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Abstract

In this paper, we study the number of traveling wave families near a shear
flow under the influence of Coriolis force, where the traveling speeds lie outside
the range of the flow u. Under the β-plane approximation, if the flow u has a
critical point at which u attains its minimal (resp. maximal) value, then a unique
transitional β value exists in the positive (resp. negative) half-line such that the
number of traveling wave families near the shear flow changes suddenly from finite
to infinite when β passes through it. On the other hand, if u has no such critical
points, then the number is always finite for positive (resp. negative) β values. This
is true for general shear flows under mildly technical assumptions, and for a large
class of shear flows including a cosine jet u(y) = 1+cos(πy)

2 (i.e. the sinus profile)
and analytic monotone flows unconditionally. The sudden change of the number
of traveling wave families indicates that long time dynamics around the shear flow
is much richer than the non-rotating case, where no such traveling wave families
exist.

1. Introduction

The earth’s rotation influences dynamics of large-scale flows significantly. Un-
der the β-plane approximation, the motion for such a flow could be described by
2-D incompressible Euler equation with rotation

∂tv + (v · ∇)v = −∇P − βy Jv, ∇ · v = 0, (1.1)

where v = (v1, v2) is the fluid velocity, P is the pressure, J =
(
0 −1
1 0

)
is the

rotation matrix, and β is the Rossby number. Here we study the fluid in a periodic
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finite channel � = DT = TT × [y1, y2], TT = R/(TZ) with the following
non-permeable boundary condition on ∂�:

v2 = 0 on y = y1, y2. (1.2)

The β-plane approximation is commonly used for large-scale motions in geophys-
ical fluid dynamics [34,35]. The vorticity form of (1.1) is

∂tω + (v · ∇)ω + βv2 = 0, (1.3)

where ω = ∂xv2− ∂yv1. By the incompressible condition, we introduce the stream
functionψ such that v = ∇⊥ψ = (∂yψ,−∂xψ). Consider the shear flow (u(y), 0),
which is a steady solution of (1.3). The linearized equation of (1.3) around (u(y), 0)
is

∂tω + u∂xω − (β − u′′)∂xψ = 0, (1.4)

which was derived in [41].
In the study of long time dynamics near a shear flow, the most rigid case is

the nonlinear inviscid damping (to a shear flow), a kind of asymptotic stability.
This means that if the initial velocity is taken close enough to the given shear flow
in some function space, then the velocity tends asymptotically to a nearby shear
flow in this space. The existence of nearby non-shear steady states or traveling
waves means that nonlinear inviscid damping (to a shear flow) is not true, and long
time dynamics near the shear flow may be richer and fruitful. To understand the
richer long time dynamics near the shear flow in this situation, an important step is
to clarify whether the number of curves of nearby traveling waves with traveling
speeds converging to different points is infinite. Indeed, if the number is finite,
then the velocity might tend asymptotically to some nonlinear superpositions of
finite such non-shear states when the initial data is taken close to the flow, and
quasi-periodic nearby solutions are expected, which indicates new but not so com-
plicated dynamics. If the number is infinite, then the evolutionary velocity might
tend asymptotically to superpositions of infinite such non-shear states, and almost
periodic nearby solutions potentially exist, which predicts complicated even chaotic
long time behavior near the flow. Similar phenomena were observed numerically
in the study of Vlasov-Poisson system, a model describing collisionless plasmas
[4,5,9,24]. This model shares many similarities with the 2D incompressible Euler
equation. By numerical simulations, it was found that for some initial perturbation
near homogeneous states, the asymptotic state towardwhich the system evolves can
be described by a superposition of BGK modes [9]. This offers a hint for further
numerical study in the 2D Euler case. It is very challenging to study long time
dynamics near a shear flow in a fully analytic way when such non-shear steady
states or traveling waves exist. The first step towards this direction is to construct
nonlinear superpositions of traveling waves as in the Vlasov-Poisson case.

When there is no Coriolis force, long time dynamics near monotone flows is
relatively rigid in strong topology, while it is still highly non-trivial to give a math-
ematical confirmation. A first step is to understand the linearized equation. Orr
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[37] observed the linear damping for Couette flow, and Case [6] predicted the de-
cay of velocity for monotone shear flows. Recently, their predictions are confirmed
in [14,19,20,28,43,47,48] and are extended to non-monotone flows in [44,45].
Meanwhile, great progress has been made in the study of nonlinear dynamics near
shear flows. Bedrossian and Masmoudi [3] proved nonlinear inviscid damping
near Couette flow for the initial perturbation in some Gevrey space on T × R.
Ionescu and Jia [17] extended the above asymptotic stability to a periodic finite
channel T× [−1, 1] under the assumption that the initial vorticity perturbation is
compacted supported in the interior of the channel. Later, nonlinear inviscid damp-
ing was proved near a class of Gevrey smooth monotone shear flows in a periodic
finite channel if the perturbation is taken in a suitable Gevrey space, where u′′(y) is
compactly supported [18,33]. It is still challenging to study the long time behavior
near general, rough, monotone or non-monotone shear flows. On the other hand,
inviscid damping (to a shear flow) depends on the regularity of the perturbation,
and the existence of non-shear stationary structures is shown near some specific

flows. Lin and Zeng [28] found cats’ eyes flows near Couette for H< 3
2 vorticity

perturbation in a periodic finite channel, while no non-shear traveling waves near

Couette exist if the regularity is H> 3
2 , in contrast to the linear level, where damp-

ing is always true for any initial vorticity in L2. For Kolmogorov flows, which is
non-monotone, Coti Zelati, Elgindi and Widmayer [8] constructed non-shear
stationary states near Kolmogorov at analytic regularity on the square torus, while
there are no nearby non-shear steady states at regularity H3 for velocity on a rect-
angular torus. They also proved that any traveling wave near Poiseuille must be
shear for H>5 vorticity perturbation in a periodic finite channel.

As indicated in [35], the study of the dynamics of large-scale oceanic or atmo-
spheric motions must include the Coriolis force to be geophysically relevant, and
once the Coriolis force is included a host of subtle and fascinating dynamical phe-
nomena are possible. By numerical computation, Kuo [23] found the boundary of
barotropic instability for the sinus profile, which is far from linear instability in no
Coriolis case. Later, based on Hamiltonian index theory and spectral analysis, Lin,
Yang and Zhu theoretically confirmed large parts of the boundary and corrected
the rest. New traveling waves, which are purely due to the Coriolis effects, are
found near the sinus profile [27]. Barotropic instability of other geophysical shear
flows has also attracted much attention. For instance, by looking for the neutral
solutions, most of the stability boundary, which is again different from no Coriolis
case, of bounded and unbounded Bickley jet is found numerically and analytically
in [2,12,16,29,31]. More fruitful geophysical fluid dynamics, such as Rossby wave
and baroclinic instability, could be found in [10,23,30,34,35]. On the other hand,
similar to no Coriolis case, linear inviscid damping is still true for a large class of
flows and moreover, the same decay estimates of the velocity can be obtained for a
class of monotone flows [46]. Elgindi and Widmayer [11] viewed Coriolis effect
as one mechanism helping to stabilize the motion of an ideal fluid, and proved the
almost global stability of the zero solution for the β-plane equation. Global stability
of the zero solution is further to be confirmed in [36].
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When Coriolis force is involved, long time dynamics near a shear flow becomes
fruitful. One of the main reasons is that, compared with the no Coriolis case, there
are new travelingwaveswith fluid trajectoriesmoving in one direction. This paper is
devoted to studying the number of such traveling wave families near a general shear
flow u under the influence of Coriolis force. Here, a traveling wave family roughly
includes the sets of nearby traveling waves with traveling speeds converging to a
same number outside the range of the flow, see Definition 2.8 for details. Precisely,
we prove that if the flow u has a critical point at which u attains its minimal (resp.
maximal) value, then a unique transitional β value β+ (resp. β−) exists in the
positive (resp. negative) half-line, through which the number of traveling wave
families changes suddenly from finite to infinite. The transitional β values are
defined in (1.12)–(1.12). If the flow u has no such critical points, then the number
of traveling wave families is always finite for positive (resp. negative) β values.
This is true for general shear flows under mildly technical assumptions. Based on
Hamiltonian structure and index theory, we unconditionally prove the above results
for a flow in class K+, which is defined as follows:

Definition 1.1. A flow u in class K+ means that u ∈ H4(y1, y2) is not a constant
function, and for any β ∈ Ran(u′′), there exists uβ ∈ Ran(u) such that Kβ =
(β − u′′)/(u − uβ) is positive and bounded on [y1, y2].

A typical example of such a flow is a cosine jet u(y) = 1+cos(πy)
2 , y ∈ [−1, 1]

(i.e. the sinus profile), which was studied in geophysical literature [22,23,35]. For
β = 0 and a general shear flow u ∈ C2([y1, y2]), Rayleigh [38] gave a necessary
condition for spectral instability that u′′(y0) = 0 for some y0 ∈ (y1, y2), and
even under this condition, Fjrtoft [13] provided a sufficient condition for spectral
stability that (u − u(y0))u′′ � 0 on (y1, y2). For β �= 0 and u ∈ C2([y1, y2]), the
above two conditions can be extended as β − u′′(yβ) = 0 for some yβ ∈ (y1, y2)
and (β − u′′)(u − u(yβ)) � 0 on (y1, y2), respectively; see, for example, (6.3)–
(6.4) in [23]. For a flow in classK+, the extended Rayleigh’s condition implies that
β ∈ Ran(u′′) is necessary for spectral instability, but the flow does not satisfy the
extended Fjørtoft’s sufficient condition for spectral stability. The sharp condition
for spectral stability indeed depends on β and the wave number α, which was
obtained in [26] for β = 0 and in [27] for β �= 0.

Consider a class of general shear flows satisfying

(H1) u ∈ H4(y1, y2), u′′ �= 0 on u’s critical level {u′ = 0}.

A flow u in class K+ satisfies the assumption (H1). In fact, it is trivial for 0 /∈
Ran(u′′); if 0 ∈ Ran(u′′) and y0 ∈ [y1, y2] satisfies u′(y0) = 0 and u′′(y0) = 0,
then u(y0) − u0 = − 1

K0(y0)
u′′(y0) = 0. Thus, ϕ ≡ u − u0 solves ϕ′′ + K0ϕ = 0,

ϕ(y0) = ϕ′(y0) = 0. Then u ≡ u0, which is a contradiction.
To state our main results with few restrictions, we first consider flows in class

K+, and left the extension to general shear flows satisfying (H1) in Section 2.

Theorem 1.2. Let β �= 0 and the flow u be in class K+.
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(1) If {u′ = 0}∩{u = umin} �= ∅, then there existsβ+ ∈ (0,∞) such that there exist
at most finitely many traveling wave families near (u, 0) for β ∈ (0, β+], and
infinitely many traveling wave families near (u, 0) for β ∈ (β+,∞). Moreover,
β+ is specified in (1.12).

(2) If {u′ = 0} ∩ {u = umax} �= ∅, then there exists β− ∈ (−∞, 0) such that there
exist at most finitely many traveling wave families near (u, 0) for β ∈ [β−, 0),
and infinitely many traveling wave families near (u, 0) for β ∈ (−∞, β−).
Moreover, β− is specified in (1.12).

(3) If {u′ = 0} ∩ {u = umin} = ∅, then there exist at most finitely many traveling
wave families near (u, 0) for β ∈ (0,∞).

(4) If {u′ = 0} ∩ {u = umax} = ∅, then there exist at most finitely many traveling
wave families near (u, 0) for β ∈ (−∞, 0).

Here, the precise description of a traveling wave family near (u, 0) is given in
Definition 2.8.

Unless otherwise specified, “near (u, 0)” always means “in a (velocity) H3

neighborhood of (u, 0)” in Theorem 1.2 and the rest of this paper, as indicated in
Definition 2.4. These traveling wave families do not exist if there is no Coriolis
force. By Theorem 1.2, Coriolis force and its magnitude indeed bring fascinating
dynamics near the shear flow. On the one hand, for flows having no critical point
which is meanwhile a minimal point, the number of traveling wave families is
always finite no matter how much magnitude of Coriolis force, which is a mild
Coriolis effect. On the other hand, for flows having such a critical point, there is a
surprisingly sharp difference, namely, when the Coriolis parameter passes through
the transitional point β+, the number of traveling wave families changes suddenly
from finite to infinite. In particular, quasi-periodic solutions to (1.1)–(1.2) can be
expected near the shear flow for β ∈ (0, β+], while almost periodic solutions
potentially exist for β ∈ (β+,∞). This could be regarded as a strong Coriolis
effect and predicts chaotic long time dynamics near these flows.

The same dynamical phenomena are true for general shear flows under some
mildly technical assumptions. The explicit result is stated in Theorem 2.2. For
β > 0, the technical assumption for flows having a critical and meanwhile minimal
point is that umin is not an embedding eigenvalue of the linearized Euler operator
for small wave numbers. The assumption for flows having no such critical points
is some regularized condition near the endpoints of u. Note that the first spectral
assumption has only restriction for one point umin, no matter whether the interior
of Ran (u) has embedding eigenvalues. The second assumption is more generic
and quite easy to verify. Both the two technical assumptions are used for ruling out
eigenvalues’ oscillation for Rayleigh-Kuo boundary value problem (BVP) as the
parameter c tends to umin, see Subsection 2.2 for details.

Let us give some remarks on properties of such traveling waves near the flow
u.

• The traveling waves have fluid trajectories moving in one direction, see (5.6) in
the proof of Lemma 2.5. Thus unlike the constructed steady flow near Couette
flow in [28], the streamlines here have no cat’s eyes structure.
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• The traveling waves can be constructed near a smooth shear flow for H�3

(including H>6) velocity perturbation when the Coriolis parameter is large,
see Corollary 2.6. In contrast, in the case of no Coriolis force, no traveling

waves could be found near Couette flow for H> 5
2 velocity perturbation [28]

and near Poiseuille flow for H>6 velocity perturbation [8].
• Let {u′ = 0} ∩ {u = umin} �= ∅ and β > 9

8κ+. The directions of vertical
velocities of the nearby traveling waves might change frequently with small
amplitude as the traveling speeds converge to u−

min, see Remark 5.2.

We apply the main results to analytic monotone flows (including Couette flow)
and the sinus profile. For an analyticmonotoneflow, there exist atmost finitelymany
nearby traveling wave families for β �= 0, see Corollary 2.3. For the sinus profile,
as mentioned above, it is in class K+, and so applying Theorem 1.2 (1)–(2) we get
that {u′ = 0} ∩ {u = umin} = {±1}, {u′ = 0} ∩ {u = umax} = {0}, β+ = 9

16π
2,

β− = − 1
2π

2, there exist atmost finitelymany travelingwave families near the sinus
profile for β ∈ [− 1

2π
2, 9

16π
2], and infinitely many nearby traveling wave families

for β /∈ [− 1
2π

2, 9
16π

2]. Moreover, we will give a systematical study on the number
of isolated real eigenvalues of the linearized Euler operator and traveling wave
families near the sinus profile on the whole (α, β)’s region in Section 7 (here α is
the wave number in the x-direction), which plays an important role in further study
on its long timedynamics.Wemake a comparisonwith the previouswork in [27].By
Theorem2.1, the number of isolated real eigenvalues of the linearizedEuler operator
(i.e. non-resonant modes) determines that of traveling wave families. The explicit
number of isolated real eigenvalues in the region (α, β) ∈ (0,∞)×[−π2

2 , π2

2 ] can
be obtained in [27], but no information can be concluded outside this region, see
the discussion below Fig. 4 in [27]. Our new contribution for the sinus profile in
this paper is that we calculate the explicit number of isolated real eigenvalues in
the remaining area (α, β) ∈ (0,∞)× (−∞,−π2

2 )∪ (π2

2 ,∞), and thus completely
get the number of traveling wave families near the sinus profile on the whole
(α, β)’s region. For the sinus profile, the novelty is that we give the asymptotic
behavior of the n-th eigenvalue λn(c) of the Rayleigh-Kuo BVP (2.6) as c → 0−
for β ∈ (π2

2 ,∞) and as c → 1+ for β ∈ (−∞,−π2

2 ), from which we find
the transitional β values such that the number of traveling wave families changes
suddenly from finite to infinite. For general shear flows satisfying (H1), the key is
to study whether λn(c) is unbounded from below as c is close to umin (or umax) in
Theorem 2.9 and to rule out the oscillation of λn(c) in Theorems 2.11-2.13. In this
paper, we focus on the description of the eigenvalues of the Rayleigh-Kuo BVP
(2.6), which in turn, by Theorem 2.1, yields information on traveling wave families.

The rest of this paper is organized as follows: in Section 2, we extend Theo-
rem 1.2 to general shear flows and give the outline of the proof. In Sections 3-4, we
study the asymptotic behavior of the n-th eigenvalue of Rayleigh-Kuo BVP, where
we determine the transitional values for the n-th eigenvalue of Rayleigh-Kuo BVP
in Section 3, and rule out oscillation of the n-th eigenvalue in Section 4. In Section 5,
we establish the correspondence between a traveling wave family and an isolated
real eigenvalue of the linearized Euler operator. In Section 6, we prove the main
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Theorems 2.2 and 1.2. As a concrete application, we thoroughly study the number
of traveling wave families near the sinus profile in the last section.
Notation

We provide the notations that we use in this paper. Let umin = min(u) and
umax = max(u) for u ∈ C([y1, y2]). For a shear flow u satisfying (H1), we use the
following characteristic quantities of the flow. If {u′ = 0} ∩ {u = umin} �= ∅, we
define

κ+ := min{u′′(y)|y ∈ [y1, y2] such that u′(y) = 0 and u(y) = umin}. (1.5)

If {u′ = 0} ∩ {u = umax} �= ∅, we define

κ− := max{u′′(y)|y ∈ [y1, y2] such that u′(y) = 0 and u(y) = umax}. (1.6)

Note that κ+ ∈ (0,∞) and κ− ∈ (−∞, 0) in (1.6)–(1.6). In fact, (H1) implies
u′′(y0) > 0 for y0 ∈ A := {y ∈ [y1, y2]|u′(y) = 0 and u(y) = umin}. Then y0 is
an isolated point of A. Thus, A is a finite set and κ+ ∈ (0,∞) in (1.6). Similarly,
κ− ∈ (−∞, 0) in (1.6). Besides (1.6)–(1.6), we define

κ+ := ∞, if {u′ = 0} ∩ {u = umin} = ∅, (1.7)

κ− := −∞, if {u′ = 0} ∩ {u = umax} = ∅. (1.8)

If {u = umin} ∩ (y1, y2) �= ∅, we define

μ+ := min{u′′(y)|y ∈ (y1, y2) such that u(y) = umin}. (1.9)

If {u = umax} ∩ (y1, y2) �= ∅, we define

μ− := max{u′′(y)|y ∈ (y1, y2) such that u(y) = umax}. (1.10)

Note that μ+ ∈ [κ+,∞) and μ− ∈ (−∞, κ−] in (1.10)–(1.10). Then we define

β+ :=
{
min{ 98κ+, μ+}, if {u = umin} ∩ (y1, y2) �= ∅,
9
8κ+, if {u = umin} ∩ (y1, y2) = ∅,

(1.11)

and

β− :=
{
max{ 98κ−, μ−}, if {u = umax} ∩ (y1, y2) �= ∅,
9
8κ−, if {u = umax} ∩ (y1, y2) = ∅.

(1.12)

We denote

(E+) umin is not an embedding eigenvalue of Rα,β, (1.13)

(E−) umax is not an embedding eigenvalue of Rα,β, (1.14)

where Rα,β is defined in (2.5). Moreover, we define

mβ :=
{

�{a ∈ (y1, y2)|u(a) = umin, u′′(a) − β < 0}, if 0 < β � 9
8κ+,

�{a ∈ (y1, y2)|u(a) = umax, u′′(a) − β > 0}, if 9
8κ− � β < 0,

(1.15)
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and

Mβ :=
⎧⎨
⎩

− inf
c∈(−∞,umin)

λmβ+1(c), if 0 < β � 9
8κ+,

− inf
c∈(umax,∞)

λmβ+1(c), if 9
8κ− � β < 0,

(1.16)

where λmβ+1(c) is the (mβ + 1)-th eigenvalue of the Rayleigh-Kuo BVP (2.6).
R, Z and Z+ denote the set of all the real numbers, integers and positive in-

tegers, respectively. �(K ) or � K is the cardinality of the set K . Let L be a linear
operator from a Banach space X to X . X∗ is the dual space of X . σ(L), σe(L) and
σd(L) are the spectrum, essential spectrum and discrete spectrum of the operator
L , respectively. For ψ ∈ L2(DT ), the Fourier transform of ψ in x is denoted by ψ̂ .

2. Extension to general shear flows and outline of the proof

In this section, we first extend the main Theorem 1.2 to general shear flows
under mild assumptions, and then discuss our approach in its proof.

2.1. Main results for general shear flows

For a shear flow in H4(y1, y2), we give the exact number of traveling wave
families near the flow.

Theorem 2.1. Now α = 2π/T , β �= 0 and u ∈ H4(y1, y2). Then �(
⋃

k�1(σd

(Rkα,β) ∩ R)) is exactly the number of traveling wave families near (u, 0), where
Rkα,β is defined in (2.5) and the precise description of a traveling wave family near
(u, 0) is given in Definition 2.8.

Then we state our main theorem for a shear flow satisfying (H1).

Theorem 2.2. Let β �= 0 and u satisfy (H1).

(1) If {u′ = 0}∩{u = umin} �= ∅and (E+)holds for everyα ∈ (0,
√
Mβ ]∩{ 2kπT |k ∈

Z+} and β ∈ (0, 9
8κ+), then there exists β+ ∈ (0,∞) such that there exist at

most finitely many traveling wave families near (u, 0) for β ∈ (0, β+), and
infinitely many traveling wave families near (u, 0) for β ∈ (β+,∞), where κ+,
(E+) and Mβ are defined in (1.6), (1.14) and (1.16), respectively. Moreover,
β+ is specified in (1.12).

(2) If {u′ = 0} ∩ {u = umax} �= ∅ and (E−) holds for every α ∈ (0,
√
Mβ ] ∩

{ 2kπT |k ∈ Z+}andβ ∈ ( 98κ−, 0), then there existsβ− ∈ (−∞, 0) such that there
exist at most finitely many traveling wave families near (u, 0) for β ∈ (β−, 0),
and infinitely many traveling wave families near (u, 0) for β ∈ (−∞, β−),
where κ− and (E−) are defined in (1.6) and (1.14), respectively. Moreover, β−
is specified in (1.12).

Assume that u(y1) �= u(y2) and for i = 1, 2, there exist δ > 0, C > 0 and
mi > 0 such that (i) u′′(y) = βi for y ∈ (yi − δ, yi + δ) ∩ [y1, y2] or (ii)
C−1|y − yi |mi � |u′′(y) − βi | � C |y − yi |mi for y ∈ (yi − δ, yi + δ) ∩ [y1, y2]
or (iii) βi u′(yi )(−1)i � 0, where βi = u′′(yi ).
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(3) If {u′ = 0} ∩ {u = umin} = ∅, then there exist at most finitely many traveling
wave families near (u, 0) for β ∈ (0,∞).

