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Abstract—This paper proposes a reinforced learning-based
approach for dispatching distributed generators to enhance
operational resilience of electric distribution systems against
hurricanes. Existing resilience enhancement approaches
rely on solving large-scale optimization problems that are
computationally expensive and time demanding, which are not
suitable for real-time applications. In this paper, a multi-agent
framework is developed using a Soft Actor Critic algorithm to
dispatch distributed generators for resilience enhancement. The
proposed approach provides a fast-acting control algorithm that
determines the size and the location of distributed generators
to reduce the amount of load curtailment during hurricanes.
The problem is formulated as a Markov decision process
that consists of system states, an action space, and a reward
scheme. A system state represents the system topology and
characteristics upon which an action is taken and a reward
value is calculated. An iterative Markov decision process is used
to train the proposed Soft Actor Critic algorithm using multiple
line outages generated from a hurricane fragility model. The
trained network dispatches distributed generators whenever
there are islanded grids and load curtailments. The proposed
method is demonstrated on the IEEE 33-node distribution
feeder system. The results show the capability of the proposed
algorithm to determine optimal sizes and locations of distributed
generators for resilience enhancement.

Index Terms—Distribution system, extreme weather events,
reinforced learning, resilience.

I. INTRODUCTION

The frequency and intensity of extreme weather events have

increased dramatically in recent years yielding prolonged

outages and noticeable economic losses [1], [2]. In 2008,

200 million people in China experienced a severe ice storm

resulting in direct losses exceeding 2 billion U.S. dollars [3].

Superstorm Sandy of October 2012 caused over 8 million

customers to lose power across 15 states in the United States

[4]. Various studies have been conducted to provide proactive,

corrective and restorative operational resilience enhancement

strategies at both the transmission and distribution levels [5],

[6]. Corrective strategies aim to make the proper decisions

during an extreme weather event to mitigate or reduce the

negative impacts of that event on the system performance [7].

However, determining such decisions in a fast-paced manner

is computationally expensive and time consuming. Also,

studying large-scale systems considering numerous dynamic

constraints and modeling stochastic behavior of component

failure increases the complexity of finding an optimal solution

and imposes dimensionality limitations [8], [9]. Therefore,

implementing a resilience enhancement strategy that considers

the aforementioned constraints has become more important

than ever before.

Reinforced learning (RL) has been used to provide a

fast-acting control algorithm for high-dimension stochastic

optimization problems [10]. Several deep reinforced learning

(DRL) methods have been proposed to improve resilience

of electric power systems [11]. In [12], a hybrid actor-critic

algorithm has been used to determine locations and sizes of

shunt resources to maintain voltage levels within permissible

limits due to multiple line failures. A multi-agent deep

reinforcement learning approach has been developed to

optimize the control operation of a microgrid after a

disaster [13]. A resilience-based protection scheme utilizing

reinforcement learning improved the efficiency of microgrid

operation considering market participation and stochastic

behavior of renewable energy sources [14]. In [15], a DRL

method has determined the optimal rescheduling strategy of

generation resources for transmission systems impacted by

hurricanes. Authors of [16] have developed a DRL method that

provides real-time operation decisions to optimally dispatch

distributed energy resources installed at specific locations for

restoring power to customers after sudden outages. However,

the role of integrating continuous and discrete actions through

a multi-agent DRL framework is still under investigation.

This paper proposes an DRL-based approach to control

distributed generators (DGs) to enhance the operational

resilience of power systems during hurricanes. The proposed

algorithm is developed based on dispatching DGs to reduce

the amount of load curtailments. It also considers proper

sizing of DGs to avoid additional operation costs. A Soft

Actor Critic (SAC) algorithm is used to develop a multi-agent

framework that controls generation dispatch under single or

multiple line outage conditions. In the proposed method, the

power grid is split into various regions where each region is

assigned to an agent. A Markov Decision Process (MDP) is

formulated to determine the generation dispatch of each agent

at each time instant given a system state. A reward scheme

is developed to train the agent for better decision making.

