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Abstract—This paper proposes a reinforced learning-based
approach for dispatching distributed generators to enhance
operational resilience of electric distribution systems against
hurricanes. Existing resilience enhancement approaches
rely on solving large-scale optimization problems that are
computationally expensive and time demanding, which are not
suitable for real-time applications. In this paper, a multi-agent
framework is developed using a Soft Actor Critic algorithm to
dispatch distributed generators for resilience enhancement. The
proposed approach provides a fast-acting control algorithm that
determines the size and the location of distributed generators
to reduce the amount of load curtailment during hurricanes.
The problem is formulated as a Markov decision process
that consists of system states, an action space, and a reward
scheme. A system state represents the system topology and
characteristics upon which an action is taken and a reward
value is calculated. An iterative Markov decision process is used
to train the proposed Soft Actor Critic algorithm using multiple
line outages generated from a hurricane fragility model. The
trained network dispatches distributed generators whenever
there are islanded grids and load curtailments. The proposed
method is demonstrated on the IEEE 33-node distribution
feeder system. The results show the capability of the proposed
algorithm to determine optimal sizes and locations of distributed
generators for resilience enhancement.

Index Terms—Distribution system, extreme weather events,
reinforced learning, resilience.

I. INTRODUCTION

The frequency and intensity of extreme weather events have
increased dramatically in recent years yielding prolonged
outages and noticeable economic losses [1], [2]. In 2008,
200 million people in China experienced a severe ice storm
resulting in direct losses exceeding 2 billion U.S. dollars [3].
Superstorm Sandy of October 2012 caused over 8 million
customers to lose power across 15 states in the United States
[4]. Various studies have been conducted to provide proactive,
corrective and restorative operational resilience enhancement
strategies at both the transmission and distribution levels [5],
[6]. Corrective strategies aim to make the proper decisions
during an extreme weather event to mitigate or reduce the
negative impacts of that event on the system performance [7].
However, determining such decisions in a fast-paced manner
is computationally expensive and time consuming. Also,
studying large-scale systems considering numerous dynamic
constraints and modeling stochastic behavior of component
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failure increases the complexity of finding an optimal solution
and imposes dimensionality limitations [8], [9]. Therefore,
implementing a resilience enhancement strategy that considers
the aforementioned constraints has become more important
than ever before.

Reinforced learning (RL) has been used to provide a
fast-acting control algorithm for high-dimension stochastic
optimization problems [10]. Several deep reinforced learning
(DRL) methods have been proposed to improve resilience
of electric power systems [11]. In [12], a hybrid actor-critic
algorithm has been used to determine locations and sizes of
shunt resources to maintain voltage levels within permissible
limits due to multiple line failures. A multi-agent deep
reinforcement learning approach has been developed to
optimize the control operation of a microgrid after a
disaster [13]. A resilience-based protection scheme utilizing
reinforcement learning improved the efficiency of microgrid
operation considering market participation and stochastic
behavior of renewable energy sources [14]. In [15], a DRL
method has determined the optimal rescheduling strategy of
generation resources for transmission systems impacted by
hurricanes. Authors of [16] have developed a DRL method that
provides real-time operation decisions to optimally dispatch
distributed energy resources installed at specific locations for
restoring power to customers after sudden outages. However,
the role of integrating continuous and discrete actions through
a multi-agent DRL framework is still under investigation.

This paper proposes an DRL-based approach to control
distributed generators (DGs) to enhance the operational
resilience of power systems during hurricanes. The proposed
algorithm is developed based on dispatching DGs to reduce
the amount of load curtailments. It also considers proper
sizing of DGs to avoid additional operation costs. A Soft
Actor Critic (SAC) algorithm is used to develop a multi-agent
framework that controls generation dispatch under single or
multiple line outage conditions. In the proposed method, the
power grid is split into various regions where each region is
assigned to an agent. A Markov Decision Process (MDP) is
formulated to determine the generation dispatch of each agent
at each time instant given a system state. A reward scheme
is developed to train the agent for better decision making.
The algorithm is trained using a hurricane fragility model
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of transmission lines. The trained algorithm provides a set
of corrective control actions to reduce the amount of load
curtailments and to maintain sizes of DGs within a permissible
range. The proposed algorithm is tested on the IEEE 33-node
distribution feeder for validation.

The rest of the paper is organized as follows: Section
IT describes the multi-agent Soft Actor Critic, Section III
describes the hurricane fragility model and formulates the
Markov decision process for minimizing load curtailments,
Section IV illustrates the implementation procedures on the
IEEE 33-node distribution feeder and discusses the results,
and Section V provides concluding remarks.

