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Abstract—It is crucial to protect users’ location traces against
inference attacks on aggregate mobility data collected from
multiple users in various real-world applications. Most of the
existing works on aggregate mobility data are focusing on in-
ference attacks rather than designing privacy-preserving release
mechanisms, and a few differential private release mechanisms
suffer from poor utility-privacy tradeoffs. In this paper, we pro-
pose optimal centralized privacy-preserving aggregate mobility
data release mechanisms (PAMDRMs) that minimize the leakage
from an information-theoretic perspective by releasing perturbed
versions of the raw aggregate location. Specifically, we use mutual
information to measure user-level and aggregate-level privacy
leakage separately, and formulate leakage minimization problems
under utility constraints. As directly solving the optimization
problems incur exponential complexity w.r.t. users’ trace length,
we transform them into belief state Markov Decision Processes
(MDPs), with a focus on the MDP formulation for the user-
level privacy problem. We build reinforcement learning (RL)
models and leverage the efficient Asynchronous Advantage Actor-
Critic RL algorithm to derive the solutions to the MDPs as
our optimal PAMDRMs. We compare them with two state-of-
the-art privacy protection mechanisms PDPR [1] (context-aware
local design) and DMLM [2] (context-free centralized design)
in terms of mutual information leakage and adversary’s attack
success (evaluated by her expected estimation error and Jensen-
Shannon Divergence-based error). Extensive experimental results
on both synthetic and real-world datasets demonstrate that the
user-level PAMDRM performs the best on both measures thanks
to its context-aware property and centralized design. Even though
the aggregate-level PAMDRM achieves better privacy-utility
tradeoff than the other two, it does not always perform better
than them on adversarial success, highlighting the necessity of
considering privacy measures from different perspectives to avoid
overestimating the level of privacy offered to users, concurred
with the insight given in [3]. Lastly, we discuss an alternative,
fully data-driven approach to derive the optimal PAMDRM by
leveraging adversarial training on limited data samples.

Index Terms—Privacy metrics, aggregate mobility data,
information-theoretic metrics, reinforcement learning approach.

I. INTRODUCTION

The pervasive use of mobile phones and widespread deploy-
ment of sensors have led to a sharp increase of the amount of
mobility data, such as location time-series or location traces.
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Analyzing mobility data patterns is indispensable in improving
public transportation and health, especially in fighting COVID-
19 pandemic [4]–[6], which contributes to better well-being of
our society. For example, applications including navigation,
signal control, traffic predicting, and managing traveler infor-
mation rely on the analysis of mobility data [7]. Nevertheless,
mobility patterns can reveal personal information such as home
or workplace, hospital visits, lifestyles or even religion [8], [9],
which are private and sensitive information that people hesitate
to share publicly. Hence directly using individual mobility data
is not recommended due to privacy concerns.

To avoid exposure of individual mobility data, location
traces collected from multiple mobile devices are often aggre-
gated in space and time, and then the aggregate result is re-
leased to the public. The aggregate mobility data represents an
estimation of population-level mobility [10], which has been
shown to be beneficial for numerous real-world applications.
For instance, it is useful in monitoring how social distancing
is followed to understand its effectiveness in the control of
the COVID-19 pandemic [4]. Most recently, the aggregate
data shared from Deutsche Telekom are effectively utilized
for measuring social distancing [5]. To aid infection prevention
from the pandemic, Apple also shares aggregate navigation da-
ta from Apple Maps to help detect mobility trends in different
cities and countries [6]. In addition, aggregate mobility data
are also broadly used in traffic model study [11], city planning
[12], smart metering [13] and business [14].

However, aggregation cannot guarantee individual user’s
mobility privacy [15]–[17]. In particular, Xu et al. [15] recon-
struct target users’ location traces from aggregate mobility data
with no prior information provided. Pyrgelis et al. [16] show
that an adversary can leverage the aggregate location time-
series to infer users’ movements accurately. Besides, Mem-
bership Inference Attack (MIA) was successfully performed in
[17] by assessing if a specific user contributes to the aggregates
or not. Obviously, MIAs on aggregate mobility data violate
user’s privacy especially when the aggregate data connects
with a group having a common sensitive characteristic, such as
disease, religion, income, etc. Once an adversary identifies that
someone has participated in a certain aggregated dataset, it can
further deduce users’ mobility profiles [16] or their location
traces [15] accordingly.

To tackle the above privacy issue, a privacy-preserving
aggregate mobility data release mechanism must be developed,
which is typically done by generating noisy aggregates by
perturbing the raw aggregates to a certain extent to pre-



serve privacy, and releases the noisy version of aggregates
instead. Unfortunately, most works to date focus on attacks
on aggregate mobility data rather than protection mechanisms.
Notwithstanding few existing mechanisms proposed based on
Differential Privacy (DP) notion, they assume the worst-case
adversary model that leads to worse utility-privacy tradeof-
f compared with context-aware notions (e.g., information-
theoretic metrics). Accordingly, to design privacy-preserving
aggregate mobility data release mechanisms that achieve better
utility-privacy tradeoff, we aim to incorporate context (i.e.,
prior knowledge) to enhance utility by adding noise according
to the prior, using an information-theoretic privacy metric with
average sense privacy guarantee.

A. Related work

1) DP-based aggregate data release mechanisms: As dis-
cussed above, the works in [15]–[17] focus on inference
algorithms or attacks on specific aggregate datasets rather
than deriving explicit privacy-preserving release mechanisms.
DP is a rigorous privacy notion based on indistinguishability,
which is commonly used in protecting individual’s data while
releasing aggregate information about a database [18]–[22].
However, as a context-free metric, DP assumes the strongest
adversary model, where it may have any background infor-
mation and know any other users’ data but the target’s. As a
result, DP incurs worse utility-privacy tradeoff compared with
context-aware notions, such as information-theoretic metrics,
as shown in [23]–[25]. Moreover, Pyrgelis et al. have shown
that DP-based mechanisms are still vulnerable to inference
attacks because they only guarantee indistinguishability but
do not prevent concrete inference attacks [16]. These findings
motivate us to adopt the information-theoretic metric that
quantifies the actual leakage and can prevent data inference.
In addition, Li et al. proposed a scheme using additive homo-
morphic encryption to efficiently achieve privacy-preserving
aggregation [26]. Nevertheless, cryptographic methods alone
cannot guarantee DP since it still reveals the accurate raw
aggregates to the public, thus still leaks privacy.

2) Context-aware privacy metric and mechanisms: De-
signing privacy-preserving data release mechanisms based on
context-aware privacy metrics [23], [27], [28] commonly refers
to the case where data’s prior knowledge 1 is considered in the
privacy definition and exploited in mechanism design through
adding selective noise according to the data priors, with an
advantage of ensuring higher utility-privacy tradeoffs than
context-unaware approaches [31]. Commonly used context-
aware privacy metrics include attacker’s average estimation
error [32]–[34] or information-theoretic (IT) notions [1], [3],
[25], [35]–[38]. As a context-aware metric, mutual information
(MI) has operational meaning regarding capturing the expected
information gain of the adversary about users’ location data

1Prior information is naturally available in the real world, which can be
obtained from historical data or some similar/related published data. For
example, people’s location priors are sometimes similar especially in popular
tourist destinations since they are expected to visit favored locations more
frequently than normal ones [29]; as a useful reference in medical diagnosis,
prior information like the probability of having a certain type disease is
commonly accessible from the medical findings published before [30].

after observing the released aggregate output [31]. It is inde-
pendent of the actual inference attack algorithm that adversary
uses and her computational power. As a newly proposed
stronger IT notion, maximal information leakage [37], [38]
measures privacy in terms of adversary’s gain in guessing the
private information after observing released data. However,
as discussed in [37], it fails to capture the importance of
protecting highly-confidential data if those data can only take
a few possible values, which can possibly happen on location
data, so it may not be suitable for evaluating location privacy.

Even though MI has the advantage of ensuring higher
privacy-utility tradeoff than other context-aware metrics, we
should combine MI with different privacy metrics, such as the
adversary’s average estimation error [34] or Jensen-Shannon
Divergence-based error [16] to add a new dimension to mutual
information, as recommended by Oya et al. in a recent influ-
ential work [3]. This is because optimal privacy-preserving
data release mechanisms derived based solely on one metric
without being guided by a complementary metric can result
in providing little utility or little privacy [3]. For instance,
an optimal mechanism in terms of adversary’s estimated
error [34] suffers from near-zero privacy for users since their
released locations have little uncertainty for the adversary,
resulting in a small conditional entropy of locations. However,
evaluating a mechanism using conditional entropy may give us
a false perception of privacy, e.g., a mechanism having a small
value of conditional entropy does not mean it can only provide
a low privacy protection, because the entropy of the location
prior is already low [3]. Therefore, MI must be considered
to get a full picture of the information-theoretic leakage of
the mechanism. Nonetheless, note that MI does not consider
geographic distance (i.e., it do not capture the adversary’s
ability to estimate the real location) [3], we shall not evaluate
a mechanism based solely on MI due to the geographic nature
of our aggregate location privacy problem. Thus, we also
utilize other geographical metrics (including attacker’s average
estimation error) to provide another perspective on quantifying
the actual privacy leakage of our schemes in addition to mutual
information leakage.

