c e d f ail ur es.

I V. I M P L E M E N T A T I O N A N D R E S U L T S

T h e pr o p os e d a p pr o a c h is a p pli e d o n a m o di fi e d v ersi o n
of t h e 3 3- n o d e distri b uti o n f e e d er f or v ali d ati o n. T h e
d ef e nsi v e isl a n di n g fr a m e w or k is f or m ul at e d usi n g hi er ar c hi c al
s p e ctr al cl ust eri n g i nt e gr at e d wit h r esili e n c e- b as e d w ei g hti n g
f u n cti o ns.

A. D at a D es cri pti o n
A C P P S r e pr es e nti n g a m o di fi e d v ersi o n of t h e 3 3- n o d e

distri b uti o n f e e d er [ 2 9], [ 3 0] is f or m e d, as s h o w n i n Fi g. 1.
E a c h p o w er s yst e m n o d e a n d tr a ns missi o n li n e is assi g n e d
t o a s p e ci fi c c o m m u ni c ati o n s wit c h as pr o vi d e d i n Ta bl e
I. T h es e r o ut ers ar e r es p o nsi bl e f or r e c ei vi n g m e as ur e m e nt
si g n als a n d s e n di n g c o ntr ol si g n als t o t h e assi g n e d p h ysi c al
c o m p o n e nts. All c o m m u ni c ati o n s wit c h es ar e c o n n e ct e d t o
t h e m ai n c o ntr ol c e nt er. A c o m pr o mis e d r o ut er i m pli es
p ot e nti al f ail ur e of all c o m m u ni c ati o n si g n als t o t h e assi g n e d
p h ysi c al c o m p o n e nts. T h o u g h t h e c o m m u ni c ati o n t o p ol o g y
pl a ys a vit al r ol e i n a d dr essi n g t h e c orr el ati o n b et w e e n c y b er
f ail ur es, t his p a p er f o c us es o n t h e i m p a ct of c y b er f ail ur es

Al g o rit h m 1: O v er vi e w of D ef e nsi v e Isl a n di n g
C o nsi d eri n g C y b er-i n d u c e d F ail ur es

I n p ut: D e fi n e p h ysi c al l a y er gr a p h ( G P ), c y b er l a y er
gr a p h ( G C ), n u m b er of cl ust ers (K ), a n d
cl ust eri n g str at e gi es ( S )

G e n er at e a c y b er f ail ur e s c e n ari o
S ol v e t h e p o w er fl o w a n d o pti m al p o w er fl o w
Pr o p a g at e t h e c y b er-i n d u c e d f ail ur e t o t h e p h ysi c al
l a y er usi n g ( 1), ( 2), a n d ( 3)

E v al u at e t h e pr o b a bilit y of f ail ur e of p o w er
c o m p o n e nts usi n g ( 4)

f o r s ← 1 t o S d o
C o m p ut e t h e w ei g ht m atri x W
C al c ul at e t h e L a pl a ci a n m atri x L n

E v al u at e t h e ei g e n v e ct ors K
O bt ai n cl ust ers usi n g hi er ar c hi c al s p e ctr al
m et h o d ol o g y

R e m o v e li n es ( e d g es) t o s plit t h e s yst e m i nt o
isl a n ds

C al c ul at e t h e mi ni m al a m o u nt of l o a d c urt ail m e nt
a n d r a di alit y r a n k

O ut p ut: D ef e nsi v e isl a n ds a n d t h eir c orr es p o n di n g
l o a d c urt ail m e nt a n d r a di alit y r a n k

o n t h e p erf or m a n c e of p o w er s yst e m c o m p o n e nts. T o cr e at e
i n d e p e n d e nt mi cr o gri ds, ei g ht D E Rs ar e c o n n e ct e d t o t h e
distri b uti o n f e e d er at ar bitr aril y c h os e n l o c ati o ns as s h o w n
i n Fi g. 1. T h e m a xi m u m p o w er c a p a cit y of e a c h D E R is
5 0 0 k W. T h e pr o p os e d al g orit h m t a k es i nt o c o nsi d er ati o n t h e
D E R l o c ati o ns i n assi g ni n g pr o p er isl a n ds. I n t his p a p er, it
is r e q uir e d t o d et er mi n e pr o p er isl a n ds b as e d o n pr e d e fi n e d
s yst e m r es o ur c es a n d c h ar a ct eristi cs.