II. MULTI-AGENT SOFT ACTOR CRITIC

A. Policies for Actor-networks of the Proposed Framework

Each agent in the proposed multi-agent framework has one
actor network to provide actions, which is developed using a
squashed Gaussian distribution function [12]. The policy of
the actor network to provide actions is expressed as follows:

of' ~ e (0| 0)), (1)

where i represents the i*" agent of the multi-agent framework,
O} is the observation vector of the i'" agent at time ¢, af’ is
the provided action by the actor-network of the i*" agent, £
is the parameter for policy of the i’ agent, and m¢ei (af’|o}) is
an unbounded Gaussian policy of the i*" agent. A squashing
function needs to be applied on 7¢ei (o*|0}) to bound actions
of the i agent to a finite value.

B. Policy Training Algorithm for Actors

In the fundamental SAC algorithm, the policy is updated in
each iteration to maximize the expected return and entropy
(randomness measure of the policy). Following the same
convention, policies of the proposed algorithm are also updated
in each iteration. A value function, Vw”(Oz), which is used
to measure the soft value for policy of the i*" agent can be
expressed as follows:

VTZ’L(OE) = E [Qo(st, o', o ) —a log (meei (7] OF)) ](2)

Qft T eci

where 1" represents parameter of the value function network
for the i*" agent, § represents parameter for the Q value
function, Qg (s, af, oy ) is a critic or centralized policy
evaluation function for all the actors, a; “ is the action
provided by actors of agents except agent i, a® represents a
parameter to determine the relative importance between reward
and entropy of the i*" agent, and s, is a set for system states.

The expression provided in (3) is used to minimize the
residual squared error of a soft Bellman function to train value
functions of the actors.

T (W) = Eginp | 5VEH0)) = [Qo(se, of ar ™)

—a‘log (Wgci(afﬂOi))]Q} )

2

where D is a replay buffer to store experiences of the actors.
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The gradient of (3) using an unbiased estimator is
determined as follows to sample actions from the current
policy:

Vi I (W) = Vi V0D (VEHO) = Qulsesaf' a7 ™)
+a“ log (chi (agi|0§))) 4)

In this work, we have modified the expression for training the
soft-Q parameters of the basic actor given in [17], which can
be expressed as follows:

ci 7 1 ci —ci
JQ(,( )= ]E(sg*,ag’?)ND [2 (QO(St,at oy )

. S\ 2
Q(st,a?,a;”))] 5)

where

Q(Sta a§i7 a;Ci) = T(Sta afia at_Ci) + ﬁESt+1NP[V£E (O,ti—‘,-l)]

(6)

with 3 € [0,1] a discount factor and 1)’ an average of the
weights for the value network of i*” agent.
The value of Q-function (5) is optimized as follows:

@91‘ JCiG (91) = VQi (Qg (St, agi, Q;Ci) <Q9(3t7 Oéfia a;Ci)
3 21 cif i 2
(s, 0", 0 ) = /BV@ (0t+1)) )

The policy needs to be updated in each iteration to maximize
the rewards for improving the policy. The authors of [17]
have directed the policy update toward exponential of new
soft Q-function as they intended to track the policy update.
Also, the potential policies are restricted to a parameterized
distribution (i.e., Gaussian) family. Following the same
convention, we have updated the expression for policy update
of basic SAC algorithm for the proposed algorithm as follows:

Q9(5t7 )
Gr) ®

where Zy(s;) is an intractable partition function that does not
contribute to the gradient with respect to the new policy.

The policy 7eei(.|Of) is parameterized for action setting
using the policy network of agent 7 with parameter £“*. Finally,
the expected KL-divergence of (8) is multiplied by o and
then minimized, ignoring Z(s;) to train the policy parameters
of agent ¢ as follows:

Jfrz (&) = Egeiop [Eagiwﬁw [alog (meei (af'|O}))
_Q9(8t7a§i7a;6i)]] (9)

Although several options are available to minimize the
objective function Jfrici (€%, the authors of [18] have applied
the reparameterization trick to achieve target density (the
Q-function). The modified expression to reparameterize the

policy of agent ¢ is as follows:

T = argmin Dy, (77561:(.0%)

afi = feei (efi; oi) (10)
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where €' is a noise vector that uses a spherical Gaussian
distribution.
Thus, the new policy objective for agent ¢ is as follows:

(€ = Egeinps €)' ~ N [alog (meei (feei (€75 04)|O)))
—Qo(s¢, feei (efi;oi),f(b—a (G;Ci;s;i))] (11)

where fg(:i(et_ “.s;") is the parameterized policies of other

actors.