There are a few works in the literature that leverage mutual
information as the privacy metric to design privacy-preserving
location release mechanisms [1], [3], [25]. Specifically, the
Blahut-Arimoto algorithm was adopted in [3] (individual us-
er’s sporadic location) and modified in [25] (individual user’s
location trace) to minimize the mutual information leakage
on individual user’s original sporadic location/location trace
introduced from releasing perturbed location/trace. However,
the works in [3], [25] do not consider history of all the release
data in the past, resulting in sub-optimal leakage, because
considering all history will result in exponential complexity
w.r.t. trace length. It is worth noting that the work studied in [1]
addresses this challenge by casting the original optimization
problem as an MDP process, which can be efficiently solved
via an RL approach. Nevertheless, there are two ways of
extending, namely that the first one is a local mechanism for
each user, the other one is centralized mechanism where we
should take as input all the user’s data at same time.



3) MDP and RL approaches in data privacy: Reinforce-
ment learning (RL) is emerging as an efficient technique
aiming to solve complex decision-making problems that can
be formulated as MDPs, used as mathematical framework
to describe RL models. Simon et al. [39] study the opti-
mal battery charging policy for smart metering systems that
minimizes information-theoretic privacy leakage subject to
causality and charge conservation. Their main contribution is
to propose a series of reductions on the original minimization
problem and ultimately recast it as an MDP. Nevertheless,
there is no concrete algorithm proposed to solve the MDP.
Inspired by this work, Erdemir et al. [1] explored how to
efficiently derive the optimal privacy-preserving individual
location trace sharing mechanism using a deep RL approach,
but its extension to aggregate mobility data from multiple
users results in high adversarial success as shown in Section
VI. We highlight that our work improves [1] in terms of
mutual information leakage and adversarial success only if
we apply [1] to a multi-user scenario, and the work in
[1] is still optimal in protecting single user’s location trace.
Additionally, our problem poses a mathematical challenge in
the MDP formulation for minimizing user-level leakage since
the cost function captures an individual user’s location, while
the policy involves multiple users’ aggregate locations. This
brings the difficulty in expressing the cost and state update rule
as functions of policy, although it is generally straightforward
in a traditional MDP formulation.

B. Contributions

We formulate two optimization problems of deriving the
optimal centralized privacy-preserving aggregate mobility data
release mechanisms (shortened as PAMDRM), targeting on
protecting the worst-case user-level privacy (PAMDRM user)
and aggregate-level privacy (PAMDRM agg) separately. Par-
ticularly, we minimize the mutual information leakage incurred
on an individual user’s trace and the original aggregate mo-
bility data when releasing the noisy aggregate given utility
constraints, with the main focus on deriving the optimal
PAMDRM user. Since computational complexity issue arises
from directly solving the optimization problems to derive
the optimal PAMDRMs, we formulate them as belief state
MDPs that can be efficiently solved via an asynchronous RL
approach, where PAMDRMs are captured by the action prob-
abilities. The major contributions are summarized as follows:
• We find it difficult to properly define the belief state,

action probability, and cost function when formulating
the user-level optimization problem as an MDP, and turn
to identify a simplified yet equivalent sequential optimiza-
tion problem inspired by [1], [39], followed by proving its
upper bound. Mathematical proofs demonstrate that the
belief MDP formulation is more challenging than previ-
ous work [1], [39] due to the complex policy structure that
captures multiple users’ participations and the temporal
correlations in their mobility traces. We adopt the solution
of the MDP formulated from the upper bound as the
PAMDRM user to release noisy aggregate mobility data,
providing the privacy guarantee that the user-level leakage

is no larger than the upper bound. More importantly, we
prove that the user-level leakage introduced by releasing
the noisy aggregate data is actually upper bounded by the
aggregate-level leakage.

• We build a reinforcement learning model to solve the
proposed belief MDPs and implement an efficient Asyn-
chronous Advantage Actor-Critic (A3C) RL algorithm,
where we train the actor and critic networks to output
the best action probabilities as the optimal PAMDRMs.
We perform extensive experimental evaluations on both
synthetic and real-world datasets to evaluate and compare
the privacy protection capabilities provided by PAM-
DRM user and PAMDRM agg with two state-of-the-art
privacy protection methods PDPR [1] and DMLM [2].
Specifically, we implement an extension of PDPR (named
EoPDPR) to our aggregate data release setting since it
is not directly comparable due to its local mechanism
design. Experimental results show that PAMDRM user
performs the best in terms of privacy-utility tradeoff,
while DMLM incurs the largest leakage, since PAM-
DRM user, PAMDRM agg, and EoPDPR are all based
on context-aware metric and thereby resulting in better
privacy-utility tradeoffs. In addition, the result also vali-
dates our theoretical proof that the user-level leakage is
upper bounded by the aggregate-level leakage.

• To provide another perspective of privacy metric in
addition to MI leakage, we also evaluate adversarial
success by performing the Bayesian updating location
inference attack [16] on released location aggregate.
The adversarial success is assessed by calculating her
attack error measured by the Jensen-Shannon Divergence
[16] and expected estimation error [34]. Experimental
results show that PAMDRM user performs better than
others regarding adversarial success thanks to its context-
aware property and centralized mechanism design. In-
terestingly, comparison between EoPDPR and DMLM
indicates when the number of participants in aggregation
is smaller, EoPDPR has lower adversarial attack success
than DMLM due to its advantage of using context-aware
metrics outweighing the disadvantage of using a local
mechanism, but DMLM performs better on more par-
ticipants since centralized design typically requires less
amount of noise than local design under the same privacy
level. Even though PAMDRM agg is better than EoPDPR
and DMLM on privacy-utility tradeoff, it does not always
perform better than them on adversarial success. This also
suggests we consider privacy measures from a different
perspective to avoid overestimating the level of privacy
offered to users, concurred with the insight in [3]. It
is important to note that PDPR [1] is still optimal in
protecting single user’s location trace, while our work
provides better performance in a multi-user scenario.
Lastly, we design a data-driven based scheme to derive
the optimal PAMDRM by leveraging adversarial training
on limited data samples, where the key idea is to use
a novel MI estimator [40] that has been shown to be
effective in MI minimization.
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The rest of this paper is organized as follows. We present the
problem statement in Section II. Section III describes the main
results for the aggregate/individual privacy - aggregate utility
tradeoff. We formulate the proposed problems as MDPs and
build an RL model in Section IV, and propose an A3C-based
algorithm for generating the optimal PAMDRMs in Section V.
Section VI presents experimental results, followed by discus-
sions on a data-driven approach and alternative formulations
of our problem in Section VII. Finally, we conclude our work
and present potential future work in Section VIII. Important
symbols and notations are summarized in Table I.

II. PROBLEM STATEMENT

In this section, the problem setting is introduced first,
followed by the formulation of our proposed problem.

A. Problem Setting

We study a problem setting where M independent users
participate in a location aggregation process 2 and each
user’s location trace is temporally correlated, as illustrated
in Fig.1. To ease discussion, we consider a trusted location
data aggregator, who first collects location traces from those
M users, where user-m’s location trace is denoted by Um.
Next, the aggregator calculates a specific type of aggregate
mobility data based on users’ traces, e.g., summation, mean,
or density. In this work, we consider calculating the statistic of
summation O over users’ traces as the aggregate mobility data
(or aggregate location traces), which is especially important
in people’s spatial patterns analysis, such as area hotspots
detection. However, directly releasing the raw aggregates O to
the public discloses users’ sensitive information, as discussed
in Section I, so the aggregator will release its perturbed/noisy
version R instead to protect their privacy.

Participant 1’s 
location trace

Participant m’s 
location trace

Participant M’s 
location trace

Trusted Aggregator
Perturbation

Public

U1

Um

UM U1 Um UM O

R

Fig. 1. Privacy-preserving aggregate mobility data release via centralized
perturbation mechanism.

Next, we formally define location traces and aggregate
mobility data and then describe the threat model.

User’s location trace. Each user’s location trace is repre-
sented by a matrix Um of size L× T , with prior distribution
p(Um), where m ∈ {1, 2, ...,M} denotes her index, L
represents the total number of locations that users visit, and T
is the total number of time steps in an aggregation process. To
simplify our model, each user’s trace length is truncated to size
T . Each element Um(l, t) = 1 denotes that user-m is present
at location l ∈ {1, 2, ..., L} at time step t ∈ {1, 2, ..., T} and
0 otherwise, i.e., each column vector in matrix Um has one

2In real-life applications, the aggregation can be performed by a trusted
aggregator [16], [22], [41] (such as a publisher who is bound by contractual
obligations or a government organization) or using cryptographic protocols
to blind individual locations when the server is untrusted to achieve private
aggregation [42]–[44].

TABLE I
NOTATIONS

Symbol Description

t, T Time step (integer), time period of aggregation

l, L Location ID (integer), total number of locations

m,M User ID (integer), total number of users participat-
ing in an aggregation process

Um User-m’s location trace

O,R Original, noisy location aggregates

q(· |· ), p(· , · ) Conditional, joint probability distributions

at, bt, Ct,Rt Action, belief state, cost, and reward function at time t

θπ , θv(θ′π , θ
′
v) Parameters of global (local) actor and critic networks

γ, η Discount factor, learning rate

element as 1 and others as 0. We assume each user’s trace
follows the first-order Markov property, i.e., given her current
location, the location at the next time step is independent of
all the previous locations [25], [34], [45], [46].

Aggregate mobility data. The aggregate mobility data gen-
erated by a trusted aggregator is denoted by a matrix O of size
L×T . In this paper, we are interested in studying the aggregate
statistic of summation, thus we have O =

∑M
m=1 Um. Each

element O(l, t) ∈ {1, 2, ...,M} represents the total number of
users who visit location l at time step t, and is calculated as
O(l, t) =

∑M
m=1 Um(l, t). We consider the case where each

user is present at only one location in the set of {1, 2, ..., L}
at any time t, so the sum of any column vector in matrix O
equals to the total number of users, i.e.,

∑L
l=1 O(l, t) = M .