1 2

3 4

5 6

1 9

2 3 2 4 2 5

2 6

7 8 9

2 0 2 1 2 2

2 7 2 8

2 9 3 0 3 1 3 2 3 3

S
ub

st
at
io

n
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1 61 5

1 4

1 31 2

1 11 0

S W 1

S W 2 S W 3

S W 4

S W 5

S W 6

S W 8

S W 7

S W:N o d e/ B us D E R l o c R o ut er Ti e - s wit c h Li n e

Fi g. 1. C P P S s c h e m ati c di a gr a m of a m o di fi e d 3 3- n o d e distri b uti o n f e e d er

T h e pr o p os e d cl ust eri n g a p pr o a c h r eli es m ai nl y o n t h e
pr o b a bilit y of f ail ur e of c y b er f ail ur es d uri n g e xtr e m e e v e nts.
D u e t o t h e l a c k of i nf or m ati o n r e g ar di n g t h e f ail ur e b e h a vi or
of c y b er a n d c o m m u ni c ati o n c o m p o n e nts, s e v er al st u di es h a v e
a d o pt e d a s c ali n g a p pr o a c h t o c o m p e ns at e f or t h e el e v at e d
e xtr e m e fr a gilit y c o n diti o ns d uri n g s e v er e c o n diti o ns [ 3 1],
[ 3 2]. I n t his w or k, t h e f ail ur e r at e a n d r e p air ti m e of t h e c y b er
c o m p o n e nts ar e a d o pt e d fr o m [ 2 2], [ 2 3]. T h e f ail ur e r at e of



TABLE I
ASSIGNED PHYSICAL COMPONENTS TO COMMUNICATION SWITCHES

Switch Assigned Nodes Assigned lines
SW1 1,2,3,4 1,2,3,14,18,22
SW2 5,6,7,8,9 5,6,7,8,9,25,33,34
SW3 10,11,12,13,14 10,11,12,13,14,35
SW4 15,16,17,18 15,16,17,36
SW5 26,27,28,29 26,27,28,29,37
SW6 30,31,32,33 30,31,32
SW7 19,20,21,22 19,20,21
SW8 23,24,25 23,24

the cyber components are scaled by a factor of four; whereas,
the repair time is doubled from [30], [31].

B. Case Studies
Several test cases are conducted to validate the effectiveness

of the proposed approach to provide defensive islanding for
enhanced resilience. First, the proposed algorithm is tested for
a predefined cyber failure scenario to ensure the robustness
of the obtained islands. In this paper, we have used eight
strategies for clustering the distribution system as shown in
Table II. Two criteria are used for comparison: the minimal
amount of load curtailment and the radiality constraints.
A clustering strategy resulting in small amount of load
curtailment and satisfied radiality constraints is preferred. In
the second case, the robustness of the proposed algorithm
against diverse cyber failure scenarios is validated. Finally, the
third case provides a deeper analysis on the trade-off between
sizes of clusters and efficiency of the proposed algorithm.

TABLE II
CLUSTERING STRATEGIES

Index Weight matrix

S1 Admittance
S2 Power flow
S3 Optimal power flow
S4 Resilience-based
S5 Integrated power flow and component availability
S6 Integrated optimal power flow and component availability
S7 Integrated power flow and component unavailability
S8 Integrated optimal power flow and component unavailability

1) Algorithm Validation:
In this case, a predefined cyber-induced failure is simulated.