(4) If {u′ = 0} ∩ {u = umax} = ∅, then there exist at most finitely many traveling
wave families near (u, 0) for β ∈ (−∞, 0).

Here, the precise description of a traveling wave family near (u, 0) is given in
Definition 2.8.

Asmentioned in the Introduction, (E+) or (E−) is “one spectral point" assump-
tion for small wave numbers. Note that if 2π

T >
√
Mβ , then (0,

√
Mβ ] ∩ { 2kπT |k ∈

Z+} = ∅, and (E±) is not needed in Theorem 2.2 (1)–(2). One of the conditions
(i)–(iii) is the “good” endpoints assumption and rather generic. For example, if
u ∈ Cm([y1, y2]), m � 3 and u(ki )(yi ) �= 0 for some 3 � ki � m, then (ii) is true
formi = ki −2. Thus, for analytic flows, (ii) holds if u(ki )(yi ) �= 0 for some ki � 3
and (i) holds otherwise. Applying Theorem 2.2 (3)–(4) to analytic monotone flows,
we have the following result:

Corollary 2.3. Let u be an analytic monotone flow: u′(y) �= 0 for y ∈ [y1, y2].
Then there exist at most finitely many traveling wave families near (u, 0) for β �= 0.

2.2. Outline and our approach in the proof

Non-parallel steady flows or traveling waves may be bifurcated from a shear
flow if the linearized Euler operator has an embedding or isolated real eigenvalues
[1,27,28]. Based on the existence of an embedding eigenvalue for a class of mono-
tone shear flows near Couette flow, cat’s eyes steady states are bifurcated from
these flows [28]. When the Coriolis force is involved, non-parallel traveling waves
are bifurcated from the sinus profile on account of the existence of an isolated real
eigenvalue [27]. The traveling speeds lie outside the range of the sinus profile and
are contiguous to the isolated real eigenvalue.

Now, we consider such bifurcation theorem for general shear flows, namely,
using an isolated real eigenvalue of the linearized Euler operator, we prove that such
traveling waves can be bifurcated from general shear flows. We use the following
concept:

Definition 2.4. {uε (x − cεt, y) = (uε (x − cεt, y) , vε (x − cεt, y))|ε ∈ (0, ε0)
for some ε0 > 0} is called a set of traveling wave solutions near (u, 0) with
traveling speeds converging to c0, if for each ε ∈ (0, ε0), uε (x − cεt, y) =
(uε (x − cεt, y) , vε (x − cεt, y)) is a traveling wave solution to (1.1)–(1.2) which
has period T in x such that

‖(uε, vε) − (u, 0)‖H3(DT ) � ε, (2.1)

‖vε‖L2(DT ) �= 0, cε /∈ Ran(u) and cε → c0.

Now we give the bifurcation result for general shear flows.
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Lemma 2.5. Let α = 2π/T , β �= 0 and u ∈ H4(y1, y2). Assume that c0 ∈⋃
k�1(σd(Rkα,β) ∩ R), where Rkα,β is defined in (2.5). Then there exists a set

of traveling wave solutions near (u, 0) with traveling speeds converging to c0.
Moreover, we have uε (x, y) − cε �= 0.

Here, we mention some differences from the construction of traveling waves in
the literature. First, the horizontal period of constructed traveling waves in Propo-
sition 7 of [27] is not the given period T , and for the sinus profile, the period of
traveling waves is modified to T by adjusting the traveling speed in Theorem 7 of
[27]. But the price is an additional condition, namely, the isolated eigenvalue c0
can not be an extreme point of λ1 (i.e. α0 �= √

�β in Theorem 7 (ii) of [27]), where
λn is the n-th eigenvalue of (2.6). In Lemma 2.5, we can construct traveling waves
for general flows no matter whether c0 is an extreme point of λn , and thus improve
the result in Theorem 7 of [27] even for the sinus profile. Second, it is possible that
c0 ∈ σd(R0,β)∩R, which makes it subtle to guarantee that the bifurcated solutions
near the flow u is not a shear flow. Thus, the extension of the bifurcation result for
the sinus profile in [27] to general shear flows in Lemma 2.5 is still non-trivial,
since we have to treat the unsolved case that c0 is an extreme point of λn0 for some
n0 ∈ Z+ or c0 ∈ σd(R0,β) ∩ R. To overcome the difficulty, we carefully modify
the flow u to a suitable shear flow, which satisfies that λn0 is locally monotone near
c0 and c0 /∈ σd(R0,β)∩R, and then study the bifurcation at the suitable shear flow.
Finally, the minimal horizontal periods of constructed traveling waves are possibly
less than 2π/α if c0 ∈ σd(Rα,β) ∩ R. In fact, the Sturm-Liouville operator Lc0
could indeed havemore than one negative eigenvalues (e.g., if κ+ < ∞,β > 9κ+/8
and c0 is close to umin), where Lc0 is defined in (2.6). In this case, we give suf-
ficient condition to guarantee that the minimal period is 2π/α in Lemma 5.3. In
contrast, the minimal period must be 2π/α in Theorem 5.1 of [25] and Theorem
1 of [28], since the corresponding Sturm–Liouville operator has only one negative
eigenvalue.

Since the isolated real eigenvalue c0 lies outside the range of the flow u, by a
similar proof of Lemma 2.5 we can improve the regularity of traveling waves as
follows.

Corollary 2.6. Let α = 2π/T , β �= 0, u ∈ C∞([y1, y2]) and s � 3. Assume that
c0 ∈ ⋃

k�1(σd(Rkα,β) ∩ R), whereRkα,β is defined in (2.5). Then the conclusion

in Lemma 2.5 holds true with (2.1) replaced by ‖(uε, vε) − (u, 0)‖Hs (DT ) � ε.

One naturally asks whether the assumption c0 ∈ ⋃
k�1(σd(Rkα,β) ∩ R) in

Lemma 2.5 is necessary. By studying the asymptotic behavior of traveling speeds
and L2 normalized vertical velocities for nearby traveling waves, we confirm that
it is true.

Lemma 2.7. Letα = 2π/T ,β �= 0andu ∈ H4(y1, y2). Assume that {uε (x − cεt,
y) = (uε (x − cεt, y) , vε (x − cεt, y))|ε ∈ (0, ε0)} is a set of traveling wave so-
lutions near (u, 0) with traveling speeds converging to c0.

Then c0 ∈ ⋃
k�1(σd(Rkα,β) ∩ R) ∪ {umin, umax}, where Rkα,β is defined in

(2.5). Moreover, if c0 ∈ ⋃
k�1(σd(Rkα,β) ∩ R), then there exists ϕc0 ∈ ker(Gc0)
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such that

ṽε −→ ϕc0 in H2 (DT ), (2.2)

where the operator Gc0 is defined by

Gc0 = −� − β − u′′ (y)
u (y) − c0

: H2(DT ) → L2(DT ) (2.3)

with periodic boundary condition in x and Dirichlet boundary condition in y, and
ṽε = vε/‖vε‖L2(DT ).

The limit function ϕc0 in Lemma 2.7 is a superposition of finite normal modes,
see Remark 5.1. If c0 ∈ ⋃

k�1(σd(Rkα,β)∩R) in Lemma 2.7, the vertical velocities
of the nearby traveling waves have simple asymptotic behavior as seen in (2.2).
However, if c0 ∈ {umin, umax}, then the asymptotic behavior of vertical velocities
might be complicated, see Remark 5.2. The proofs of Lemmas 2.5-2.7 are given in
Section 5.

By Lemma 2.7, for any set of traveling waves near (u, 0) with traveling speeds
converging to c0, c0 must be an isolated real eigenvalue of the linearized Euler
operator (besides umin and umax). By Lemma 2.5, every isolated real eigenvalue
is contiguous to the speeds of nearby traveling waves. As the minimal periods of
traveling waves in x can be less than 2π/α, there might be two or more sets of
traveling wave solutions near (u, 0) with traveling speeds converging to a same
isolated real eigenvalue. For example, if ((i + 1)α)2 = −λni (c0), λni is monotone
near c0 for i = 1, 2, and (kα)2 �= λn(c0) for k /∈ {2, 3} and n /∈ {n1, n2}, then an
application to Lemma 2.5 (see Case 1 in its proof) gives two sets of traveling wave
solutions, which has minimal periods π/α and 2π/(3α) respectively, near (u, 0)
with traveling speeds converging to c0. Moreover, traveling wave solutions could
be bifurcated from nearby shear flows, which might induce more sets of traveling
wave solutions near (u, 0) with traveling speeds converging to c0. This suggests us
to define a traveling wave family near (u, 0) by an equivalence class as follow:

Definition 2.8. A traveling wave family near (u, 0) is defined by an equivalence
class under ∼, where if {ui,ε

(
x − ci,εt, y

) = (ui,ε
(
x − ci,εt, y

)
, vi,ε

(
x − ci,εt,

y))|ε ∈ (0, εi )}, i = 1, 2, are two sets of traveling wave solutions near (u, 0)
with traveling speeds converging to ci /∈ Ran(u), then {u1,ε

(
x − c1,εt, y

) |ε ∈
(0, ε1)} and {u2,ε

(
x − c2,εt, y

) |ε ∈ (0, ε2)} are equivalent, {u1,ε
(
x − c1,εt, y

) |ε
∈ (0, ε1)} ∼ {u2,ε

(
x − c2,εt, y

) |ε ∈ (0, ε2)}, if c1 = c2.

By Lemma 2.7, there exists ϕi ∈ ker(Gci ) such that ṽi,ε −→ ϕi in H2 (DT ),
where ṽi,ε = vi,ε/‖vi,ε‖L2(DT ) and vi,ε, ε ∈ (0, εi ), are given in Definition 2.8. By
Lemmas 2.5 and 2.7 , we obtain the exact number of traveling wave families near
a flow u ∈ H4(y1, y2) in Theorem 2.1.

Thus, the number of isolated real eigenvalues of the linearized Euler operator
plays an important role in counting the traveling wave families near the shear flow.
In terms of the stream function ψ , (1.4) can be written as ∂t�ψ + u∂x�ψ + (β −
u′′)∂xψ = 0. By taking Fourier transform in x , we have that

(∂2y − α2)∂t ψ̂ = iα((u′′ − β) − u(∂2y − α2))ψ̂. (2.4)
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For α > 0 and β ∈ R, the linearized Euler operator is given by

Rα,β := −(∂2y − α2)−1((u′′ − β) − u(∂2y − α2)). (2.5)

Then (2.4) becomes− 1
iα ∂t ψ̂ = Rα,βψ̂. Recall that σe(Rα,β) = Ran(u). Then the

set of isolated real eigenvaluesσd (Rα,β)∩R ⊂ (−∞, umin)∪(umax,∞).Moreover,
it is well-known that σd(Rα,β)∩R = ∅ if β = 0; σd(Rα,β)∩(umax,∞) = ∅ if β >

0; and σd(Rα,β)∩(−∞, umin) = ∅ ifβ < 0, see [22,27,35,42]. Therefore, we only
need to study �(σd(Rα,β)∩ (−∞, umin)) for β > 0 and �(σd(Rα,β)∩ (umax,∞))

for β < 0. We mainly study �(σd(Rα,β) ∩ (−∞, umin)) for β > 0, since the other
is similar. c ∈ σd(Rα,β) if and only if its corresponding eigenfunction ψc satisfies
the Rayleigh-Kuo BVP

Lcφ := −φ′′ + u′′ − β

u − c
φ = λφ, φ(y1) = φ(y2) = 0, (2.6)

where φ ∈ H1
0 ∩ H2(y1, y2) and λ = −α2. This equation is formulated by Kuo

[22]. For c < umin, it follows from [39] that the n-th eigenvalue of (2.6) is

λn(c) = inf
dim Vn=n

sup
φ∈H1

0 ,φ∈Vn ,‖φ‖L2=1

〈Lcφ, φ〉 (2.7)

= inf
dim Vn=n

sup
φ∈H1

0 ,φ∈Vn ,‖φ‖L2=1

∫ y2

y1

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy.

In this way, we have that

σd(Rα,β) ∩ (−∞, umin) =
⋃
n�1

{c < umin : λn(c) = −α2}.

Todeterminewhether �(σd(Rα,β)∩(−∞, umin)) is finite,weneed to study the num-
ber of solutions c < umin such thatλn(c) = −α2 forn � 1. Since limc→−∞ λn(c) =
n2
4 π2 > 0 by Proposition 4.2 in [27] and λn(c) is real-analytic on (−∞, umin),
the only possibility such that �(σd(Rα,β) ∩ (−∞, umin)) = ∞ is that there ex-
ists a sequence {c j (α, β)}∞j=1 ⊂ ⋃

n�1{c < umin : λn(c) = −α2} such that

c j (α, β) → u−
min. Thus, the key is to study the asymptotic behavior of λn(c) as

c → u−
min. We divide that it into two steps.

Step 1.We study howmany n’s such that λn(c) → −∞ as c → u−
min.We deter-

mine a transitional β value such that the number �{n � 1 : λn(c) → −∞ as c →
u−
min} changes suddenly from finite to infinite when β passes through it.

Theorem 2.9. Let u satisfy (H1). (1) Let 0 < β � 9
8κ+. Then

(i) lim
c→u−min

λn(c) = −∞, 1 � n � mβ;
(ii) Mβ < ∞;
(iii) there exists an integer Nβ > mβ such that inf

c∈(−∞,umin)
λNβ (c) � 0.

(2) Let 9
8κ− � β < 0. Then
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0 < β ≤ 9
8κ+ β > 9

8κ+

Fig. 1. The transitional value β = 9
8κ+

(i) lim
c→u+max

λn(c) = −∞, 1 � n � mβ;
(ii) Mβ < ∞;
(iii) there exists an integer Nβ > mβ such that inf

c∈(umax,∞)
λNβ (c) � 0.

(3) Let β > 9
8κ+. Then limc→u−min

λn(c) = −∞ for n � 1.

(4) Let β < 9
8κ−. Then limc→u+max

λn(c) = −∞ for n � 1.
Here, κ±, mβ and Mβ are defined in (1.6)–(1.8), (1.15) and (1.16), respectively.

The transitional valueβ = 9
8κ+ is illustrated in Fig. 1.Wegive a simple example

to explain why such a transitional value exists. Consider the flow u = 1
2 y

2 on [0, 1]
and β > 0. If c < 0 is very close to 0, then the energy quadratic form in (2.7)
roughly looks like this:

〈Lcφ, φ〉 ∼
∫ 1

0
|φ′|2 + 2− 2β

y2
|φ|2 dy.

Thus, if 2 − 2β > − 1
4 ⇔ β < 9

8 , by Hardy type inequality (Lemma 3.1) we
have 〈Lcφ, φ〉 is bounded from below for any test functions φ with φ(0) = 0.
From this formal observation, we may expect λ1(c) is bounded from below. If
2− 2β < − 1

4 ⇔ β > 9
8 , 〈Lcφ, φ〉 is unbounded from below by looking at the test

functions y
1
2+ε with ε → 0+. We will construct test functions motivated by the

function y
1
2 to show that all the eigenvalues are unbounded from below.

For general flows, themain idea in the proof of Theorem 2.9 (1)–(2) is to control∫ u′′−β
u−c |φ|2 dy using the L2 normofφ′ near a singular point (seeLemma3.2),which

involves very delicate and careful localized analysis. The transitional β values 9
8κ±

are essentially due to the optimal Hardy type inequality (3.1). The idea in the proof
of Theorem 2.9 (3)–(4) is to construct suitable test functions such that the functional
in (2.7) converges to −∞ as c → u−

min or u
+
max, see (3.20). This is inspired by the
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“eigenfunction” y
1
2 for the optimal Hardy type equality and a support-separated

technique. The proof of Theorem 2.9 is given in Section 3.
Then we give sharp criteria for λ1(c) → −∞ as c → u−

min if β ∈ [ 98κ−, 9
8κ+].

By Theorem 2.1, the number of traveling wave families is to count the union of
�(σd(Rkα,β) ∩ R) for all k � 1. Thus, the number of traveling wave families is
infinity provided that λ1(c) → −∞ as c → u−

min. By Theorem 2.9 (1)–(2), we get
the sharp criteria for λ1(c) → −∞ as c → u−

min.

Corollary 2.10. Let u satisfy (H1).

(1) If {u = umin} ∩ (y1, y2) �= ∅, then a transitional β value min{ 98κ+, μ+} exists
in (0, 9

8κ+] such that infc∈(−∞,umin) λ1(c) > −∞ for β ∈ (0,min{ 98κ+, μ+}]
and
limc→u−min

λ1(c) = −∞ for β ∈ (min{ 98κ+, μ+}, 9
8κ+].

(2) If {u = umax} ∩ (y1, y2) �= ∅, then a transitional β valuemax{ 98κ−, μ−} exists
in [ 98κ−, 0) such that infc∈(umax,∞) λ1(c) > −∞ for β ∈ [max{ 98κ−, μ−}, 0)
and limc→u+max

λ1(c) = −∞ for β ∈ [ 98κ−,max{ 98κ−, μ−}).
(3) If {u = umin} ∩ (y1, y2) = ∅, then infc∈(−∞,umin) λ1(c) > −∞ for β ∈

(0, 9
8κ+].

(4) If {u = umax}∩(y1, y2) = ∅, then infc∈(umax,∞) λ1(c) > −∞ for β ∈ [ 98κ−, 0).

Here, κ± and μ± are defined in (1.6)–(1.10).

Here, a key point for Corollary 2.10 (1) and (3) is that infc∈(−∞,umin) λ1(c) >

−∞ if and only if mβ = 0 and β � 9
8κ+.

Step 2. We rule out the oscillation of λn(c) as c → u−
min (or c → u+

max). By
Theorem 2.9 (1), we get that for 1 � n � mβ , λn(c) = −α2 has only finite
number of solutions c on (−∞, umin). Moreover, if n � Nβ , no solutions exist for
λn(c) = −α2 on c ∈ (−∞, umin). Now, we consider whether �({λn(c) = −α2, c ∈
(−∞, umin)}) < ∞ formβ < n < Nβ . Indeed, we rule out the oscillation of λn(c)
under the spectral assumption (E±), or under the “good” endpoints assumption
(i.e. one of the conditions (i)–(iii) in Theorem 2.2), or for flows in class K+. The
oscillation of λn(c) is illustrated in Fig. 2.

Case 1.Under the spectral assumption, themain argument to rule out oscillation
is to prove uniform H1 bound for corresponding eigenfunctions, and the proof is
in Subsection 4.1. In this case, 9

8κ± are also transitional β values for the number
of isolated real eigenvalues of the linearized Euler operator if |κ±| < ∞.

Theorem 2.11. Assume that u satisfies (H1) and α > 0.

(1) If 0 < β < 9
8κ+, 0 < α2 � Mβ and (E+) holds for this α, then

mβ � �(σd(Rα,β) ∩ (−∞, umin)) < ∞. (2.8)

If 0 < β � 9
8κ+, then (2.9) holds for α2 > Mβ .

(2) If 9
8κ− < β < 0, 0 < α2 � Mβ and (E−) holds for this α, then

mβ � �(σd(Rα,β) ∩ (umax,∞)) < ∞. (2.9)

If 9
8κ− � β < 0, then (2.9) holds for α2 > Mβ .
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Fig. 2. The oscillation of λn(c)

(3) If β > 9
8κ+, then �(σd(Rα,β) ∩ (−∞, umin)) = ∞.

(4) If β < 9
8κ−, then �(σd(Rα,β) ∩ (umax,∞)) = ∞.

Here, κ±, (E±), mβ and Mβ are defined in (1.6)–(1.8), (1.14)–(1.14), (1.15) and
(1.16), respectively.

In fact, by Theorem 2.9 we have Mβ < ∞ for 0 < β � 9
8κ+ or 9

8κ− � β < 0.
Here, we focus on sufficient conditions of (2.9) and (2.9), it is unclear whether (2.9)
is true for the case β = 9

8κ+ with 0 < α2 � Mβ , or the case 0 < β < 9
8κ+ with

0 < α2 � Mβ but no assumption (E+).
Note that Theorem 2.11 (3)–(4) is a direct consequence of Theorem 2.9 (3)–(4).
Case 2.Under the “good” endpoints assumption (i.e. one of the conditions (i)–

(iii) in Theorem 2.2), a delicate analysis near the endpoints is involved to rule out
oscillation, and the proof is in Subsection 4.2. In this case, we get that no transitional
β values exist if |κ±| = ∞.

Theorem 2.12. Let α > 0 and u satisfy (H1). Assume that u(y1) �= u(y2), and one
of the conditions (i)–(iii) in Theorem 2.2 holds. Then

(1) �(σd(Rα,β) ∩ R) < ∞ for all β ∈ (0,∞) if and only if {u′ = 0} ∩ {u =
umin} = ∅;

(2) �(σd(Rα,β) ∩ R) < ∞ for all β ∈ (−∞, 0) if and only if {u′ = 0} ∩ {u =
umax} = ∅.

Consequently, �(σd(Rα,β) ∩ R) < ∞ for all β ∈ R if and only if {u′ = 0} ∩ {u =
umin} = {u′ = 0} ∩ {u = umax} = ∅.

Note that if α >
√
Mβ , then (2.9) and (2.9) are true, and the “good" endpoints

assumption (i.e. one of the conditions (i)–(iii) in Theorem 2.2) is not needed in
Theorem 2.12. Consequently, if 2π

T >
√
Mβ , then Theorem 2.2 (3)–(4) hold true

without this assumption (see their proof).
Let u be an analytic monotone flow and α > 0. Then �(σd(Rα,β) ∩ R) < ∞

for β �= 0. This is a corollary of Theorem 2.12, and can also be deduced by the
method used in Lemma 3.2 and Theorem 4.1 of [40].
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Case 3. For flows in classK+, the main tools to rule out oscillation are Hamiltonian
structure and index formula, and the proof is in Subsection 4.3. This is also the
main reason that the spectral and “good" endpoints assumptions can be removed
in Theorem 1.2.

Theorem 2.13. Let u be in class K+ and α > 0. Then mβ � �(σd(Rα,β) ∩
(−∞, umin)) < ∞ for 0 < β � 9

8κ+; mβ � �(σd(Rα,β) ∩ (umax,∞)) < ∞
for 9

8κ− � β < 0; and �(σd(Rα,β) ∩ R) = ∞ for β /∈ [ 98κ−, 9
8κ+]. Here, κ± and

mβ are defined in (1.6)–(1.8) and (1.15), respectively.

The idea of the proof is as follows. The linearized equation has Hamiltonian
structure and the energy quadratic form has finite negative directions. The key
observation is that oscillation ofλn(c) brings infinite times of sign-changes ofλ′

n(c).
This contributes infinite negative directions of quadratic form for non-resonant
neutral modes, which is a contradiction to the index formula. Thus, the oscillation
of λn(c) can be ruled out unconditionally for flows in class K+.