In [19], the authors have provided a detailed formulation of
an alternative approach to obtain the temperature parameter
learning objective function, which is not strictly relevant to
this work. However, we modify their temperature objective
function for the actors of each agent of the proposed
framework as follows:

Jci

chi

J ) = Eqei ~ meei [—a“ (log (mees (af'|OF) + H)] (12)

where H is an equivalent constant vector of the
hyper-parameter to represent target entropy. Equation
(12) cannot be minimized directly due to the expectation
operator. Therefore, it is minimized using a MC estimator
after sampling experiences from a replay buffer based on the
procedure from [19]. In the proposed multi-agent algorithm,
two soft Q-networks for all agents are trained and then the
minimum value among the outputs of the two Q-networks is
used in the objective function of (12) to combat state-value
overestimation [20].

III. THE PROPOSED DISPATCH ALGORITHM

This section describes the proposed RL-based approach
to determine sizes and locations of DGs for resilience
enhancement. First, it describes the impacts of hurricanes on
system components then it explains the SAC algorithm to
formulate and train agents for proper actions.

A. Impacts of Hurricane Progression

The propagation properties due to the spatiotemporal
characteristics of hurricanes have unique impacts on the
performance of system components. Several resilience-based
studies have adopted fragility models to identify the potential
impacted components [21], [22]; however, other studies have
used actual events or forecasted failure scenarios [23]-[25].
In this work, the hurricane fragility model used in [24] has
been adopted to determine the set of potential failures. The
failure probability of a transmission corridor can be evaluated
as follows:

M

L
Pi =1- H(l - Pz,m) H(l - Pi,n),

1

13)

1

Pi,n =1- eXp — )\z n(tj)At 5

)

(14)
=0

1

Py =1—expq —

N ()/ (1= N ()AL Y (15)

=0
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where P; is the cumulative failure probability of "

transmission corridor, P; ,,, the cumulative failure probability
of the m'" tower, P;,, the cumulative failure probability of
the n'™ line segment, M and L are the total number of towers
and line segments in the same corridor, respectively, \; ,, the
failure rate of the nt" line segment, \; ,, the failure rate of
the mt" tower at time t;, N the number of time steps, and
At the time step size.

B. SAC environment

An MDP is used to formulate the problem where a system state
represents specific system conditions. A transition to another
state is due to taking certain actions yielding a reward that can
be defined as a function of desired outcome. The components
of the formulated MDP are defined below.

1) States
The state set describes the system conditions and
the required information to fully observe the system
characteristics. The state set is defined as:
l
St = {GiaGfaG:7ancunauj} (16)

Vne QY Vie Q¢ Vje QP

where G! is the DG location, G§ the DG size, G} the DG
generation reserve, L,, the real power load, C'u,, the curtailed
load, u; the line status, QN the set of system nodes, O the
set of DGs, and Q5 the set of lines.

2) Actions

In the proposed problem, a discrete and a continuous
action needs to be taken by each agent. The discrete action
signifies the location of the DG whereas the continuous action
represents the size of the DG. For each agent, the action is
represented as follows:

oft ={GL,G;} (17)

where o’ represents the action specifying the size and location
of DG for the i*" agents and G! and G are the location and
size of the i*" agent, respectively,

3) Rewards

A proper reward value, r;, should be defined to assess
the effectiveness of the actions. Each agent is encouraged to
reduce the amount of load curtailment and to maintain enough
generation reserve during contingencies. Generally, the reward
value increases as the amount of load curtailment decreases.
Also, the reward value increases as the amount of generation
reserve exceeds a specific threshold. The reward r; for taking
a specific action is calculated as:

T’t:_ccu' Z Cun_CT" Z G;

neQN i€QC

(18)

where C., is the cost of load curtailments, C'u,, the load
curtailment at bus n, QY the set of all buses, C,. the cost of
additional generation reserve, and QO the set of all generators.

To obtain the amount of load curtailment, an AC optimal
power flow (OPF) is formulated and solved by setting the sizes
and locations DGs equal to the action taken by each agent. The
amount of generation reserve is the difference between the
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sizes of DGs as determined by the agents and the obtained
sizes from solving the AC OPF problem after including 25%
generation reserve.