The impact of the cyber failure is propagated to the physical
system using the coupling matrices described in section
II-A. The communication router SW7 is assumed to be
compromised resulting in a severe potential physical failure of
3 line segments and 4 load nodes. The probability of failure
of physical components is computed based on the conditional
probability failure of a connected cyber link as explained in
section III-A. For fair comparison, all clustering strategies are
set to split the distribution feeder into four independent islands.

Fig. 2 shows the clusters obtained for each strategy
represented by different colors. The number of nodes in each
cluster varies from one strategy to another. For instance, S2

and S5 have two islands each composed of a single node
(7 and 19) which undermines these strategies to provide less
resilient microgrids. In other words, nodes 7 and 19 could have
been connected to nearby nodes yielding enhanced resilient
topology. Strategies S7 and S8 provide very similar clustering
solutions; however, the difference relies in the capability of S8

to capture the whole generation benefits of the existing DERs.
In S4, the clusters are formed based on the resilience level of
system components. This results in islands that do not follow
radiality constraints and ignore system operating conditions
such as cluster C1 including node 7 and 20.

Table III shows the amount of load curtailment (LC)
and degree of radiality (R) of all clusters obtained by
different strategies. The R value reflects the number of clusters
satisfying radiality constraints within a specific clustering
strategy. It is obvious that the proposed strategies (S7 and
S8) result in least amount of load curtailment relative to other
clustering strategies with only 13% of the system nominal
load to be curtailed. In general, using steady-state value
of admittance matrix (S1) and power flow solution (S2) is
not sufficient for proper clustering, specifically during severe
conditions. Also, using resilience-based clustering (S4) solely
results in much higher curtailment as it ignores the loadability
behavior of distribution line segments. Though S3 provides
acceptable results compared to S5 and S6, the obtained
solution relies on the performance of the system prior to a
cyber-induced failure ignoring the fragility behavior of each
system component. On the other hand, the effectiveness of
the proposed algorithm to provide clusters satisfying radiality
constraints has been confirmed through values of R. Both
S7 and S8 show that all obtained clusters satisfy the radial
topology configuration of a distribution system. Also, it is
noticeable that S2, S4, and S5 do not usually maintain radial
topology in the formed islands.

TABLE III
LOAD CURTAILMENT AND RADIALITY RANK OF CLUSTERING

STRATEGIES

S1 S2 S3 S4 S5 S6 S7 S8

LC (MW) 1.635 1.545 1.125 1.755 1.545 1.125 0.910 0.470
LC (%) 44 42 30 47 42 30 25 13

R 3 2 3 2 2 3 4 4

2) Assessing Stochastic Behavior of Cyber Failures:
The solution of the proposed strategy will vary based on the

cyber-induced failure scenario. In this case, the efficiency of
the proposed clustering approach is validated under different
cyber failure scenarios. A total of 10,000 cyber failure
scenarios with diverse impact level are randomly generated
and simulated. The amount of load curtailment and radiality
rank are computed for each failure scenario. All clustering
strategies are required to split the system into four independent
islands.

Table IV summarizes the main statistical parameters
including the average, the standard deviation, the minimum
value, and the maximum value of the load curtailment and



Fig. 2. Clusters using different strategies

radiality rank for all the clustering strategies. Strategies S1, S2,
and S3 provide the same amount of load curtailment regardless
the simulated cyber failure scenario because these strategies
rely mainly on the steady-state constant system characteristics
and power flow in the system. Based on the load curtailment,
S8 shows the least average load curtailments which confirms
its effectiveness to cluster the distribution system into islands
considering both the loadability of distribution lines and the
vulnerability of system components. Also, S6 and S7 provide
acceptable values compared to basic clustering strategies
(S1, S2, and S3). As previously noted, the resilience-based
clustering does not usually provide the best solution given
diverse system operational conditions. The wide spectrum of
load curtailment value realized in S7 and S8 ensures the
capability of the proposed algorithm to capture the stochastic
behavior of cyber failures. From the radiality prospective, it
is noticeable that the average value of radiality rank of S7

and S8 exceeds three implying the tendency of the proposed
strategies to maintain radiality constraints. Though S1, S2, and
S3 provide more robust results, one out the four clusters will
always fail to satisfy the radiality constraints. In S8, 32% of
the simulated cases satisfy the radiality constraints. In general,
the proposed clustering strategies outperform other strategies
providing a clustering methodology that reduces the impact
of cyber-induced failures on the performance of the power
system.