3. Transitional values β = 9
8κ± for the n-th eigenvalue of Rayleigh-Kuo BVP

We begin to study the asymptotic behavior of the n-th eigenvalue λn(c) of
Rayleigh-Kuo BVP. In this section, we focus on the number �{n � 1 : λn(c) →
−∞ as c → u−

min (or c → u+
max)}. We prove that the number is finite for β ∈

[ 98κ−, 9
8κ+] and it is infinite for β /∈ [ 98κ−, 9

8κ+], which is stated precisely in
Theorem 2.9.

3.1. Finite number for β ∈ [ 98κ−, 9
8κ+]

The optimal constant in the following Hardy type inequality plays an important
role in discovering the transitional values β = 9

8κ±.

Lemma 3.1. Let φ ∈ H1(a, b) and φ(y0) = 0 for some y0 ∈ [a, b]. Then
∥∥∥∥ φ

y − y0

∥∥∥∥
2

L2(a,b)
+

∫ b
a |y − y0|−1φ(y)2 dy

max(b − y0, y0 − a)
� 4‖φ′‖2L2(a,b). (3.1)

Here the constant 4 is optimal.

Proof. Suppose thatφ is real-valuedwithout loss of generality. Let ε = 1/max(b−
y0, y0 − a). First, we consider the integration on [y0, b] (if y0 < b). Since

∣∣∣∣ φ(y)2

y − y0

∣∣∣∣ �
‖φ′‖2

L2(y0,y)
(y − y0)

y − y0
= ‖φ′‖2L2(y0,y)

→ 0, as y → y+0 , (3.2)

we have that
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∥∥∥∥ φ

y − y0

∥∥∥∥
2

L2(y0,b)
= −

∫ b

y0
φ(y)2d

(
1

y − y0

)
= − φ(y)2

y − y0

∣∣b
y0

+
∫ b

y0

2φ(y)φ′(y)
y − y0

dy,

∫ b

y0
2φ(y)φ′(y) dy = φ(y)2

∣∣b
y0

= φ(b)2,

∥∥∥∥ φ

y − y0

∥∥∥∥
2

L2(y0,b)
+

∥∥∥∥ φ

y − y0
− εφ − 2φ′

∥∥∥∥
2

L2(y0,b)

= − 2
φ(b)2

b − y0
+ 2εφ(b)2 − 2ε

∫ b

y0

φ(y)2

y − y0
dy + ε2‖φ‖2L2(y0,b)

+ 4‖φ′‖2L2(y0,b)

� − ε

∫ b

y0

φ(y)2

y − y0
dy + 4‖φ′‖2L2(y0,b)

.

Herewe used ε � 1
b−y0

and φ(y)2

y−y0

∣∣b
y0

= φ(b)2

b−y0
.Thus,

∥∥ φ
y−y0

∥∥2
L2(y0,b)

+ε
∫ b
y0

φ(y)2

y−y0
dy

� 4‖φ′‖2
L2(y0,b)

. Similarly,
∥∥ φ
y−y0

∥∥2
L2(a,y0)

+ ε
∫ y0
a

φ(y)2

y0−y dy � 4‖φ′‖2
L2(a,y0)

. This

gives (3.1). Letting y0 = a, φ(y) = (y − a)
1
2+ε1 and sending ε1 → 0+, we see

that the constant 4 is optimal. ��
For other versions of Hardy type inequality, the readers are referred to [15,32].

To study the lower bound of the n-th eigenvalue λn(c) of Rayleigh-Kuo BVP for c
close to u−

min, it is important to estimate the energy expression (2.7) near singular
points. To this end, we need the following lemma:

Lemma 3.2. Assume that a ∈ [y1, y2], u(a) = umin, φ ∈ H1
0 (y1, y2), c < umin

and β > 0. Then there exists a constant δ0 > 0 (depending only on u and a) such
that for 0 < δ � δ0,

(1) if (i) u′(a) �= 0 or (ii) u′(a) = 0, β � 9u′′(a)/8, φ(a) = 0, then
∫
[a−δ,a+δ]∩[y1,y2]

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy � 0; (3.3)

(2) if (iii) a ∈ (y1, y2), u′(a) = 0, β � u′′(a), then
∫
[a−δ,a+δ]∩[y1,y2]

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy � −Cδ‖φ‖2L2([a−δ,a+δ]∩[y1,y2]).

(3.4)

Here Cδ is a positive constant depending only on u, a and δ.

Proof. First, we assume (i). Then we have a ∈ {y1, y2} and thus φ(a) = 0.
Without loss of generality, we assume that a = y1. In this case, u′(y1) > 0. Choose
δ1 ∈ (0, y2 − y1) small enough such that u′(y) >

u′(y1)
2 for y ∈ (y1, y1 + δ1), and

thus, there exists ξy ∈ (y1, y) such that u(y)−c > u(y)−umin = u′(ξy)(y− y1) >
u′(y1)

2 (y − y1) > 0 for c < umin. Note that, for y ∈ (y1, y1 + δ),

|φ(y)|2 =
∣∣∣∣
∫ y

y1
φ′(s) ds

∣∣∣∣
2

� ‖φ′‖2L2(y1,y)
(y − y1).
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Now we take δ0 ∈ (0, δ1) to be small enough such that
∫ y1+δ0
y1

2|u′′−β|
u′(y1) dy � 1.

Then, for 0 < δ � δ0,

∣∣∣∣
∫ y1+δ

y1

u′′ − β

u − c
|φ|2 dy

∣∣∣∣ � ‖φ′‖2L2(y1,y1+δ)

∫ y1+δ

y1

2|u′′ − β|
u′(y1)

dy � ‖φ′‖2L2(y1,y1+δ)
,

which implies (3.3) since [a − δ, a + δ] ∩ [y1, y2] = [y1, y1 + δ].
Now we assume (ii), then u′′(a) > 0. Let δ1 ∈ (0,max(y2 − a, a − y1)) be

small enough such that u′′(y) >
u′′(a)
2 > 0 for y ∈ [a − δ1, a + δ1] ∩ [y1, y2].

Since u ∈ H4(y1, y2) ⊂ C3([y1, y2]), we have |u′′(y) − u′′(a)| � C |y − a| and
|1/u′′(y)−1/u′′(a)| � C |y−a| for y ∈ [a−δ1, a+δ1]∩[y1, y2]. Then there exists
ξy ∈ {z : |z − a| < |y − a|} such that u(y) − c > u(y) − umin = u′′(ξy)

2 (y − a)2

>
2β
9 (y − a)2 > 0 for c < umin and y ∈ [a − δ1, a + δ1] ∩ [y1, y2], and thus

0 <
1

u(y) − c
<

2

u′′(ξy)(y − a)2
� 2+ C |ξy − a|

u′′(a)(y − a)2
� 2+ C |y − a|

u′′(a)(y − a)2
,

u′′(y) − β � u′′(a) − C |y − a| − 9u′′(a)/8 = −u′′(a)/8− C |y − a|,
u′′(y) − β

u(y) − c
� −u′′(a)/8− C |y − a|

u(y) − c
� −u′′(a)

8

2+ C |y − a|
u′′(a)(y − a)2

− C |y − a|
(2β/9)(y − a)2

� −1+ C0|y − a|
4(y − a)2

.

Now we take δ0 = min(δ1,C
−1
0 ) > 0. For 0 < δ � δ0, we have that

−
∫
[a−δ,a+δ]∩[y1,y2]

u′′ − β

u − c
|φ|2 dy �

∫
[a−δ,a+δ]∩[y1,y2]

1+ C0|y − a|
4(y − a)2

|φ|2 dy
(3.5)

�
∫
[a−δ,a+δ]∩[y1,y2]

1+ δ−1|y − a|
4(y − a)2

|φ|2 dy �
∥∥φ′∥∥2

L2([a−δ,a+δ]∩[y1,y2]) ,

which implies (3.3). Here we used Lemma 3.1 in the last step.
Next, we assume (iii). In this case, u′(a) = 0. Let β̃ = u′′(a) > 0. Then β̃ � β.

Let δ1 ∈ (0,min(y2 − a, a − y1)) be small enough such that u′′(y) >
u′′(a)
2 > 0

and |u(y) − umin| � 1/2 for y ∈ [a − δ1, a + δ1]. Then 0 < u(y) − c < 1 for
y ∈ [a − δ1, a + δ1] and c ∈ (umin − 1/2, umin). Now we assume 0 < δ � δ1.
Direct computation implies

∫ a+δ

a−δ

u′′ − β̃

u − c
|φ|2 dy =

∫ a+δ

a−δ

u′′ − β̃

u′ |φ|2d(ln(u − c))

=
(
u′′ − β̃

u′ |φ|2(ln(u − c))

) ∣∣a+δ

a−δ
−

∫ a+δ

a−δ

ln(u − c)

(
u′′ − β̃

u′ |φ|2
)′

dy

= Ic,δ(φ) + I Ic,δ(φ).
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Since β̃ − u′′(a) = 0, it follows from the proof of Lemma 3.7 in [46] that u′′−β̃
u′ ∈

H1(a−δ1, a+δ1). By interpolation,wehave‖φ‖L∞(a−δ,a+δ) � Cδ‖φ‖L2(a−δ,a+δ)+
‖φ′‖L2(a−δ,a+δ), and thus that

∣∣∣∣
(
u′′ − β̃

u′ |φ|2
)

(a + δ) −
(
u′′ − β̃

u′ |φ|2
)

(a − δ)

∣∣∣∣
� C

∥∥∥∥∥
(
u′′ − β̃

u′ |φ|2
)′∥∥∥∥∥

L2(a−δ,a+δ)

δ
1
2

�C

∥∥∥∥∥
(
u′′ − β̃

u′

)′
|φ|2 +

(
u′′ − β̃

u′

)
2φφ′

∥∥∥∥∥
L2(a−δ,a+δ)

δ
1
2

�C
(
‖φ‖2L∞(a−δ,a+δ) + ‖φ‖L∞(a−δ,a+δ)‖φ′‖L2(a−δ,a+δ)

)
δ
1
2

�(Cδ‖φ‖2L2(a−δ,a+δ)
+ C‖φ′‖2L2(a−δ,a+δ)

)δ
1
2

and
∣∣∣( u′′−β̃

u′ |φ|2
)

(a − δ)

∣∣∣ � C‖φ‖2L∞(a−δ,a+δ) � Cδ‖φ‖2L2(a−δ,a+δ)

+ C‖φ′‖2
L2(a−δ,a+δ)

. Then

Ic,δ(φ) =
(
u′′ − β̃

u′ |φ|2
) ∣∣a+δ

a−δ
ln(u(a + δ) − c) +

(
u′′ − β̃

u′ |φ|2
)
|a−δ ln(u − c)

∣∣a+δ

a−δ

�(Cδ‖φ‖2L2(a−δ,a+δ)
+ C‖φ′‖2L2(a−δ,a+δ)

)(δ
1
2 | ln(u(a + δ) − c)| + | ln(u − c)

∣∣a+δ

a−δ
|).

Note that C ′(y − a)2 � |u(y) − u(a)| � C ′′(y − a)2 for y ∈ [a − δ, a + δ]. Then
| ln(u(y) − c)| = − ln(u(y) − c) � − ln(u(y) − u(a)) � − ln(C ′(y − a)2) and
| ln(u(a + δ) − c)| � − ln(C ′δ2) � C(| ln δ| + 1) for |c − umin| < 1/2 and y ∈
[a−δ, a+δ]. Let u+ = max(u(a+δ), u(a−δ)) and u− = min(u(a+δ), u(a−δ)).
Then u+ � u− > u(a), and

| ln(u − c)
∣∣a+δ

a−δ
| = ln

u+ − c

u− − c
� ln

u+ − u(a)

u− − u(a)
=

∣∣∣∣ln u(a + δ) − u(a)

u(a − δ) − u(a)

∣∣∣∣
for c < umin = u(a). Thus,

|Ic,δ(φ)| � (Cδ‖φ‖2L2(a−δ,a+δ)
+ C‖φ′‖2L2(a−δ,a+δ)

)�(δ) (3.6)

for c ∈ (umin − 1/2, umin), where

�(δ) = δ
1
2 (| ln δ| + 1) +

∣∣∣∣ln u(a + δ) − u(a)

u(a − δ) − u(a)

∣∣∣∣ .
Note that

lim
δ→0+

∣∣∣∣ln u(a + δ) − u(a)

u(a − δ) − u(a)

∣∣∣∣ = lim
δ→0+

∣∣∣∣ln u′′(ξa+δ)

u′′(ξa−δ)

∣∣∣∣ = 0,

where ξa+δ ∈ (a, a + δ) and ξa−δ ∈ (a − δ, a). Therefore limδ→0+ �(δ) = 0.
Next, we claim that ln(u − c), c ∈ (umin − 1/2, umin), is uniformly bounded

in L p(a − δ, a + δ) for 1 < p < ∞. The proof is similar as that in Lemma 3.7
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of [46]. Note that | ln(u(y) − c)| � − ln(C ′(y − a)2) for |c − umin| < 1/2 and
y ∈ [a − δ, a + δ]. Therefore,

∫ a+δ

a−δ

| ln(u − c)|p dy �C
∫ a+δ

a−δ

(| ln(y − a)2|p + 1) dy

� C
∫ δ

−δ

(| ln |z|2|p + 1) dz � C.

Now, we consider I Ic,δ(φ).

|I Ic,δ(φ)| �(2δ)
1
4 ‖ ln(u − c)‖L4(a−δ,a+δ)

∥∥∥∥∥
(
u′′ − β

u′ |φ|2
)′∥∥∥∥∥

L2(a−δ,a+δ)

(3.7)

�(Cδ‖φ‖2L2(a−δ,a+δ)
+ C‖φ′‖2L2(a−δ,a+δ)

)δ
1
4 .

Combining (3.6) and (3.7), we get for c ∈ (umin − 1/2, umin),∣∣∣∣
∫ a+δ

a−δ

u′′ − β̃

u − c
|φ|2 dy

∣∣∣∣ �(Cδ‖φ‖2L2(a−δ,a+δ)
+ C1‖φ′‖2L2(a−δ,a+δ)

)(δ
1
4 + �(δ)).

Since limδ→0+ �(δ) = 0, we have limδ→0+(δ
1
4 + �(δ)) = 0, and there exists

δ0 ∈ (0, δ1) such that C1(δ
1
4 + �(δ)) < 1. Then for 0 < δ � δ0 and c ∈

(umin − 1/2, umin), we have
∫
[a−δ,a+δ]∩[y1,y2]

u′′ − β

u − c
|φ|2 dy �

∫
[a−δ,a+δ]∩[y1,y2]

u′′ − β̃

u − c
|φ|2 dy

� − (Cδ‖φ‖2L2(a−δ,a+δ)
+ C1‖φ′‖2L2(a−δ,a+δ)

)(δ
1
4 + �(δ))

� − Cδ‖φ‖2L2(a−δ,a+δ)
(δ

1
4 + �(δ)) − ‖φ′‖2L2(a−δ,a+δ)

,

which implies (3.4) since [a − δ, a + δ] ∩ [y1, y2] = [a − δ, a + δ]. On the other
hand, for 0 < δ � δ0 and c � umin − 1/2, we have that

∫
[a−δ,a+δ]∩[y1,y2]

u′′ − β

u − c
|φ|2 dy �

∫
[a−δ,a+δ]∩[y1,y2]

u′′ − β̃

u − c
|φ|2 dy

� − 2
∫
[a−δ,a+δ]∩[y1,y2]

|u′′ − β̃||φ|2 dy � −C‖φ‖2L2(a−δ,a+δ)
,

which implies (3.4). This completes the proof. ��
Now, we are ready to prove Theorem 2.9 (1)–(2).

Proof of Theorem 2.9 (1)–(2). Wefirst give the proof of (1), and (2) can be proved
similarly. Consider 1 � n � mβ . It suffices to show that limc→u−min

λmβ (c) = −∞.
Let

{a ∈ (y1, y2) : u = umin, u
′′(a) − β < 0} = {a1, · · · , amβ }, (3.8)
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and

η(x) =
{

μ exp
( −1
1−x2

)
, x ∈ (−1, 1),

0, x /∈ (−1, 1),
(3.9)

where μ > 0 is a constant such that
∫ 1
−1 η(x)2 dx = 1. Then η ∈ C∞

0 (R). Define

ϕi (y) = δ
− 1

2
0 η

(
y − ai

δ0

)
, y ∈ [y1, y2],

where 1 � i � mβ , and δ0 > 0 is small enough such that (ai − δ0, ai + δ0)∩ (a j −
δ0, a j+δ0) = ∅ for i �= j andu′′(y)−β < 0 for all y ∈ ∪1�i�mβ

(ai−δ0, ai+δ0) ⊂
(y1, y2). Then ‖ϕi‖L2(y1,y2) = 1 and supp (ϕi ) = (ai −δ0, ai +δ0). Thus, ϕi⊥ϕ j in
the L2 sense for i �= j . Let Vmβ = span{ϕ1, · · · , ϕmβ }. Then Vmβ ⊂ H1

0 (y1, y2).

By (2.7), there exist bi,c ∈ R, i = 1, · · · ,mβ , with
∑mβ

i=1 |bi,c|2 = 1 such that
ϕc = ∑mβ

i=1 bi,cϕi ∈ Vmβ with ‖ϕc‖2L2 = 1, and

λmβ (c) � sup
‖φ‖L2=1,φ∈Vmβ

∫ y2

y1

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy

=
∫ y2

y1

(
|ϕ′

c|2 + u′′ − β

u − c
|ϕc|2

)
dy

=
mβ∑
i=1

|bi,c|2
∫ ai+δ0

ai−δ0

(
|ϕ′

i |2 + u′′ − β

u − c
|ϕi |2

)
dy

� max
1�i�mβ

∫ ai+δ0

ai−δ0

(
|ϕ′

i |2 + u′′ − β

u − c
|ϕi |2

)
dy → −∞ as c → u−

min.

(3.10)

Next, we prove (ii). Let δ1 > 0 be a sufficiently small constant such that
(a − δ1, a + δ1) ⊂ [y1, y2] for a ∈ {u = umin} \ {y1, y2}, and |a − b| > 2δ1 for
a, b ∈ {u = umin} and a �= b. There are four cases for zeros of a ∈ {u = umin} as
follows:

Case 1. a ∈ {y1, y2} and u′(a) �= 0;
Case 2. a ∈ {y1, y2}, u′(a) = 0 (thus β � 9

8κ+ � 9u′′(a)/8);
Case 3. a ∈ (y1, y2) and β � u′′(a);
Case 4. a ∈ (y1, y2) and u′′(a) < β � 9u′′(a)/8.
Then we divide our proof into four cases as above. In fact, for Cases 1–2, by

Lemma 3.2 (1) there exists δ(a) > 0 such that for 0 < δ � δ(a), c < umin and
φ ∈ H1

0 ,

∫
[a−δ,a+δ]∩[y1,y2]

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy � 0. (3.11)
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For Case 3, by Lemma 3.2 (2) there exists δ(a) > 0 such that for 0 < δ � δ(a),
c < umin and φ ∈ H1

0 ,∫
[a−δ,a+δ]∩[y1,y2]

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy � −C(δ, a)

∫
[a−δ,a+δ]∩[y1,y2]

|φ|2 dy.
(3.12)

Here C(δ, a) depends only on u, a, δ. Moreover, if φ(a) = 0, then by Lemma 3.2
(1), ∫

[a−δ,a+δ]∩[y1,y2]

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy � 0. (3.13)

For Case 4, we have a ∈ {a1, · · · , amβ }. By Lemma 3.2 (1), there exists δ(a) > 0
such that for 0 < δ � δ(a), c < umin, φ ∈ H1

0 and φ(a) = 0,
∫
[a−δ,a+δ]∩[y1,y2]

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy � 0. (3.14)

Now let δ0 = min({δ(a) : a ∈ {u = umin}} ∪ {δ1}). Define

(q1(y), q
0
1 (y)) =

{
(
u′′(y)−β
u(y)−c , 1) y ∈ [y1, y2] \ ∪a∈{u=umin}(a − δ0, a + δ0),

(0, 0) y ∈ ∪a∈{u=umin} ((a − δ0, a + δ0) ∩ [y1, y2]) ,

(q2(y), q
0
2 (y)) = (

u′′(y) − β

u(y) − c
− q1(y), 1− q01 (y)) y ∈ [y1, y2].

Then there exists C0 > 0 such that for c < umin,

|q1(y)| � C0 for y ∈ [y1, y2].
For φ ∈ H1

0 and ‖φ‖L2 = 1,
∫ y2

y1

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy

=
∫ y2

y1

(
q01 |φ′|2 + q1|φ|2

)
dy +

∫ y2

y1

(
q02 |φ′|2 + q2|φ|2

)
dy = Ic(φ) + I Ic(φ).

Let us first consider Ic(φ). For φ ∈ H1
0 and ‖φ‖L2 = 1, we have

Ic(φ) �
∫ y2

y1

(
−C0|φ|2

)
dy � −C0 (3.15)

for c < umin. We proceed to consider I Ic(φ).

I Ic(φ) =
∑

a∈{u=umin}

∫
[a−δ0,a+δ0]∩[y1,y2]

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy (3.16)

=
( ∑
Case 1

+ · · · +
∑
Case 4

) ∫
[a−δ0,a+δ0]∩[y1,y2]

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy.
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Recall thata1, · · · , amβ are defined in (3.8). For any (mβ+1)-dimensional subspace
V = span{ψ1, · · · , ψmβ+1} in H1

0 (y1, y2), there exists 0 �= (ξ1, · · · , ξmβ+1) ∈
Rmβ+1 such that ξ1ψ1(ai ) + · · · + ξmβ+1ψmβ+1(ai ) = 0, i = 1, · · · ,mβ. Define

ψ̃ = ξ1ψ1 + · · · + ξmβ+1ψmβ+1. Then ψ̃(ai ) = 0, i = 1, · · · ,mβ . We normalize

ψ̃ such that ‖ψ̃‖L2(y1,y2) = 1. Then by (3.11), (3.12), (3.14) and (3.16), we have
that

I Ic(ψ̃) �
∑
Case 3

∫
[a−δ0,a+δ0]∩[y1,y2]

(
|ψ̃ ′|2 + u′′ − β

u − c
|ψ̃ |2

)
dy

� −
∑
Case 3

C(δ0, a)

∫
[a−δ0,a+δ0]∩[y1,y2]

|ψ̃ |2 dy � − max
Case 3

C(δ0, a).

This, along with (2.7) and (3.15), yields that infc∈(−∞,umin) λmβ+1(c) � − max
Case 3

C(δ0, a) − C0. This proves (ii).
Finally, we prove (iii). Let q1, q2, Ic(φ), I Ic(φ) and C0 be defined as in (ii).

Let μ1([a, b]) be the principal eigenvalue of
−φ′′ = λφ, φ(a) = φ(b) = 0.

