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Abstract—This paper proposes a reinforcement learning-based
approach for dispatching distributed generators (DGs) to enhance
operational resilience of electric distribution systems after a
severe outage event. The increased computational complexities
and sophisticated modeling procedure of resilience-based
enhancement strategies have pushed toward adopting
intelligent-based algorithms, specifically for real-time control
applications. In this paper, a multi-agent deep deterministic
policy gradient learning algorithm is developed to dispatch
distributed generators after an extreme event. The proposed
approach aims to provide a fast-acting control algorithm for
improved resilient operation of islanded distribution power
systems. The problem is formulated as an iterative Markov
decision process that consists of a system state, action space,
and reward function. Each agent is responsible for dispatching
a single DG and is trained to increase its cumulative reward
value. A system state represents the system topology and
characteristics whereas an action refers to DG power supply.
A reward is computed based on the power balance mismatch
value for each agent. Different failure scenarios are generated
and used to train the proposed model. The proposed method is
demonstrated on the IEEE 33-node distribution feeder system
in the islanded mode. The results show the capability of the
proposed algorithm to dispatch DGs for resilience enhancement.

Index Terms—Distribution system, extreme weather events,
reinforcement learning, resilience.

I. INTRODUCTION

Modern societies have been increasingly relying on
electricity access and availability. The unavailability of
electricity due to extreme weather-related events results in
significant economic losses and noticeable social harm [1],
[2]. During the last seven years, the United States has been
exposed to seven wildfires, eight droughts, 75 severe storms,
19 tropical cyclones, 16 floods, five winter storms, and one
freeze event with more than one billion-dollar anticipated costs
[3]. For example, 4.5 million customers in Texas experienced
power outages with an outage time of more than 105 hours due
to Winter Storm Uri in February 2021 [4]. These severe events
can cause catastrophic impacts on power system equipment,
yielding prolonged power outages [5]. Developing fast and
efficient operation enhancement strategies and policies for

electric distribution systems will be needed to improve the
resilience of the power supply [6], [7].

Distributed generators (DGs) provide a potential pathway
to improve the load restoration behavior during and
after an extreme event [8]. However, determining proper
dispatching decisions is a challenging burden due to the tight
operational conditions, specifically for large-scale systems.
Also, the stochastic behavior of component failures due to
an extreme event induces additional complexities for proper
generation dispatching. Therefore, implementing a corrective
and restorative resilience enhancement strategy that leverages
DGs after an extreme event has become important.

Several studies have been conducted for resilience
enhancements of distribution power systems via corrective
and restorative approaches. This includes microgrid formation
[9], network reconfiguration [10], and utilization of DGs
[11]. A spectral clustering algorithm has been employed to
determine optimal network partitions under tight potential
N − k (i.e., k > 1) contingencies [12]. In [13], we have
developed a deterministic proactive generation redispatch
strategy to improve the resilience of transmission power
systems against hurricanes. Also, we have studied the impact
of probabilistic spatiotemporal characteristics of a wildfire
event on generation dispatching in [14]. Authors of [15] have
developed an integrated framework between unit commitment
scheduling and routing of mobile DC de-icing devices during
an ice storm. Also, a sequential proactive strategy has been
studied in [16] for enhanced resilience. In [7], a proactive
microgrid management strategy to control existing DGs has
been provided.

Despite the significant contributions of these methods
to improve power system resilience, their efficacy depends
mainly on the accuracy of system models and the
degree of approximations. Also, these methods rely mainly
on analytical and optimization techniques, which impose
scalability challenges due to the increased modeling and
computational complexities. The capabilities of reinforcement
learning (RL) approaches to overcome the aforementioned
constraints are still under investigation.
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Deep reinforcement learning (DRL) has been used to
provide a fast-acting control algorithm for high-dimension
stochastic optimization problems [17], [18]. In [19], a
multi-agent based DRL model has been developed to control
the reactive power of shunt compensators for improved
voltage resilience. Authors of [20] have developed an
RL-based controller to make fast real-time decisions to
dispatch DGs during a hurricane. The proposed framework
has shown promising results to outperform classic optimization
approaches in terms of operation costs and computation time.
A multi-agent DRL approach has been developed in [21] to
optimize the control operation of a microgrid after a disaster.
A resilience-based protection scheme utilizing reinforcement
learning has improved the efficiency of microgrid operation
considering market participation and stochastic behavior of
renewable energy sources [22]. In [23], a DRL approach
is used for an optimal rescheduling plan of generators at
transmission level impacted by hurricanes. RL approaches
provide a potential pathway to reduce reliance on the
sophisticated modeling procedure, specifically in the resilience
enhancement domain. Since RL-based methods can be easily
integrated into online decision-making process, they can learn
from experiences during online operations [24]. The diverse
learning methods have pushed toward deeper investigation
of DRL methods in controlling and dispatching DGs for
enhanced resilience after an extreme event.