The algorithm is trained using a hurricane fragility model
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of transmission lines. The trained algorithm provides a set

of corrective control actions to reduce the amount of load

curtailments and to maintain sizes of DGs within a permissible

range. The proposed algorithm is tested on the IEEE 33-node

distribution feeder for validation.

The rest of the paper is organized as follows: Section

II describes the multi-agent Soft Actor Critic, Section III

describes the hurricane fragility model and formulates the

Markov decision process for minimizing load curtailments,

Section IV illustrates the implementation procedures on the

IEEE 33-node distribution feeder and discusses the results,

and Section V provides concluding remarks.

II. MULTI-AGENT SOFT ACTOR CRITIC

A. Policies for Actor-networks of the Proposed Framework
Each agent in the proposed multi-agent framework has one

actor network to provide actions, which is developed using a

squashed Gaussian distribution function [12]. The policy of

the actor network to provide actions is expressed as follows:

αci
t ∼ πξci(α

ci
t |Oi

t), (1)

where i represents the ith agent of the multi-agent framework,

Oi
t is the observation vector of the ith agent at time t, αci

t is

the provided action by the actor-network of the ith agent, ξci

is the parameter for policy of the ith agent, and πξci(α
ci
t |oit) is

an unbounded Gaussian policy of the ith agent. A squashing

function needs to be applied on πξci(α
ci
t |oit) to bound actions

of the ith agent to a finite value.

B. Policy Training Algorithm for Actors
In the fundamental SAC algorithm, the policy is updated in

each iteration to maximize the expected return and entropy

(randomness measure of the policy). Following the same

convention, policies of the proposed algorithm are also updated

in each iteration. A value function, V ci
ψi(Oi

t), which is used

to measure the soft value for policy of the ith agent can be

expressed as follows:

V ci
ψi(Oi

t) = E
αci

t ∼πξci

[
Qθ(st, α

ci
t , α

−ci
t )−αci log

(
πξci(α

ci
t |Oi

t)
)]

(2)

where ψi represents parameter of the value function network

for the ith agent, θ represents parameter for the Q value

function, Qθ(st, α
ci
t , α

−ci
t ) is a critic or centralized policy

evaluation function for all the actors, α−ci
t is the action

provided by actors of agents except agent i, αci represents a

parameter to determine the relative importance between reward

and entropy of the ith agent, and st is a set for system states.

The expression provided in (3) is used to minimize the

residual squared error of a soft Bellman function to train value

functions of the actors.

Jci
v (ψi) = Escit ∼D

[
1

2
V ci
ψi(Oi

t)−
[
Qθ(st, α

ci
t , α

−ci
t )

−αci log
(
πξci(α

ci
t |Oi

t)
)]2]

(3)

where D is a replay buffer to store experiences of the actors.

The gradient of (3) using an unbiased estimator is

determined as follows to sample actions from the current

policy:

∇̂ψiJci
v (ψi) = ∇ψiV ci

ψi(Oi
t)
(
V ci
ψi(Oi

t)−Qθ(st, α
ci
t , α

−ci
t )

+αci log
(
πξci(α

ci
t |Oi

t)
))

(4)

In this work, we have modified the expression for training the

soft-Q parameters of the basic actor given in [17], which can

be expressed as follows:

Jci
Qθ

(θi) = E(scit ,αci
t )∼D

[
1

2

(
Qθ(st, α

ci
t , α

−ci
t )

−Q̂(st, α
ci
t , α

−ci
t )

)2
]

(5)

where

Q̂(st, α
ci
t , α

−ci
t ) = r(st, α

ci
t , α

−ci
t ) + βEst+1∼p[V

ci
ψ̄i(o

i
t+1)]

(6)

with β ∈ [0, 1] a discount factor and ψ̄i an average of the

weights for the value network of ith agent.