Then we have μ1([a, b]) = |π/(b − a)|2, and
∫ b

a
|φ′|2 dy � μ1([a, b])

∫ b

a
|φ|2 dy for φ ∈ H1

0 (a, b). (3.17)

Let δ2 = π/C
1
2
0 . Then we have μ1([a, b]) � C0 for 0 < b − a � δ2. Let

M = ({nδ2 : n ∈ Z} ∪ {a + b : a ∈ {u = umin}, b ∈ {−δ0, 0, δ0}} ∪ {y1, y2}) ∩ [y1, y2].
Then M is a finite set, and we can write its elements in the increasing order

M = {a′
0, · · · , a′

Nβ
}, y1 = a′

0 < · · · < a′
Nβ

= y2.

Then 0 < a′
k+1 − a′

k � δ2 and μ1([a′
k, a

′
k+1]) � C0 for 0 � k < Nβ . Let

M1 = {k ∈ Z : 0 � k < Nβ, [a′
k, a

′
k+1] ∩ (a − δ0, a + δ0) = ∅, ∀ a ∈ {u = umin}}.

Then we have [y1, y2] \ (∪a∈{u=umin}(a − δ0, a + δ0)) = ∪k∈M1 [a′
k, a

′
k+1].

For any Nβ -dimensional subspace V = span{ψ1, · · · , ψNβ } in H1
0 (y1, y2),

there exists 0 �= (ξ1, · · · , ξNβ ) ∈ RNβ such that ξ1ψ1(a′
i ) + · · · + ξNβ ψNβ (a′

i ) =
0, i = 1, · · · , Nβ − 1. Define ψ̃ = ξ1ψ1 + · · · + ξNβ ψNβ . Then ψ̃(a′

i ) = 0, i =
1, · · · , Nβ−1.We normalize ψ̃ such that ‖ψ̃‖L2(y1,y2) = 1. Since ψ̃ ∈ H1

0 (y1, y2),

we also have ψ̃(a′
0) = ψ̃(y1) = 0, ψ̃(a′

Nβ
) = ψ̃(y2) = 0, and thus ψ̃(a′

i ) = 0 for

i = 0, · · · , Nβ, i.e. ψ̃ |M = 0. By (3.17), we have
∫ a′k+1

a′k
|ψ̃ ′|2 dy � μ1([a′

k , a
′
k+1])

∫ a′k+1

a′k
|ψ̃ |2 dy � C0

∫ a′k+1

a′k
|ψ̃ |2 dy, k = 0, · · · , Nβ − 1.

(3.18)
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First, we consider Ic(ψ̃). By (3.18), we have that

Ic(ψ̃) �
∫
[y1,y2]\(∪a∈{u=umin}(a−δ0,a+δ0))

(
|ψ̃ ′|2 − C0|ψ̃ |2

)
dy (3.19)

=
∑
k∈M1

∫ a′k+1

a′k

(
|ψ̃ ′|2 − C0|ψ̃ |2

)
dy � 0.

Next, we consider I Ic(ψ̃). For a ∈ {u = umin},we have a ∈ M and ψ̃(a) = 0.
Then by (3.11), (3.13), (3.14) and (3.16), we have I Ic(ψ̃) � 0. This, along with
(2.7) and (3.19), yields that infc∈(−∞,umin) λNβ (c) � 0. This proves (iii). ��

3.2. Infinite number for β /∈ [ 98κ−, 9
8κ+]

In this subsection, we prove Theorem 2.9 (3)–(4). The proof is based on con-
struction of suitable test functions such that the energy in (2.7) converges to −∞
as c → u−

min or c → u+
max.

Proof of Theorem 2.9 (3)–(4). We only prove Theorem 2.9 (3), since (4) can be
proved similarly. Let β > 9

8κ+. Then there exists a ∈ [y1, y2] such that β/u′′(a) >

9/8, u′(a) = 0 and u(a) = umin. If a ∈ [y1, y2), our analysis is completely
on [a, a + δ] ⊂ [y1, y2) for δ > 0 small enough. If a = y2, the analysis is
only on [a − δ, a] and the proof is similar as a ∈ [y1, y2). Now we assume that
a = 0 ∈ [y1, y2). Then u′′(0) > 0 and there exists ε0 > 0 such that u′′(z) > 0 and

2(u′′(y) − β)

u′′(z)
< − 1

4− ε0

for y, z ∈ [0, δ] ⊂ [y1, y2) and δ > 0 small enough. Let ν0 = minz∈[0,δ]{u′′(z)} >

0 and J (x) = η(2x − 1), x ∈ R, where η is defined in (3.9). Define

ϕi,R(y) =
{
y

1
2 J

(
ln y
R + i + 1

)
, y ∈ (0, y2],

0, y ∈ [y1, 0],
where i = 1, · · · , n, and R is large enough such that e−R < δ. Then ϕi,R ∈
H1
0 (y1, y2) and suppϕi,R = [e−(i+1)R, e−i R], i = 1, · · · , n. Thus, ϕi,R ⊥ ϕ j,R in

the L2 sense for i �= j . Note that u′′(y) − β < 0 for y ∈ [0, δ]. For 1 � i � n, we
define

ϕ̃i,R = 1

‖ϕi,R‖L2
ϕi,R, and Ṽn,R = span{ϕ̃1,R, · · · , ϕ̃n,R}.

Choose R > 0 such that 2(umin − c) = ε0ν0e−2(n+1)R

8 . Then c → u−
min ⇔ R → ∞.

We shall show that for 1 � i � n,

lim
c→u−min

∫ y2

y1

(
|ϕ̃′

i,R |2 + u′′ − β

u − c
|ϕ̃i,R |2

)
dy = −∞. (3.20)
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Assume that (3.20) is true. Similar to (3.10), there exist di,c ∈ R, i = 1, · · · , n,

with
∑n

i=1 |di,c|2 = 1 such that

λn(c) �
n∑

i=1

|di,c|2
∫ y2

y1

(
|ϕ̃′

i,R |2 + u′′ − β

u − c
|ϕ̃i,R |2

)
dy → −∞ as c → u−

min.

(3.21)

Now we prove (3.20). Direct computation gives that

u′′(y) − β

u(y) − c
= u′′(y) − β

u(y) − umin + umin − c
= 2(u′′(y) − β)

u′′(ξy)y2 + 2(umin − c)
<

2(u′′(y) − β)(
u′′(ξy) + ε0u′′(ξy )

8

)
y2

<
− 1

4−ε0
u′′(ξy)(

u′′(ξy) + ε0u′′(ξy )
8

)
y2

= − 1

(4− ε0)
(
1+ ε0

8
)
y2

= − 1

(4− ε1)y2

for y ∈ [e−(i+1)R, e−i R] and 2(umin − c) = ε0ν0e−2(n+1)R

8 , where ξy ∈ (0, y) and

ε1 = ε0
2 + ε20

8 . Then

∫ y2

y1

(
|ϕ′

i,R |2 + u′′ − β

u − c
|ϕi,R |2

)
dy =

∫ e−i R

e−(i+1)R

(
|ϕ′

i,R |2 + u′′ − β

u − c
|ϕi,R |2

)
dy

(3.22)

<

∫ e−i R

e−(i+1)R

(
|ϕ′

i,R |2 − 1

(4− ε1)y2
|ϕi,R |2

)
dy.

Note that, for y ∈ [e−(i+1)R, e−i R],

|ϕ′
i,R(y)|2 =

∣∣∣∣J (x)
−(2x − 1)

4x2(x − 1)2
1

Ry
y

1
2 + 1

2
y−

1
2 J (x)

∣∣∣∣
2

=J (x)2
(2x − 1)2

16x4(x − 1)4
1

R2y
− J (x)2

2x − 1

4x2(x − 1)2
1

Ry
+ 1

4y
J (x)2,

where x = ln y
R + i + 1. Since

∣∣∣J (x)2 (2x−1)2

16x4(x−1)4

∣∣∣ � C and
∣∣∣J (x)2 2x−1

4x2(x−1)2

∣∣∣ � C

for x ∈ [0, 1], we get that∣∣∣∣∣
∫ e−i R

e−(i+1)R

(
J (x)2

(2x − 1)2

16x4(x − 1)4
1

R2y
− J (x)2

2x − 1

4x2(x − 1)2
1

Ry

)
dy

∣∣∣∣∣
� C

R2

∫ e−i R

e−(i+1)R

1

y
dy + C

R

∫ e−i R

e−(i+1)R

1

y
dy = C

R
+ C � C.

Then we infer from (3.22) that∫ y2

y1

(
|ϕ′

i,R |2 + u′′ − β

u − c
|ϕi,R |2

)
dy

� C +
∫ e−i R

e−(i+1)R

(
1

4y
J (x)2 − 1

(4− ε1)y2
|ϕi,R |2

)
dy (3.23)
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=C +
∫ e−i R

e−(i+1)R

−ε1

4(4− ε1)
J (x)2

1

y
dy = C − ε1R

8(4− ε1)
< 0

when R is large enough. Direct computation gives that

‖ϕi,R‖2L2 =
∫ e−i R

e−(i+1)R
y J

(
ln y

R
+ i + 1

)2

dy =
∫ 1

0
Re2R(x−i−1) J (x)2 dx

(3.24)

�CR
∫ 1

0
e2R(x−i−1) dx = C(e−2i R − e−2(i+1)R) � Ce−2i R .

Combining (3.23) and (3.24), we have that
∫ y2

y1

(
|ϕ̃′

i,R |2 + u′′ − β

u − c
|ϕ̃i,R |2

)
dy = 1

‖ϕi,R‖2L2

∫ y2

y1

(
|ϕ′

i,R |2 + u′′ − β

u − c
|ϕi,R |2

)
dy

�
(
C − ε1R

8(4− ε1)

)
1

‖ϕi,R‖2L2

�
(
C − ε1R

8(4− ε1)

)
e2i R

C
→ −∞

as R → ∞. This proves (3.20). ��

4. Rule out oscillation of the n-th eigenvalue of Rayleigh-Kuo BVP

Let β ∈ [ 98κ−, 9
8κ+]. By Theorem 2.9 (1)–(2), λn(c) = −α2 has only finite

number of solutions c outside the range of u for 1 � n � mβ , and no solutions
exist for n � Nβ . It is non-trivial to study whether the number of solutions is
finite for mβ < n < Nβ . Recall that Nβ is obtained in Theorem 2.9 such that

inf
c∈(−∞,umin)

λNβ (c) � 0 for 0 < β � 9
8κ+, inf

c∈(umax,∞)
λNβ (c) � 0 for 9

8κ− � β < 0.

The main difficulty is that λn(c) might oscillate when c is close to umin or umax. In
this section, we rule out the oscillation in the following three cases:

4.1. Rule out oscillation under the spectral assumption

We rule out the oscillation of λn(c) under the spectral assumption (E±), which
is stated in Theorem 2.11 (1)–(2). To this end, we first consider the compactness
near a class of singular points.

Lemma 4.1. Let c ∈ Ran(u), y0 ∈ u−1{c}∩ (y1, y2), u′(y0) = 0 and δ > 0 so that
(u′′(y0)−β)(u′′(y)−β) > 0 on [y0 − δ, y0 + δ] ⊂ [y1, y2] and [y0 − δ, y0 + δ] ∩
u−1{c} = {y0}. Assume that β/u′′(y0) < 9/8. Let φn, ωn ∈ H1(y0 − δ, y0 + δ)

and cn ∈ C so that cin > 0, cn → c, φn ⇀ 0, ωn → 0 in H1(y0 − δ, y0 + δ) and

(u − cn)(φ
′′
n − α2φn) − (u′′ − β)φn = ωn

holds on [y0 − δ, y0 + δ]. Then φn → 0 in H1(y0 − δ, y0 + δ).
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Here cin = Im(cn). The proof of Lemma 4.1 is the same as that of Lemma 3.4
in [46], where we only used the condition β/u′′(y0) < 9/8 rather than the stronger
condition:

(H) u ∈ H4(y1, y2), u′′(yc) �= 0, β/u′′(yc) < 9/8 at critical points u′(yc) = 0.

Since otherwise, we can construct ũ such that ũ ∈ H4(y1, y2), ũ|[y0−δ,y0+δ] =
u|[y0−δ,y0+δ] and (̃u′)−1{0} = {y0}. Recall that all the conditions and conclusions
depend only on u|[y0−δ,y0+δ]. Then we prove the uniform H1 bound for the eigen-
functions. More precisely, we have the following result:

Proposition 4.2. Let 0 < β < 9
8κ+. Assume that mβ < n < Nβ , {ck} ⊂

(−∞, umin), ck → u−
min and −λn(ck) = α2 > 0, where mβ and Nβ are given

in (1.15) and Theorem 2.9, and λn(ck) is the n-th eigenvalue of

−ψ ′′
k + u′′ − β

u − ck
ψk = λn(ck)ψk, ψk(y1) = ψk(y2) = 0 (4.1)

with the L2 normalized eigenfunction ψk . Then

‖ψk‖H1(y1,y2) � C, k � 1. (4.2)

Proof. Suppose that (4.2) is not true. Up to a subsequence, we can assume that
‖ψk‖H1(y1,y2) � k. Let ψ̂k = ψk‖ψk‖H1(y1,y2)

on [y1, y2]. Then −ψ̂k
′′ + u′′−β

u−ck
ψ̂k =

−α2ψ̂k on [y1, y2], ‖ψ̂k‖H1(y1,y2) = 1 and ‖ψ̂k‖L2(y1,y2) = 1/‖ψk‖H1(y1,y2) �
1/k → 0. Thus, ˆψk ⇀0 in H1(y1, y2).

Similar to Lemma 3.1 in [46], we have ψ̂k → 0 in H1((a−δ, a+δ)∩[y1, y2])
for a ∈ {u = umin} ∩ {u′ �= 0}. Similar to Lemma 3.5 and Remark 3.6 in [46], we
have ψ̂k → 0 in H1((a−δ, a+δ)∩[y1, y2]) for a ∈ {u = umin}∩{y1, y2}∩{u′ =
0} ∩ {u′′ �= β}. Similar to Lemma 3.7 and Remark 3.8 in [46], we have ψ̂k → 0
in H1((a − δ, a + δ) ∩ [y1, y2]) for a ∈ {u = umin} ∩ {u′ = 0} ∩ {u′′ = β}. The
main difference is that ck ∈ R rather than Im(ck) > 0, and we can overcome this
difficulty by perturbation of ck as in the next case.

If a ∈ {u = umin}∩ (y1, y2)∩{u′′ �= β}, then 0 < β < 9
8κ+ � 9u′′(a)/8. Take

δ ∈ (0,min(y2 − a, a − y1)) small enough so that (u′′(a) − β)(u′′(y) − β) > 0
on [a − δ, a + δ] ⊂ [y1, y2] and [a − δ, a + δ] ∩ {u = umin} = {a}. Noting that
ψ̂k,

u′′−β
u−ck

∈ H1(a−δ, a+δ), we have ψ̂k
′′−α2ψ̂k = u′′−β

u−ck
ψ̂k ∈ H1(a−δ, a+δ),

and there exists εk > 0 such that εk(1 + ‖ψ̂k
′′ − α2ψ̂k‖H1(a−δ,a+δ)) → 0. Let

c̃k = ck + iεk and ωk = −iεk(ψ̂k
′′ −α2ψ̂k). Then we have (u− c̃k)(ψ̂ ′′

k −α2ψ̂k)−
(u′′ −β)ψ̂k = ωk, ‖ωk‖H1(a−δ,a+δ) → 0, c̃k → umin, Im(̃ck) > 0 and ˆψk ⇀0 in

H1(a−δ, a+δ). By Lemma 4.1, we have ψ̂k → 0 in H1((a−δ, a+δ)∩[y1, y2]).
Note that ψ̂k → 0 inC2

loc([y1, y2]\{u = umin}). Therefore, ψ̂k → 0 in H1(y1, y2),
which contradicts ‖ψ̂k‖H1(y1,y2) = 1. Thus, (4.2) is true.
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Following Definition 3.10 in [46], we call umin (or umax) to be an embedding
eigenvalue of Rα,β if there exists a nontrivial ψ ∈ H1

0 (y1, y2) such that for any
ϕ ∈ H1

0 (y1, y2) and supp ϕ ⊂ (y1, y2) \ {y ∈ (y1, y2) : u(y) = umin, u′′(y) �= β},
∫ y2

y1
(ψ ′ϕ′ + α2ψϕ) dy + p.v.

∫ y2

y1

(u′′ − β)ψϕ

u − umin
dy = 0.

Equivalently, umin (or umax) is an embedding eigenvalue of the linearized operator
of (1.1) (in velocity form) defined on L2 × L2. In fact, v = (ψ ′,−iαψ) �= 0 is the
corresponding eigenfunction.

We are now in a position to prove Theorem 2.11 (1)–(2).

Proof of Theorem 2.11 (1)–(2). First, we prove Theorem 2.11 (1). Suppose
�(σd(Rα,β)∩ (−∞, umin)) = ∞. Then by Theorem 2.9, there existmβ < n < Nβ

and {ck} ⊂ (−∞, umin) with ck → u−
min such that λn(ck) = −α2 is the n-

th eigenvalue of (4.1) with the L2 normalized eigenfunction ψk . By the defini-
tion of Mβ we have α2 = −λn(ck) � Mβ , which implies the second state-
ment of Theorem 2.11 (1). To prove the first statement, we now assume that
0 < α2 � Mβ and 0 < β < 9

8κ+. By Proposition 4.2, up to a subsequence,
there exists ψ0 ∈ H1

0 (y1, y2) such that ψk ⇀ ψ0 in H1
0 (y1, y2). In a manner

similar to (3.28) in [46],

lim
k→∞

∫ a+δ

a−δ

(u′′ − β)ψkϕ

u − ck
dy = p.v.

∫ a+δ

a−δ

(u′′ − β)ψ0ϕ

u − umin
dy

for any a ∈ {u = umin} ∩ (y1, y2) ∩ {u′′ = β} and ϕ ∈ H1
0 (a − δ, a + δ). Since

(u′′−β)ψkϕ
u−ck

→ (u′′−β)ψ0ϕ
u−umin

in C0
loc((y1, y2) \ {u = umin}), taking limits in

∫ y2

y1
(ψ ′

kϕ
′ + α2ψkϕ) + (u′′ − β)ψkϕ

u − ck
dy = 0

for any ϕ ∈ H1
0 (y1, y2) and supp ϕ ⊂ (y1, y2) \ {y ∈ (y1, y2) : u(y) =

umin, u′′(y) �= β}, we get
∫ y2

y1
(ψ ′

0ϕ
′ + α2ψ0ϕ) dy + p.v.

∫ y2

y1

(u′′ − β)ψ0ϕ

u − umin
dy = 0.

If ψ0 is nontrivial, umin is an embedding eigenvalue ofRα,β , which is a contradic-
tion.Therefore,ψk ⇀ ψ0 ≡ 0 inH1(y1, y2),which contradicts that‖ψk‖L2(y1,y2) =
1, k � 1. Thus, �(σd(Rα,β)∩ (−∞, umin)) < ∞. Theorem 2.11 (2) can be proved
similarly. ��

4.2. Rule out oscillation under “good” endpoints assumption

We rule out the oscillation of λn(c) under the “good” endpoints assumption
(i.e. one of the conditions (i)–(iii) in Theorem 2.2). The statement is given in
Theorem 2.12. To this end, we need the following two lemma:
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Lemma 4.3. Let u ∈ C2([y1, y2]), u(y1) = umin and u′(y1) �= 0. For fixed γ ∈
(0, 1/2], there exist constants C > 0 and δ ∈ (0, y2 − y1) such that if δ1 ∈
(0, δ], z = y1 + δ1, 0 < umin − c < 1, φ ∈ C2([y1, z]) and φ′′ = F, then

|φ|L∞(z) � C(δ
γ
1 |(u − c)2−γ F |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|), (4.3)

|(u − c)1−γ φ|L∞(z) + δ
γ
1 |(u − c)2−2γ φ′|L∞(z) (4.4)

�C(δ
γ
1 |(u − c)3−2γ F |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|),

|(u − c)γ−1φ|L∞(z) (4.5)

�C(|(u − c)γ+1F |L∞(z) + |(umin − c)γ−1φ(y1)| + |φ(z)| + |φ′(z)|),
|(u − c)−1φ|L∞(z) � C(δ

γ
1 |(u − c)1−γ F |L∞(z) + |(umin − c)−1φ(y1)| + |φ′(z)|),

(4.6)

where | f |L∞(z) := supy∈[y1,z] | f (y)|.
Proof. Since 0 < umin−c < 1 and−C � umin � u(y) � C,we have 0 < u(y)−
c � C for y ∈ [y1, z]. Let Aμ = |(u−c)μF |L∞(z) and Bμ = |(u−c)μφ′|L∞(z) for

μ ∈ R. Let δ > 0 be small enough such that u′(y) >
u′(y1)

2 > 0 for y ∈ [y1, z] ⊂
[y1, y1 + δ] ⊂ [y1, y2]. Then

∫ z

y
(u(s) − c)−μ ds � 2

u′(y1)

∫ z

y
u′(s)(u(s) − c)−μ ds

= 2(u(s) − c)1−μ|s=y
s=z

u′(y1)(μ − 1)
� 2(u(y) − c)1−μ

u′(y1)(μ − 1)

for fixed μ > 1 and y ∈ [y1, z], and thus

∫ z

y
(u(s) − c)−μ ds � 2(u(y) − c)1−μ

u′(y1)(μ − 1)
� C(u(y) − c)1−μ. (4.7)

Similarly, for fixed μ < 1 and y ∈ [y1, z], we have that
∫ y

y1
(u(s) − c)−μ ds � 2(u(s) − c)1−μ|s=y

s=y1

u′(y1)(1− μ)
� C(u(y) − c)1−μ. (4.8)

Since u(s) − c � u(s) − umin � u′(y1)(s − y1)/2 and u(s) − c � u(y) − c for
y1 � y � s � z, we have for fixed μ � 1− γ,

∫ z

y
(u(s) − c)−μ ds �

∫ z

y
(u′(y1)(s − y1)/2)

γ−1(u(y) − c)1−γ−μ ds (4.9)

�C(u(y) − c)1−γ−μ

∫ z

y
(s − y1)

γ−1 ds � C(u(y) − c)1−γ−μ(z − y1)
γ

=Cδ
γ
1 (u(y) − c)1−γ−μ.

For fixed μ > 1, using (4.7) and the definition of Aμ, we have, for y ∈ [y1, z],
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|φ′(y) − φ′(z)| �
∫ z

y
|φ′′(s)| ds =

∫ z

y
|F(s)| ds �

∫ z

y
(u(s) − c)−μAμ ds

� C(u(y) − c)1−μAμ,

and

|φ′(y)| � |φ′(z)| + C(u(y) − c)1−μAμ,

|(u(y) − c)μ−1φ′(y)| � (u(y) − c)μ−1|φ′(z)| + CAμ � C |φ′(z)| + CAμ.

Then by the definition of Bμ, we have

Bμ−1 = sup
y∈[y1,z]

|(u(y) − c)μ−1φ′(y)| � CAμ + C |φ′(z)| for fixed μ > 1.

(4.10)

Similarly, for fixed μ � 1 − γ, using (4.9) and the definition of Aμ, we have for
y ∈ [y1, z],
|φ(y) − φ(z)| �

∫ z

y
|φ′(s)| ds �

∫ z

y
(u(s) − c)−μBμ ds � Cδ

γ
1 (u(y) − c)1−γ−μBμ.