This paper proposes a DRL-based approach to dispatch
DGs for resilience enhancement after an extreme event.
The proposed algorithm aims to reduce the amount of load
curtailments through minimizing the power balance mismatch.
A multi-agent framework is developed such that each agent
controls a specific DG. A multi-agent Deep Deterministic
Policy Gradient (MADDPG) approach is adopted to create and
train the developed DRL model. Diverse failure scenarios are
generated using multiple line outages. In the proposed method,
the distribution power grid is assumed to be disconnected from
the main feeder yielding islanded microgrids. The developed
problem environment takes into consideration the split of the
islanded feeder into smaller microgrids due to multiple line
failures. A Markov Decision Process (MDP) is formulated
to train the DDPG-based model for enhanced resilience. The
proposed algorithm is tested on a modified version of the IEEE
33-node distribution feeder with arbitrarily allocated DGs.
The proposed algorithm provides a corrective and restorative
strategy to improve the resilience of distribution systems after
an extreme event.

The rest of the paper is organized as follows. Section II
describes the multi-agent deep deterministic policy gradient
method. Section III explains the developed post-event
dispatching strategy and formulates the MDP environment.
Section IV illustrates the implementation procedures on a
modified version of the IEEE 33-node distribution feeder and
discusses the results. Section V provides concluding remarks.

II. MULTI-AGENT DEEP DETERMINISTIC POLICY
GRADIENT APPROACH

MADDPG algorithm is an improved version of the DDPG
algorithm for multi-task applications. In a multi-agent system,
the agents are not only affected by the environment, but also
by other agents where the critic is augmented with extra
information about the policies of other agents. The return of
a single agent in the multi-agent system is related to both its
own actions and the actions of other agents. Markov games
are often used to describe multi-agent systems. In MADDPG,
a Markov game for N agents is defined by a set of states (S)
describing the possible configurations of all agents, actions (a),
and observations (o) for each agent. The control law for each
agent with a Gaussian noise N can be expressed as follows.

ati = πi

(
oti|θπi

)
+ N (0 , σt

i) (1)

where θπi is the weight of the actor for agent i, and σt
i is a

parameter for exploration. The discount accumulate reward of
the ith Actor is as follows.

Ji = Eµi
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T∑
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(γt−1 rti) (2)

where µi is the policy network of the ith Actor, γ is a discount
factor, rti is the reward obtained at time step t in an episode,
and T is the time horizon. Updating actors using the sampled
policy gradient of the (2) is given by,
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where Q is the action-value function, xj is state, and S is
the sample number of a random mini-batch. oji and aji are the
observation and action of the ith Actor, ∇i = 1, 2, . . . , N ,
respectively. A Critic’s primary task is to predict the discount
accumulate reward based on the current observations and
actions of all Actors. The ith critic can be updated minimizing
the following loss function,
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θ′i ← τθi + (1− τ)θ′i (8)

where (.)′ donates to the target for Q′ and µ′ and next for a′

and o′. θ(.)i shows the weight of parameter. Equation (8) can



be used to softly update target network parameters (Q′ and
µ′) for each agent i that τ is a control parameter for updating
the target networks. To train all agents, a replay buffer is used
as follows.

D ←
(
st, o

i
t, at, rt, st+1, ot+1, at+1, d

)
(9)

Fig. 1.b shows the complete MADDPG framework with a
soft update and random noise. The presented soft actor-critic
algorithm is classified as an off-policy maximum entropy
algorithm. The difference between the general actor-critic
framework and the presented MADDPG framework is the
introduction of the entropy of the actor outputs during the
training phase, as shown in Fig. 1.