Threat model. The adversary (e.g., an untrusted service
provider) under consideration has full access to the statistical
knowledge of users’ location priors and the raw aggregates,
denoted by p(Um) and p(O) respectively, which is illustrated
in Fig.2. Her goal is to make inference about a target user’s
location trace Um and also the raw aggregates O once she
observes the perturbed aggregates R. We do not restrict her
computational capability, so theoretically she is capable of
leveraging her own knowledge and the perturbed aggregates
R to perform any type of inference attack. By examining this
threat model, we aim to understand the fundamental informa-
tion/privacy leakage on any individual user-m’s location trace
Um as well as the raw aggregates O introduced by releasing
R from an information-theoretic point of view.

Observation

Knowledge Adversary
P(Um), P(O) Inference about 

Um and O

R

Fig. 2. Adversary model.

Metrics. We define privacy and utility metrics for measuring
the privacy leakage and distortion in our problem. We replace
the notations Um, O, and R with UTm = (U1, ..., UT ), OT =
(O1, ..., OT ), and RT = (R1, ..., RT ) to ease presentation.

Definition 1: Privacy Metrics. The information leakage
occurring on the raw aggregate mobility data and an indi-
vidual user-m’s location trace introduced by releasing the



perturbed aggregates are measured by the mutual information
between OT and RT , and the mutual information between UTm
and RT respectively, denoted by I(OT ;RT ) and I(UTm;RT ).

Intuitively, the more the raw aggregates are perturbed,
the less privacy leakage will incur. However, the extent of
perturbation should be limited to a certain amount so as to
preserve data utility, so we define the following utility metric.

Definition 2: Utility Metric. The utility metric for
aggregate mobility data is defined as D(OT ;RT ) =∑T
t=1D(Ot, Rt), where D(Ot, Rt) denotes the expected

distortion at time t, and is defined as D(Ot, Rt) =∑
ot,rt

p(ot, rt)d(ot, rt), and d(Ot, Rt) is the Euclidean norm
(i.e., L2 norm) of vector Ot−Rt. The utility constraint at time t
is defined as D(Ot, Rt) ≤ Dt, t = 1, 2, ..., T , implying that the
total distortion for aggregate mobility data is D ≤

∑T
t=1Dt.

B. Problem formulation

We define the following Aggregate and Individual Privacy
– Aggregate Utility tradeoff separately to formulate the prob-
lems of minimizing the aggregate-level and user-level privacy
leakage subject to distortion constraints.

Definition 3: Aggregate Privacy – Aggregate Utility
tradeoff (Aggregate-level Leakage): In an online aggregate
mobility data release setting, given the utility constraint Dt at
time step t, the tradeoff is defined as

P1 : L∗agg(D) = min
qt(rt|ot,rt−1):

{D(Ot,Rt)≤Dt}Tt=1

Iq(OT ;RT ),

where qt(rt|ot, rt−1) represents the PAMDRM agg at time
step t, i.e., the current perturbed aggregates rt is sampled from
a conditional probability distribution qt(rt|ot, rt−1) given all
the raw aggregates ot and the release history rt−1. Here we
use ot and rt−1 to denote (o1, o2, ..., ot) and (r1, r2, ..., rt−1)
respectively, and rt has the same alphabet as ot, i.e., rt takes
values from the set of realizations of ot.

Definition 4: Individual Privacy – Aggregate Utility
tradeoff (Worst-Case User-level Leakage): In an online
aggregate mobility data release setting, given the utility con-
straint Dt at time step t, the tradeoff is defined as

P2 : L∗user(D) = min
qt(rt|ot,rt−1):

{D(Ot,Rt)≤Dt}Tt=1

max
1≤m≤M

Iq(UTm;RT ).

This tradeoff can be interpreted as finding the optimal PAM-
DRM user qt(rt|ot, rt−1) at each time step t that minimizes
the maximal mutual information between UTm and RT among
all users under a distortion constraint Dt. However, directly
solving P1 and P2 will induce exponential complexity.

Computational challenge. The mutual information in
the objective functions in P1 and P2 are calculat-
ed as I(OT ;RT ) =

∑
oT ,rT p(o

T , rT ) log p(oT ,rT )
p(oT )p(rT )

and

I(UTm;RT ) =
∑
uTm,r

T p(uTm, r
T ) log

p(uTm,r
T )

p(uTm)p(rT )
, which are

difficult since they are mutual information expressions over
history dependent probability distributions of random matrices
Ot, Rt, and U tm. Specifically, calculation of I(OT ;RT ) and
I(UTm;RT ) involve |Ot||Rt| and |U tm||Rt| operations that

grow exponentially with the increase in trace length T . Moti-
vated by [1], [39], we transform P1 and P2 into sequential
optimization problems that can be formulated as belief state
MDPs with policies capturing the optimal release mechanisms
and then adopt an RL approach so as to address this issue.

III. MAIN RESULTS

In this section, we prove the main theoretical results for
Aggregate and Individual Privacy – Aggregate Utility tradeoffs
separately, with the focus on the highlight of the latter. These
results are the mathematical foundations that are key to fur-
ther MDP formulation, which allows us to avoid exponential
computation complexity in directly solving P1 and P2.

A. Result for Aggregate Privacy – Aggregate Utility Tradeoff

Note that an obstacle in obtaining an RL decomposition
for P1 is that the objective function is not of the for-
m
∑T
t=1 cost(statet, actiont). Fortunately, the inspirational

work from [1], [39] already paved the way for addressing this
difficulty. In particular, the formulation of P1 is similar to
the optimization problem in Eq.(2) in [1], even though we
are dealing with the data structure with higher dimension in
the form of a matrix rather than a vector. Essentially, we
are able to follow their idea to prove the following theorem,
and the details of proof are presented in Appendix A of the
supplementary document.

We start with defining the simplified set of mechanisms.
Let QA denote the set of release mechanism qat (rt|ot, rt−1)
in P1, and QB ∈ QA denote the set of release mechanisms
that choose the perturbed aggregates rt only conditioning on
the current and previous raw aggregates ot, ot−1, and the
released history rt−1. That is, for any q ∈ QB , the perturbed
aggregates rt is r with probability qbt (r|ot, ot−1, rt−1). In
particular, we define the release mechanism for the first time
step as qa1 (r1|o1) = qb1(r1|o1).

Theorem 1: There is no loss of optimality in P1 by re-
stricting the original mechanism qat (rt|ot, rt−1) ∈ QA to the
simplified mechanism qbt (r|ot, ot−1, rt−1) ∈ QB . In addition,
for any qbt (r|ot, ot−1, rt−1) ∈ QB , P1 is equivalent to

P3 : L∗agg(D) = min
qbt (rt|ot,ot−1,r

t−1):

{D(Ot,Rt)≤Dt}Tt=1

T∑
t=1

I(Ot, Ot−1;Rt|Rt−1),

where

I(Ot, Ot−1;Rt|Rt−1)

=
∑

ot,ot−1,rt

p(ot, ot−1, r
t) log

qbt (rt|ot, ot−1, rt−1)

p(rt|rt−1)
. (1)

Theorem 1 indicates that simplifying release mechanism in
terms of trace length can still preserve optimality in P1 and
the objective function can be written in an additive form.

B. Result for Individual Privacy – Aggregate Utility Tradeoff

A straightforward method for solving P2 is summa-
rized as follows. Firstly, we enumerate on all possible
qt(rt|ot, rt−1) that satisfies a given utility constraint, and for



each qt(rt|ot, rt−1) we calculate Iqm(UTm;RT ) for each user-
m and save the maximum value of mutual information; among
all these values, we select the minimum and the corresponding
qt(rt|ot, rt−1) that yields this minimum value as the optimal
release mechanism. However, this process involves enumer-
ation over all possible qt(rt|ot, rt−1), which is impractical
since the value of qt(rt|ot, rt−1) is taken from a continuous
space. Fortunately, the following main results show that P2 is
actually equivalent to a new optimization problem P4, with
a provable upper bound P5 that can be further formulated as
an belief state MDP, where an efficient RL approach can be
adopted to solve this MDP. The theorem below shows that the
same simplification on the original release mechanism does
not yield any loss of the optimality in P2 and its objective
function can also be written in an additive form.

Theorem 2: There is no loss of optimality in P2 by re-
stricting the original mechanism qat (rt|ot, rt−1) ∈ QA to the
simplified mechanism qbt (r|ot, ot−1, rt−1) ∈ QB . In addition,
for any qbt (r|ot, ot−1, rt−1) ∈ QB , P2 is equivalent to

P4 :L∗user(D)

= min
qbt (rt|ot,ot−1,r

t−1):

{D(Ot,Rt)≤Dt}Tt=1

max
1≤m≤M

T∑
t=1

Im(Ut, Ut−1;Rt|Rt−1),

which is upper bounded by

P5 :L∗user(D)

= min
qbt (rt|ot,ot−1,r

t−1):

{D(Ot,Rt)≤Dt}Tt=1

T∑
t=1

max
1≤m≤M

Im(Ut, Ut−1;Rt|Rt−1),

where Im(Ut, Ut−1;Rt|Rt−1) denotes the mutual information
that corresponds to the locations Ut, Ut−1 taking from user-m.

Proving Theorem 2 depends on the following two lemmas.
Lemma 1: For any q ∈ QA,

max
1≤m≤M

Iqm(UT ;RT ) ≥ max
1≤m≤M

T∑
t=1

Iqm(Ut, Ut−1;Rt|Rt−1)

with equality if and only if q ∈ QB .
Lemma 2: For any qa, there exists a qb such that

max
1≤m≤M

T∑
t=1

Iqam (Ut, Ut−1;Rt|Rt−1)

= max
1≤m≤M

T∑
t=1

Iqbm (Ut, Ut−1;Rt|Rt−1),

where qa = (qa1 , ..., q
a
t , ..., q

a
T ) and qb = (qb1, ..., q

b
t , ..., q

b
T ).