This implies

|(u − c)μ+γ−1φ|L∞(z) � Cδ
γ
1 Bμ + C |φ(z)| for fixed μ � 1− γ. (4.11)

Using (4.11) for μ = 1− γ and (4.10) for μ = 2− γ , we have

|φ|L∞(z) � Cδ
γ
1 B1−γ + C |φ(z)| � Cδ

γ
1 (A2−γ + |φ′(z)|) + C |φ(z)|,

which implies (4.3) by recalling the definition of Aμ. Using (4.11) for μ = 2− 2γ
and (4.10) for μ = 3− 2γ , we have

|(u − c)1−γ φ|L∞(z) + δ
γ
1 B2−2γ � Cδ

γ
1 B2−2γ + C |φ(z)|

� Cδ
γ
1 (A3−2γ + |φ′(z)|) + C |φ(z)|,

which implies (4.4) by recalling the definition of Aμ and Bμ.
For fixed μ < 1, using (4.8) and the definition of Aμ, we have for y ∈ [y1, z],

|φ(y) − φ(y1)| �
∫ y

y1
|φ′(s)| ds �

∫ y

y1
(u(s) − c)−μBμ ds � C(u(y) − c)1−μBμ,

and

|φ(y)| � |φ(y1)| + C(u(y) − c)1−μBμ,

|(u(y) − c)μ−1φ(y)| � (u(y) − c)μ−1|φ(y1)| + CBμ � (umin − c)μ−1|φ(y1)| + CBμ,

where we used u(y) − c � umin − c > 0 and μ − 1 < 0. Thus,

|(u − c)μ−1φ|L∞(z) � (umin − c)μ−1|φ(y1)| + CBμ for fixed μ < 1. (4.12)

Using (4.12) for μ = γ and (4.10) for μ = 1+ γ , we have

|(u − c)γ−1φ|L∞(z) � (umin − c)γ−1|φ(y1)| + CBγ

� (umin − c)γ−1|φ(y1)| + C(A1+γ + |φ′(z)|),
which implies (4.5) by recalling the definition of Aμ. Using (4.9) for μ = 1 − γ

and the definition of Aμ, we have for y ∈ [y1, z],
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|φ′(y) − φ′(z)| �
∫ z

y
|φ′′(s)|ds

=
∫ z

y
|F(s)| ds �

∫ z

y
(u(s) − c)γ−1A1−γ ds � Cδ

γ
1 A1−γ .

Then by the definition of Bμ, we have that

B0 = sup
y∈[y1,z]

|φ′(y)| � Cδ
γ
1 A1−γ + C |φ′(z)|. (4.13)

Using (4.12) for μ = 0 and (4.13), we have that

|(u − c)−1φ|L∞(z) � (umin − c)−1|φ(y1)| + CB0 � (umin − c)−1|φ(y1)|
+ C(δ

γ
1 A1−γ + |φ′(z)|),

which implies (4.6) by recalling the definition of Aμ.

Lemma 4.4. Let u ∈ C2([y1, y2]), u(y1) = umin and u′(y1) �= 0. For fixed γ ∈
(0, 1/2], there exist constants C > 0 and δ1 > 0 such that if z = y1 + δ1, 0 <

umin − c < 1, φ ∈ C2([y1, z]) and

−φ′′ + u′′ − β

u − c
φ = −α2φ − F on [y1, z], (4.14)

then the inequalities (4.3)–(4.6) are still true.

Proof. Let F̃ = u′′−β
u−c φ + α2φ + F and δ1 ∈ (0, δ] be given in Lemma 4.3. Then

φ′′ = F̃ on [y1, z]. By Lemma 4.3, (4.3)–(4.6) are still true with F replaced by F̃ .
As |u′′ −β| � C and |u−c| � C , we have |F− F̃ | � C |φ/(u−c)| for y ∈ [y1, z].
Thus, for μ ∈ R, we have that

|(u − c)μ F̃ |L∞(z) � |(u − c)μF |L∞(z) + |(u − c)μ(F − F̃)|L∞(z) (4.15)

� |(u − c)μF |L∞(z) + C |(u − c)μ−1φ|L∞(z).

Using (4.3) with F replaced by F̃ and (4.15) for μ = 2− γ , we have that

|φ|L∞(z) � C(δ
γ
1 |(u − c)2−γ F̃ |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|) (4.16)

�Cδ
γ
1 |(u − c)1−γ φ|L∞(z) + C(δ

γ
1 |(u − c)2−γ F |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|)

�C1δ
γ
1 |φ|L∞(z) + C(δ

γ
1 |(u − c)2−γ F |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|).

Using (4.4) with F replaced by F̃ and (4.15) for μ = 3− 2γ , we have that

|(u − c)1−γ φ|L∞(z) + δ
γ
1 |(u − c)2−2γ φ′|L∞(z) (4.17)

�C(δ
γ
1 |(u − c)3−2γ F̃ |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|)

�C(δ
γ
1 |(u − c)3−2γ F |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|) + Cδ

γ
1 |(u − c)2−2γ φ|L∞(z)

�C(δ
γ
1 |(u − c)3−2γ F |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|) + C1δ

γ
1 |(u − c)1−γ φ|L∞(z).
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Using (4.6) with F replaced by F̃ and (4.15) for μ = 1− γ , we have that

|(u − c)−1φ|L∞(z) � C(δ
γ
1 |(u − c)1−γ F̃ |L∞(z) + |(umin − c)−1φ(y1)| + |φ′(z)|) (4.18)

�C(δ
γ
1 |(u − c)1−γ F |L∞(z) + |(umin − c)−1φ(y1)| + |φ′(z)|) + Cδ

γ
1 |(u − c)−γ φ|L∞(z)

�C(δ
γ
1 |(u − c)1−γ F |L∞(z) + |(umin − c)−1φ(y1)| + |φ′(z)|) + C1δ

γ
1 |(u − c)−1φ|L∞(z).

Here, C1 > 0 is a constant depending only on γ, α, β, u, δ (and independent of
δ1). Taking δ1 ∈ (0, δ] small enough such that C1δ

γ
1 � 1/2 in (4.16)–(4.18), we

obtain (4.3), (4.4) and (4.6).
Note that γ > 0 and 2− γ � γ + 1. Using (4.15) for μ = γ + 1 and (4.3), we

have that

|(u − c)γ+1 F̃ |L∞(z) � |(u − c)γ+1F |L∞(z) + C |(u − c)γ φ|L∞(z) (4.19)

�|(u − c)γ+1F |L∞(z) + C |φ|L∞(z)

�|(u − c)γ+1F |L∞(z) + C(δ
γ
1 |(u − c)2−γ F |L∞(z) + |φ(z)| + δ

γ
1 |φ′(z)|)

�C(|(u − c)γ+1F |L∞(z) + |φ(z)| + |φ′(z)|).
Using (4.5) with F replaced by F̃ and (4.19), we have that

|(u − c)γ−1φ|L∞(z)

�C(|(u − c)γ+1 F̃ |L∞(z) + |(umin − c)γ−1φ(y1)| + |φ(z)| + |φ′(z)|)
�C(|(u − c)γ+1F |L∞(z) + |(umin − c)γ−1φ(y1)| + |φ(z)| + |φ′(z)|).

Thus, (4.5) is also true. ��
We are now in a position to prove Theorem 2.12.

Proof of Theorem 2.12. We only prove (1), and the proof of (2) is similar. If {u′ =
0}∩{u = umin} �= ∅, then 0 < κ+ < ∞. By Theorem 2.11 (3), �(σd(Rα,β)∩R) =
∞ for β > 9

8κ+. If {u′ = 0} ∩ {u = umin} = ∅, then {u = umin} ⊂ {y1, y2} (i.e.
u = umin can be achieved only at the endpoints). We assume that u(y1) = umin.
Then u(y2) > u(y1) and u′(y1) > 0. By taking δ ∈ (0, y2 − y1) smaller, we can
assume that u′ >

u′(y1)
2 on y ∈ [y1, y1+δ]. Letψc, c ∈ C\Ran(u), be the solution

of

−∂2yψc + u′′ − β

u − c
ψc = −α2ψc on [y1, y2], ψc(y2) = 0, ∂yψc(y2) = 1.

(4.20)

Note that for c ∈ (−∞, umin), c ∈ σd(Rα,β) if and only if ψc(y1) = 0. Suppose
that σd(Rα,β) ∩ (−∞, umin) = {ck}∞k=1. Then ck → u−

min. Note that if (iii) is true
for i = 1, then β1 � 0 and thus β �= β1 for all β > 0. So we divide the discussion
into two cases.

Case 1. β = β1 and (i) holds for i = 1.
Case 2. β = β1 and (ii) holds for i = 1; or β �= β1.
If Case 1 is true, then u′′ −β = 0 on [y1, y1+δ]. By (4.20),ψc can be extended

to an analytic function in C \ u([y1 + δ, y2]). Since umin �∈ u([y1 + δ, y2]), ψc(y1)
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has a finite number of zeros in a neighborhood of c = umin, which contradicts that
�(σd(Rα,β) ∩ (−∞, umin)) = ∞.

Now, we assume Case 2 is true. If β �= β1, define m = 0; if β = β1 and (ii) is
true, define m = m1. Then m � 0, by taking δ > 0 smaller, we can assume that

C−1|y − y1|m � |u′′(y) − β| � C |y − y1|m for y ∈ [y1, y1 + δ]. (4.21)

As |u′′(y) − β|/|y − y1|m ∈ C([y1 + δ, y2]), |u′′(y) − β| � C |y − y1|m is
also true for y ∈ [y1 + δ, y2]. Since u ∈ C1([y1, y2]), we have u(y) − umin =
u(y)−u(y1) = ∫ y

y1
u′(z) dz = (y− y1)v(y), here v(y) = ∫ 1

0 u′(y1+ s(y− y1)) ds
and v ∈ C([y1, y2]). If y ∈ (y1, y2], we have u(y) > umin and v(y) > 0. If y = y1,
we have v(y) = u′(y1) > 0. Thus, v(y) > 0 in [y1, y2] and there exists a constant
C > 1 such that C−1 � v(y) � C, which implies

C−1|y − y1| � u(y) − umin � C |y − y1|, (4.22)

C−1|y − y1| � u(y) − c for c � umin. (4.23)

Let n ∈ N and ψc,n = ∂nc ψc. By Rolle’s Theorem, there exists {ck,n}∞k=1 ⊂
(−∞, umin) such that ψck,n ,n(y1) = 0 and ck,n → u−

min as k → ∞. For fixed
c < umin, let k > 0 be large enough such that ck,n ∈ (c, umin). Then ψc,n(y1) =∫ c
ck,n

∂sψs,n(y1) ds = ∫ c
ck,n

ψs,n+1(y1) ds, and

|ψc,n(y1)| �
∫ ck,n

c
|ψs,n+1(y1)| ds �

∫ umin

c
|ψs,n+1(y1)| ds. (4.24)

Moreover, ψc,n satisfies

− ∂2yψc,n + u′′ − β

u − c
ψc,n = −α2ψc,n − Fc,n,

Fc,n =
n∑

k=1

n!
(n − k)!

u′′ − β

(u − c)k+1ψc,n−k, (4.25)

where ψc,0 = ψc and Fc,0 = 0. Note that ψc(y) is continuous on (C \ Ran(u)) ×
[y1, y2], and analytic in c. Let u+(y) = inf u([y, y2]). Thenψc(y) can be extended
to a continuous function on D1 := {(c, y) : c < u+(y), y ∈ [y1, y2]}, still
satisfying (4.20) in D1. Moreover, u+ is increasing and continuous on [y1, y2],
u+(y1) = umin and u+(y) > umin for y ∈ (y1, y2]. By standard theory of ODE,
∂nc ψc = ψc,n ∈ C2(D1) andψc,n|D1 is real-valued for n ∈ N. Using this extension,
ψc|c=umin is well-defined and satisfies (4.20) for y ∈ (y1, y2]. For fixed δ1 ∈ (0, δ]
and n ∈ N, we have

|ψc,n(y)| + |∂yψc,n(y)| � C(n, δ1) for y ∈ [y1 + δ1, y2] and 0 � umin − c � 1,
(4.26)

since a continuous function is bounded in a compact set. Let m0 ∈ Z be such that
m0 − 1 < m � m0 and γ = (m + 1−m0)/2. Then m0 � 0 and γ ∈ (0, 1/2]. We
claim that the uniform bounds
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|ψc,n| � C, |ψc,0| � C |u − c|, |ψc,1| � C |u − c|1−γ , |∂yψc,m0+2|
� C |u − c|2γ−2 (4.27)

hold for 0 < umin − c < 1, y ∈ [y1, y2] and n ∈ Z ∩ [0,m0 + 1]. Assume
that the uniform bounds (4.27) are true, which will be verified later. Let Wc,n =
∂yψc,nψc−∂yψcψc,n . Then we get by (4.25) that ∂yWc,n = Fc,nψc. By (4.27) and
using u(y1) = umin, we have for 0 < umin − c < 1,

|ψc(y1)| �
∫ umin

c
|ψs,1(y1)| ds � C

∫ umin

c
|umin − s|1−γ ds � C |umin − c|2−γ ,

and thus

|∂yψc,m0+2ψc|(y1) = |∂yψc,m0+2(y1)||ψc(y1)|
� C |umin − c|2γ−2|umin − c|2−γ = C |umin − c|γ ,

which implies lim
c→u−min

∂yψc,m0+2ψc(y1) = 0. Since ψck,m0+2,m0+2(y1) = 0 for

k � 1 and ck,m0+2 → u−
min, we have lim inf

c→u−min

|∂yψcψc,m0+2|(y1) = 0, and thus

lim inf
c→u−min

|Wc,m0+2|(y1) = 0.

Since ψc(y2) = 0, ∂yψc(y2) = 1 and recall that ψc,n = ∂nc ψc, we have
ψc,n(y2) = 0, ∂yψc,n (y2) = 0 and Wc,n(y2) = 0 for n > 0. Thus, −Wc,n(y1) =∫ y2
y1

∂yWc,n(y) dy = ∫ y2
y1

Fc,nψc(y) dy. Note that

Fc,n − n! u′′ − β

(u − c)n+1ψc =
n−1∑
k=1

n!
(n − k)!

u′′ − β

(u − c)k+1ψc,n−k .

If n ∈ Z ∩ [2,m0 + 2], by (4.27) and (4.21), we have for 0 < umin − c < 1 and
y ∈ [y1, y2],

∣∣∣∣Fc,n − n!(u′′ − β)ψc

(u − c)n+1

∣∣∣∣ �
n−1∑
k=1

n!
(n − k)!

|u′′ − β|
(u − c)k+1 |ψc,n−k |

�C
n−2∑
k=1

|y − y1|m
(u − c)k+1 + C

|y − y1|m |u − c|1−γ

(u − c)n
� C

|y − y1|m
|u − c|n−1+γ

,

∣∣∣∣Fc,nψc − n!(u′′ − β)ψ2
c

(u − c)n+1

∣∣∣∣ � C
|y − y1|m |ψc|
|u − c|n−1+γ

� C
|y − y1|m |u − c|
|u − c|n−1+γ

= C
|y − y1|m

|u − c|n−2+γ
,

and thus using m − m0 = 2γ − 1 and (4.23), we have that
∣∣∣∣Fc,m0+2ψc − (m0 + 2)!(u′′ − β)ψ2

c

(u − c)m0+3

∣∣∣∣ � C
|y − y1|m

|u − c|m0+γ
� C

|y − y1|m
|y − y1|m0+γ

= C |y − y1|γ−1.
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Integrating it on [y1, y2] and using −Wc,n(y1) = ∫ y2
y1

Fc,nψc(y) dy, we have for
0 < umin − c < 1,
∣∣∣∣
∫ y2

y1

(m0 + 2)!(u′′ − β)ψ2
c

(u − c)m0+3 dy

∣∣∣∣ �
∣∣∣∣
∫ y2

y1
Fc,m0+2ψc dy

∣∣∣∣ + C
∫ y2

y1
|y − y1|γ−1 dy

� |Wc,m0+2|(y1) + C,

and as lim inf
c→u−min

|Wc,m0+2|(y1) = 0, we have that

lim inf
c→u−min

∣∣∣∣
∫ y2

y1

(m0 + 2)!(u′′ − β)ψ2
c

(u − c)m0+3 dy

∣∣∣∣ � C, lim inf
c→u−min

∣∣∣∣
∫ y2

y1

(u′′ − β)ψ2
c

(u − c)m0+3 dy

∣∣∣∣ � C.

Since u′′ − β is continuous and real-valued, and C−1|y − y1|m � |u′′(y) − β|, it
does not change sign on y ∈ [y1, y1 + δ]. Then for 0 < umin − c < 1,

∣∣∣∣
∫ y1+δ

y1

(u′′ − β)ψ2
c

(u − c)m0+3 dy

∣∣∣∣ =
∫ y1+δ

y1

|u′′ − β|ψ2
c

(u − c)m0+3 dy � C−1
∫ y1+δ

y1

|y − y1|mψ2
c

(u − c)m0+3 dy.

As |ψc| � C, |u′′ − β| � C , u − c � u − umin � C−1 for y ∈ [y1 + δ, y2], and
0 < umin − c < 1, we have that

∣∣∣∣
∫ y2

y1+δ

(u′′ − β)ψ2
c

(u − c)m0+3 dy

∣∣∣∣ �
∫ y2

y1+δ

C dy � C.

Thus,

lim inf
c→u−min

∫ y1+δ

y1

|y − y1|mψ2
c

(u − c)m0+3 dy � C lim inf
c→u−min

∣∣∣∣
∫ y1+δ

y1

(u′′ − β)ψ2
c

(u − c)m0+3 dy

∣∣∣∣
�C lim inf

c→u−min

∣∣∣∣
∫ y2

y1

(u′′ − β)ψ2
c

(u − c)m0+3 dy

∣∣∣∣ + C lim sup
c→u−min

∣∣∣∣
∫ y2

y1+δ

(u′′ − β)ψ2
c

(u − c)m0+3 dy

∣∣∣∣ � C.

Since ψc ∈ C(D1), we have for fixed y ∈ (y1, y1 + δ],

lim
c→u−min

ψc(y) = ψumin(y), lim
c→u−min

|y − y1|mψ2
c

(u − c)m0+3 = |y − y1|mψ2
umin

(u − umin)m0+3 .

Thus, by Fatou’s Lemma, we have that

∫ y1+δ

y1

|y − y1|mψ2
umin

(u − umin)m0+3 dy =
∫ y1+δ

y1
lim

c→u−min

|y − y1|mψ2
c

(u − c)m0+3 dy

� lim inf
c→u−min

∫ y1+δ

y1

|y − y1|mψ2
c

(u − c)m0+3 dy � C.

By (4.22), we have that

|y − y1|mψ2
umin

(u − umin)m0+3 �
|y − y1|mψ2

umin

(C(y − y1))m0+3 �
C−1ψ2

umin

|y − y1|m0−m+3 �
C−1ψ2

umin

|y − y1|3
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for y ∈ (y1, y1 + δ], where we used m � m0. Thus,

∫ y1+δ

y1

ψ2
umin

|y − y1|3 dy � C
∫ y1+δ

y1

|y − y1|mψ2
umin

(u − umin)m0+3 dy � C.

Now we take ϕ = ψumin . Then ϕ is real-valued and for y ∈ (y1, y2], it satisfies

− ϕ′′ + u′′ − β

u − umin
ϕ = −α2ϕ, ϕ(y2) = 0, ϕ′(y2) = 1,

∫ y1+δ

y1

ϕ2

|y − y1|3 dy � C.

(4.28)

Thus, ϕ, ϕ/|y− y1| ∈ L2(y1, y1+ δ). By (4.22), we have that for y ∈ (y1, y1+ δ],∣∣∣∣ u′′ − β

u − umin
ϕ

∣∣∣∣ � C |ϕ|
u − umin

� C |ϕ|
|y − y1| ,

u′′ − β

u − umin
ϕ ∈ L2(y1, y1 + δ).

Thus, ϕ′′ ∈ L2(y1, y1 + δ), ϕ ∈ H2(y1, y1 + δ) and ϕ ∈ C1([y1, y1 + δ]) by
defining ϕ(y1) = limy→y+1

ϕ(y). If ϕ(y1) �= 0, then there exists δ1 ∈ (0, δ] such
that |ϕ(y)| � |ϕ(y1)|/2 � C−1|y − y1| for y ∈ (y1, y1 + δ1]. If ϕ(y1) = 0 and
ϕ′(y1) �= 0, then there exists δ1 ∈ (0, δ] such that |ϕ′(y)| � |ϕ′(y1)|/2 for y ∈
(y1, y1+δ1], and |ϕ(y)| = |ϕ(y)−ϕ(y1)| = |(y− y1)ϕ′(ξy)| � |y− y1||ϕ′(y1)|/2
for ξy ∈ (y1, y) and y ∈ (y1, y1 + δ1]. Therefore, if ϕ(y1) �= 0 or ϕ′(y1) �= 0,
then there exists δ1 ∈ (0, δ] and C > 0 such that |ϕ(y)| � C−1|y − y1| for
y ∈ (y1, y1 + δ1], and∫ y1+δ

y1

ϕ2

|y − y1|3 dy � C−2
∫ y1+δ1

y1

|y − y1|2
|y − y1|3 dy = +∞,

which contradicts (4.28). Thus, we must have ϕ(y1) = ϕ′(y1) = 0. Then by the
proof of Lemma 3 in [27], we have ϕ ≡ 0 on [y1, y2], which contradicts ϕ′(y2) = 1.
This proves (1) for Case 2.

It remains to prove (4.27). Let δ1 ∈ (0, δ] be fixed such that Lemma 4.4 is true.
Recall that z = y1 + δ1 and | f |L∞(z) = supy∈[y1,z] | f (y)|. By (4.26) we know that
(4.27) is true for y ∈ [z, y2]. Nowweassume that y ∈ [y1, z], 0 < umin−c < 1, and
that (4.3)–(4.6) are used for F satisfying (4.14) (i.e. the condition in Lemma 4.4).
The proof of (4.27) for y ∈ [y1, z] is divided into 7 steps as follow:

Step 1. |ψc,n| � C for y ∈ [y1, z] and n ∈ Z ∩ [0,m0].
For n = 0, by (4.25), (4.3), (4.26) and Fc,0 = 0, we have |ψc,0|L∞(z) �

C(|ψc,0(z)| + δ
γ
1 |ψ ′

c,0(z)|) � C , and thus |ψc,0| � C for y ∈ [y1, z]. Now, we
prove the result by induction. Assume that n ∈ Z ∩ (0,m0] and |ψc,k | � C for
k ∈ Z∩[0, n) and y ∈ [y1, z]. Then by (4.25), (4.21), (4.23) andm−m0 = 2γ −1,
we have, for y ∈ [y1, z], that

|Fc,n| � C
n∑

k=1

|y − y1|m |ψc,n−k |
(u − c)k+1 � C

n∑
k=1

|y − y1|m
(u − c)k+1 � C

(u − c)m

(u − c)n+1 ,

(4.29)

|(u − c)2−γ Fc,n| � C(u − c)2−γ+m−n−1 � C(u − c)m−m0+1−γ
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= C(u − c)γ � C. (4.30)

By (4.3), (4.26) and (4.30), we have that

|ψc,n|L∞(z) � C(δ
γ
1 |(u − c)2−γ Fc,n|L∞(z) + |ψc,n(z)| + δ

γ
1 |ψ ′

c,n(z)|) � C,

(4.31)

which means |ψc,n| � C for y ∈ [y1, z]. Thus, the result in Step 1 is true.
Step 2. |ψc,n| � C |u − c|γ−1 for y ∈ [y1, z] and n = m0 + 1.
Let n = m0 + 1. By Step 1, we know that |ψc,k | � C for y ∈ [y1, z] and

k ∈ Z ∩ [0, n). Thus, (4.29) is still true and for y ∈ [y1, z],
|(u − c)3−2γ Fc,n| � C(u − c)3−2γ+m−n−1 = C(u − c)m−m0+1−2γ = C,

which, along with (4.4) and (4.26), implies that

|(u − c)1−γ ψc,n |L∞(z) � C(δ
γ
1 |(u − c)3−2γ Fc,n |L∞(z) + |ψc,n(z)| + δ

γ
1 |ψ ′

c,n(z)|) � C.

