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Abstract—Catastrophic impacts to power systems due to
disruptive events have increased significantly during the last
decade. These events highlight the need to develop approaches
to assess the resilience of power systems against extreme
events. However, the availability of data that capture power
system performance during and after disruptive events is scarce.
This paper proposes an assessment framework to evaluate the
performance aspects of the grid system during extreme outage
events using the Environment for Analysis of Geo-Located Energy
Information (EAGLE-I) data. EAGLE-I includes information
related to the number of impacted customers, duration, and
location of power outages in the United States. Statistical analyses
were conducted to extract resilient-based outage data and derive
probability distribution functions of their impact and recovery
characteristics. A list of extreme events is identified based on
few predetermined threshold values. Metrics from other power
outage assessments were used to measure the characteristics
of each event, including impact rate and duration, recovery
rate and duration, and impact level. A probability distribution
function is obtained for each metric. The obtained results provide
a representation of national grid performance during extreme
events, which can be applied as a framework to evaluate various
resilience enhancement techniques.

Index Terms—EAGLE-I, extreme weather event, power outage,
resilience.

I. INTRODUCTION

Modern societies have been heavily relying on electricity
access and availability. When electricity is unavailable,
individuals, communities, and countries are subject to
economic and physical harm, especially when an electricity
outage occurs during an extreme weather event (e.g., extreme
heat or cold). Reliability has long been an important indicator
for electricity grid operators, but as the frequency and intensity
of extreme weather events have increased in recent years,
yielding prolonged outages and significant economic losses
[1], [2], resilience has become a larger focus for grid operators
and communities. For example, Hurricane Sandy caused over
eight million customers to lose power across 15 states in
the United States [3]. In 2021, the winter storm Uri caused
widespread power outages in Texas during extreme cold,
which resulted in 246 recorded deaths and more than four
million customer without power for a few days [4]. During the
last seven years, the U.S. has been exposed to seven wildfires,
eight droughts, 75 severe storms, 19 tropical cyclones or
hurricanes, 16 floods, five winter storms, and one freeze event

with more than one billion-dollars in estimated costs [5]. Fast
and efficient restoration of grid systems, after disruptive events
occur, is one of the most important attributes to achieving
resilient operation of power systems. Quick recovery of grid
infrastructure reduces associated economic and community
impacts [6], [7]. These challenges require the development of
resilience evaluation methodologies to quantify the behavior
and characteristics of extreme events on power systems.

Many definitions for power system resilience exist. For
the purposes of this paper, the authors define resilience as
“The ability of a system to prepare for, absorb, adapt to, and
recover from disruptive events” [8]. Attributes of resilience
include preparedness, recovery, adaptability, and reliability,
just to name a few. Electric reliability is the likelihood that
electricity will be available during normal operating conditions
and grid operators have a long history of using reliability
metrics. There is no single metric for resilience, however [9].
In order to compare resilience across infrastructure domains
and jurisdictions, there is a need for publicly available datasets
with transparent metrics for, or attributes of, resilience. Having
reliable and accurate data is the first step toward understanding
the behavior and performance of electric power systems
during extreme events. These datasets can be used by (a)
individuals and communities to perform cost benefit analyses
on resilience measures, such as backup power systems or
islandable microgrids, and mitigation strategies, such as
hardening transmission and distribution lines, and (b) by
government entities to compare resilience performance across
infrastructure systems. Also, datasets can be leveraged to
extract system features and extreme event characteristics for
resilience analyses. Therefore, robust statistical analysis can
be carried out using extreme event data and quantifying their
characteristics.

Though different approaches have been proposed to
distinguish between outages that belong to reliability analysis
and those that belong to resilience analysis, gaps still exist.
For instance, a time-based threshold has been used in [10]
to identify prolonged outage events for resilience evaluation
framework. In [11]–[13], a temporal perspective is presented
where a twenty-four hours mark has been used as a threshold
to differentiate between short- and long-duration outages.
Also, a quantitative threshold has been used based on the



amount of customers without power or the amount of lost
energy to identify extreme outage events, as proposed by
the Department of Energy (DOE) [14]. Other approaches
include assessing lifeline infrastructure restoration behavior
using predefined extreme weather events [15], similar to a
description of power outages using retrospective analyses
(e.g., outages between 2000 and 2016) [14]. Most of these
methods have conducted basic analysis of the existing
data for specific weather events or defined geographical
regions. The importance of extracting distribution functions
governing the behavior of extreme outage events has not been
deeply investigated, highlighting a research gap in resilience
evaluation processes.