Here qat and qbt represent the probability qat (rt|ot, rt−1) and
qbt (rt|ot, ot−1, rt−1) respectively, and qbt is constructed by
qbt (rt|ot, ot−1, rt−1) = qat (rt|ot, ot−1, rt−1).

We prove Lemma 1 and 2 in Appendix B and C of
the supplementary document. Briefly speaking, the proof-
s show that for any qa, there exists a qb such that
Iqa(UT ;RT ) ≥ Iqb(UT ;RT ), meaning that it does not
yield any loss of optimality in restricting the release mech-
anisms to the form of qb. In addition, for any qb, the
objective function can be rewritten as an additive form

max1≤m≤M
∑T
t=1 I

qb
m (Ut, Ut−1;Rt|Rt−1). Hence the proof

of Theorem 2 is completed.
Theorem 1 and 2 indicate that observing rt reveal-

s information only about (ot, ot−1) rather than the en-
tire history ot by releasing noisy aggregates following
qt(rt|ot, ot−1, rt−1) at each time step. More importantly, by
using qt(rt|ot, ot−1, rt−1) as the structural simplification for
the original release mechanism qt(rt|ot, rt−1), computational
complexity regarding trace length T will be reduced since ot

is replaced by ot, ot−1 in the release mechanisms. Despite
Theorem 2 might seem similar to the results in [1], [39] at first
sight, its proof is actually more complicated than the proof for
Theorem 1 since the objective function captures an individual
user’s location, while the decision involves multiple users’
aggregated locations, bringing the difficulty in expressing the
objective as a function of the decision.

C. Connection between L∗user(D) and L∗agg(D)

Interestingly, there is also a connection between L∗agg(D) in
P1 and L∗user(D) in P2, as shown in the following theorem.

Theorem 3: L∗user(D) is upper bounded by L∗agg(D):

L∗user(D) ≤ Luser(D, PL∗agg) ≤ L∗agg(D),

Luser(D, PL∗agg) = max1≤m≤M I(UTm;RT )|qut (rt|ot,rt−1)=PL∗agg ,
and PL is shorted for policy.

We prove Theorem 3 in Appendix D of the supplementary
document. It provides the privacy guarantee that releasing
aggregate mobility data according to PL∗agg introduces at most
Luser(D, PL∗agg) bits of privacy leakage on any individual user.

Remark 1: Note that the above main results assume that
users’ location traces follow the first-order Markov property.
However, as discussed in [1], [39], the theoretical proofs
can naturally extend to more realistic scenarios where users’
traces are actually higher-order Markovian. For example, let
us consider a general case where users’ traces follows n-
th order Markov property. To derive similar results, we can
define new processes {Ût}t≥1 and {Ôt}t≥1 where Ût =
(Ut−n+1, ..., Ut) and Ôt = (Ot−n+1, ..., Ot), and replace Ut
and Ot with Ût and Ôt respectively in Theorem 1 and 2.

IV. MDP FORMULATION

In this section, we present how to formulate P3 and P5,
namely the sequential optimization problems for Aggregate
and Individual Privacy – Aggregate Utility tradeoffs, as MDPs
with belief states. Based on the MDP formulation, we show
that the minimum information leakage and optimal release
mechanisms can be obtained by utilizing a reinforcement
learning approach, which is effective in solving MDPs with
complex states. To facilitate the forthcoming discussion of how
to design the RL model of our privacy-preserving aggregate
mobility data release problem, we first briefly present the
background of MDP and belief state MDP, where the latter
is the key to the MDP formulation of our problem.



A. Background of MDP and Belief State MDP

An MDP is an environment where all states are Markov. It
is represented by a tuple 〈S,A,P,R, γ〉, where the elements
represent a finite set of states, a finite set of actions, state
transition probability matrix, reward function, and the discount
factor, respectively. A policy π(a|s) = p(At = a|St = s) is a
distribution over actions given states. The state value function
Vπ(s) = E[Gt|St = s] of an MDP is the expected return
starting from state s, and then following policy π, which eval-
uates the goodness of state s, where Gt =

∑+∞
k=0 γ

kRt+k+1

is the return. We consider an MDP is solved when we know
the optimal state value function V∗(s), i.e., the maximum
value function over all policies. However, MDPs assume a
scenario where the complete states of the world are visible
to an agent, which is unrealistic because commonly these
states cannot be directly observed in real world [47]. Unlike
the problem of finding a mapping from states to actions in
standard MDPs, the problem in Partially Observable Markov
Decision Process (POMDP) is to find a mapping from a
probability distribution (over states) to actions. In particular,
the probability distribution over states is referred to as a belief
state, and the entire probability space is referred to as the
belief space [48]. The optimal solution to a POMDP gives
the optimal action for every possible belief over states, which
maximizes the expected reward of an agent, and the sequence
of these optimal actions is the optimal policy. Simply put, a
POMDP can be seen as a continuous space belief MDP, which
can be solved by an RL approach. Interestingly, the belief state
defined for our problem is proved to be Markovian, implying
the possibility of being formulated as a belief state MDP.

B. MDP Formulation of P3

1) A Sequential Optimization Problem:
Proposition 1: {Ot}t≥1 is a first-order Markov chain when

users are independent.
The proof of Proposition 1 is shown in Appendix E of

the supplementary document. The intuition is that all users’
location traces follow the first-order Markov property and are
independent of each other, and we have Ot =

∑M
m=1 Um(t),

i.e., Ot is a function of Um(t). Therefore, given Ot, Ot+1

is independent of O1, O2, ..., Ot−1, meaning that {Ot}t≥1
follows a first-order Markov process.

Proposition 2: P3 is a controlled Markov process where
the state at time t is Ot, the observation is Rt, and the actions
are probabilities taking continuous values from the conditional
probability distribution pt(rt|ot, ot−1, rt−1) that satisfies the
distortion constraint D(Ot, Rt) ≤ Dt.

Note that the adversary can only partially observe the
states, i.e., she is only able to observe Rt rather than Ot,
and Proposition 1 has proved the raw aggregate sequence
{Ot}t≥1 is a Markov process. Accordingly, P3 is formu-
lated as a Markov process with hidden state Ot, observa-
tion Rt, per time step cost of Ct = I(Ot, Ot−1;Rt|Rt−1),
i.e., the information leakage at time step t, and action of
aAt (rt|ot, ot−1) = qt(rt|ot, ot−1, rt−1)). After the agent takes
action aAt (rt|ot, ot−1), the current observation Rt is chosen
according to the conditional probability qt(rt|ot, ot−1, rt−1)

and the state Ot evolves according to p(ot|ot−1). The objective
is to find the optimal policy q = (q1, ..., qT ) to minimize the
the total expected cost for the above sequential optimization
problem. To do this, we construct an RL decomposition for
the above Markov process.

2) A Reinforcement Learning Decomposition: The above
Markov process described in Proposition 2 is slightly different
from a POMDP. This is because the per time step cost in
(1) involves the observation history rt−1, contrary to the
traditional cost model used in a POMDP, which only depends
on the current action and state. However, this process can be
formulated as a standard MDP if we consider the agent’s belief
as the state [39]. The rationale behind this idea is that the belief
state MDP is not partially observable anymore since at any giv-
en time the agent knows its belief and by extension the state of
the belief MDP. Now the policy is defined as a mapping from
belief states to action probabilities. The belief state and action
probability (i.e., PAMDRM) in our belief MDP are defined
as follows. For any realization rt−1 of past observations, the
belief state is defined as bAt (ot−1) = p(ot−1|rt−1), namely the
probability distribution over states conditioned on rt−1, and
the action induced by a release mechanism q(rt|ot, ot−1, rt−1)
is defined as aAt (rt|ot, ot−1) = qt(rt|ot, ot−1, bAt (ot−1)). The
belief state at each time is updated according to

bAt+1(ot) = p(ot|rt) =
∑
ot−1

p(ot, ot−1, r
t|rt−1)∑

ot,ot−1
p(ot, ot−1, rt|rt−1)

=

∑
ot−1

p(ot|ot−1)qt(rt|ot, ot−1, r
t−1)p(ot−1|rt−1)∑

ot,ot−1
p(ot|ot−1)qt(rt|ot, ot−1, rt−1)p(ot−1|rt−1)

=

∑
ot−1

p(ot|ot−1)a
A
t (rt|ot, ot−1)b

A
t (ot−1)∑

ot,ot−1
p(ot|ot−1)aAt (rt|ot, ot−1)bAt (ot−1)

. (2)

Given the belief and action, the mutual information
I(Ot, Ot−1;Rt|Rt−1) in P3 , i.e., the per time step cost sent
to the agent is denoted by CAt (bA, aA) and calculated as

CAt (b
A
t , a

A
t ) = I(Ot, Ot−1;Rt|Rt−1)

=
∑

ot,ot−1,rt

p(ot, ot−1, r
t) log

qt(rt|ot, ot−1, r
t−1)

p(rt|rt−1)

=
∑

ot,ot−1,rt

bAt (ot−1)a
A
t (rt|ot, ot−1)p(ot|ot−1)

× log
aAt (rt|ot, ot−1)∑

ôt,ôt−1
bAt (ôt−1)aAt (rt|ôt, ôt−1)p(ôt|ôt−1)

. (3)

The objective of the agent is to minimize its long-term time-
average expected cost CA , limt→∞

1
tE{

∑t
τ=1 C

A
τ (bAτ , a

A
τ )},

under the distortion constraint D(Ot, Rt) ≤ Dt that is im-
posed at each time step t. We illustrate the belief state RL
model in Fig. 3, where the environment is modeled as a finite
state machine with inputs (actions sent from the agent) and
outputs (observations and cost sent to the agent).