The value of Q-function (5) is optimized as follows:

∇̂θiJci
Qθ

(θi) = ∇θi(Qθ(st, α
ci
t , α

−ci
t )

(
Qθ(st, α

ci
t , α

−ci
t )

−r(st, α
ci
t , α

−ci
t )− βV ci

ψ̄i(o
i
t+1)

)2

(7)

The policy needs to be updated in each iteration to maximize

the rewards for improving the policy. The authors of [17]

have directed the policy update toward exponential of new

soft Q-function as they intended to track the policy update.

Also, the potential policies are restricted to a parameterized

distribution (i.e., Gaussian) family. Following the same

convention, we have updated the expression for policy update

of basic SAC algorithm for the proposed algorithm as follows:

πnew
ξci = argminDKL

(
πξci(.|Oi

t)
∣∣∣
∣∣∣Qθ(st, .)

Zθ(st)

)
(8)

where Zθ(st) is an intractable partition function that does not

contribute to the gradient with respect to the new policy.

The policy πξci(.|Oi
t) is parameterized for action setting

using the policy network of agent i with parameter ξci. Finally,

the expected KL-divergence of (8) is multiplied by αci and

then minimized, ignoring Zθ(st) to train the policy parameters

of agent i as follows:

Jci
πξci

(ξci) = Escit ∼D
[
Eαci

t ∼πξci

[
αci log

(
πξci(α

ci
t |Oi

t)
)

−Qθ(st, α
ci
t , α

−ci
t )

]]
(9)

Although several options are available to minimize the

objective function Jci
πξci

(ξci), the authors of [18] have applied

the reparameterization trick to achieve target density (the

Q-function). The modified expression to reparameterize the

policy of agent i is as follows:

αci
t = fξci(ε

ci
t ; o

i
t) (10)
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where εcit is a noise vector that uses a spherical Gaussian

distribution.

Thus, the new policy objective for agent i is as follows:

Jci
πξci

(ξci) = Escit ∼D, ε
ci
t ∼ N [

αci log
(
πξci(fξci(ε

ci
t ; o

i
t)|Oi

t)
)

−Qθ(st, fξci(ε
ci
t ; o

i
t), fφ−ci(ε−ci

t ; s−i
t ))

]
(11)

where f−ci
φ (ε−ci

t ; s−i
t ) is the parameterized policies of other

actors.

In [19], the authors have provided a detailed formulation of

an alternative approach to obtain the temperature parameter

learning objective function, which is not strictly relevant to

this work. However, we modify their temperature objective

function for the actors of each agent of the proposed

framework as follows:

Jci(αci) = Eαci
t
∼ πξci

[−αci
(
log

(
πξci(α

ci
t |Oi

t

)
+ H̄

)]
(12)

where H̄ is an equivalent constant vector of the

hyper-parameter to represent target entropy. Equation

(12) cannot be minimized directly due to the expectation

operator. Therefore, it is minimized using a MC estimator

after sampling experiences from a replay buffer based on the

procedure from [19]. In the proposed multi-agent algorithm,

two soft Q-networks for all agents are trained and then the

minimum value among the outputs of the two Q-networks is

used in the objective function of (12) to combat state-value

overestimation [20].

III. THE PROPOSED DISPATCH ALGORITHM

This section describes the proposed RL-based approach

to determine sizes and locations of DGs for resilience

enhancement. First, it describes the impacts of hurricanes on

system components then it explains the SAC algorithm to

formulate and train agents for proper actions.

A. Impacts of Hurricane Progression
The propagation properties due to the spatiotemporal

characteristics of hurricanes have unique impacts on the

performance of system components. Several resilience-based

studies have adopted fragility models to identify the potential

impacted components [21], [22]; however, other studies have

used actual events or forecasted failure scenarios [23]–[25].