C. Training and Execution Algorithms

The power grid is divided into several regions based on the
electrical distance between components such that each region
is controlled by one agent. Each agent is responsible for
determining the location and size of a DG unit to supply loads
within its region. To train all agents, a replay buffer is used

as follows:
7 ci —ci 7 ci —ci
D < (Stvotaat , O 7rt78t+1’0t+1?at+17at+1) (19)

The training and testing/execution steps for the multi-agent
framework are summarized in Algorithm 1 and Algorithm 2.

Algorithm 1 - Training of the Multi-agent Framework
1: for episode =1 to M do
2:  Create failure scenario using fragility curve
3:  Reset the environment to default settings
4
5

Solve AC OPF to determine o! and s; of each agent
while load curtailed, additional reserve and step < N

do
: Evaluate actions, o’ for agent i using (17)

7: Execute actions ¢ using AC OPF environment (e.g.,
Pandapower)

8: Observe s;t1, 7t, and d to check terminal conditions.

9: Store (s¢, of, af’, a; “, 7, s¢41, d) in D; using (19)

10: If s;41 is terminal, reset the environment

11: Update weights of the policies using (11)

12: Update the Q-function parameters of local and target
networks of each agent using (7)

13: Update temperature of actor-networks using (12)

14: Update target networks weights of each agent

using Q, — 7TQum + (1 — 7)Q,where, m €
{1,2} and m < 1

15:  end while

16: end for

Algorithm 2 - Testing of the Multi-agent Framework
1: for episode = 1 to M do
2:  Create failure scenario using fragility curve
3:  Reset the environment to default settings
4 while load curtailed, additional reserve and step < N
do

s: Evaluate actions, o’ for using (17)

6: Execute actions ¢’ using power flow solver

7: Observe s;y1, 74, and d to validate terminal
conditions

8:  end while

9: end for

IV. IMPLEMENTATION AND RESULTS

The proposed approach is applied on the IEEE 33-bus
distribution feeder. Several failure scenarios are created using

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

(@S

D e ST
1 2 19 20 21 22 12 13

Substation

Fig. 1. IEEE 33-bus distribution feeder

the hurricane fragility model provided in section III-A. The
vulnerable lines are (1-2), (2-3), (5-6), (9-10), (15-16), (21-22),
(26-27), and (31-32), as shown in Fig. 1. To create a
more severe condition, the connection to the main feeder
is disconnected with the result being the system acting as
an islanded microgrid. Also, the impact of load variation is
considered by scaling the system nominal load using load
demand profile obtained from [26]. The power grid is split
into 6 regions. An agent is assigned to each region as shown
in Table I. Each DG is assumed to have maximum capacity
of 2 MW. The MDP is formulated and algorithm 1 is used for
training the multi-agent framework.

TABLE I
ASSIGNED NODES TO EACH AGENT
Agent Nodes

Ay 1,2,3,4,5,6

Ao 7,8,9, 10, 11

As 12, 13, 14, 15, 16

Ay 17, 18, 19, 20, 21, 22
As 23, 24, 25, 26, 27, 28
Ag 29, 30, 31, 32, 33

The proposed algorithm is implemented for a fixed number
of episodes (failure scenarios). A total of 10000 episodes are
used for training. The cumulative reward for each episode is
plotted as shown in Fig. 2. The learning rate of the agents is
improved as more scenarios are simulated. Also, the algorithm
explores more situations providing the agents with more
experience. Reward values lower than —20 implies significant
amount of load curtailments. As reward value approaches zero,
the amount of load curtailment is reduced and the capacity of
DGs is within permissible limits. Additional training might be
required for further improvements.

The trained agents are tested using a set of failure
scenarios randomly selected from the training set. Fig. 3
shows the reward obtained for testing data. Agents are able to
determine DG sizes and locations that maintain minimal load
curtailments; however, in some cases the determined sizes are
much larger than the load demand.

V. CONCLUSION

This paper has proposed a reinforced learning approach to
enhance the operational resilience of power grids during
hurricanes. The proposed method determines the locations and
sizes of DGs to maintain minimal amount of load curtailments.
A SAC framework was trained using a formulated MDP and
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hurricane fragility model. The trained algorithm was tested
on the IEEE 33-bus distribution feeder. The results showed
that the proposed approach could provide proper decisions to
maintain reliable operation of an islanded distribution feeder
during impacts of hurricane. Feasible sizes and locations of
DGs could not be achieved in some cases. The proposed
algorithm can be extended to include other resources such as
load shedding, reconfiguration, and energy storage for further
improvements.
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