The agent represents the aggregator, and we set his knowl-
edge to be the same as the adversary (who cannot observe
the true states), so the leakage derived from the RL-based
algorithm is exactly the leakage that occurred when the
adversary observes the released noisy aggregates. This is also
the reason for formulating our problem as a belief state MDP



instead of an MDP since the agent cannot observe the true
states. We finally formulate P3 as a continuous state and
action space MDP that can be solved by an RL approach.
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Fig. 3. RL model of privacy-preserving aggregate mobility data release.

C. MDP Formulation of P5

Even though formulating P5 for Individual Privacy –
Aggregate Utility tradeoff as an MDP may follow a similar
idea as above, deriving the corresponding belief state update
function and the cost model is more challenging since the
mutual information (i.e., objective function) in P5 is difficult
to connect with the release mechanism (i.e., decision policy).
We present the following proposition as the first step towards
the belief state MDP formulation of P5.

Proposition 3: {Ot, Ut}t≥1 is a first-order Markov chain
when users are independent.

The proof of Proposition 3 is given in Appendix F of
the supplementary document. In light of the above ex-
planation of the belief MDP formulation for P3, we in-
tend to formulate P5 as a belief MDP as well. Specif-
ically, based on Proposition 3, we define the belief state
as bUt (ot−1, ut−1) = p(ot−1, ut−1|rt−1), and prove that
{bUt }t≥1 is a controlled Markov process with control action
aUt (rt|ot−1, ot) = p(rt|ot−1, ot, rt−1). The following lemma
shows the belief state update function, and its proof is given
in Appendix G of the supplementary document.

Lemma 3: The belief state update function is

bUt+1(ot, ut) = p(ot, ut|rt) =∑
ot−1

aUt (rt|ot−1, ot)
∑
ut−1

p(ot|ot−1)p(ut|ut−1)b
U
t (ot−1, ut−1)

p(rt|rt−1)
,

(4)

where

p(rt|rt−1) =
∑

ot,ot−1

aUt (rt|ott−1)·∑
utt−1

p(ot|ot−1)p(ut|ut−1)bUt (ot−1, ut−1)1aUt (p(rt−1))∑
utt−1,o

t
t−1

p(ot|ot−1)p(ut|ut−1)bUt (ot−1, ut−1)1aUt (p(rt−1))
,

(5)

and 1aUt (p(rt−1)) denotes an indicator function of the set that
equals 1 if rt−1 is the observation that contributes to aUt and
zero otherwise.

According to Lemma 3, the belief state at time t + 1
is updated only depending on the previous belief state, the
action at time t, and the transition probability distribution
of p(ot|ot−1) and p(ut|ut−1), which can be readily calculat-
ed from a given dataset. Therefore, Lemma 3 implies that
{bUt (ot−1, ut−1)}t≥1 is a controlled Markov process with
control action aUt (rt|ot, ot−1).

Lemma 4: The mutual information in P5 is defined as the
per time step cost, which can be written as a function of the
belief state bt and action aUt as

I(Ut, Ut−1;Rt|Rt−1)

=
∑

ut,ut−1,rt

p(ut, ut−1, r
t) log

p(rt|ut, ut−1, rt−1)

p(rt|rt−1)
, (6)

where

p(ut, ut−1, r
t) =

∑
ot,ot−1

aUt (rt|ott−1)p(ot|ot−1)p(ut|ut−1)·

bUt (ot−1, ut−1)1aUt (p(rt−1)),

pqa(rt|ut, ut−1, rt−1) =
∑

ot,ot−1

aUt (rt|ott−1)·

p(ot|ot−1)p(ut|ut−1)bUt (ot−1, ut−1)1aUt (p(rt−1))∑
ot,ot−1

p(ot|ot−1)p(ut|ut−1)bUt (ot−1, ut−1)1aUt (p(rt−1))
,

and p(rt|rt−1) is calculated according to (5).
The proof of Lemma 4 is presented in Appendix

H of the supplementary document. We denote
max1≤m≤M Iqm(Ut, Ut−1;Rt|Rt−1) as CUt , i.e., the
cost incurred at time t. The agent’s objective is to
minimize its long-term time-average expected cost
CU , limt→∞

1
tE{

∑t
τ=1 C

U
τ (bUτ , a

U
τ )}, under the distortion

constraint D(Ot, Rt) ≤ Dt that is imposed at time step t.
Based on the above results, we can formulate P5 as a

continuous state and action space MDP. At each time step
t, the agent receives a belief state bUt and selects an action aUt
from the action set according to policy π(aUt |bUt ). In return,
the agent receives the next state bUt+1 and a scalar cost CUt .
The process continues until the agent reaches a terminal state.

V. AN ASYNCHRONOUS RL APPROACH

In this section, we explain the motivation for using an
asynchronous RL approach and show how to make adaptations
to solve the belief MDPs formulated from P3 and P5,
representing the Aggregate and Individual Privacy – Aggregate
Utility tradeoffs respectively.

A. Motivation for Using An A3C Approach

To avoid the complexity issue arising from the continuous
states and actions in the proposed belief MDPs, we adopt
policy gradient methods as the RL techniques, which optimize
parameterized policies with respect to the long-term cumu-
lative reward by gradient descent. However, vanilla policy
gradients suffer from noticeable issues of noisy gradients and
high variance, leading to instability and slow convergence [49].
As one class of policy gradient methods, Actor-Critic has the
advantage of reducing variance and increasing stability. As
a classic variant of the Actor-Critic method, Asynchronous
Advantage Actor-Critic [50] (short for A3C) especially focuses
on parallel training by using asynchronous gradient descent for
optimization of deep neural network policies [50], where the
critics learn the value function while multiple actors are trained
in parallel and get synced with global parameters from time to
time. Therefore, it ensures faster convergence surpassing the
state-of-the-art Actor-Critic variants. It can be used in discrete
as well as continuous action spaces.



B. Training Actor and Critic Networks in A3C Algorithm

A standard A3C framework contains a global network
and several worker agents 3. The global network interacts
with the workers asynchronously, and each of them has a
copy of the network and interacts with its own environment
independently. Once an episode is finished, the global network
receives the accumulated gradients, and then sends the updated
parameters to the workers. Each worker agent maintains an
estimated policy π(at|bt; θπ) 4 and an estimated value function
Vπ(bt; θv), where θπ and θv are the parameters of the actor
and critic networks respectively, and learned in training stages.

Algorithm 1: Generating Privacy-Preserving AMDRM
using A3C- Pseudocode for each actor worker thread

Input:
• Belief state bt; number of workers (CPU threads): W
• Parameters of global (local) actor and critic networks: θπ , θv
(θ′π , θ′v); Discount factor: γ; learning rate: η; exploration rate: ε
• Initialize global counter T = 0 and local counter t = 1
• Maximum number of global shared counter: Tmax
• Maximum number of thread step counter: tmax

Output: Reward r; policy π(a | b; θπ)
1: while T < Tmax do
2: for w = 1 to W do
3: Reset global gradient dθπ ← 0 and dθv ← 0.
4: Synchronize thread-specific parameters θ′π = θπ and

θ′v = θv , set tstart = t, and get state bt
5: repeat
6: Sample action at according to policy π(at | bt; θπ)
7: Take action at, receive reward rt and new belief bt+1

8: t← t+ 1
9: until reach terminal bt or t− tstart == tmax

10: For non-terminal bt: R← V (bt; θ
′
v); for terminal bt:

R← 0
11: for i = t− 1 to tstart do
12: R← ri + γR
13: Accumulate policy gradients w.r.t θ′π:

dθπ ← dθπ +∇θ′π log π(ai | bi; θ′π)A(ai, bi; θ′π, θ′v)
+β∇θ′πH(π(ai | bi; θ′π)).

14: Accumulate critic gradients w.r.t. θ′v:
dθv ← dθv + 2(R− V (bi; θ

′
v))∇θ′vV (bi; θ

′
v)

15: end for
16: Update θ and θv asynchronously according to (7)
17: end for
18: end while

To efficiently solve the belief MDPs formulated from P3
and P5, we propose an A3C-based algorithm to train the actor
and critic networks. In particular, we view the negative of per
time step cost of −Ct(bt, at) as a scalar reward of rt received
by the agent at time t. Consider that the A3C algorithm applies
the mix of k-step returns to update both the policy and value-
function [50], the reward function can be written as Rt =
k−1∑
i=0

γi(−Ct+i)+γkV (bt+k; θv). Hence the advantage function

can be approximated by A(at, bt; θπ, θv) = Rt − V (bt; θv),
where k changes from state to state and is no larger than tmax;
the parameter γ ∈ [0, 1] is the discount factor, which penalizes
the rewards in the future so as to guarantee that the return

3In most cases, the number of workers is the number of logical CPU cores
in a computing device.