The goals of this paper are to examine a publicly available
dataset to evaluate power outages due to extreme weather
events, propose threshold values to measure the power outage
duration, number of customers affected, and restoration time.
Quantifying the characteristics of extreme outage events was
conducted to provide probability distribution functions (PDFs)
of extreme outage event characteristics. Several threshold
values were calibrated against event data from several extreme
weather events to create metrics that could be used to compare
the resilience performances of jurisdictions and electricity
providers for the entire U.S. A list of metrics is included to
measure the characteristics of extreme outages, including event
frequency and duration, impact and recovery duration, and
impact level. Curve fitting was used to determine the best-fit
PDF for each metric. This method was then applied to the
aggregated outage data across the entire U.S.

The remainder of this paper is organized as follows.
Section II describes the methodology developed to quantify
extreme power outages. The implementation procedure and
results are provided in Section III. Some concluding remarks
are provided in Section IV.

II. METHODOLOGY

The methodology developed in this paper consists of five
steps. The first step involved cleaning and aggregating a
publicly available dataset related to power outages (i.e.,
EAGLE-I data). Second, the outage data was filtered based on
defined threshold values. Event characteristics were calculated
in the third step, then curve-fitting the outage event progression
to a PDF was conducted in the fourth step. The fifth step
required calculating the sensitivity of results against the
threshold values used for the original resilience event filtering.
This process is described in more details in this section.

A. Data Processing
A publicly available dataset called the Environment for

Analysis of Geo-Located Energy Information (EAGLE-I) is
chosen for the purpose of this analysis. The EAGLE-I dataset
is collected and managed by the U.S. Department of Energy’s
(DOE) Oak Ridge National Laboratory (ORNL) [16]. This
dataset spans November 2014 to the present and is collected
by scripted scrapers that check publicly available outage maps
from utilities. The data is used to estimate the number of
customers without power, by utility, in a given county, and

is updated every 15 minutes. Since the dataset is based on the
number of utility websites that can be scraped, the number
of utilities in the dataset and their geographic granularity has
changed since the data was first collected. For example, in
2015, the EAGLE-I dataset lists 2,153 unique utilities, whereas
in 2020 the dataset lists 3,014 unique utilities. This shows
that more utilities are making their power outages publicly
available since 2014.

To utilize the EAGLE-I data, the “non-float” values were
removed and a linear smoothing between noncontinuous time
steps was assumed. The “non-float’ values are defined to be
the data records that show large momentary drop in outage
record due to missing an outage record by a single or set
of scrapers. Second, years 2015 to 2020 are included such
that only complete years are studied in the analysis period.
Data was then aggregated for the entire U.S. for all utility
customers without power at the same time interval. The data
was also aggregated by utility, county, and state, though only
the nation-wide aggregation was used for this analysis.

The following figures illustrate the outputs of this data
scrubbing and aggregation process. Fig. 1 visualizes the
aggregation for an example duration (i.e., between October 7th

and October 16th, 2016). Fig. 1(a) shows the electric power
outage for all electric utilities in a specific county, whereas
Fig. 1(b) shows the aggregated values for all counties in a
specific state. The aggregated power outages on the state level
is shown in Fig. 1(c), followed by the aggregated outage on
the national level.

B. Resilience Thresholds
The electric power outages in the EAGLE-I dataset

represent the number of customers without power, which
varies from zero to a maximum value of almost ten million
customers (i.e., during Hurricane Irma in 2017). A customer is
defined as any entity that purchases energy from a utility via
a tariff. This means that ‘customer’ should not be interpreted
as ‘persons’. Residential households with only one tariff often
have multiple residents, and commercial entities sometimes
have multiple tariffs for a single site. Notwithstanding
the incongruity between persons and customers, the DOE
identifies extreme outage events as those exceeding 300
megawatts (MW) or 50,000 customers [14], and other
thresholds can also be identified with the data.