III. THE PROPOSED MADDPG-DISPATCH ALGORITHM

This section describes the proposed RL-based approach
to dispatch DGs for resilience enhancement of distribution
systems. First, it explains the MADDPG-dispatch environment
and then it illustrates the training and execution algorithms.

A. MADDPG-dispatch environment
An MDP is used to formulate the problem where a system

state represents specific system conditions. A transition to
another state is due to taking certain actions yielding a reward
that can be defined as a function of desired outcome. For
a multi-agent framework, a system state is decomposed into
observations equal to the number of agents. The components
of the formulated MDP are defined below.

1) States:
A system state is defined to be the set of parameters that

can be used to describe the system conditions and it includes
required information to observe system characteristics under
specific circumstances. The state set is defined as:

st = {Gs
i ,∆Gm

i , uj , o
n
i } , ∀n ∈ ΩN , ∀i ∈ ΩG, ∀j ∈ ΩB

(10)
where Gs

i is the DG power, ∆Gm
i is the DG power mismatch,

uj is the line status, oi is the set of connected nodes to the ith

agent, ΩN is the set of system nodes, ΩG is the set of DGs,
and ΩB is the set of lines.

2) Actions:
It is required to determine the power supply of each DG

to minimize the amount of power balance mismatch. In other
words, the amount of power supplied by DGs shall be equal
to the load demand within a specific grid. In the proposed
problem, a continuous action representing the DG real power
needs to be taken by each agent, as follows,

ait = {Gs
i} (11)

where ait represents the action taken by the ith agent.
3) Rewards:
A proper reward value, rit, should be defined to assess the

effectiveness of the taken actions. Each agent is responsible
for controlling the power supply of a specific DG through
reducing/eliminating the amount of load curtailment after an
extreme event. This can be achieved by minimizing the amount
of power balance mismatch—given sufficient availability of

generation resources. The reward value increases as the
absolute power mismatch approaches zero value. Due to
multiple line failures, a system can split into one or more
microgrids, M . Therefore, the set of DGs in a specific
microgrid should supply sufficient generation for minimal
power mismatch. The reward rit for taking a specific action
is calculated as:

rit = Gs
i −

[ ∑
n∈ΩN

m

Ln

]
/Nm

G (12)

where Ln is the load demand of nth node, Nm
G is the number

of DGs in the mth microgrid, and ΩN
m is the set of all

connected nodes in the mth microgrid.

B. Training and Execution Algorithms
The training and testing/execution steps for the multi-agent

framework are summarized in Algorithm 1 and Algorithm 2.

Algorithm 1 - Training of the MADDPG-dispatch Framework
1: for Episode = 1 to Etrain do
2: Create failure scenario
3: Reset the environment to default settings
4: Extract observations of all agents (ot) using current state

(st)
5: while Constraints not fulfilled and step < N do
6: for i = 1 to Nagents do
7: Generate an action (ait) using (1)
8: end for
9: Append all actions

10: Execute action (at) on the environment
11: Obtain new state (st+1), new observations (ot+1),

reward (rt), and terminal conditions (d).
12: Store (st, ot, at, rt, st+1, ot+1, d) using (9)
13: if size(Memory) ≥ batch size then
14: Randomly select minibatch
15: Update weights of the policies using (3)
16: Update the Q-function parameters of each agent

using (4)
17: Update temperature of networks using (8)
18: Update target network weights of each agent using

(8)
19: else if d is true then
20: Reset the environment
21: end if
22: end while
23: end for

IV. IMPLEMENTATION AND RESULTS

The proposed approach is applied on the 33-node
distribution feeder for validation. The proposed MADDPG
model is formulated to dispatch DGs connected to distribution
feeder for enhanced resilience after extreme outage events.

A. System under study
The 33-node distribution test system is a radial distribution

system with 33 nodes and 32 branches with a total system
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Fig. 1. (a) A general actor critic framework (the green path shows the difference of soft actor critic framework with entropy term). (b) The MADDPG
framework.