In this work, the hurricane fragility model used in [24] has

been adopted to determine the set of potential failures. The

failure probability of a transmission corridor can be evaluated

as follows:

Pi = 1−
M∏
1

(1− Pi,m)
L∏
1

(1− Pi,n), (13)

Pi,n = 1− exp

⎧⎨
⎩−

N−1∑
j=0

λi,n(tj)Δt

⎫⎬
⎭ , (14)

Pi,m = 1− exp

⎧⎨
⎩−

N−1∑
j=0

λi,m(tj)/(1− λi,m(tj))Δt

⎫⎬
⎭ (15)

where Pi is the cumulative failure probability of ith

transmission corridor, Pi,m the cumulative failure probability

of the mth tower, Pi,n the cumulative failure probability of

the nth line segment, M and L are the total number of towers

and line segments in the same corridor, respectively, λi,n the

failure rate of the nth line segment, λi,m the failure rate of

the mth tower at time tj , N the number of time steps, and

Δt the time step size.

B. SAC environment
An MDP is used to formulate the problem where a system state

represents specific system conditions. A transition to another

state is due to taking certain actions yielding a reward that can

be defined as a function of desired outcome. The components

of the formulated MDP are defined below.

1) States
The state set describes the system conditions and

the required information to fully observe the system

characteristics. The state set is defined as:

st =
{
Gl

i, G
s
i , G

r
i , Ln, Cun, uj

}
∀n ∈ ΩN , ∀i ∈ ΩG ∀j ∈ ΩB

(16)

where Gl
i is the DG location, Gs

i the DG size, Gr
i the DG

generation reserve, Ln the real power load, Cun the curtailed

load, uj the line status, ΩN the set of system nodes, ΩG the

set of DGs, and ΩB the set of lines.

2) Actions
In the proposed problem, a discrete and a continuous

action needs to be taken by each agent. The discrete action

signifies the location of the DG whereas the continuous action

represents the size of the DG. For each agent, the action is

represented as follows:

αci
t =

{
Gl

i, G
s
i

}
(17)

where αci
t represents the action specifying the size and location

of DG for the ith agents and Gl
i and Gs

i are the location and

size of the ith agent, respectively,

3) Rewards
A proper reward value, rt, should be defined to assess

the effectiveness of the actions. Each agent is encouraged to

reduce the amount of load curtailment and to maintain enough

generation reserve during contingencies. Generally, the reward

value increases as the amount of load curtailment decreases.

Also, the reward value increases as the amount of generation

reserve exceeds a specific threshold. The reward rt for taking

a specific action is calculated as:

rt = −Ccu .
∑

n∈ΩN

Cun − Cr .
∑
i∈ΩG

Gr
i (18)

where Ccu is the cost of load curtailments, Cun the load

curtailment at bus n, ΩN the set of all buses, Cr the cost of

additional generation reserve, and ΩG the set of all generators.

To obtain the amount of load curtailment, an AC optimal

power flow (OPF) is formulated and solved by setting the sizes

and locations DGs equal to the action taken by each agent. The

amount of generation reserve is the difference between the
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sizes of DGs as determined by the agents and the obtained

sizes from solving the AC OPF problem after including 25%
generation reserve.

C. Training and Execution Algorithms
The power grid is divided into several regions based on the

electrical distance between components such that each region

is controlled by one agent. Each agent is responsible for

determining the location and size of a DG unit to supply loads

within its region. To train all agents, a replay buffer is used

as follows:

D ← (
st, o

i
t, α

ci
t , α

−ci
t , rt, st+1, o

i
t+1, α

ci
t+1, α

−ci
t+1

)
(19)

The training and testing/execution steps for the multi-agent

framework are summarized in Algorithm 1 and Algorithm 2.