In this research, a threshold, α, was created to act as
a filtration such that outages exceeding a threshold were
considered “extreme outage events” and vary for sensitivity
analyses. This filtration threshold is used to select outages
with extreme impacts on the power grid. Fig. 2 visualizes the
concept of the filtration threshold and the importance of its
value for a single month between January 10th to February
10th, 2016. The chosen threshold will have a significant
impact on analysis results. For example, a higher threshold
value results in fewer extreme events with a shorter event
duration. Additionally, from an energy justice perspective,
rural communities with fewer than 50,000 customers will
never register as having a long-duration outage in the current
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Fig. 1. Power outage records on (a) utility level, (b) county level, (c) state level, and (d) country level

methodology. While odds are low that only one small
community would be affected in a natural disaster for a
long-duration outage, future work will seek to address this
disparity. For the selected period, the threshold filtering
resulted in five extreme outages when α equals 100,000
customers and around 15 extreme events for the 50,000
threshold. In this work, a few thresholds were tested to show
the importance of the threshold values for resilience-based
studies.
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Fig. 2. Resilience-based filtration for α = 50,000 and α = 100,000

C. Event Characteristics
Once the filtration threshold was established and

incorporated into the pre-processed EAGLE-I dataset,
extreme outage events were identified. For this analysis, an
extreme outage event was defined to be the set of contiguous
customer outage records bounded by outage level beyond
threshold value starting and ending the event, as shown in
Fig. 2. Metrics used to quantify the characteristics of each
extreme outage event included the event duration, the impact
duration, the recovery duration, the post-event duration, and
the impact level, as illustrated in Fig. 3. These metrics were
determined based on the resilience triangular and trapezoidal
curves [1], [17]. The metrics are defined as:
• M1 Event duration: the total time of an extreme outage

event where the outage level exceeds the filtration
threshold, α.

• M2 Impact duration: the total time between the start of an
extreme outage event and the maximum outage level
within the event duration.

• M3 Recovery duration: the total time between the
maximum outage level within the event duration and
the end of the event.

• M4 Post-event duration: the total time between the end of
an event and the start of the proceeding event.

• M5 Impact level: the maximum number of customers
without power within the event duration.
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Fig. 3. Event characteristics curve

D. Outage Curve Fitting
Curve fitting was used to determine probability distributions

for the proposed event metrics, based on extracted extreme
outages from EAGLE-I dataset. These PDFs can be used to
simulate diverse extreme outage events for resilience-based
studies and estimate the cost versus benefit of resilience
solutions and mitigation strategies. For each threshold value,
a list of extreme outage events and their corresponding
characteristics was obtained. Curve fitting approaches are
used to evaluate the best fit PDF governing the behavior
of each metric. Various PDFs were proposed and tested
including normal, exponential, Pareto, double Weibull, t,
gamma, lognormal, beta, and loggamma. Detailed information
regarding each PDF has been well documented in previous
studies [18], [19]. The residual sum of squares (RSS) criterion
was used to evaluate the goodness-of-fit of each PDF. The



results were compared across threshold values to show the
sensitivity to thresholds of the analysis results.

III. IMPLEMENTATION AND RESULTS

The methodology outlined in the previous section was
applied to the EAGLE-I dataset, which includes more than 130
million customer outage record values. This section provides
detailed statistical analysis for various proposed thresholds.
The PDFs governing the behavior of extreme outage events
were calculated and evaluated, the results of are detailed in
this section.

A. U.S. Extreme Outage Statistics
In this study, the number of customers without power

(outage count) was used to measure the outage impact as
recorded in the EAGLE-I dataset. Five threshold values were
selected for evaluation, as described in Table I, and compared
with the DOE defined threshold of extreme outages. It is worth
noting that the average outage count for the U.S., as a whole,
is 96,682.8 with a standard deviation (st. dev.) of 302,185
customers.

TABLE I
SELECTED THRESHOLDS FOR RESILIENCE-BASED EVALUATION OF THE

EAGLE-I DATASET

Value Description
α1 50,000 The DOE defined threshold of extreme outages
α2 247,776 Average plus half st. dev. of outage count
α3 398,868 Average plus st. dev. of outage count
α4 2,187,765 20% of maximum outage count
α5 3,281,647 30% of maximum outage count
α6 4,375,529 40% of maximum outage count