3) Trade-off between Efficiency and Number of Clusters:
In this case, the effectiveness of the proposed clustering

strategies to capture the impact of cyber-induced failures to

TABLE IV
ASSESSMENT OF CLUSTERING STRATEGIES CONSIDERING

CYBER-FAILURE UNCERTAINTIES

S1 S2 S3 S4 S5 S6 S7 S8

LC(MW)

mean 1.635 1.545 1.125 1.468 1.492 1.106 1.025 0.863
st. dev. 0.0 0.0 0.0 0.246 0.180 0.166 0.377 0.398

min 1.635 1.545 1.125 0.175 0.210 0.060 0.0 0.0
max 1.635 1.545 1.125 1.935 1.935 1.935 2.195 2.015

R

mean 3.0 3.0 3.0 2.988 3.001 3.000 3.189 3.303
st. dev. 0.0 0.0 0.0 0.108 0.028 0.025 0.459 0.495

min 3 3 3 2 3 2 2 2
max 3 3 3 3 3 4 4 4

create defensive islands is assessed based on the number of
clusters. The same previously generated 10,000 cyber-induced
failure scenarios are simulated for different number of clusters.
The average load curtailment and the radiality rank are
recorded for each specific number of clusters. Three strategies
are selected for comparison including S3, S7, and S8.

Fig. 3 shows the average value of both the load curtailment
and the radiality rank. It is noticeable that the amount of
load curtailment increases with the increase in the number
of clusters. This reveals the importance of installing more
DERs for better performance; however, the scope of this work
is comparing the clustering strategies based on predefined
energy resources. Strategy S8 outperforms S3 when having
up to five clusters resulting in a better clustering strategy that
encounters the cyber-induced failure. In case of six clusters
formation, both S3 and S8 have very similar values of average



load curtailment. Also, the performance of S7 decreases as
the number of cluster increases which can be inferred from
the increase in amount of load curtailment relative to other
strategies. Using the radiality rank criterion, the performance
of the selected strategies is almost the same for small number
of clusters. The higher the radiality rank is, the better the
clustering strategy will be for a fixed number of clusters.
Strategy S8 outperforms S3 and S7 for the studied number
of clusters. The performance of the proposed strategies is
significantly impacted by the number DERs, the size of the
system being analyzed, and the system physical characteristics.
In general, the proposed strategies can be used to create
defensive islands that capture the impact of cyber-induced
failures into power systems.

Fig. 3. Efficiency vs. cluster sizes

V. CONCLUSION

This paper has proposed a defensive islanding strategy for
enhanced distribution system resilience against cyber-induced
failures. The proposed method provides a list of islands
considering both component fragility and system operating
conditions. Hierarchical spectral clustering method was
adapted to split the power system into specific number
of independent microgrids. The minimal amount of load
curtailment and radiality constraints were used to evaluate
the performance of different clustering strategies. The
methodology was tested on a CPPS representing a modified
version of the the 33-node distribution feeder. The results
showed the effectiveness of the proposed clustering strategies
to provide a list of islands considering operating conditions
of the system, the available generation resources, and
the probability of failure of system components. Also,
the robustness of the proposed framework against diverse
cyber-induced failures was validated. The proposed algorithm
provides system operators with a proactive resilience
enhancement strategy to create defensive islands prior to an
extreme or disruptive event.
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