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Abstract

In this paper, we study the number of traveling wave families near a shear
flow under the influence of Coriolis force, where the traveling speeds lie outside
the range of the flow u. Under the B-plane approximation, if the flow u has a
critical point at which u attains its minimal (resp. maximal) value, then a unique
transitional 8 value exists in the positive (resp. negative) half-line such that the
number of traveling wave families near the shear flow changes suddenly from finite
to infinite when B passes through it. On the other hand, if u has no such critical
points, then the number is always finite for positive (resp. negative) 8 values. This
is true for general shear flows under mildly technical assumptions, and for a large
class of shear flows including a cosine jet u(y) = w (i.e. the sinus profile)
and analytic monotone flows unconditionally. The sudden change of the number
of traveling wave families indicates that long time dynamics around the shear flow
is much richer than the non-rotating case, where no such traveling wave families
exist.

1. Introduction

The earth’s rotation influences dynamics of large-scale flows significantly. Un-
der the B-plane approximation, the motion for such a flow could be described by
2-D incompressible Euler equation with rotation

v+ (v-Vyv=—-VP —ByJv, V-v=0, (1.1)

where v = (vq, vp) is the fluid velocity, P is the pressure, J = <(1) _01) is the

rotation matrix, and g is the Rossby number. Here we study the fluid in a periodic
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finite channel 2 = Dy = T7 X [y1, y2], Tr = R/(TZ) with the following
non-permeable boundary condition on 9€2:

vy =0 on y=yi,y. (1.2)

The B-plane approximation is commonly used for large-scale motions in geophys-
ical fluid dynamics [34,35]. The vorticity form of (1.1) is

orw+ (v- Vo + Bvr =0, (1.3)

where w = 0,v; — dyv;. By the incompressible condition, we introduce the stream
function v such that v = VJ‘I/I = (dyyr, —0x ). Consider the shear flow (u(y), 0),
which is a steady solution of (1.3). The linearized equation of (1.3) around (u(y), 0)
is

dw+ udw — (B —u)dey =0, (1.4)

which was derived in [41].

In the study of long time dynamics near a shear flow, the most rigid case is
the nonlinear inviscid damping (to a shear flow), a kind of asymptotic stability.
This means that if the initial velocity is taken close enough to the given shear flow
in some function space, then the velocity tends asymptotically to a nearby shear
flow in this space. The existence of nearby non-shear steady states or traveling
waves means that nonlinear inviscid damping (to a shear flow) is not true, and long
time dynamics near the shear flow may be richer and fruitful. To understand the
richer long time dynamics near the shear flow in this situation, an important step is
to clarify whether the number of curves of nearby traveling waves with traveling
speeds converging to different points is infinite. Indeed, if the number is finite,
then the velocity might tend asymptotically to some nonlinear superpositions of
finite such non-shear states when the initial data is taken close to the flow, and
quasi-periodic nearby solutions are expected, which indicates new but not so com-
plicated dynamics. If the number is infinite, then the evolutionary velocity might
tend asymptotically to superpositions of infinite such non-shear states, and almost
periodic nearby solutions potentially exist, which predicts complicated even chaotic
long time behavior near the flow. Similar phenomena were observed numerically
in the study of Vlasov-Poisson system, a model describing collisionless plasmas
[4,5,9,24]. This model shares many similarities with the 2D incompressible Euler
equation. By numerical simulations, it was found that for some initial perturbation
near homogeneous states, the asymptotic state toward which the system evolves can
be described by a superposition of BGK modes [9]. This offers a hint for further
numerical study in the 2D Euler case. It is very challenging to study long time
dynamics near a shear flow in a fully analytic way when such non-shear steady
states or traveling waves exist. The first step towards this direction is to construct
nonlinear superpositions of traveling waves as in the Vlasov-Poisson case.

When there is no Coriolis force, long time dynamics near monotone flows is
relatively rigid in strong topology, while it is still highly non-trivial to give a math-
ematical confirmation. A first step is to understand the linearized equation. ORR
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[37] observed the linear damping for Couette flow, and Case [6] predicted the de-
cay of velocity for monotone shear flows. Recently, their predictions are confirmed
in [14,19,20,28,43,47,48] and are extended to non-monotone flows in [44,45].
Meanwhile, great progress has been made in the study of nonlinear dynamics near
shear flows. BEDROSSIAN and MasmouDI [3] proved nonlinear inviscid damping
near Couette flow for the initial perturbation in some Gevrey space on T x R.
Ionescu and Jia [17] extended the above asymptotic stability to a periodic finite
channel T x [—1, 1] under the assumption that the initial vorticity perturbation is
compacted supported in the interior of the channel. Later, nonlinear inviscid damp-
ing was proved near a class of Gevrey smooth monotone shear flows in a periodic
finite channel if the perturbation is taken in a suitable Gevrey space, where u” (y) is
compactly supported [18,33]. It is still challenging to study the long time behavior
near general, rough, monotone or non-monotone shear flows. On the other hand,
inviscid damping (to a shear flow) depends on the regularity of the perturbation,
and the existence of non-shear stationary structures is shown near some specific

flows. LiN and ZENG [28] found cats’ eyes flows near Couette for H =2 vorticity
perturbation in a periodic finite channel, while no non-shear traveling waves near