Table II summarizes the number of extreme outage events,
the average, and the standard deviation of outage level for
each threshold. The number of extreme outages decreases
as the threshold value increases. For example, there were
approximately 4,000 extreme outages based on the DOE
threshold. Given that the EAGLE-I data capture outage records
for a total of six years and four months, this yields an average
of 889 extreme outage events per year. Though this number
might not reflect the exact extreme outage events per year in
the U.S., it provides an accepted estimate of extreme outages
based on robust data. The extracted events based on the DOE
threshold have an average of 200,000 customers without power
per event. Using higher thresholds leveraging the EAGLE-I
dataset shows the significant reduction in the frequency of
extreme outage events. For instance, almost 200 events exist
for α3 yielding 44 events per year on average. Moreover, α5

and α6 have the same number of events, yet different average
values result. Since α6 has higher value than α5, the average
number of impacted customers will be higher but with lower
deviation level. Finally, the significantly large average values
can be due to the presence of extreme weather-related outages
including Hurricane Irma, Winter Storm Uri, and Hurricane
Isaias with outages exceeding 10, 4, and 3.5 million customers,
respectively. Therefore, different thresholds can be used based

on the specified resilience level of the system under study, as
well as the geographic location and the type of event being
analyzed.

TABLE II
U.S. EXTREME OUTAGE ANALYSIS

Threshold No. of Events Average (µ) St. Dev. (σ)
α1 3,949 202,983 461,052
α2 333 795,489 977,399
α3 193 1,148,286 1,164,232
α4 12 3,853,089 1,347,568
α5 9 4,637,203 1,211,036
α6 9 5,886,450 974,717

B. Event Characteristic Analysis
The methodology described in Section II-C was applied to

the extracted events for each threshold. Table III summarizes
the average and standard deviation for all metrics used in the
analysis, as well as the maximum recorded values for each
metric. It is worth stating that all metrics were measured in
hours, except for M5, which was measured in outage count to
represent the number of customers without power.

TABLE III
EVENT STATISTICAL ANALYSIS SUMMARY

α1 α2 α3 α4 α5 α6

M1

µ 5.76 10.31 10.29 19.55 15.55 6.36
σ 22.12 26.63 26.73 26.20 20.57 10.57

Max 647.00 214.50 191.75 82.75 56.00 33.25

M2

µ 2.16 3.18 3.18 6.15 3.42 1.70
σ 6.57 8.13 8.31 9.60 6.34 3.36

Max 133.75 83.00 80.00 32.00 20.00 10.50

M3

µ 3.60 7.13 7.10 13.40 12.14 4.67
σ 17.82 20.46 19.96 19.10 18.13 10.60

Max 626.00 174.25 157.00 64.75 55.50 32.75

M4

µ 8.21 153.18 271.38 2,488.34 3,326.89 3,333.81
σ 22.99 355.56 694.89 6,048.14 8,375.54 9,999.07

Max 366.25 3,336.00 4,910.50 21,203.75 25,280.00 29,998.00

M5
µ 88,321 488,809 707,786 3,701,076 6,329,059 7,022,472
σ 231,132 733,431 914,046 2,430,105 3,093,945 2,488,403

For event duration metric (M1), the average value was
almost six hours for α1 and 20 hours for α4. This is due
to eliminating many events with lower impacts, but longer
durations. In general, relatively close standard deviation values
are noticed in M1 except for α6, which implies that extracted
extreme events exhibit very similar event duration features.
Also, the maximum event duration is 647 hours for α1 and
decreases dramatically with increasing threshold values due to
ignoring 90% of the events extracted in α1.

The average value of the recovery duration metric (M3) is
almost double the average value of the impact duration metric
(M2) for all thresholds, which implies that it takes the system
more time to return to pre-event conditions. Although standard
deviation values are relatively small in M2 and M3, maximum
values are relatively large. This signifies the presence of



very limited numbers of events with extended impact or
recovery durations. It is worth noting that M3 measures the
duration until the outage count decreases to below threshold
value, rather than returning to normal system operation, which
reflects the noticeable reduced recovery duration values.

The post-event duration metric (M4) increases dramatically
with the increase in threshold values, which is expected due to
larger timespans between two consecutive events. This metric
provides further understanding regarding the frequency of
occurrence of extreme outages. Based on the DOE threshold,
an extreme outage takes place every 8 hours on average.
However, severe outage events are expected to occur separate
from one another. This raises a concern regarding the DOE
threshold value and requires further investigation to adopt a
new value. For α2, an extreme outage event occurs every
week, implying a realistic value that complies with another
historical outage dataset hosted by DOE (i.e., Form OE-417
weather-related extreme outage dataset) [10], [20].

With a maximum extreme outage count exceeding 10
million customers, the impact level metric (M5) shows
significantly higher average values and variances. On average,
80,000 customers lost electricity based on the DOE threshold;
whereas, 490,000 outage counts were observed for α1. The
very large impact level (more than 1 million customers) for
a very limited number of events (around 20 events) during
the six year period is the main reason to derive the M5 to
relatively high values.