Algorithm 2 - Testing of the MADDPG-dispatch Framework
1: for episode = 1 to Etest do
2: Create failure scenario
3: Reset the environment to default settings
4: for i = 1 to Nagents do
5: Generate an action (ait) using actor network
6: end for
7: Execute action (at) on the environment
8: Observe st+1, rt, and d
9: end for

load of 3.72 MW [25]. Five DGs are connected to the feeder
at arbitrarily chosen locations, as shown in Fig. 2, where each
DG is represented by a single agent. Although the locations of
DGs play a vital role to improve the resilience of the system,
this work focuses on leveraging RL-based approaches to
control predefined DGs after an extreme event. The proposed
algorithm can be applied on any set of potential line failures;
however, the list of vulnerable lines, in this work, includes
(2–19), (3–23), (6–26), (29–30), and (10–11), as shown in Fig.
2. To induce further operating conditions, the connection to the
main feeder is disconnected, which islands the feeder from the
system and acts as an islanded microgrid. The failure of any
vulnerable line results in splitting the main feeder into smaller
microgrids. The list of all possible microgrids is summarized
in Table I with their corresponding load demand.

B. Training
The proposed MADDPG algorithm is implemented for a

fixed number of episodes (failure scenarios). A total of 20,000
episodes are used for training with a maximum of 20 iterations
per episode. In each failure scenario, single or multiple lines
are selected from the vulnerable lines to be disconnected. The
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Fig. 2. IEEE 33-bus distribution feeder

TABLE I
LIST OF POTENTIAL MICROGRIDS

Index Connecting nodes Power (kW)
S1 23, 24, 25 930
S2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 855
S3 19, 20, 21, 22 360
S4 11, 12, 13, 14, 15, 16, 17, 18 555
S5 26, 27, 28, 28, 29 400
S6 30, 31, 32, 33 620

hyper-parameter settings of the actor and critic networks of
the proposed framework are shown in Table II. The recursive
MDP process provided in algorithm 1 is used to train the
MADDPG model. For evaluation, the running mean of the
episodic rewards and the number of iterations per episode are
calculated using a window of 100 episodes.

Fig. 3 shows the running mean and number of iterations
per episode for the MADDPG model. The average reward
value increases as the number of training episodes increases,
as anticipated. The average reward value reaches a saturation



TABLE II
HYPER-PARAMETER SETTINGS OF THE MADDPG FOR 33-NODE SYSTEM

Hyper-parameter Value

Number of hidden layers 3

No. of neurons in hidden layers 64

Learning rate 10−3

Learning episodes every 10

Temperature rate (τ ) 0.01

Reward discount factor 0.99

Batch size 512

Activation function of output layer Sigmoid
Activation function of hidden layers ReLU

Optimizer Adam

level in less than 8,000 episodes. At 5,000 episodes, a rapid
increase in the reward value is noticed due to the decentralized
structure of the MADDPG, where each agent is trained
independently. Also, the random selection of mini-batch plays
a vital role to provide a set of scenarios where an exploratory
feature is achieved. On the other hand, the average number of
iterations decreases dramatically after 5,000 episodes, reaching
a value of five iterations per episode. This shows the capability
of the proposed algorithm to determine an optimal solution in
five trials.

Fig. 3. Rewards and iterations per episode

To visualize the internal learning behavior the MADDPG,
the actor and critic losses of all agents are plotted, as shown
in Fig. 4. It is worth noting that training episodes differ from
running episodes since training the model is executed every ten
episodes, after having sufficient stored learned lessons in the
memory buffer. As a result, the instant of sudden behavioral
change of the agent losses in Fig. 4 at 8,000 training episodes
does not match the rapid learning rate at 4,000 episodes in
Fig. 3. The actor losses of A1, A4, and A5 converge faster
than A2 and A3. Also, A3 takes more time to learn due to the
unique location of DG3 in the middle of distribution feeder
where it has more possible island connections. For instance,
DG3 is responsible to supply S5 only in case lines (29–30)
and (6–26) fail; however, DG3 and DG4 will supply S5 and
S6 if only line (6–26) fails. All agents converge to almost zero
losses after 14,000 training episodes. On the other hand, the

critic losses show much faster convergence rate. All agents
provide pre-mature convergence after 5,000 training episodes.
The sudden improved learning behavior of A2 and A3 at 9,000
training episode instant is reflected in the critic losses curve.