Then |(u − c)1−γ ψc,n| � C , and thus |ψc,n| � C |u − c|γ−1 for y ∈ [y1, z].
Step 3. |ψc,0| � C |u − c|1−γ for y ∈ [y1, z].
If m0 = 0, then m = 0 and γ = 1/2. By Step 2, we have |ψc,1| � C |u −

c|γ−1 = C |u − c|−γ for y ∈ [y1, z]. If m0 > 0, then by Step 1, we have
|ψc,1| � C � C |u − c|−γ for y ∈ [y1, z]. Thus, |ψc,1| � C |u − c|−γ is always
true for y ∈ [y1, z]. Then by (4.24) and u(y1) = umin, we have |ψc,0(y1)| �∫ umin
c |ψs,1(y1)| ds � C

∫ umin
c |umin − s|−γ ds � C |umin − c|1−γ . By (4.5), (4.26)

and Fc,0 = 0, we have |(u − c)γ−1ψc,0|L∞(z) � C(|(umin − c)γ−1ψc,0(y1)| +
|ψc,0(z)| + |ψ ′

c,0(z)|) � C . Then |(u − c)γ−1ψc,0| � C , and thus |ψc,0| � C |u −
c|1−γ for y ∈ [y1, z].

Step 4. |ψc,n| � C for y ∈ [y1, z] and n = m0 + 1.
Let n = m0 + 1. By (4.25), (4.21), (4.22), Step 1 and Step 3, we have for

y ∈ [y1, z], that

|Fc,n| � C
n∑

k=1

|y − y1|m |ψc,n−k |
(u − c)k+1 � C

n−1∑
k=1

|y − y1|m
(u − c)k+1 + C

|y − y1|m |ψc,0|
(u − c)n+1

�C
(u − c)m

(u − c)n
+ C

|y − y1|m |u − c|1−γ

(u − c)n+1 � C(u − c)m−γ−n,

|(u − c)2−γ Fc,n| � C(u − c)2−2γ+m−n = C(u − c)m−m0+1−2γ = C.

Here, we used n = m0 + 1 and m − m0 = 2γ − 1. Thus, (4.31) is still true for
n = m0 + 1, i.e. |ψc,n| � C for y ∈ [y1, z].

Step 5. |ψc,0| � C |u − c| for y ∈ [y1, z].
By Step 1 and Step 4, we have |ψc,1| � C for y ∈ [y1, z]. Then by (4.24),

we have |ψc,0(y1)| �
∫ umin
c |ψs,1(y1)| ds � C

∫ umin
c ds � C |umin − c|. By (4.6),

(4.26) and Fc,0 = 0, we have |(u− c)−1ψc,0|L∞(z) � C(|(umin − c)−1ψc,0(y1)| +
|ψ ′

c,0(z)|) � C , which gives |(u − c)−1ψc,0| � C and |ψc,0| � C |u − c| for
y ∈ [y1, z].
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Step 6. |∂yψc,n| � C |u− c|2γ−2 and |ψc,n| � C |u− c|γ−1 for y ∈ [y1, z] and
n = m0 + 2.

Since n = m0 + 2 and m − m0 = 2γ − 1, we have, by (4.25), (4.21), (4.23),
Step 1 and Steps 4-5, that for y ∈ [y1, z],

|Fc,n| � C
n∑

k=1

|y − y1|m |ψc,n−k |
(u − c)k+1 � C

n−1∑
k=1

|y − y1|m
(u − c)k+1 + C

|y − y1|m |ψc,0|
(u − c)n+1

�C
(u − c)m

(u − c)n
+ C

|y − y1|m |u − c|
(u − c)n+1 � C(u − c)m−n = C(u − c)m−m0−2,

|(u − c)3−2γ Fc,n| � C(u − c)1−2γ+m−m0 = C.

Then by (4.4) and (4.26), we have that

|(u − c)1−γ ψc,n|L∞(z) + δ
γ
1 |(u − c)2−2γ ∂yψc,n|L∞(z)

�C(|(u − c)3−2γ Fc,n|L∞(z) + |ψc,n(z)| + |∂yψc,n(z)|) � C.

Therefore, |∂yψc,n| � Cδ
−γ
1 |u−c|2γ−2 � C |u−c|2γ−2 and |ψc,n| � C |u−c|γ−1

for y ∈ [y1, z].
Step 7. |ψc,1| � C |u − c|1−γ for y ∈ [y1, z].
Ifm0 = 0, thenm = 0 andγ = 1/2.ByStep6,wehave |ψc,2| � C |u−c|γ−1 =

C |u − c|−γ for y ∈ [y1, z]. If m0 > 0, then by Step 1 and Step 4, we have
|ψc,2| � C � C |u − c|−γ for y ∈ [y1, z]. Thus, |ψc,2| � C |u − c|−γ is always
true for y ∈ [y1, z]. Then by (4.24) and u(y1) = umin, we have |ψc,1(y1)| �∫ umin
c |ψs,2(y1)| ds � C

∫ umin
c |umin− s|−γ ds � C |umin− c|1−γ . By (4.25), (4.21)

and Step 5, we have, for y ∈ [y1, z], that

|Fc,1| � C
|y − y1|m |ψc,0|

(u − c)2
� C

|y − y1|m |u − c|
(u − c)2

= C
|y − y1|m
u − c

,

|(u − c)γ+1Fc,1| � C(u − c)γ |y − y1|m � C.

Then by (4.5) and (4.26), we have that

|(u − c)γ−1ψc,1|L∞(z)

�C(|(u − c)γ+1Fc,1|L∞(z) + |(umin − c)γ−1ψc,1(y1)| + |ψc,1(z)| + |∂yψc,1(z)|) � C,

which gives |(u − c)γ−1ψc,1| � C and |ψc,1| � C |u − c|1−γ for y ∈ [y1, z].
By Step 1 and Steps 4-7 we know that (4.27) is true for y ∈ [y1, z] =

[y1, y1 + δ1]. This completes the proof of (4.27) and thus Case 2.

4.3. Rule out oscillation for flows in class K+

We rule out the oscillation of λn(c) for flows in class K+, which is stated in
Theorem 2.13. The proof is based on Hamiltonian structure and index theory.
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Proof of Theorem 2.13. The assumption (H1) is satisfied for a flow u in class
K+. By Theorem 2.11, it suffices to prove �(σd(Rα,β) ∩ (−∞, umin)) < ∞ for
0 < α2 � Mβ and 0 < β � 9

8κ+. Similar proof is valid for 9
8κ− � β < 0. First,

we consider β ∈ Ran(u) ∩ (0, 9
8κ+]. Define the non-shear space

X := {ω ∈ L2(DT ) :
∫ T

0
ω(x, y) dx = 0,T-periodic in x}.

Note that as ω = ∂xv2 − ∂yv1,
∫ T
0 ω(x, y) dx = 0 is equivalent to

∫ T
0 v1(x, y) dx

=constant. Thus,
∫ T
0 v1(x, y) dx = 0 implies

∫ T
0 ω(x, y) dx = 0.

The linearized equation (1.4) has a Hamiltonian structure in the traveling frame
(x − uβ t, y, t):

ωt = −(β − u′′)∂x
(
ω/Kβ − ψ

) = J Lω.

Here J = −(β − u′′)∂x : X∗ → X, L = 1/Kβ − (−�)−1 : X → X∗. Let
Jα = −iα(β − u′′) and Lα = 1

Kβ
− (− d2

dy2
+ α2)−1 on L2

1
Kβ

. It follows from

Theorem 3 in [27] that

kc + kr + k
�0
i = n−(Lα),

where n−(Lα) is the Morse index of Lα , kr is the sum of algebraic multiplicities of
positive eigenvalues of JαLα , kc is the sumof algebraicmultiplicities of eigenvalues

of JαLα in the first and the fourth quadrants and k
�0
i is the total number of non-

positive dimensions of 〈Lα·, ·〉 restricted to the generalized eigenspaces of nonzero
purely imaginary eigenvalues of JαLα .

Suppose that �(σd(Rα,β) ∩ (−∞, umin)) = ∞. Then it follows from Theo-
rem 2.9 that there exists mβ < n < Nβ such that �({λn(c) = −α2, c < umin}) =
∞. Let c∗ < umin be a solution of λn(c) = −α2 with eigenfunction φ∗. c∗ can
be chosen sufficiently close to umin. Then −iα(c∗ − uβ) is a purely imaginary
eigenvalue of JαLα with eigenfunction ω∗ = −φ∗′′ +α2φ∗. By Theorem 4 in [27],

〈Lαω∗, ω∗〉 = −(c∗ − uβ)λ′
n(c

∗).

Note that c− uβ does not change sign when c < umin is sufficiently close to umin.
Then

�({−(c − uβ)λ′
n(c) � 0, c < umin} ∩ {λn(c) = −α2, c < umin}) = ∞.

Hence, k
�0
i = ∞. This contradicts that

k
�0
i � n−(Lα) = n−(L̃0 + α2) � n−(L̃0) < ∞,

where L̃0 = − d2

dy2
−Kβ : H2∩H1

0 → L2. Therefore, �(σd(Rα,β)∩(−∞, umin)) <

∞.
Then, we consider β ∈ (0, 9

8κ+] \ Ran(u′′). By Corollary 1 in [27], λn(c) is
decreasing on c ∈ (−∞, umin) for any fixed n � 1. By Theorem 2.9, �(σd(Rα,β)∩
(−∞, umin)) < Nβ . ��
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5. Relations between a traveling wave family and an isolated real eigenvalue

In this section,we establish the correspondence between a travelingwave family
near a shear flow and an isolated real eigenvalue ofRkα,β . For a given isolated real
eigenvalue c0, we prove that there exists a set of traveling wave solutions near (u, 0)
with traveling speeds converging to c0, which is stated precisely in Lemma 2.5.

We assume k, k0 ∈ Z.

Proof of Lemma 2.5. We assume that β > 0, and the case for β < 0 is similar.
Since c0 ∈ σd(Rk0α,β) ∩ R for some k0 � 1, we have c0 < umin and we choose
δ0 > 0 such that c0 + δ0 < umin. By (1.3), u (x − ct, y) is a solution of (1.1)–(1.2)
if and only if (ψ, c) solves

∂ (ω + βy, ψ − cy)

∂ (x, y)
= 0, (5.1)

and ψ takes constant values on {y = yi }, where i = 1, 2, ω = curl u and u =
(∂yψ,−∂xψ). Let ψ0 be a stream function associated with the shear flow (u, 0),
i.e., ψ ′

0 = u. Since u − c > 0 for c ∈ [c0 − δ0, c0 + δ0], ψ0 − cy is increasing on
[y1, y2]. Let Ic = {ψ0 (y) − cy : y ∈ [y1, y2]} for c ∈ [c0 − δ0, c0 + δ0], and then
we can define a function f̃c ∈ C2(Ic) such that

f̃c (ψ0 (y) − cy) = ω0 (y) + βy = −ψ ′′
0 (y) + βy. (5.2)

Moreover,

f̃ ′c (ψ0 (y) − cy) = β − u′′ (y)
u (y) − c

=: Kc (y)

for c ∈ [c0 − δ0, c0 + δ0]. We extend f̃c to fc ∈ C2
0 (R) such that fc = f̃c on Ic

and ∂2z ∂c fc(z) is continuous for c ∈ [c0 − δ0, c0 + δ0] and z ∈ R. Taking c as the
bifurcation parameter, we now construct steady solutions u = (

∂yψ,−∂xψ
)
near

(u, 0) by solving the elliptic equations

−�ψ + βy = fc (ψ − cy) (5.3)

with the boundary conditions that ψ takes constant values on {y = yi }, i = 1, 2.
Define the perturbation of the stream function by

φ (x, y) = ψ (x, y) − ψ0 (y) .

Then by (5.2)–(5.3), we have that

−�φ − ( fc(φ + ψ0 − cy) − fc (ψ0 − cy)) = 0.

Define the spaces

B = {ϕ ∈ H4(DT ) : ϕ(x, yi ) = 0, i = 1, 2, ϕ is even and T -periodic in x}
and

C =
{
ϕ ∈ H2(DT ) : T -periodic in x

}
,
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where T = 2π/α. Consider the mapping

F : B × [c0 − δ0, c0 + δ0] −→ C,

(φ, c) �−→ −�φ − ( fc(φ + ψ0 − cy) − fc (ψ0 − cy)) .

Then F(0, c) = 0 for c ∈ [c0 − δ0, c0 + δ0]. We study the bifurcation near the
trivial solution (0, c0) of the equation F(φ, c) = 0 in B, whose solutions give
steady flows of

For fixed c ∈ [c0 − δ0, c0 + δ0], by linearizing F around φ = 0, we have that

∂φF(0, c) = −� − f ′c(ψ0 − cy) = −� −Kc = Gc|B,

whereGc|B is the restriction ofGc in B andGc is defined in (2.3). Thenwe divide the
discussion of bifurcation near (0, c0) of the equation F(φ, c) = 0 into three cases.
Since c0 ∈ σd(Rk0α,β) ∩ R, there exists n0 � 1 such that (k0α)2 = −λn0(c0),
where λn0(c0) is the n0-th eigenvalue of Lc0 and Lc0 is defined in (2.6). Let

k∗ =max
k�1

{k : there exists nk � 1 such that − (kα)2 = λnk (c0)}. (5.4)

Then k∗ exists by our assumption and 1 � k0 � k∗ < ∞. Nowwe denote n∗ = nk∗ .
Case 1.λ′

n∗(c0) �= 0 (the transversal crossing condition) and c0 /∈ σd(R0,β)∩R.
In this case, we have 0 /∈ σ(Lc0). Let B∗ = {ϕ ∈ B : 2π

k∗α -periodic in x} and
C∗ = {ϕ ∈ C : 2π

k∗α -periodic in x}. Consider the restriction F |B∗ and Gc|B∗ . Then
by the definition of k∗, we have

ker(Gc0 |B∗) = span{φc0,n∗(y) cos(k∗αx)} and dim(ker(Gc0 |B∗)) = 1, (5.5)

where φc0,n∗ is a real-valued eigenfunction of λn∗(c0) ∈ σ(Lc0). Note that

∂c∂φF(0, c0)
(
φc0,n∗(y) cos(k∗αx)

) = − β − u′′

(u − c0)2
φc0,n∗(y) cos(k∗αx).

Then by Lemma 11 in [27], we have that
∫ T

0

∫ y2

y1
φc0,n∗(y) cos(k∗αx)

[
∂c∂φF(0, c0)

(
φc0,n∗(y) cos(k∗αx)

)]
dy dx

= −
∫ T

0

∫ y2

y1

β − u′′

(u − c0)2
|φc0,n∗(y)|2 cos2(k∗αx) dy dx = π

α
λ′
n∗(c0) �= 0,

where we used that φc0,n∗ is real-valued. By (5.5), we have φc0,n∗(y) cos(k∗αx) ∈
ker(Gc0 |B∗) and thus, ∂c∂φF(0, c0)

(
φc0,n∗(y) cos(k∗αx)

)
/∈ Ran (Gc0 |B∗). Then

by Theorem 1.7 in [7], there exist δ > 0 and a nontrivial C1 bifurcating curve
{(φγ , c(γ )

)
, γ ∈ (−δ, δ)} of F(φ, c) = 0, which intersects the trivial curve (0, c)

at c = c0, such that

φγ (x, y) = γφc0,n∗(y) cos(k∗αx) + o(|γ |).
So the stream functions take the form

ψγ (x, y) = ψ0(y) + φγ (x, y) = ψ0(y) + γφc0,n∗(y) cos(k∗αx) + o(|γ |).
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Let the velocity uγ = (u(γ ), v(γ )) = (
∂yψγ ,−∂xψγ

)
. Since c0 < umin, we have

that

u(γ )(x, y) − c(γ ) = ∂yψγ (x, y) − c(γ ) (5.6)

=u(y) − c(γ ) + γφ′
c0,n∗(y) cos(k∗αx) + o(|γ |) > 0,

and

v(γ )(x, y) = −∂xψγ (x, y) = k∗αγφc0,n∗(y) sin(k∗αx) + o(|γ |) �= 0 (5.7)

when γ is small. Moreover, ‖(u(γ ), v(γ ))− (u, 0)‖H3(DT ) +|c(γ )− c0| � C0γ for
some constantC0 > 0 large enough. Thus, we can take δ > 0 smaller and ε0 = C0δ

such that for ε ∈ (0, ε0), (uε, vε, cε) := (u(γ ), v(γ ), c(γ ))|γ=ε/C0 satisfies that
‖(uε, vε)−(u, 0)‖H3(DT ) � ε, cε → c0, uε(x, y)−cε > 0 and ‖vε‖L2(DT ) �= 0. By
(5.7), ṽε −→ √

α/πφc0,n∗(y) sin(k∗αx) in H2 (DT ), where ṽε = vε/‖vε‖L2(DT ).
Case 2. λ′

n∗(c0) = 0 and c0 /∈ σd(R0,β) ∩ R.
In this case, there exist δ1 ∈ (0, δ0] and a ∈ {±1} such that aλn∗ is increasing

in [c0, c0 + δ1], and thus,

aλn∗(c) > aλn∗(c0) = −a(k∗α)2, ∀ c ∈ (c0, c0 + δ1]. (5.8)

Let ζ1 ∈ C∞([y1, y2]) be a positive function, u1 be a solution of the regular ODE

u′′
1(u − c0) − (u′′ − β)u1 = ζ1 on [y1, y2], (5.9)

and τ0 > 0 be such that [c0, c0 + δ1] ∩Ran(u+ τu1) = ∅ for τ ∈ [−τ0, τ0]. Since
u ∈ H4(y1, y2) and ζ1 ∈ C∞([y1, y2]), we have u1 ∈ H4(y1, y2). Let λn(c, τ )

denote the n-th eigenvalue of Lc,τ : H2 ∩ H1
0 (y1, y2) −→ L2(y1, y2) defined by

Lc,τ φ = −φ′′ + u′′ + τu′′
1 − β

u + τu1 − c
φ

for c ∈ [c0, c0 + δ1] and τ ∈ [−τ0, τ0]. Then by (5.9) and the fact that ζ1 is a
positive function, we have that

∂τ λn∗(c0, 0) =
∫ y2

y1
∂τ

(
u′′ + τu′′

1 − β

u + τu1 − c0

) ∣∣
τ=0φ

2
n∗,c0 dy

=
∫ y2

y1

u′′
1(u − c0) − (u′′ − β)u1

(u − c0)2
φ2
n∗,c0 dy

=
∫ y2

y1

ζ1

(u − c0)2
φ2
n∗,c0 dy > 0,

where φn∗,c0 is a L2 normalized eigenfunction of λn∗(c0) ∈ σ(Lc0). By the defi-
nition of k∗, −(kα)2 /∈ σ(Lc0,0) for k > k∗. Since c0 /∈ σd(R0,β) ∩ R, we have
0 /∈ σ(Lc0,0). By the continuity of ∂τλn∗ and the small perturbation of σ(Lc,τ ), we
can take τ0 > 0 and δ1 > 0 smaller such that ∂τ λn∗(c, τ ) > 0 and

0 /∈ σ(Lc,τ ) and − (kα)2 /∈ σ(Lc,τ ), ∀ k > k∗ (5.10)
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for (c, τ ) ∈ [c0, c0 + δ1] × [−τ0, τ0]. By taking δ1 > 0 smaller and the Implicit
Function Theorem, there exists γ̃ ∈ C1([c0, c0 + δ1]) such that λn∗(c, γ̃ (c)) =
λn∗(c0, 0) = −(k∗α)2, γ̃ (c0) = 0 and |γ̃ (c)| � τ0 for c ∈ [c0, c0 + δ1]. By
(5.8), we have λn∗(c, γ̃ (c)) = λn∗(c0, 0) �= λn∗(c, 0) and γ̃ (c) �= 0 for c ∈
(c0, c0 + δ1]. Then for fixed τ ∈ (0, τ0], there exists cτ ∈ [c0, c0 + δ1] such that
γ̃ ′(cτ ) �= 0 and |γ̃ (cτ )| � τ . Note that 0 = d

dc [λn∗(c, γ̃ (c))] = ∂cλn∗(c, γ̃ (c)) +
γ̃ ′(c)∂τ λn∗(c, γ̃ (c)). Let τ1 = γ̃ (cτ ). Thenwe have ∂cλn∗(cτ , τ1) = −γ̃ ′(cτ )∂τ λn∗
(cτ , τ1) �= 0.

Fix any ε ∈ (0, 1). Then we can choose τ ∈ (0, τ0] and δ1 > 0 smaller such
that for τ1 = γ̃ (cτ ),

‖(u + τ1u1, 0) − (u, 0)‖H3(y1,y2) � τ1‖u1‖H3(y1,y2) <
ε

2
and |cτ − c0| < δ1 <

ε

2
.

(5.11)

By (5.10), λn∗(cτ , τ1) = −(k∗α)2 and ∂cλn∗(cτ , τ1) �= 0, we can apply Case 1
to the shear flow (u + τ1u1, 0): there exists a traveling wave solution (uε(x −
cεt, y), vε(x − cεt, y)) to (1.1)–(1.2) which has period T = 2π/α in x ,

‖(uε, vε) − (u + τ1u1, 0)‖H3(DT ) � ε

2
and |cε − cτ | � ε

2
, (5.12)

uε (x, y)−cε �= 0 and ‖vε‖L2(DT ) �= 0. Then by (5.11)–(5.12), we have ‖(uε, vε)−
(u, 0)‖H3(DT ) < ε and |cε − c0| < ε.

Case 3. c0 ∈ σd(R0,β) ∩ R.
In this case, 0 ∈ σ(Lc0) and there exists j0 > n0 � n∗ such that λ j0(c0) = 0.