Algorithm 1 - Training of the Multi-agent Framework

1: for episode = 1 to M do
2: Create failure scenario using fragility curve

3: Reset the environment to default settings

4: Solve AC OPF to determine oti and st of each agent

5: while load curtailed, additional reserve and step < N
do

6: Evaluate actions, αci
t for agent i using (17)

7: Execute actions αci
t using AC OPF environment (e.g.,

Pandapower)

8: Observe st+1, rt, and d to check terminal conditions.

9: Store (st, o
i
t, α

ci
t , α−ci

t , rt, st+1, d) in Di using (19)

10: If st+1 is terminal, reset the environment

11: Update weights of the policies using (11)

12: Update the Q-function parameters of local and target

networks of each agent using (7)

13: Update temperature of actor-networks using (12)

14: Update target networks weights of each agent

using Q̄m ← τQm + (1 − τ)Q̄,where, m ∈
{1, 2} and m � 1

15: end while
16: end for

Algorithm 2 - Testing of the Multi-agent Framework

1: for episode = 1 to M do
2: Create failure scenario using fragility curve

3: Reset the environment to default settings

4: while load curtailed, additional reserve and step < N
do

5: Evaluate actions, αci
t for using (17)

6: Execute actions αci
t using power flow solver

7: Observe st+1, rt, and d to validate terminal

conditions

8: end while
9: end for

IV. IMPLEMENTATION AND RESULTS

The proposed approach is applied on the IEEE 33-bus

distribution feeder. Several failure scenarios are created using

the hurricane fragility model provided in section III-A. The 
vulnerable lines are (1-2), (2-3), (5-6), (9-10), (15-16), (21-22),

(26-27), and (31-32), as shown in Fig. 1. To create a 
more severe condition, the connection to the main feeder 
is disconnected with the result being the system acting as 
an islanded microgrid. Also, the impact of load variation is 
considered by scaling the system nominal load using load 
demand profile obtained from [26]. The power grid is split 
into 6 regions. An agent is assigned to each region as shown 
in Table I. Each DG is assumed to have maximum capacity 
of 2 MW. The MDP is formulated and algorithm 1 is used for 
training the multi-agent framework.

TABLE I
ASSIGNED NODES TO EACH AGENT

Agent Nodes

A1 1, 2, 3, 4, 5, 6

A2 7, 8, 9, 10, 11

A3 12, 13, 14, 15, 16

A4 17, 18, 19, 20, 21, 22

A5 23, 24, 25, 26, 27, 28

A6 29, 30, 31, 32, 33

The proposed algorithm is implemented for a fixed number

of episodes (failure scenarios). A total of 10000 episodes are

used for training. The cumulative reward for each episode is

plotted as shown in Fig. 2. The learning rate of the agents is

improved as more scenarios are simulated. Also, the algorithm

explores more situations providing the agents with more

experience. Reward values lower than −20 implies significant

amount of load curtailments. As reward value approaches zero,

the amount of load curtailment is reduced and the capacity of

DGs is within permissible limits. Additional training might be

required for further improvements.

The trained agents are tested using a set of failure

scenarios randomly selected from the training set. Fig. 3

shows the reward obtained for testing data. Agents are able to

determine DG sizes and locations that maintain minimal load

curtailments; however, in some cases the determined sizes are

much larger than the load demand.

V. CONCLUSION

This paper has proposed a reinforced learning approach to

enhance the operational resilience of power grids during

hurricanes. The proposed method determines the locations and

sizes of DGs to maintain minimal amount of load curtailments.

A SAC framework was trained using a formulated MDP and
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Fig. 2. Reward per Episode for Training set

Fig. 3. Reward per Episode for Testing set

hurricane fragility model. The trained algorithm was tested

on the IEEE 33-bus distribution feeder. The results showed

that the proposed approach could provide proper decisions to

maintain reliable operation of an islanded distribution feeder

during impacts of hurricane. Feasible sizes and locations of

DGs could not be achieved in some cases. The proposed

algorithm can be extended to include other resources such as

load shedding, reconfiguration, and energy storage for further

improvements.
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