Fig. 4. Actor and critic losses for each agent

C. Testing and Validation
To validate the efficiency of the trained models, a total of

1,000 failure scenarios are tested. Algorithm 2 is used to test
the proposed dispatch algorithm. For each episode, the model
determines the required power supplied by each DG in the
system. The trained model achieves 99.1% success rate of all
the simulated cases. A successful decision is counted if the
power supply mismatch of each DG does not exceed 15 kW. To
validate the accuracy of the calculated DG power outputs for
the successful cases, the average power mismatch is 8.5 kW.
For non-successful cases, the average power mismatch is 22
kW. This implies that the non-successful cases have relatively
close values to the predefined threshold. Further tuning of
MADDPG hyper-parameters can results in enhanced accuracy.

The MADDPG is trained to determine the power supply
of each DG to avoid load shedding. Table III provides the
resulting outcome of the trained MADDPG model for ten
failure scenarios. It is worth noting that the proposed algorithm
computes the power supply based on the number of connected
DGs in each microgrid. In other words, the required load
demand of each microgrid is divided equally among the
connected DGs within the same grid. In F1, two microgrids
are formed such that the first one includes S5 and S6 with
total demand of 915 and the second one includes the rest of the
feeder with total demand of 2805 kW. The total supplied power
by DG3 and DG4 for the first microgrid is 922 and other DGs
have total supply of 2784 kW. This shows the capability of
the trained algorithm to provide relatively close values from
the first trial. The same behavior is observed in F2, F3, F4,
and F5. In case of two line failures, the distribution feeder is
split into three smaller microgrids. Each set of DGs has a total
power supply equal to the load demand of their corresponding
microgrid. For instance, F8 shows that DG1 and DG5 supply
S1, S2, and S4; DG2 supplies S3; and DG3 and DG4 supply
S5 and S6; respectively. With three line failures, the operating
conditions become more severe, and a higher power supply
might be required from each independent DG. For example,



DG1 and DG3 supply higher power compared to DG2 in
F10 since they are connected to S1, S2, and S5 forming
the majority of the distribution feeder load. In general, the
proposed algorithm shows the capability to dispatch DGs
against severe situations under single and multiple line failures.

TABLE III
DG DISPATCH FOR SELECTED FAILURE SCENARIOS

Index Impacted DG power (kW)
lines 1 2 3 4 5

One

F1 6-26 919 933 459 463 932
F2 2-19 832 358 831 848 840
F3 3-23 922 698 689 702 699
F4 29-30 764 774 771 625 772
F5 10-11 791 795 783 799 558

Two
F6 2-19, 10-11 935 358 941 928 555
F7 3-23, 29-30 930 722 720 613 724
F8 2-19, 6-26 1218 364 460 453 1222

Three F9 3-23, 29-30, 10-11 931 809 807 615 554
F10 29-30, 2-19, 10-11 1092 358 1088 615 552

V. CONCLUSION

This paper has proposed a multi-agent reinforcement
learning approach to enhance the operational resilience of
islanded distribution systems after an extreme event. The
proposed method computes the required power supply of
DGs to maintain a minimal amount of load curtailments. A
MADDPG framework was developed to dispatch DGs under
multiple line failures. An MDP was formulated and used
to train the MADDPG model such that the actor networks
take an action upon which a reward value is computed and
assigned to each agent at each iteration. In the training
phase, diverse failure scenarios were simulated to create
diverse stochastic conditions of the system under study. A
modified IEEE 33-node distribution feeder was adopted to
validate the effectiveness of the proposed algorithm. The
results showed that the trained MADDPG model could provide
proper decisions to maintain the reliable operation of an
islanded power grid under additional multiple line failures.
The trained model showed an accuracy exceeding 99%. The
proposed method provides a corrective and restorative strategy
to enhance the resilience of distribution systems leveraging
the capabilities of reinforcement learning techniques. An
extension of this work will include the integration of network
reconfiguration strategies and the role of energy storage
systems for further improvements.
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