There exist δ1 ∈ (0, δ0] and a, b ∈ {±1} such that both aλn∗ and bλ j0 are decreasing
in [c0, c0 + δ1].

Since φ2
n∗,c0 is linearly independent of φ2

j0,c0
, there exists ξ1 ∈ C∞([y1, y2])

such that
∫ y2

y1
ξ1

φ2
n∗,c0

(u − c0)2
dy = a and

∫ y2

y1
ξ1

φ2
j0,c0

(u − c0)2
dy = −b. (5.13)

Let u1 be a solution of (5.9) with ζ1 = ξ1, and τ0 > 0 be such that [c0, c0 + δ1] ∩
Ran(u + τu1) = ∅ for τ ∈ [−τ0, τ0]. Then by (5.13), we have a∂τ λn∗(c0, 0) =
a2 > 0 and b∂τ λ j0(c0, 0) = −b2 < 0. As in Case 2, we can take τ0 > 0 and
δ1 > 0 smaller such that

a∂τ λn∗(c, τ ) > 0 and − (kα)2 /∈ σ(Lc,τ ), ∀ k > k∗

for (c, τ ) ∈ [c0, c0 + δ1] × [−τ0, τ0]. Note that λ j0−1(c0, 0) < λ j0(c0, 0) = 0 <

λ j0+1(c0, 0). By the continuity of ∂τ λ j0 , λ j0−1 and λ j0+1, we can choose τ0 > 0
and δ1 > 0 smaller such that

b∂τ λ j0(c, τ ) < 0 and λ j0−1(c, τ ) < 0 < λ j0+1(c, τ ) (5.14)

for (c, τ ) ∈ [c0, c0 + δ1] × [−τ0, τ0].
Asa∂τ λn∗(c0, 0) > 0 andaλn∗(·, 0) is decreasing in [c0, c0+δ1], we can choose

τ1 ∈ (0, τ0] such thataλn∗(c0+δ1, τ1) < aλn∗(c0, 0) = −a(k∗α)2 < aλn∗(c0, τ1).
Then there exists cτ1 ∈ (c0, c0 + δ1) such that λn∗(cτ1 , τ1) = −(k∗α)2.
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Since b∂τ λ j0(c, τ ) < 0 and bλ j0(·, 0) is decreasing in [c0, c0 + δ1], we have
bλ j0(c, τ ) < bλ j0(c, 0) < bλ j0(c0, 0) = 0, which, along with (5.14), gives that

bλ j0+b(c, τ ) > 0 > bλ j0(c, τ ), (c, τ ) ∈ (c0, c0 + δ1] × (0, τ0].
Since (cτ1 , τ1) ∈ (c0, c0 + δ1] × (0, τ0], we have 0 /∈ σ(Lcτ1 ,τ1).

Now, we can construct a desired traveling wave solution (uε(x−cεt, y), vε(x−
cεt, y)) by first perturbing the shear flow (u, 0) to (u + τ1u1, 0) and then applying
Case 1 or Case 2 to (u + τ1u1, 0) as in (5.11)–(5.12).

To prove Corollary 2.6, we only need to modify the spaces B and C from H4

and H2 to Hs+1 and Hs−1 in the proof of Lemma 2.5. We also use the fact that
f̃c ∈ C∞(Ic), fc ∈ C∞

0 (R) and u1 ∈ C∞([y1, y2]) due to the assumption that
u ∈ C∞([y1, y2]).

Conversely, for a set of travelingwave solutions near (u, 0)with traveling speeds
converging to c0, we show that c0 is an isolated real eigenvalue besides umin and
umax, which is given in Lemma 2.7.

Proof of Lemma 2.7. It suffices to show that if c0 /∈ {umax, umin}, then c0 ∈⋃
k�1(σd(Rkα,β) ∩ R) and (2.2) holds.
Note that (uε, vε)

solves

(uε − cε)∂xωε + vε∂yωε + βvε = 0. (5.15)

Moreover,

‖ωε − ω0‖H2(DT ) � C‖(uε, vε) − (u, 0)‖H3(DT ) � Cε.

By taking ε0 > 0 smaller,

|uε − cε| � |u − cε| − |u − uε| � C−1 (5.16)

for ε ∈ (0, ε0) and y ∈ [y1, y2]. Note that π
y2−y1

‖vε‖L2(DT ) � ‖∇vε‖L2(DT ). By
Sobolev embedding, we have that

‖vε‖L4(DT ) � C‖vε‖H1(DT ) � C‖∇vε‖L2(DT ), (5.17)

‖∂y(ωε − ω0)‖L4(DT ) � C‖∂y(ωε − ω0)‖H1(DT ) � C‖ωε − ω0‖H2(DT ) � Cε.

(5.18)

Since ∂xωε = ∂x (∂xvε − ∂yuε) = �vε, we get by (5.15) that

�ṽε + ∂y(ωε − ω0)

uε − cε

ṽε + β − u′′

uε − cε

ṽε = 0, (5.19)

where ṽε = vε/‖vε‖L2(DT ). By (5.16), we have
∣∣∣ β−u′′
uε−cε

∣∣∣ � C for y ∈ [y1, y2] and

‖�ṽε‖L2(DT ) � C‖∂y(ωε − ω0)‖L4(DT )‖ṽε‖L4(DT ) + C‖ṽε‖L2(DT )

�Cε‖ṽε‖H1(DT ) + C‖ṽε‖L2(DT ) � Cε‖ṽε‖1/2H2(DT )
+ C,
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where we used (5.17)–(5.18) and ‖ṽε‖H1(DT ) � C‖ṽε‖1/2H2(DT )
‖ṽε‖1/2L2(DT )

. Since

vε(x, yi ) = 0 for i = 1, 2, we have ‖ṽε‖H2(DT ) � C‖�ṽε‖L2(DT ). Thus,
‖ṽε‖H2(DT ) � C and

‖ṽε‖C0([0,T ]×[y1,y2]) � C‖ṽε‖H2(DT ) � C, (5.20)

‖∂x ṽε‖L4(DT ) + ‖∂y ṽε‖L4(DT ) � C‖ṽε‖H2(DT ) � C. (5.21)

Up to a subsequence, there exists ṽ0 ∈ H2(DT ) such that ṽε ⇀ ṽ0 in H2(DT ),
ṽε → ṽ0 in H1(DT ) and ‖ṽ0‖L2(DT ) = 1. Taking derivative in (5.19) with respect
to x and y, we get by (5.18) and (5.20)–(5.21) that

‖∂x�ṽε‖L2(DT )

�
∥∥∥∥∂x

(
∂y(ωε − ω0)

uε − cε

)
ṽε + ∂y(ωε − ω0)

uε − cε

∂x ṽε

+∂x

(
β − u′′

uε − cε

)
ṽε + β − u′′

uε − cε

∂x ṽε

∥∥∥∥
L2(DT )

�C
(‖∂xy(ωε − ω0)‖L2(DT ) + ‖∂y(ωε − ω0)‖L2(DT )

) ‖ṽε‖C0([0,T ]×[y1,y2])+
C‖∂y(ωε − ω0)‖L4(DT )‖∂x ṽε‖L4(DT ) + C‖ṽε‖L2(DT ) + C‖∂x ṽε‖L2(DT ) � C,

and

‖∂y�ṽε‖L2(DT )

�
∥∥∥∥∂y

(
∂y(ωε − ω0)

uε − cε

)
ṽε + ∂y(ωε − ω0)

uε − cε

∂y ṽε

+∂y

(
β − u′′

uε − cε

)
ṽε + β − u′′

uε − cε

∂y ṽε

∥∥∥∥
L2(DT )

�C
(
‖∂2y (ωε − ω0)‖L2(DT ) + ‖∂y(ωε − ω0)‖L2(DT )

)
‖ṽε‖C0([0,T ]×[y1,y2])+

C‖∂y(ωε − ω0)‖L4(DT )‖∂y ṽε‖L4(DT ) + C‖ṽε‖L2(DT ) + C‖∂y ṽε‖L2(DT ) � C,

which implies that ‖ṽε‖H3(DT ) � C and thus, ṽε −→ ṽ0 in H2(DT ). For any φ ∈
H1(DT ) with periodic boundary condition in x and Dirichlet boundary condition
in y, we have that

∫ T

0

∫ y2

y1

(
−∇ṽε · ∇φ + ∂y(ωε − ω0)

uε − cε

ṽεφ + β − u′′

uε − cε

ṽεφ

)
dy dx = 0. (5.22)

Since ‖ṽε‖L4(DT ) � C‖ṽε‖H1(DT ) � C , we have by (5.16) and (5.18) that

∣∣∣∣
∫ T

0

∫ y2

y1

∂y(ωε − ω0)

uε − cε

ṽεφ dy dx

∣∣∣∣ � C
∫ T

0

∫ y2

y1
|∂y(ωε − ω0)||ṽε||φ| dy dx

�C‖∂y(ωε − ω0)‖L4(DT )‖ṽε‖L4(DT )‖φ‖L2(DT ) � Cε‖φ‖L2(DT ) −→ 0 as ε → 0+.
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Noting that ṽε −→ ṽ0 in H2(DT ) and sending ε → 0+ in (5.22), we have that

∫ T

0

∫ y2

y1

(
−∇ṽ0 · ∇φ + β − u′′

u − c0
ṽ0φ

)
dy dx = 0.

Thus, ṽ0 ∈ H2(DT ) is a weak solution of

Gc0 ṽ0 = −�ṽ0 − β − u′′

u − c0
ṽ0 = 0. (5.23)

Since c0 /∈ Ran(u), we have
∣∣∣β−u′′
u−c0

∣∣∣ � C for y ∈ [y1, y2]. Then by elliptic regularity
theory, we have that ṽ0 is a classical solution of (5.23). Thus, ϕc0 := ṽ0 ∈ ker(Gc0).
Since−�φ = 0 has no nontrivial solutions satisfying the boundary conditions, we
have |c0| < ∞.

Since ϕc0 = ∑
k∈Z ϕ̂c0,k(y)e

ikαx �= 0 solves (5.23), there exists k0 ∈ Z such
that ϕ̂c0,k0 �= 0 solves

−ϕ̂′′
c0,k0 + (k0α)2ϕ̂c0,k0 −

β − u′′

u − c0
ϕ̂c0,k0 = 0,

with ϕ̂c0,k0(y1) = ϕ̂c0,k0(y2) = 0. Now we show that k0 �= 0. Let P0 f (x, y) =
1
T

∫ T
0 f (x, y) dx for f ∈ L2(DT ). Then P0 is a bounded linear operator on L2(DT ).

Since ṽε = vε/‖vε‖L2(DT ) = −∂xψε/‖vε‖L2(DT ), we have P0ṽε = P0vε = 0.
Taking limit as ε → 0+, we have P0ϕc0 = P0ṽ0 = 0 and thus, ϕ̂c0,0(y) =
P0ϕc0(x, y) ≡ 0, which implies that k0 �= 0. Thus, c0 ∈ ⋃

k �=0(σd(Rkα,β) ∩R) =⋃
k�1(σd(Rkα,β) ∩ R), where we used the fact that σd(Rkα,β) = σd(R−kα,β).

We give two remarks to Lemma 2.7: the first is to study the Fourier expansion of
the limit function ϕc0 , and the second is to show that the asymptotic behavior of L2

normalized vertical velocities ṽε might be complicated if cε → c0 ∈ {umin, umax}.
��

Remark 5.1. The function ϕc0 in Lemma 2.7 is a superposition of finite normal
modes. In fact, since 0 �= ϕc0(x, y) = ∑

k∈Z ϕ̂c0,k(y)e
ikαx ∈ ker (Gc0) and

inf σ(Lc0) > −∞, we have n∗ := �({k ∈ Z : −(kα)2 ∈ σ(Lc0)}) ∈ [1,∞).
Let {k ∈ Z : −(kα)2 ∈ σ(Lc0)} = {kn : 1 � n � n∗}. Then

ϕc0(x, y) = ∑n∗
n=1 ϕ̂c0,kn (y)e

iknαx and ϕ̂c0,kn is an eigenfunction of−(knα)2 ∈
σ(Lc0).

Remark 5.2. Consider a flow u satisfying (H1), {u′ = 0} ∩ {u = umin} �= ∅,
α > 0 and β > 9

8κ+. By Theorem 2.9 (3), there exists {cn}∞n=1 = σd(Rα,β) ∩ R
such that cn → u−

min, cn+1 > cn and α2 = −λn(cn) for n � 1. By Lemma 2.5,
we can choose εn → 0+ and nearby traveling wave solutions uεn

(
x − cεn t, y

) =
(uεn

(
x − cεn t, y

)
, vεn

(
x − cεn t, y

)
)with period 2π/α in x such that ‖(uεn , vεn )−

(u, 0)‖H3(DT ) � εn, |cεn − cn| → 0+, ‖vεn‖L2(DT ) �= 0 and there exists ϕcn ∈
ker(Gcn ) such that

∥∥ṽεn − ϕcn

∥∥
C0 is small enough for large n, where ṽεn =

vεn/‖vεn‖L2(DT ). Then cεn → u−
min. A possible case is that there exists a sub-

sequence {n j }∞j=1 such that cn j /∈ ⋃
k>1(σd(Rkα,β) ∩ R) for j � 1. In this case,
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ϕcn j
(x, y) = √

α/πφcn j
(y) sin(αx) since it is odd in x (see the construction in

Lemma 2.5), where φcn j
is a L2 normalized eigenfunction of λn j (cn j ) = −α2 ∈

σ(Lcn j
). Since φcn j

has n j − 1 sign-changed zeros in (y1, y2), ṽεn j
oscillates fre-

quently in the y-direction for large j .

The minimal period of any nearby traveling wave solution in x can be deter-
mined under the following condition:

Lemma 5.3. Under the assumption of Lemma 2.7, if

c0 ∈ σd(Rα,β) ∩ R and c0 /∈
⋃
k�2

(σd(Rkα,β) ∩ R), (5.24)

then uε (x − cεt, y) has minimal period 2π/α in x for ε > 0 small enough.

Proof. Let the minimal horizontal period of the traveling wave solution
uε (x − cεt, y) be T/nε for ε ∈ (0, ε0), where nε ∈ Z+ and T = 2π/α. Fix
ε ∈ (0, ε0) and let ṽε = vε/‖vε‖L2(DT ). Since ṽε(x, y) = ṽε(x + T/nε, y) for

x ∈ R and y ∈ [y1, y2], we have
∫ T
0 eiαx ṽε(x, y) dx = eiαT/nε

∫ T
0 eiαx ṽε(x, y) dx .

Thus, if nε > 1, then eiαT/nε = e2π i/nε �= 1 and
∫ T
0 eiαx ṽε(x, y) dx = 0 for

y ∈ [y1, y2].
Suppose that there exists a sequence {εk : k � 1} ⊂ (0, ε0) such that εk →

0+ and uεk

(
x − cεk t, y

)
has minimal period T/nεk < T in x for k � 1. Then∫ T

0 eiαx ṽεk (x, y) dx = 0 for k � 1 and y ∈ [y1, y2]. By Lemma 2.7, ṽεk −→ ϕc0
in H2 (DT ), where ϕc0 ∈ ker(Gc0) and Gc0 is defined in (2.3). Then

∫ T

0
eiαxϕc0(x, y) dx = lim

k→∞

∫ T

0
eiαx ṽεk (x, y) dx = 0 (5.25)

for y ∈ [y1, y2]. By (5.24) and ϕ̂c0,0 = 0, we have ϕc0(x, y) = ϕ̂c0,1(y)e
iαx +

ϕ̂c0,1(y)e
−iαx , where ϕ̂c0,1 �= 0 is an eigenfunction of−α2 ∈ σ(Lc0). On the other

hand, we have that
∫ T

0
eiαxϕc0(x, y) dx = T ϕ̂c0,1(y) �≡ 0,

which contradicts (5.25). ��
Remark 5.4. (1) Let c0 ∈ ⋃

k�1(σd(Rkα,β) ∩ R) and k∗ be defined in (5.4). It
follows fromLemma5.3 that under the assumption of Lemma 2.7, if uε (x − cεt, y)
has period 2π/(k∗α) in x for ε ∈ (0, ε0), then the period 2π/(k∗α) is minimal for
ε > 0 small enough.

(2) In Proposition 7 of [27], it should be corrected that the minimal period
of constructed traveling wave solutions in x might be less than 2π/α0, since it is
possible that (c0, kα0, β, φk) is a non-resonant neutral mode for some k � 2 and
φk ∈ H1

0 ∩ H2(y1, y2).
Consequently, the minimal period of constructed traveling wave solutions near

the sinus profile in Theorem 7 (i) of [27] might be less than 2π/α0, see Example
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7.1 for systematic study of traveling wave families near the sinus profile. If (5.24)
holds true for α = α0, then the minimal period of these traveling wave solutions in
Proposition 7 and Theorem 7 (i) of [27] is 2π/α0.

6. The number of traveling wave families near a shear flow

In this section, we prove the main theorems-Theorems 2.2 and 1.2 . The proof is
based on the study on the number of isolated real eigenvalues of the linearized Euler
operator in Sections 3-4, and correspondence between a traveling wave family near
the shear flow and an isolated real eigenvalue in Section 5. We only prove Theorem
2.2, since the other is similar.

Proof of Theorem 2.2. Let the number of traveling wave families near (u, 0) be
denoted by θ . By Theorem 2.1, θ = �(

⋃
k�1(σd(Rkα,β) ∩ R)). Here α = 2π/T .

Proof of (1): Since {u′ = 0} ∩ {u = umin} �= ∅, we have 0 < κ+ < ∞. First,
let {u = umin} ∩ (y1, y2) �= ∅ and we divide the discussion into two cases.

Case 1a. β ∈ (0,min{ 98κ+, μ+}).
By Corollary 2.10 (1),

inf
c∈(−∞,umin)

λ1(c) > −∞. (6.1)

Thus, there exists 1 � k0 < ∞ such that
⋃
k>k0

(σd(Rkα,β) ∩ R) = ∅. (6.2)

By Theorem 2.11 (1), we have that

θ = �
( ⋃
k�1

(σd(Rkα,β) ∩ R)
)

�
∑
k�1

�(σd(Rkα,β) ∩ R) =
k0∑
k=1

�(σd(Rkα,β) ∩ R) < ∞.

(6.3)

Case 1b. β ∈ (min{ 98κ+, μ+},∞).
By Corollary 2.10 (1) for β ∈ (min{ 98κ+, μ+}, 9

8κ+] and Theorem 2.9 (3) for
β ∈ ( 98κ+,∞), we have that

lim
c→u−min

λ1(c) = −∞. (6.4)

Thus, there exists ck ∈ σd(Rkα,β)∩R such that ck < ck+1 < umin for every k � 1,
and ck → u−

min. Then θ = �(
⋃

k�1(σd(Rkα,β) ∩ R)) = ∞.
Next, let {u = umin} ∩ (y1, y2) = ∅ and we separate the proof into two cases.
Case 2a. β ∈ (0, 9

8κ+).
By Corollary 2.10 (3), we obtain (6.1). Thus, there exists 1 � k0 < ∞ such

that (6.2) holds. By Theorem 2.11 (1), we obtain (6.3).
Case 2b. β ∈ ( 98κ+,∞).
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By Theorem 2.9 (3), we have that

lim
c→u−min

λn(c) = −∞, n � 1. (6.5)

Using (6.5) for n = 1 and the fact that θ = �(
⋃

k�1(σd(Rkα,β) ∩ R)), it can be
proved that θ = ∞ by a similar way as in Case 1b. This completes the proof of (1).
The proof of (2) is similar.

Proof of (3): Since {u′ = 0}∩{u = umin} = ∅, we have {u = umin}∩(y1, y2) =
∅ and κ+ = ∞. Fix β ∈ (0,∞). By Corollary 2.10 (3), we obtain (6.1), and thus,
there exists 1 � k0 < ∞ such that (6.2) holds. By Theorem 2.12 (1), we obtain
(6.3). This completes the proof of (3). The proof of (4) is similar. ��
Remark 6.1. In Cases 1b and 2b of the above proof, the infinitely many traveling
wave families are produced by the asymptotic behavior of the first eigenvalue λ1(c)
ofLc, see (6.4). There could bemanyother travelingwave families in general,which
are produced by the asymptotic behavior of λn(c) for n � 2, see (6.5). In fact, if
β ∈ ( 98κ+,∞), for fixed n � 2, there exists ck,n ∈ σd(Rkα,β) ∩ R such that
λn(ck,n) = −(kα)2 for every k � 1. If {ck,n : k � 1, n � 2} \ {ck : k � 1} �= ∅,
then a simple application of Theorem 2.1 yields other traveling wave families.

7. Application to the sinus profile

In this section, we apply our main results to the sinus profile. Moreover, we
calculate the explicit number of isolated real eigenvalues of Rα,β and traveling
wave families near sinus profile.

Example 7.1. The sinus profile is u(y) = 1+cos(πy)
2 , y ∈ [−1, 1]. We determine

�
(
σd(Rα,β)∩ R

)
and the number of traveling wave families for the sinus profile

on the (α, β)’s region. For the sinus profile, we have umin = 0, umax = 1, {u′ =
0} ∩ {u = umin} = {±1}, {u′ = 0} ∩ {u = umax} = {0}, κ+ = u′′(±1) = 1

2π
2 and

κ− = u′′(0) = − 1
2π

2. We divide the plane into nine parts as follows:
In Fig. 3,

I = {(α, β)|α > 0, β < − 9

16
π2},

I I = {(α, β)|0 < α < π

√
−r2 − r + 3

4
,− 9

16
π2 � β < −1

2
π2, r ∈ [1

4
,
1

2
)},

I I I = {(α, β)|α � π

√
−r2 − r + 3

4
,− 9

16
π2 � β < −1

2
π2, r ∈ [1

4
,
1

2
)}∪

{(α, β)|0 < α <

√
3

2
π, β = −1

2
π2},

I V = {(α, β)|0 < α <
√

�β,−1

2
π2 < β < βl},

V = {(α, β)|π
√
1− r2 < α <

√
�β,

√
3− 1

4
π2 < β <

1

2
π2},
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β

α

− 9
16π2 − 1

2π2 βl 0 1
2π2 9

16π2
√

3−1
4 π2

I V III

II

III

IV

IX

V

V II

V I

Fig. 3. Nine parts of the plane

V I = {(α, β)|0 < α < π

√
−r2 − r + 3

4
,
1

2
π2 < β � 9

16
π2, r ∈ [1

4
,
1

2
)},

V I I = {(α, β)|0 < α <
√

�β, 0 < β �
√
3− 1

4
π2}∪

{(α, β)|0 < α � π
√
1− r2,

√
3− 1

4
π2 < β <

1

2
π2, r ∈ (

1

2
,

√
3

2
)}∪

{(α, β)|π
√
−r2 − r + 3

4
� α < π

√
1− r2,

1

2
π2 � β � 9

16
π2, r ∈ [1

4
,
1

2
]},

V I I I = {(α, β)|α > 0, β >
9

16
π2},

I X = {(α, β)|α �
√
3

2
π, β = −1

2
π2} ∪ {(α, β)|α >

√
�β,

− 1

2
π2 < β <

1

2
π2} ∪ {(α, β)|

α = √
�β, 0 < β �

√
3− 1

4
π2} ∪ {(α, β)|α � π

√
1− r2,

1

2
π2 � β

� 9

16
π2, r ∈ [1

4
,
1

2
]},

where �β = supc/∈(0,1) max{−λ1(c), 0}, r = 1
4 +

√
9
16 + β

π2 for− 9
16π

2 � β < 0,

r = 1
4 +

√
9
16 − β

π2 for 0 < β � 9
16π

2, and βl is given by Theorem 6 of [27].