4For ease of notation, we use bt and at to denote the belief state and action
probabilities respectively.

over long episodes remains finite. According to the Policy
Gradient Theorem [51], the update of parameter θπ follows
∇θπ log π(at | bt; θπ)A(at, bt; θπ, θv) + β∇θH(π(bt; θπ)),
where the extra entropy regularization term H(π(bt; θπ)) is
applied to encourage exploration, and the hyperparameter β
is used to control the strength of the regularization. The
parameter θv of the critic network is updated with the goal
of iteratively minimizing the sequence of loss functions by
using gradient descent, where the loss function at time t is
defined as the mean-squared error (MSE) between Rt and
V (bt; θv), i.e., temporal difference, and written as ft(θv) =
(Rt − V (bt; θv))

2. By differentiating the loss function ft(θv)
with respect to θv , we derive the update rule of the parameter
θv as ∇θvfv(θv) = 2(Rt − V (bt; θv))∇θvV (bt; θv). In our
implementation, the optimization algorithm for training the
actor and critic networks is chosen as RMSProp [52], which
is commonly used in deep learning. Specifically, the update
functions in the standard RMSProp update are

g = αg + (1− α)∆θ2, θ ← θ − η 4θ√
g + ε

, (7)

where α is the RMSProp decay factor, ∆θ is the accumulated
gradients, η is the learning rate, and ε is the exploration rate
which is normally a small positive number.

In our algorithm, both actor and critic networks take belief
state as inputs, and the actor outputs action probabilities while
the critic outputs estimated value functions. The network’s
weights are updated by calculating the value loss for the critic
and the policy loss for the actor and then backpropagate those
errors. During the training process, the actor is learning to
produce better action probabilities and the critic is becoming
better at evaluating those actions. The details of generating
the optimal PAMDRM based on A3C are summarized in
Algorithm 1 5. We first initialize the actor π(at|bt; θπ) and
the critic Vπ(bt; θv) in the global network. For each specific
worker agent in parallel, we repeat: getting a copy of the
global actor π(at|bt; θπ) and critic Vπ(bt; θv) ; sampling an
episode of n steps; computing the accumulated gradients
dθπ and dθv; updating the global actor and critic networks
asynchronously. This process is repeated until convergence.
When implementing Algorithm 1 to solve the belief MDPs
formulated from P3 and P5, although their implementation
procedures are the same, we should notice that their belief
states, state update functions and cost functions are different,
which should be implemented according to corresponding
expressions in (2), (3), (4), (6).

5Note that the computation complexity of Algorithm 1 is dominated by
the 7th step, where the reward rt needs to be calculated in the environment
for the MDPs according to (3) and (6). Specifically, the dominant part
in calculating (3) and (6) is the calculation of the transition probability
p(ot|ot−1). Theoretically, we have to enumerate over all the realizations of
Ot and Ot−1 to derive p(ot|ot−1), namely, the computation complexity is
O(|Ot|2). In addition, the amount of working storage for Algorithm 1 is also
dominated by the space for caching the value of p(ot|ot−1), hence the space
complexity is O(|Ot|2). However, it is worth mentioning that for a real-
world dataset, it is almost impossible that each realization of Ot will occur
in practice due to the fact that users generally do not visit all the locations of
a certain map. Therefore, we can apply our algorithm to a dataset where M
and L could be potentially large since the computation of p(ot|ot−1) will
only rely on those realizations with non-zero probabilities. More importantly,
given a dataset, p(ot|ot−1) can be pre-trained offline and used as an input
for Algorithm 1, thereby saving the computation time for its later usage.



VI. EXPERIMENTAL EVALUATION

In this section, we evaluate and compare the performance
of PAMDRM user and PAMDRM agg with two state-of-the-
art privacy protection methods on synthetic and real-world
datasets. We first introduce the experiment setup for imple-
menting Algorithm 1 6 and how we pre-process the dataset,
followed by presenting and discussing the evaluation results.

A. Experiment Setup and Dataset Pre-processing

All experiments are implemented with Tensorflow in Python
[53], and performed on a laptop with 2.6 GHz Intel Core i7-
10750H CPU, 64GB RAM, 12 logical CPU cores. We create
a specific environment for our RL agent by implementing the
OpenAI gym interface [54]. Each experiment uses 12 actor-
learner threads running on a single machine. All methods
performs updates after every tmax = 10 actions and the
maximum number of global shared counter Tmax is set as 200
. The global maximum number of episodes is set as 2000. The
learning rates for training the actor and critic networks are set
as 0.0001 and 0.001 respectively [50]. All experiments used
a discount factor of γ = 0.9, an RMSProp decay factor of
α = 0.9, and an exploration rate of ε = 1e − 10. For the
actor network, it takes belief states as input and the outputs
action probabilities that sum to one. For the critic network, it
also takes belief states as input and outputs a single value to
evaluate the action selected by the actor network.

We use a real-world dataset Gowalla collected by Stanford
University from a location-based social networking website
[55], where users share their locations by checking-in. The
check-in information contains user id, check-in time, latitude,
longitude, and location id. Normally, we are more interested
in the aggregate statistics in a certain region. For simplicity,
we take the area of San Francisco as an example to describe
how we pre-process the dataset. Specifically, we first filter the
dataset to contain the location check-in in San Francisco, and
convert the latitude and longitude coordinates into grid coordi-
nates by a unit of 0.01 (44 meters approximately), remaining
238 unique locations in total. After that, we rank the users
in decreasing order of their total number of checking-ins and
select the top 50 users’ data, obtaining a dataset that contains
36122 location check-ins in total and 150 unique locations.
For simplicity, we set the time granularity to one hour, and
consider a one-week aggregate mobility data from September
1st to 7th, 2010. Therefore, we can sample a Markov chain of
Ot with the length of 7 ·24 = 168, with 72 unique realizations
of Ot, namely |Ot| = 72. Next, we train its Markov transition
matrix by calculating p(ot|ot−1) = Count(ot,ot−1)

Count(ot−1)
, where t

takes value from {1, 2, ..., 168}, Count(·, ·) and Count(·)
represent the number of occurrences of two realizations and
a single realization respectively. Similarly, we also train the
Markov transition probabilities p(ut|ut−1) = Count(ut,ut−1)

Count(ut−1)
for the 50 users that we obtained.

6Via Tensorflow’s built-in module TensorBoard, we show the visualization
of the architecture of Algorithm 1 in Fig. 1 in Appendix, which contains a
global network and 12 worker agents (threads), and starts with constructing the
global network, followed by propagating the parameters of the global network
synchronously to each worker agent. Fig. 2 in Appendix shows W 8’s internal
implementation structure with its own network and environment, and updates
the global network parameters by interacting with its environment.

B. Evaluation of Convergence

We first show the performance of convergence of Algorithm
1 on generating PAMDRM agg and PAMDRM user in Fig.
4, where we set |Ot| = 20 for simplicity and the distortion
at time step t is set as Dt = 5, i.e., the total distortion is
D = 5 ∗T = 1000. The 20 realizations are randomly selected
from the 72 unique realizations that are sampled from the 50
users’ data in the San Francisco area, which has been discussed
in the previous sub-section. The results in Fig. 4 show that both
PAMDRM user and PAMDRM agg converge within 2000
episodes. Specifically, their converged values are around 72
and 83 respectively, which validates the theoretical result in
Theorem 3 that L∗user(D) is upper bounded by L∗agg(D).
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Fig. 4. Convergence of the proposed release mechanisms.

C. Evaluation of Privacy Protection

As discussed in the Introduction Section, we should evaluate
the privacy protection level provided by privacy-preserving
mechanisms from different dimensions to avoid possible over-
estimation of privacy guarantee. For that reason, we perform
the privacy evaluation of PAMDRM user, PAMDRM agg,
and two other state-of-the-art privacy protection mechanisms
proposed in [1] and [2] in terms of mutual information leakage
and adversarial success on synthetic and real-world datasets.

1) Comparison Methodology: We set up the first com-
pared mechanism by extending the context-aware localized
mechanism PDPR proposed in [1] to our aggregate mobil-
ity data release setting 7. This extension is implemented
by following the design methodology discussed in Section
VII-B2 and denoted by EoPDPR. The second compared one
is applying a differentially private centralized mechanism to
release aggregate mobility data. In particular, we select the
most relevant one that is studied in [2]8, called discrete

7We want to emphasize that the following comparison results are derived
in a multi-user scenario and PDPR has been proved to be the optimal privacy-
preserving release mechanism in protection single user’s location trace.

8We did not compare our method with the mechanisms studied in [16] due
to the difficultly in deriving the conditional probability distribution p(rt|ot).
It is non-trivial since the noise added on each element of a vector is not an
integer, so it is almost impossible to count the co-occurrence of the realizations
of (rt, ot) to calculate p(rt|ot). In addition, to calculate mutual information
in (1), we need to enumerate over all the realizations of both ot and rt,
which is infeasible because they are continuously valued. It is noteworthy that
the overall differential privacy guarantee is O(|L| · |T | · ε) for an aggregate
matrix that is released by the mechanism studied in [16] since it achieves
ε-DP for each element in the matrix. However, according to the composition
theorem [19], DMLM is overall O(|T | · ε) differentially private for releasing
an aggregate matrix since it achieves ε-DP for each vector in the matrix. The
work in [56] is also incomparable for a similar reason as discussed for [16].
Liu et al. [57] designed a DP mechanism that considers user’s ID, location,
timestamps at the same time for a different problem setting from ours, which
could be an interesting research direction in our future work.

wenjing
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multidimensional Laplacian mechanism (shorted as DMLM),
which adds independent Laplacian noise to each component
of the input vector (i.e., a realization of ot in our problem),
and satisfies (ε, 0)-differential privacy. The probability mass
function P of DMLM is defined as

P(i) =

(
1− λ
1 + λ

)d
λ|i1|+|i2|+...+|id|, ∀i ∈ Zd, (8)

where i is the noise vector, λ , e−
ε
∆ and ε is the privacy bud-

get, ∆ is the sensitivity of a query function (equals to 1 in our
problem), and d is the dimension of vector i = (i1, i2, ..., id).
In addition, as proved in [2], the L2 norm distortion function
for DMLM can be estimated by D = 2dλ