C. PDF Models of Event Metrics
The aforementioned process in Section II-D was used to

determine the best distribution function that fits the histogram
behavior of each metric for a single threshold value, α2.
The RSS value was computed for all PDFs and used as
an evaluation criteria. The smaller the RSS, the better the
distribution function.

Fig. 4 shows the behavior of PDF models relative to the
actual data of the event duration metric. The normal and
loggamma distribution do not provide well-fitted PDF models.
Other PDFs show relatively close behavior of the actual
histogram, which can be observed in first column of Table
IV. Also, it is worth noting the high number of events with
duration less than five hours, which proves that most of the
extreme outage events do not show prolonged outage behavior.
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Fig. 4. PDF models for event duration metric

Table IV summarizes the RSS values of all PDFs for
each metric. The best-fit PDF representing each metric is
highlighted. The three best fit PDFs for M1 are t, beta,
and gamma distributions; whereas M2 can be represented by
Pareto, beta, and exponential distributions. The best-fit PDF
for M3, M4, and M5 is beta distribution.

TABLE IV
RSS OF PDF MODELS

M1 M2 M3 M4 M5

Normal 0.242726 0.149186 0.040828 9.21e-05 0.085117
Exponential 0.120749 0.040586 0.014820 3.95e-05 0.007791

Pareto 0.141930 0.007400 0.008104 6.60e-05 0.012396
Weibull-double 0.154112 0.128769 0.031670 7.03e-05 0.065992

t 0.026532 0.188705 0.048153 0.000113 0.072915
Gamma 0.086719 0.109352 0.024653 4.99e-05 0.106103

Lognormal 0.238728 0.153024 0.035232 0.000111 0.034197
Beta 0.037537 0.020868 0.007835 7.29e-06 0.004090

Loggamma 0.244715 0.151715 0.041152 9.33e-05 0.088438

Table V provides the parameters of the two most-fit PDFs
for each metric. Each PDF model was chosen based on
their parameter representation in Python distribution flow
packages [21], [22]. Each metric is represented by a unique
PDF with different parameters. The PDFs can be used to
generate extreme outage events with diverse behavior for
resilience-based studies.

TABLE V
PARAMETERS OF TWO MOST-FIT PDFS FOR EACH EVENT METRIC

First PDF Second PDF

Type Parameters Type Parameters
M1 t 0.49835 Beta 0.73538, 147.92905
M2 Pareto 1.70799 Beta 0.52797, 660.89838
M3 Beta 0.45694, 140.85338 Pareto 1.29466
M4 Beta 0.69853, 294.48884 Exp 153.177
M5 Beta 0.86561, 613.73911 Exp 2.410

Curve fitting was used to determine probability distributions
for the proposed event metrics, however future research could
be done on potential discrepancies or nuances in developing
PDFs. The PDFs applied to this methodology and using this
dataset could potentially be used to simulate diverse extreme
outage events for resilience-based studies and estimate the cost
versus benefit of resilience solutions and mitigation strategies.

IV. CONCLUSION

This paper has described a framework to evaluate the
characteristics of extreme outage events in the U.S. using
historical outage datasets, thresholds, and PDFs. The approach
extracted extreme events based on recorded outages in
the ORNL EAGLE-I dataset. An aggregation process was
conducted to sum outages taking place at the same time.
A set of thresholds were identified and used to filter
out abnormal outages (e.g., different customer numbers or
outage time periods). Statistical analyses were conducted to
capture the characteristics of extreme outage events including



event duration, impact duration, recovery duration, post-event
duration, and impact level metrics. Various PDFs were applied
to the metrics, dataset, and thresholds to determine the best-fit
model to represent the behavior of each metric. The results
showed that event duration metric follows a t-distribution
model; whereas, a Pareto distribution model fits the impact
duration metric. Also, distinct beta distribution models are
convenient for recovery duration, post-event duration, and
impact level metrics. The framework provides a systematic
statistical approach to understand the behavior of extreme
weather impacts on the U.S. power grid based on recorded
outages across the nation. This also provides researchers with
PDFs governing the behavior of extreme outage events for
resilience-based studies. Further investigation is needed to
expand the analysis to the state and county level across the
U.S. and continue to compare results with events as they occur
to understand potential discrepancies or nuances.
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