Couette exist if the regularity is H~ %, in contrast to the linear level, where damp-
ing is always true for any initial vorticity in L?. For Kolmogorov flows, which is
non-monotone, CoTl ZELATI, ELGINDI and WIDMAYER [8] constructed non-shear
stationary states near Kolmogorov at analytic regularity on the square torus, while
there are no nearby non-shear steady states at regularity H> for velocity on a rect-
angular torus. They also proved that any traveling wave near Poiseuille must be
shear for H>? vorticity perturbation in a periodic finite channel.

As indicated in [35], the study of the dynamics of large-scale oceanic or atmo-
spheric motions must include the Coriolis force to be geophysically relevant, and
once the Coriolis force is included a host of subtle and fascinating dynamical phe-
nomena are possible. By numerical computation, Kuo [23] found the boundary of
barotropic instability for the sinus profile, which is far from linear instability in no
Coriolis case. Later, based on Hamiltonian index theory and spectral analysis, Lin,
Yang and Zhu theoretically confirmed large parts of the boundary and corrected
the rest. New traveling waves, which are purely due to the Coriolis effects, are
found near the sinus profile [27]. Barotropic instability of other geophysical shear
flows has also attracted much attention. For instance, by looking for the neutral
solutions, most of the stability boundary, which is again different from no Coriolis
case, of bounded and unbounded Bickley jet is found numerically and analytically
in[2,12,16,29,31]. More fruitful geophysical fluid dynamics, such as Rossby wave
and baroclinic instability, could be found in [10,23,30,34,35]. On the other hand,
similar to no Coriolis case, linear inviscid damping is still true for a large class of
flows and moreover, the same decay estimates of the velocity can be obtained for a
class of monotone flows [46]. ELGINDI and WIDMAYER [11] viewed Coriolis effect
as one mechanism helping to stabilize the motion of an ideal fluid, and proved the
almost global stability of the zero solution for the S-plane equation. Global stability
of the zero solution is further to be confirmed in [36].
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When Coriolis force is involved, long time dynamics near a shear flow becomes
fruitful. One of the main reasons is that, compared with the no Coriolis case, there
are new traveling waves with fluid trajectories moving in one direction. This paper is
devoted to studying the number of such traveling wave families near a general shear
flow u under the influence of Coriolis force. Here, a traveling wave family roughly
includes the sets of nearby traveling waves with traveling speeds converging to a
same number outside the range of the flow, see Definition 2.8 for details. Precisely,
we prove that if the flow u has a critical point at which u attains its minimal (resp.
maximal) value, then a unique transitional § value B4 (resp. f_) exists in the
positive (resp. negative) half-line, through which the number of traveling wave
families changes suddenly from finite to infinite. The transitional B values are
defined in (1.12)—(1.12). If the flow u has no such critical points, then the number
of traveling wave families is always finite for positive (resp. negative) 8 values.
This is true for general shear flows under mildly technical assumptions. Based on
Hamiltonian structure and index theory, we unconditionally prove the above results
for a flow in class K, which is defined as follows:

Definition 1.1. A flow u in class T means that u € H 4(y1, y2) is not a constant
function, and for any 8 € Ran(u”), there exists ug € Ran(u) such that Kg =
(B —u")/(u — up) is positive and bounded on [y1, y2].

A typical example of such a flow is a cosine jet u(y) = w, yel[—1,1]
(i.e. the sinus profile), which was studied in geophysical literature [22,23,35]. For
B = 0 and a general shear flow u € Cz([yl, y21), RAYLEIGH [38] gave a necessary
condition for spectral instability that u”(yp) = 0 for some yp € (y1, y2), and
even under this condition, FIRTOFT [13] provided a sufficient condition for spectral
stability that (u — u(yo))u” = 0 on (y1, y2). For 8 # 0 and u € C?([y1, y2]), the
above two conditions can be extended as g — u”(yg) = 0 for some yg € (y1, y2)
and (B — u”)(u — u(yg)) < 0 on (y1, y2), respectively; see, for example, (6.3)—
(6.4) in [23]. For a flow in class KT, the extended Rayleigh’s condition implies that
B € Ran(u”) is necessary for spectral instability, but the flow does not satisfy the
extended Fjgrtoft’s sufficient condition for spectral stability. The sharp condition
for spectral stability indeed depends on f and the wave number o, which was
obtained in [26] for § = 0 and in [27] for 8 # O.