(1−λ)2 .
2) Evaluation of Information Leakage: We consider an

aggregation process of T = 200 time steps. For all compared
methods, we use the same distortion Dt, location priors, and
the previous trained Markov transition matrix as the inputs in
our algorithm. To measure the user-level information leakage
I(UTm;RT ) of user-m (i.e., the objective in P2) for EoPDPR,
we need to know the conditional probability distribution
p(r|um), which can be estimated as the following. Firstly,
each user samples an instance of perturbed trace according to
her local mechanism p(vm|um) (shown in Fig. 13), and then
all their perturbed traces are aggregated to obtain an instance
of the perturbed aggregate location RT . We run this process
for 1000 times, count the co-occurrence of a certain pair of
(r, um), and the normalized frequency is used as an estimation
of p(r|um). To implement DMLM and compute its user-level
information leakage, we first set d as the dimension of Ot. At
each time step t and for a fixed Dt , we enumerate ε from
0.0001 to 10 with an increase of 0.0001, and use the first ε
that satisfies the distortion constraint as the privacy budget.
Once we obtain an ε, we can derive the mechanism p(rt|ot)
by setting i = rt−ot in (8), and similar as before we also run
this mechanism for 1000 times, and calculate the normalized
frequency to approximate p(r|um). For the following time
steps, we compute the current probability distribution p(ot)
based on equation p(ot) =

∑
ot−1

p(ot|ot−1)p(ot−1), and then
repeat the process for time t. Note that we add a noise vector
i to Ot independently at each time step, the total leakage of
DMLM equals to the summation of the above per-time-step
user-level information leakage over T = 200 time steps.

The evaluation results on different number of users are

shown in Fig. 5. We can see that Individual Privacy – Ag-
gregate Utility tradeoff is upper bounded by the Aggregate
Privacy – Aggregate Utility tradeoff, while along with the
increase in distortion, their leakages tend to be close to each
other. Clearly, this observation coincides with the theoretical
result as proved in Theorem 3. It is worth noticing that
both PAMDRM user and PAMDRM agg perform better than
EoPDPR and DMLM in terms of mutual information leakage,
with DMLM incurring the largest leakage. The reason is that
using mutual information as the privacy metric for aggregate
mobility data naturally considers the prior distributions and
temporal correlations among users’ traces in mechanism de-
sign to ensure high privacy-utility tradeoff by adding selective
noise according to the prior information and correlation.
However, as a context-free metric, DP does not have such
a property. Besides, theoretically speaking, all the information
leakage should be no larger than the entropy of OT since
I(OT ;RT ) = H(OT ) −H(OT |RT ) ≤ H(OT ) holds, which
is also validated by the results presented in Fig. 5, where the
symbol ‘entropy’ represents H(OT ).

Lastly, to investigate how the number of realizations |Ot|
affect the privacy leakage, we present evaluation results cor-
responding to |Ot| = 40, 50, 60 under the distortion constraint
Dt = 5. The results are shown in Fig. 6, where ‘user’ and
‘agg’ in the x-axis denote the user-level and aggregate-level
leakage respectively. We can also see that PAMDRM user
incurs the least leakage, followed by PAMDRM agg and
EoPDPR, and DMLM incurs the highest leakage, all of
which are upper bound by H(OT ). Additionally, the leakage
becomes larger with the increase in the number of realizations.
The reason can possibly be that larger datasets tend to be more
informative, thereby leaking more information about users and
the datasets themselves. Even so, we are aware that, intuitively,
the user-level leakage may decrease with the increase in |Ot|,
since each user’s data is hidden in a larger realization set of Ot,
which makes it harder to deduce her own data. However, we
want to highlight that the results in Fig. 6 are derived subject to
a fixed distortion of Dt = 5 (total distortion is D = 1000), so
the release mechanism will leak more information to satisfy
the distortion constraint. To verify this intuition, we impose
a larger distortion as Dt = 10 (D = 2000 in total) when
|Ot| = 50, we get the user-level leakage as 154, which is
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Fig. 7. Adversary’s success under expected estimation error on real-
world dataset.
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Fig. 9. Adversary’s success under expected estimation error on
synthetic dataset.
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Fig. 10. Adversary’s success under Jensen-Shannon Divergence on
synthetic dataset.

smaller than 171 when |Ot| = 40, Dt = 20.

3) Evaluation of Attack Success: To have a better under-
standing of the privacy protection performance provided by
these mechanisms in addition to information leakage, we also
evaluate the adversarial success. Specifically, we perform the
well-principled Bayesian updating location inference attack
[16] on the released noisy aggregate location, and then evaluate
the adversary’s success on the worst-case user by calculating
her error defined by the Jensen-Shannon (JS) Divergence [16]
and the expected estimation error [34].

Next, we describe how to perform the inference attack
on these mechanisms. Essentially, performing a Bayesian
updating attack relies on computing the user’s posterior prob-
ability distribution P̂u for each time step t, given the prior
knowledge on the user’s location distribution Pu and the
released aggregate location R. After the adversary obtains the
posteriors from the Bayesian updating attack under different
mechanisms, we calculate the expected estimation error aver-
aging over all time steps and the JS Divergence-based error for
each mechanism separately. Specifically, adversary’s expected
estimation error is defined as

∑
x P̂u · ||x− u||, where u and

x are the target user’s true location and adversary’s inferred
location with non-zero probability in her posterior knowledge
P̂u, respectively, and represented by two-dimensional coordi-
nates; ||x − u|| is the Euclidean distance between x and u.
The JS Divergence-based error is defined as

∑
t∈T JS(Pu||P̂u)

T ,
where JS takes values in the range of [0, 1], and represents
the distance of distributions between adversary’s inferred P̂u
and user’s true location prior Pu. As discussed in [16], this

error measures the adversary’s success in terms of her mean
error on the inference attack over time T . In particular, the
adversary is assumed to know users’ location prior distribution
P and we select the worst-case user as the target of the
Bayesian updating inference attack. Given a certain distortion
D, EoPDPR, DMLM, PAMDRM agg, and PAMDRM user
output their own perturbed aggregate location R separately,
which are then combined with P by the adversary to perform
Bayesian inference attack and eventually get the corresponding
four posterior probability distributions P̂u of that target user.
After that, we can calculate adversarial success regarding the
expected estimation error and the JS-based error based in these
posteriors P̂u and her prior knowledge Pu. In particular, the
higher the adversarial success is, the better privacy protection
a mechanism can provide.

We first analyze the results of M = 20 users’ traces and
their top L = 10 locations from the real-world dataset, as
shown in Fig. 7 and 8. As we can see, the error of adversary’s
inference increases with larger allowable distortion in all
mechanisms. The rationale is that larger distortion allows the
mechanisms to add more noise to strengthen privacy protec-
tion, resulting in higher estimation error. In addition, PAMDR-
M user has the highest adversary error while EoPDPR has the
lowest error, with PAMDRM agg and DMLM in between. We
want to highlight that their major difference lies in mechanism
design, i.e., PAMDRM agg, PAMDRM user, and DMLM are
designed in a centralized manner as illustrated in Fig. 1, while
EoPDPR is a direct extension from a local mechanism as
shown in Fig. 13. Typically, a localized mechanism introduces



more noise than required in the centralized setting under the
same privacy level [58], [59]. In other words, the centralized
mechanism can provide better privacy protection under the
same distortion constraint by using all users’ location trace as
input and adding noise directly on the aggregated data, which
supports the above numerical results.

Additionally, we also evaluate adversary’s success on a
synthetic dataset with M = 2 users moving within L = 2
locations in Fig. 9 and 10. Specifically, their location prior
distributions are assigned to {0.9, 0.1} and {0.8, 0.2}, and both
their transition probabilities are {0.9, 0.1; 0.9, 0.1}. Results
show the same trend in privacy-utility tradeoffs as in Fig.
5, so we omit it due to space consideration. Interestingly,
we notice that EoPDPR has a larger adversary error than
DMLM on both measures, in contrast to previous results
shown in Fig. 7 and 8. This indicates that the number of
users may affect the performance of centralized mechanisms
against adversary’s inference attack. Note that the priors and
transitions on the synthetic dataset are highly skewed, making
the advantage of using a context-aware metric in EoPDPR
dominant in privacy protection even though it is a localized
mechanism. In other words, when the number of participants
in an aggregation process is small, the advantage of using
context-aware metrics for aggregate mobility data outweighs
the disadvantage of using a localized mechanism, due to the
fact that an individual’s prior information has more effect on
a dataset of a smaller number of users than a larger one.
Therefore, it is reasonable that EoPDPR leads to a lower
adversarial success to perform inference attacks compared with
DMLM on a small number of users, but DMLM still has its
advantage in lower adversarial success when a large number
of users participate in the aggregation.

Finally, we can see that the overall performance of PAM-
DRM user remains the best since it utilizes the context-
aware metric and is designed in a centralized manner. To be
more specific, PAMDRM user considers location priors and
temporal correlations and therefore provides more protection
than DMLM under the same distortion by adding selective
noise according to the data priors to guarantee high utility-
privacy tradeoffs. More importantly, it also has low adversary’s
success, which is reasonable because even though mutual
information protects average inference attack by definition, the
objective function also captures the worst-case individual user-
level leakage, matching the goal of the adversary’s inference
attack. Another important insight is that even though PAMDR-
M agg achieves better privacy-utility tradeoff than the other
two, it does not always perform better than them on attack
success and it may be because the goal of Bayesian attack is on
individual user Um while PAMDRM agg aims to protect the
original location aggregate O. This also highlights the necessi-
ty of considering privacy measures from different perspectives
to avoid overestimating the level of privacy offered to the user,
concurred with the insight given in [3].