Moreover, mβ = 0 and max{Mβ, 0} = �β for β ∈ [− 1
2π

2, 0) ∪ (0, 9
16π

2], and
mβ = 1 and Mβ = (−r2 − r + 3

4 )π
2 for β ∈ [− 9

16π
2,− 1

2π
2).

The explicit number �
(
σd(Rα,β) ∩ R

)
is given as follows:

(α, β) ∈ I X �⇒ �
(
σd(Rα,β) ∩ R

) = 0;
(α, β) ∈ I I I ∪ V I I �⇒ �

(
σd(Rα,β) ∩ R

) = 1;
(α, β) ∈ I V ∪ V ∪ V I �⇒ �

(
σd(Rα,β) ∩ R

) = 2; (7.1)
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(α, β) ∈ I I �⇒ �
(
σd(Rα,β) ∩ R

) = 3;
(α, β) ∈ I ∪ V I I I �⇒ �

(
σd(Rα,β) ∩ R

) = ∞.

In addition, �
(
σd(Rα,β) ∩ R

) = 1 if (α, β) ∈ � := {(α, β)|α = √
�β,− 1

2π
2 <

β < βl or
√
3−1
4 π2 < β < π2

2 }. Now we fix α = 2π/T .
The number (denoted by θ ) of traveling wave families near the sinus profile is

given by

(α, β) ∈ I X �⇒ θ = 0; (7.2)

(α, β) ∈ V I I �⇒ 1 � θ < ∞;
(α, β) ∈ I V ∪ V ∪ V I �⇒ 2 � θ < ∞;

(α, β) ∈ I ∪ I I ∪ I I I ∪ V I I I, β �= −π2

2
�⇒ θ = ∞.

In addition, θ = �(σd(Rα,β) ∩ R) = 1 if (α, β) ∈ �. Moreover,

(α, β) ∈ I I I ∪ I V ∪ V ∪ V I I �⇒ θ =
∑
k�1

�(σd(Rkα,β) ∩ R). (7.3)

If (α, β) ∈ I I I ∪ I V ∪ V ∪ V I I ∪ �, then

c0 ∈ σd(Rα,β) ∩ R �⇒ uε (x − cεt, y) has minimal period 2π/α in x (7.4)

for ε > 0 small enough,whereuε (x − cεt, y) satisfies the assumptionofLemma2.7.
To prove (7.1)–(7.4), we need the following asymptotic behavior, signatures

and monotonicity of λn .
(1) limc→±∞ λn(c) = n2

4 π2 > 0 for β ∈ R;
(2) limc→0− λn(c) = −∞ andλn is decreasing on (−∞, 0) forβ ∈ ( 9

16π
2,∞);

(3) limc→0− λn(c) = λn(0), λ1(0) < λ2(0) � 0, λ3(0) > 0 and λn is decreas-
ing on (−∞, 0) for β ∈ [ 12π2, 9

16π
2];

(4) limc→0− λn(c) = λn(0), λ1(0) < 0, λ2 > 0 on (−∞, 0], there exist
c1 < c2 ∈ (−∞, 0) such that λ1(c) � λ1(c1) = 0 for c ∈ (−∞, c1), λ1 is
decreasing on (c1, c2), λ1(c2) = infc∈(−∞,0) λ1(c) and λ1 is increasing on (c2, 0)

for β ∈ (
√
3−1
4 π2, 1

2π
2);

(5) limc→0− λn(c) = λn(0), λ1(0) < 0, λ2 > 0 on (−∞, 0], there exists
c1 ∈ (−∞, 0) such that λ1(c) � λ1(c1) = 0 for c ∈ (−∞, c1) and λ1 is decreasing

on (c1, 0) for β ∈ (0,
√
3−1
4 π2];

(6) λ1 � 0 on (1,∞) for β ∈ [βl , 0);
(7) limc→1+ λn(c) = λn(1), λ1(1) > 0, λ2 > 0 on (1,∞), there exist c1 <

c2 < c3 ∈ (1,∞) such that λ1(c) � λ1(c1) = λ1(c3) = 0 for c ∈ (1, c1)∪(c3,∞),
λ1 is decreasing on (c1, c2), λ1(c2) = infc∈(1,∞) λ1(c) and λ1 is increasing on
(c2, c3) for β ∈ (− 1

2π
2, βl);

(8) limc→1+ λn(c) = λn(1), λ1(1) < 0, λ2(1) = 0 and λn is increasing on
(1,∞) for β = − 1

2π
2;

(9) limc→1+ λ1(c) = −∞, limc→1+ λn+1(c) = λn(1), λ1(1) = λ2(1) < 0,
λ3(1) > 0 and λn is increasing on (1,∞) for β ∈ [− 9

16π
2,− 1

2π
2);



526 Zhiwu Lin, Dongyi Wei, Zhifei Zhang & Hao Zhu

(10) limc→1+ λn(c) = −∞ andλn is increasingon (1,∞) forβ ∈ (−∞,− 9
16π

2),

where n � 1, λn(0) =
((
r + n−1

2

)2 − 1
)

π2 for β ∈ (0, 9
16π

2], λn(1) =((
r − 1

2 + � n2 �
)2 − 1

)
π2 for β ∈ [− 9

16π
2,− 1

2π
2) ∪ (− 1

2π
2, 0), and λn(1) =

( n
2

4 − 1)π2 for β = − 1
2π

2 by Proposition 1 in [27].
Assertions (1)–(10) provide pictures of the negative eigenvalues ofLc for fixed

β. Assume that (1)–(10) are true. Note that σd(Rα,β) ∩ (1,∞) = ∅ if α ∈ R and
β > 0, and σd(Rα,β) ∩ (−∞, 0) = ∅ if α ∈ R and β < 0. Then we claim that

(σd(Rkα,β) ∩ R) ∩ (σd(R jα,β) ∩ R) = ∅, (7.5)

σd(Rkα,β) ∩ R = {c ∈ R \ [0, 1]|λ1(c) = −(kα)2} (7.6)

for k, j ∈ Z+, k �= j and (α, β) ∈ I I I ∪ I V ∪ V ∪ V I I ∪ �. In fact, (7.6)
implies (7.5). If (α, β) ∈ I I I , then by (8)–(9) we have λ2 > λ2(1) � −α2 on
(1,∞), which gives (7.6). If (α, β) ∈ I V ∪ � with β < 0, then by (7) we have
λ2 > 0 on (1,∞) and thus, Lc has at most one negative eigenvalue for c ∈ (1,∞),
which gives (7.6). Similarly, we can prove (7.6) for (α, β) ∈ V ∪ V I I ∪ � with
0 < β < π2

2 by (4)–(5). If (α, β) ∈ V I I with β � π2

2 , then by (3) we have
λ2 > λ2(0) � −α2 on (−∞, 0), which gives (7.6).

By applying Theorem 2.1, we get (7.1)–(7.3). (7.4) is a direct consequence of
Lemma 5.3. Here, (7.5) is used in the proof of (7.3)–(7.4).

Using (7.3) we can evaluate θ for (α, β) �∈ V I as follow:

β ∈ (−∞,−1

2
π2) ∪ (

9

16
π2,+∞) �⇒ θ = ∞;

β = −1

2
π2 �⇒ θ = �

√
3π

2α
� − 1; (7.7)

−1

2
π2 < β < βl �⇒ θ = �

√
�β

α
 + �

√
�β

α
� − 1;

βl � β � 0 �⇒ θ = 0;

0 < β �
√
3− 1

4
π2 �⇒ θ = �

√
�β

α
� − 1;

√
3− 1

4
π2 < β <

1

2
π2 �⇒ θ = �

√
�β

α
 + �

√
�β

α
�

− �π
√
1− r2

α
 − 1;

π

√
−r2 − r + 3

4
� α,

1

2
π2 � β � 9

16
π2 �⇒ θ = �π

√
1− r2

α
� − 1.

The case (α, β) ∈ V I is more complicated. By (3), we have θ = �(A1 ∪ A2) with
Ai = {c < 0|λi (c) = −(kα)2, k ∈ Z+}. Then by (3) and the expression of λi (0),

i = 1, 2, we have �(A1) = �π
√
1−r2
α

�−1, �(A2) = �π

√
−r2−r+ 3

4
α

�−1, and �(A1) �

θ � �(A1) + �(A2), i.e. �π
√
1−r2
α

� − 1 � θ � �π
√
1−r2
α

� + �π

√
−r2−r+ 3

4
α

� − 2. In
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fact, θ = �(A1) + �(A2) − �(A1 ∩ A2), but it seems difficult to give an explicit
formula if A1 ∩ A2 �= ∅.

Now, we prove (1)–(10). (1) and (4)–(7) are a summary of spectral results in
Section 4 of [27]. Monotonicity of λn for β ∈ (−∞,− 1

2π
2] ∪ [ 12π2,∞) is due

to Corollary 1 in [27]. Asymptotic behavior of λn in (2) and (10) is obtained by
Corollary 2.10. Signatures of λn in (3) and (8)–(9) are due to Proposition 1 in [27]
and simple computation.

The rest is to prove the asymptotic behavior of λn in (3) and (8)–(9). First, we
consider β = ± 1

2π
2. We only prove that limc→0− λn(c) = λn(0) for β = 1

2π
2 and

n � 1. Note that β−u′′
u = π2 and

∥∥∥β−u′′
u−c − β−u′′

u

∥∥∥
L1(−1,1)

= π2
∥∥∥ c
u−c

∥∥∥
L1(−1,1)

for

c < 0. Let 0 < δ < 1. Then

∥∥∥∥ c

u − c

∥∥∥∥
L1(1−δ,1)

= 2

π

∫ cos( π
2 (1−δ))

0

−c

z2 − c

1√
1− z2

dz � Cδ

√−c → 0

as c → 0−. Similarly,
∥∥∥ c
u−c

∥∥∥
L1(−1,−1+δ)

→ 0. Clearly,
∥∥∥ c
u−c

∥∥∥
L1(−1+δ,1−δ)

→ 0.

Then
∥∥∥ c
u−c

∥∥∥
L1(−1,1)

→ 0. It follows fromTheorem2.1 in [21] that limc→0− λn(c) =
λn(0) for n � 1.

We then consider β ∈ ( 12π
2, 9

16π
2). We use the eigenfunctions of λn(β, 0) in

Proposition 1 (iii) of [27]. Here, we rewrite λn(β, c) = λn(c) to indicate its depen-
denceonβ if necessary.There existφn(y) = φ

(β,0)
n (y) = cos2r (π

2 y)Pn−1(sin(π
2 y)),

n � 1, satisfying

− φ′′
n − β − u′′

u
φn = λn(0)φn on (−1, 1), φn(±1) = 0.

Here, λn(β, 0) =
((
r + n−1

2

)2 − 1
)

π2, r = 1
4 +

√
9
16 − β

π2 and Pn−1(·) is a

polynomial with order n − 1. Moreover, φn ∈ H1
0 (−1, 1) is real-valued, and we

normalize it such that ‖φn‖L2(−1,1) = 1. Then we have, for m, n � 1, that

∫ 1

−1
φnφm dy = δmn =

{
1 if n = m,

0 if n �= m,

∫ 1

−1

(
φ′
nφ

′
m + u′′ − β

u
φnφm

)
dy = λn(0)δmn .

Note that φn has n − 1 zeros in (−1, 1), and we denote Zn := {y ∈ (−1, 1) :
φn(y) = 0} = {an,1, · · · , an,n−1}. For any n-dimensional subspace V = span
{ψ1, · · · , ψn} in H1

0 (−1, 1), there exists 0 �= (ξ1, · · · , ξn) ∈ Rn such that
ξ1ψ1(an,i )+· · ·+ξnψn(an,i ) = 0, i = 1, · · · , n−1.Define ψ̃ = ξ1ψ1+· · ·+ξnψn .

Then ψ̃(an,i ) = 0, i = 1, · · · , n − 1, i.e. ψ̃ |Zn = 0. We normalize ψ̃ such that
‖ψ̃‖L2(−1,1) = 1. Since ψ̃ ∈ H1

0 (−1, 1), we have ψ̃(±1) = 0. Similar to (3.2),

we have |ψ̃(y)|2φ′
n(y)/φn(y) → 0 as y → an,i or y → −1+ or y → 1−, where

1 � i � n − 1. Integration by parts gives
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∥∥∥∥ψ̃ ′ − ψ̃
φ′
n

φn

∥∥∥∥
2

L2(−1,1)
=

∫ 1

−1

(
|ψ̃ ′|2 + φ′′

n

φn
|ψ̃ |2

)
dy

=
∫ 1

−1

(
|ψ̃ ′|2 − β − u′′

u
|ψ̃ |2 − λn(0)|ψ̃ |2

)
dy.

If c < 0, then using β − u′′ > 0 and u − c > 0 for y ∈ [−1, 1], we have that
∫ 1

−1

(
|ψ̃ ′|2 − β − u′′

u − c
|ψ̃ |2

)
dy �

∫ 1

−1

(
|ψ̃ ′|2 − β − u′′

u
|ψ̃ |2

)
dy

�
∫ 1

−1
λn(0)|ψ̃ |2 dy = λn(0).

This, along with (2.7), yields that infc∈(−∞,0) λn(c) � λn(0).Now, we consider the
upper bound. Let Vn = span{φ1, · · · , φn}. Then Vn ⊂ H1

0 (−1, 1). By (2.7), there
exist bi,c ∈ R, i = 1, · · · , n, with

∑n
i=1 |bi,c|2 = 1 such that ϕc = ∑n

i=1 bi,cφi ∈
Vn with ‖ϕc‖2L2 = 1, and

λn(c) � sup
‖φ‖L2=1,φ∈Vn

∫ 1

−1

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy

=
∫ 1

−1

(
|ϕ′

c|2 + u′′ − β

u − c
|ϕc|2

)
dy

=
n∑

i=1

|bi,c|2
∫ 1

−1

(
|φ′

i |2 + u′′ − β

u − c
|φi |2

)
dy

+
∑

1�i< j�n

2bi,cb j,c

∫ 1

−1

(
φ′
iφ

′
j +

u′′ − β

u − c
φiφ j

)
dy

� max
1�i�n

∫ 1

−1

(
|φ′

i |2 + u′′ − β

u − c
|φi |2

)
dy

+
∑

1�i< j�n

∣∣∣∣
∫ 1

−1

(
φ′
iφ

′
j +

u′′ − β

u − c
φiφ j

)
dy

∣∣∣∣

→ max
1�i�n

∫ 1

−1

(
|φ′

i |2 + u′′ − β

u
|φi |2

)
dy

+
∑

1�i< j�n

∣∣∣∣
∫ 1

−1

(
φ′
iφ

′
j +

u′′ − β

u
φiφ j

)
dy

∣∣∣∣
= max

1�i�n
λi (0) +

∑
1�i< j�n

0 = λn(0), as c → 0−.

Combining the upper and lower bounds, we have limc→0− λn(c) = λn(0) for
β ∈ ( 12π

2, 9
16π

2).

Now, we consider β = 9
16π

2. By Corollary 1 (i) in [27], we have for fixed
c < 0, λn(β, c) � λn(β

′, c) if β ′ < β. As λn(β
′, c) � λn(β

′, c′) if c < c′ < 0
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(see Corollary 1 (iv) in [27]) and limc→0− λn(β
′, c) = λn(β

′, 0), we have for fixed
β ′ ∈ ( 12π

2, 9
16π

2), λn(β ′, c) � λn(β
′, 0) if c < 0. Then

lim
c→0−

λn(β, c) � lim inf
β ′→β− lim

c→0−
λn(β

′, c) = lim inf
β ′→β− λn(β

′, 0) = λn(β, 0),

lim
c→0−

λn(β, c) = lim
c→0−

lim
β ′→β− λn(β

′, c) � lim
β ′→β− λn(β

′, 0) = λn(β, 0).

Here,weused the left continuity ofλn(·, 0) atβ = 9
16π

2.Thus, limc→0− λn(β, c) =
λn(β, 0).

Next, we consider β ∈ (− 9
16π

2,− 1
2π

2). By Proposition 1 (iv) in [27], there

exists φn(y) = φ
(β,1)
n (y) = | sin(π

2 y)|2r Pn(cos(π
2 y)) if n is odd; there exists

φn(y) = φ
(β,1)
n (y) = sign(y) | sin(π

2 y)|2r Pn−1(cos(π
2 y)) if n is even; and, for

n � 1,

− φ′′
n − β − u′′

u − 1
φn = λn(1)φn on (−1, 1) \ {0}, φn(±1) = 0.

Here, λn(β, 1) =
((
r − 1

2 + � n2 �
)2 − 1

)
π2 and r = 1

4 +
√

9
16 + β

π2 .

Moreover, φn ∈ H1
0 (−1, 1) is real-valued and we normalize it such that

‖φn‖L2(−1,1) = 1. Then for m, n � 1,

∫ 1

−1
φnφmdy = δmn,

∫ 1

−1

(
φ′
nφ

′
m + u′′ − β

u − 1
φnφm

)
dy = λn(1)δmn .

If n � 1 is odd, then φn has n zeros in (−1, 1), and 0 ∈ Zn = {y ∈ (−1, 1) :
φn(y) = 0} = {an,1, · · · , an,n}. For any (n + 1)-dimensional subspace V =
span{ψ1, · · · , ψn+1} in H1

0 (−1, 1), there exists 0 �= (ξ1, · · · , ξn+1) ∈ Rn+1 such
that ξ1ψ1(an,i ) + · · · + ξn+1ψn+1(an,i ) = 0, i = 1, · · · , n. Define ψ̃ = ξ1ψ1 +
· · · + ξn+1ψn+1. Then ψ̃(an,i ) = 0, i = 1, · · · , n, i.e. ψ̃ |Zn = 0. We normalize ψ̃

such that ‖ψ̃‖L2(−1,1) = 1. Since ψ̃ ∈ H1
0 (−1, 1), we have ψ̃(±1) = 0. Integration

by parts gives that
∥∥∥∥ψ̃ ′ − ψ̃

φ′
n

φn

∥∥∥∥
2

L2(−1,1)
=

∫ 1

−1

(
|ψ̃ ′|2 + φ′′

n

φn
|ψ̃ |2

)
dy

=
∫ 1

−1

(
|ψ̃ ′|2 − β − u′′

u − 1
|ψ̃ |2 − λn(1)|ψ̃ |2

)
dy.

If c > 1, then using β − u′′ < 0 and u − c < 0 for y ∈ [−1, 1], we have
∫ 1

−1

(
|ψ̃ ′|2 − β − u′′

u − c
|ψ̃ |2

)
dy �

∫ 1

−1

(
|ψ̃ ′|2 − β − u′′

u − 1
|ψ̃ |2

)
dy

�
∫ 1

−1
λn(1)|ψ̃ |2 dy = λn(1).

This, along with (2.7), yields that infc∈(1,+∞) λn+1(c) � λn(1). If n � 1 is even,
then λn+1(c) � λn(c) � λn−1(1) = λn(1). Thus, infc∈(1,+∞) λn+1(c) � λn(1) is
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always true. Now, we consider the upper bound. Let Vn+1 = span{φ0, φ1, · · · , φn},
here φ0 = η|[−1,1] is defined in (3.9), and φ1, · · · , φn are L2 normalized eigen-
functions. Then Vn+1 ⊂ H1

0 (−1, 1). By (2.7), for c > 1, there exists ϕc ∈ Vn+1
with ‖ϕc‖2L2 = 1, and

λn+1(c) � sup
‖φ‖L2=1,φ∈Vn+1

∫ 1

−1

(
|φ′|2 + u′′ − β

u − c
|φ|2

)
dy

=
∫ 1

−1

(
|ϕ′

c|2 + u′′ − β

u − c
|ϕc|2

)
dy.

Since Vn+1 ⊂ H1
0 (−1, 1) is finite dimensional, there exist ϕ1 ∈ Vn+1 and cm →

1+ such that ϕcm → ϕ1 in H1
0 (−1, 1). Then ‖ϕ1‖2L2 = 1,

∫ 1
−1 |ϕ′

cm |2 dy →∫ 1
−1 |ϕ′

1|2 dy and

λn+1(cm) �
∫ 1

−1

(
|ϕ′

cm |2 + u′′ − β

u − cm
|ϕcm |2

)
dy.

Since u′′ − β > 0 and u − c < 0 for y ∈ [−1, 1] and c > 1, by Fatou’s Lemma,
we have

lim sup
m→∞

∫ 1

−1

u′′ − β

u − cm
|ϕcm |2 dy �

∫ 1

−1
lim sup
m→∞

u′′ − β

u − cm
|ϕcm |2 dy

=
∫ 1

−1

u′′ − β

u − 1
|ϕ1|2 dy.

In particular, if ϕ1(0) �= 0, then
∫ 1

−1

u′′ − β

u − 1
|ϕ1|2 dy = −∞, lim sup

m→∞

∫ 1

−1

u′′ − β

u − cm
|ϕcm |2 dy

= −∞, lim sup
m→∞

λn+1(cm) = −∞.

If ϕ1(0) = 0, then ϕ1 ∈ span{φ1, · · · , φn} and

lim sup
m→∞

λn+1(cm) �
∫ 1

−1

(
|ϕ′

1|2 + u′′ − β

u − 1
|ϕ1|2

)
dy.

As ‖ϕ1‖2L2 = 1, there exist bi ∈ R, i = 1, · · · , n, with
∑n

i=1 |bi |2 = 1 such that
ϕ1 = ∑n

i=1 biφi ∈ Vn+1 and

∫ 1

−1

(
|ϕ′

1|2 + u′′ − β

u − 1
|ϕ1|2

)
dy =

n∑
i=1

|bi |2
∫ 1

−1

(
|φ′

i |2 + u′′ − β

u − 1
|φi |2

)
dy

=
n∑

i=1

|bi |2λi (1)

� max
1�i�n

λi (1) = λn(1).
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Therefore, if ϕ1(0) = 0, then lim sup
m→∞

λn+1(cm) � λn(1); if ϕ1(0) �= 0, this

is clearly true since the limit is −∞ in this case. By monotonicity of λn , we
have lim

c→1+
λn+1(c) � λn(1). Combining the upper and lower bounds, we have

lim
c→1+

λn+1(c) = λn(1) for β ∈ (− 9
16π

2,− 1
2π

2).

For β = − 9
16π

2, the limits lim
c→1+

λn+1(c) = λn(1), n � 1, can be proved

similarly as in the case β = 9
16π

2. Finally, the limit limc→1+ λ1(c) = −∞ for
β ∈ [− 9

16π
2,− 1

2π
2) follows from Theorem 2.9 (2).
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