Consider a class of general shear flows satisfying

(H1) u € H*(y1, y2), u” # 0 on u’s critical level {u’ = 0}.

A flow u in class K satisfies the assumption (H1). In fact, it is trivial for 0 ¢
Ran(u”); if 0 € Ran(u”) and yg € [y1, y2] satisfies u’'(yg) = 0 and u”(yg) = 0,
then u(yg) — up = —mu”(yo) = 0. Thus, ¢ = u — ug solves ¢” + Koo = 0,
©(y0) = ¢'(y9) = 0. Then u = ug, which is a contradiction.

To state our main results with few restrictions, we first consider flows in class
K, and left the extension to general shear flows satisfying (H1) in Section 2.

Theorem 1.2. Let B # 0 and the flow u be in class K.
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(1) If (' = 0}N{u = umin} # 0, then there exists B € (0, 00) such that there exist
at most finitely many traveling wave families near (u, 0) for B € (0, B+], and
infinitely many traveling wave families near (u, 0) for B € (B4, 00). Moreover,
B+ is specified in (1.12).

(2) If {u' = 0} N {u = umax} # O, then there exists B_ € (—o0, 0) such that there
exist at most finitely many traveling wave families near (u, 0) for g € [B—, 0),
and infinitely many traveling wave families near (u,0) for p € (—o0, B_).
Moreover, B_ is specified in (1.12).

(3)If {u' =0} N {u = umin} = ¥, then there exist at most finitely many traveling
wave families near (u, 0) for 8 € (0, 00).

(4) If (' = 0} N {u = umax} = @, then there exist at most finitely many traveling
wave families near (u, 0) for f € (—o0, 0).

Here, the precise description of a traveling wave family near (u, Q) is given in
Definition 2.8.

Unless otherwise specified, “near (u, 0)” always means “in a (velocity) H 3
neighborhood of (u, 0)” in Theorem 1.2 and the rest of this paper, as indicated in
Definition 2.4. These traveling wave families do not exist if there is no Coriolis
force. By Theorem 1.2, Coriolis force and its magnitude indeed bring fascinating
dynamics near the shear flow. On the one hand, for flows having no critical point
which is meanwhile a minimal point, the number of traveling wave families is
always finite no matter how much magnitude of Coriolis force, which is a mild
Coriolis effect. On the other hand, for flows having such a critical point, there is a
surprisingly sharp difference, namely, when the Coriolis parameter passes through
the transitional point B, the number of traveling wave families changes suddenly
from finite to infinite. In particular, quasi-periodic solutions to (1.1)—(1.2) can be
expected near the shear flow for 8 € (0, 8], while almost periodic solutions
potentially exist for € (B4, oo). This could be regarded as a strong Coriolis
effect and predicts chaotic long time dynamics near these flows.

The same dynamical phenomena are true for general shear flows under some
mildly technical assumptions. The explicit result is stated in Theorem 2.2. For
B > 0, the technical assumption for flows having a critical and meanwhile minimal
point is that up;i, is not an embedding eigenvalue of the linearized Euler operator
for small wave numbers. The assumption for flows having no such critical points
is some regularized condition near the endpoints of u. Note that the first spectral
assumption has only restriction for one point umi,, no matter whether the interior
of Ran (#) has embedding eigenvalues. The second assumption is more generic
and quite easy to verify. Both the two technical assumptions are used for ruling out
eigenvalues’ oscillation for Rayleigh-Kuo boundary value problem (BVP) as the
parameter ¢ tends to upip, see Subsection 2.2 for details.

Let us give some remarks on properties of such traveling waves near the flow
u.

e The traveling waves have fluid trajectories moving in one direction, see (5.6) in
the proof of Lemma 2.5. Thus unlike the constructed steady flow near Couette
flow in [28], the streamlines here have no cat’s eyes structure.



480 ZHIWU LIN, DONGYI WEI, ZHIFEI ZHANG & HAO ZHU

e The traveling waves can be constructed near a smooth shear flow for H 23
(including H>®) velocity perturbation when the Coriolis parameter is large,
see Corollary 2.6. In contrast, in the case of no Coriolis force, no traveling

waves could be found near Couette flow for H>> velocity perturbation [28]
and near Poiseuille flow for H>° velocity perturbation [8].

o Let{u' =0)N{u = umin} # Yand B > %K+. The directions of vertical
velocities of the nearby traveling waves might change frequently with small
amplitude as the traveling speeds converge to u_; , see Remark 5.2.