VII. DISCUSSIONS

In this section, we first provide a thorough discussion on
the design of a data-driven based scheme for our privacy-

preserving aggregate mobility data release problem by leverag-
ing a recently proposed effective mutual information estimator.
Next, we introduce alternative formulations for this release
problem including average and joint user-level leakage, to-
gether with two interesting extensions of [1] in detail.

A. A Data-driven Approach

Experimental results have validated the our proposed
privacy-preserving aggregate mobility data release mechanism
can achieve a better privacy-utility tradeoff by using a context-
aware metric, which can be efficiently obtained by using an
RL approach. However, it is not applicable to the scenario
where close-form location priors and temporal correlation do
not exist since we only have limited data samples due to
inaccurate or missing data. To tackle this issue, we discuss
a data-driven approach to derive the optimal PAMDRM in
terms of minimizing mutual information privacy leakage under
a distortion constraint. Especially, we provide an adversarial
training framework following the idea in [60], [61] to design
a data-driven based scheme by learning from users’ location
trace samples without requiring explicit location prior and
transition probabilities

Recently, using the adversarial training framework to design
privacy-preserving data release mechanisms has been studied
in [60], [61]. However, the adversarial training framework
formulation and experimental evaluation in [60] can only be
applied to binary data due to the difficulty in calculating the
gradient of loss functions. Tripathy et al. [61] overcome this
drawback by estimating a lower bound of mutual information
to connect their proposed framework to a general mutual infor-
mation estimator, which is applicable to arbitrary type of data
structure. Nevertheless, the focus of previous work was mainly
on mutual information lower bound approximation [27], [61],
[62]. Considering their inconsistency in mutual information
minimization problems since a lower bound cannot be used
for minimization, we adopt a novel upper bound of mutual
information proposed by Cheng et al. [40] as the approxi-
mation of mutual information, which has been validated to be
reliable and more effective when applied to mutual information
minimization tasks therein. Note that Cundy et al. [63] also use
an upper bound as an estimation of mutual information to guar-
antee that the policy derived from an RL algorithm satisfies
the privacy constraint, but their model-free mutual information
estimator is a loose upper bound. We want to highlight that
[40] does not use an adversarial training framework because
their goal is to minimize the mutual information between two
given datasets, while we aim at finding the optimal privacy-
preserving mechanism to generate noisy location aggregates
and the training data samples are only users’ location traces.

Motivated by the work studied in [60], [61], we transform
the Individual Privacy – Aggregate Utility tradeoff in P2 into
the following unconstrained minimax optimization problem,

min
Q(r|o)

max
A(u|r)

E[logA(U |R)] + λE[d(O,R)], (9)

where U,O,R denote user’s location trace, original location
aggregate, and perturbed aggregate; Q(R|O) and A(U |R)



represent the privacy-preserving mobility data release mech-
anism and the adversary’s likelihood; the parameter λ is the
Lagrange multiplier, and we can use smaller λ to minimize
information leakage over distortion, and vice versa. Following
the design methodology for adversarial network studied in
[61], we provide an adversarial training framework to solve
the above minimax optimization problem, as shown in Fig. 11
9. By leveraging this framework, we can train a PAMDRM
to minimize both the distortion and privacy loss terms, and
train the adversary to maximize the privacy loss. Our privacy
mechanism PAMDRM Q(R|O) and the adversary’s likelihood
A(U |R) are represented by neural networks parameterized
using θ and φ, respectively, and taking users’ traces U1, ..., UM
as input data samples. Specifically, the privacy loss is defined
as E[logA(U |R)] = H(U |R) = H(U) − I(U ;R). From
the adversary’s perspective, maximizing the privacy loss is
equivalent to minimizing I(U ;R) since H(U) is a constant.
As the key to our data-driven framework, we choose to
estimate I(U ;R) via the upper bound given by [40], where
the estimator has been proved to be more reliable and effec-
tive than previous works. Another advantage of this mutual
information estimator is that it is trainable in gradient-descent
frameworks, which guarantees effective and efficient training
of the networks in a gradient-descent manner. Implementation
of this scheme is considered as future work.
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Fig. 11. Adversarial training framework for privacy-preserving aggregate
mobility data release.

B. Alternative Formulations: Average and Joint User-level
Leakage

In this subsection, we discuss another two potential mech-
anism designs for privacy-preserving aggregate mobility data
release regarding average user leakage and a joint considera-
tion of all users’ traces, respectively. We use this discussion
to strengthen our motivation for choosing the worst-case user-
level leakage as the privacy metric in P 2. Additionally, two
interesting extensions of [1] are presented, facilitating the
discussion of our comparison methodology in Section VI.

1) Discussion about Applicability: An intuitive definition
for user-level leakage is the average value, as shown in Defini-
tion 5. Note that the optimal mechanism in terms of worst-case
user-level leakage in P 2 can guarantee that each user’s privacy
leakage is upper bounded, i.e., no larger than the maximal
leakage that occurred among all users. However, the optimal
mechanism in terms of average user-level leakage in Definition
5 cannot provide such a guarantee, since minimizing average
leakage does not mean each user’s leakage is minimized, and
therefore certain users’ leakage can be much larger. Hence,

9For space consideration, the discussion of the data-driven approach to
solve P1 is omitted since we can replace the users’ traces samples with the
original aggregate location OT as input.

average leakage is not suitable for designing mechanisms that
target on protecting individual user’s leakage, while our goal
is to provide privacy guarantee for each user.

Definition 5: Average User-level Leakage: In an online
aggregate mobility data release setting, given utility constraint
Dt at time step t, the privacy-utility tradeoff is defined as

L∗average(D) = min
qt(rt|ot,rt−1):

{D(Ot,Rt)≤Dt}Tt=1

∑
1≤m≤M I(UTm;RT )

M
.

Another type of centralized mechanism design takes all
users’ traces into account by treating the concatenation of
multiple users’ traces as joint multi-variate random variables
and outputs perturbed aggregated result based on all of them,
and the privacy-preserving release mechanism is in the form of
q(rT |uT1 , ..., uTM ). This model is illustrated in Fig. 12, and the
notation UT and RT are simplified as U and R. We formulate
the above release problem in Definition 6. Intuitively, this
formulation makes more sense when all users’ traces are
correlated, since the correlation can be captured naturally in
the joint distribution of p(uT1 , ..., u

T
M ). Even so, our problem

setting assume users to be independent, so it is reasonable to
not adopt this type of formulation due to the complexity issue
caused by the high dimension of vector UT1 , U

T
2 , ..., U

T
M , but

we consider it as interesting future work.
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Fig. 12. Privacy-preserving aggregate mobility data release with concatena-
tion of users’ traces.

Definition 6: Joint User-level Leakage: In an online ag-
gregate mobility data release setting, given the utility con-
straint Dt at time step t, the tradeoff is defined as

L∗joint(D) = min
q(rT |uT1 ,...,u

T
M ):

{D(Ot,Rt)≤Dt}Tt=1

I(UT1 , U
T
2 , ..., U

T
M ;RT ),

where uT1 , ..., u
T
M represent each user’s trace, Ot and Rt are

the original and perturbed aggregate, and q(rT |uT1 , ..., uTM ) is
the privacy-preserving mobility data release mechanism.

2) Extension of [1] to Aggregate Mobility Data: Even
though the privacy-aware location trace release mechanis-
m called PDPR [1] was originally designed for privacy-
preserving location trace release for an individual user, it
would be interesting to extend it to our problem setting. A
straightforward extension illustrated in Fig. 13 is to let each
participant perform PDPR locally with her original trace Um
to obtain noisy trace Vm, and then upload Vm to an aggregator,
who can be either trusted or untrusted. After receiving all the
M users’ perturbed traces, the aggregator adds them up and
release the perturbed aggregate location R = V1 + ...+ VM .

Another way to extend is to treat the concatenation of mul-
tiple users’ traces as joint multi-variate random variables and
output perturbed aggregated result based on all of them, which
essentially adopts the idea of mechanism design in Fig. 6. Note
that this is a centralized approach, but it introduces exponential
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Fig. 13. Privacy-preserving aggregate mobility data release via local
perturbation mechanism.

computational complexity since all the users’ locations form a
high dimensional vector, so we only performed the evaluation
of the local extension of [1] in Section VI rather than this
centralized one. Thus, we choose to perturb the aggregated
locations in this paper, which is why our release mechanism
is centralized and in the form of q(rT |oT ) as shown in Fig.1.
More importantly, a centralized mechanism can also provide
better privacy protection under the same distortion constraint
by using all users’ location trace as input and adding noise
directly on the aggregated data [58], [59], which has been
shown in the numerical results in Section VI.

VIII. CONCLUDING REMARKS

In this paper, the problem of privacy-preserving aggregate
mobility data release was investigated by using an information-
theoretic approach, and a practical algorithm was proposed
by adapting the efficient A3C approach based on the MDP
formulations of our proposed privacy problems. Experimental
results show that optimal release mechanism regarding mini-
mizing worst-case user-level leakage performs better compared
with two state-of-the-art privacy protection methods in terms
of both privacy-utility tradeoff and adversarial success since it
adopts a context-aware metric and is a centralized design. We
also found the number of users affects the privacy protection
performance of a centralized mechanism. More importantly,
results also indicated that we should consider privacy measures
from different dimensions to avoid misjudging the privacy
guarantee provided to users. Finally, as an important and
promising future work, we will further study and implement
the adversarial training framework designed for our privacy-
preserving aggregate mobility data release problem and vali-
date its effectiveness as a fully data-driven approach.
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