We apply the main results to analytic monotone flows (including Couette flow)
and the sinus profile. For an analytic monotone flow, there exist at most finitely many
nearby traveling wave families for 8 # 0, see Corollary 2.3. For the sinus profile,
as mentioned above, it is in class Xt and so applying Theorem 1.2 (1)—(2) we get
that {u” = 0} 1 {u = st} = (1. (" = O 1ot = tha) = 0}, By = f5°,
B =— i” there exist at most finitely many traveling wave families near the sinus
profile for 8 € [—§]T ' 1 67[2] and infinitely many nearby traveling wave families
forB ¢ [— 5772, 16712]. Moreover, we will give a systematical study on the number
of isolated real eigenvalues of the linearized Euler operator and traveling wave
families near the sinus profile on the whole («, 8)’s region in Section 7 (here « is
the wave number in the x-direction), which plays an important role in further study
onits long time dynamics. We make a comparison with the previous work in [27]. By
Theorem 2.1, the number of isolated real eigenvalues of the linearized Euler operator
(i.e. non-resonant modes) determines that of traveling wave families. The explicit
number of isolated real eigenvalues in the region (¢, 8) € (0, 00) X [— 22, 5] can
be obtained in [27], but no information can be concluded outside this region, see
the discussion below Fig. 4 in [27]. Our new contribution for the sinus profile in
this paper is that we calculate the explicit number of isolated real eigenvalues in
the remaining area («, 8) € (0, 00) X (—o0, —”72) U (”—2, 00), and thus completely
get the number of traveling wave families near the sinus profile on the whole
(o, B)’s region. For the sinus profile, the novelty is that we give the asymptotic
behavior of the n-th eigenvalue 1, (c) of the Rayleigh-Kuo BVP (2.6) as ¢ — 0~
for B € (”72, oo) and as ¢ — 1T for B € (—o0, —”72), from which we find
the transitional 8 values such that the number of traveling wave families changes
suddenly from finite to infinite. For general shear flows satisfying (H1), the key is
to study whether A, (c¢) is unbounded from below as c is close to umin (Or Umax) in
Theorem 2.9 and to rule out the oscillation of A, (¢) in Theorems 2.11-2.13. In this
paper, we focus on the description of the eigenvalues of the Rayleigh-Kuo BVP
(2.6), which in turn, by Theorem 2.1, yields information on traveling wave families.

The rest of this paper is organized as follows: in Section 2, we extend Theo-
rem 1.2 to general shear flows and give the outline of the proof. In Sections 3-4, we
study the asymptotic behavior of the n-th eigenvalue of Rayleigh-Kuo BVP, where
we determine the transitional values for the n-th eigenvalue of Rayleigh-Kuo BVP
in Section 3, and rule out oscillation of the n-th eigenvalue in Section 4. In Section 5,
we establish the correspondence between a traveling wave family and an isolated
real eigenvalue of the linearized Euler operator. In Section 6, we prove the main
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Theorems 2.2 and 1.2. As a concrete application, we thoroughly study the number
of traveling wave families near the sinus profile in the last section.
Notation

We provide the notations that we use in this paper. Let upyj; = min(z) and
Umax = max(u) foru € C([y1, y2]). For a shear flow u satisfying (H1), we use the
following characteristic quantities of the flow. If {u’ = 0} N {u = umin} # 9, we
define

k4 :=min{u”(y)|y € [y1, y2] such that u’(y) = 0 and u(y) = umin}.  (1.5)
If {u' =0} N {1 = umax} # @, we define
k_ :=max{u”(y)|y € [y1, y2] such that u’(y) = 0 and u(y) = tmax}. (1.6)

Note that k4 € (0,00) and k_ € (—00, 0) in (1.6)—(1.6). In fact, (H1) implies
u”(yo) > 0for yo € A :={y € [y1, y21lu'(y) = 0and u(y) = umin}. Then yy is
an isolated point of A. Thus, A is a finite set and x4 € (0, co) in (1.6). Similarly,
Kk_ € (—00,0) in (1.6). Besides (1.6)—(1.6), we define

ky=o00, if{u' =0}N{u=umn}="9, (1.7)
ko= —o0, if {' =0} N{u =uma} =9. (1.8)

If {u = umin} N (y1, y2) # ¥, we define

py == min{u"(y)|y € (y1, y2) such that u(y) = umin}. (1.9)
If {u = umax} N (y1, y2) # @, we define

- = max{u"(y)|y € (y1. y2) such that u(y) = ttmax}. (1.10)

Note that 4 € [k4, 00) and u— € (—o0, k—]in (1.10)—(1.10). Then we define

| min{3rp, s, if (u = umin} N 1, y2) # 9,
Bri= 1, : (1.11)
gK+> if {u = umin} N (y1, y2) =9,
and
o max{%lc_, mot, i {u = umax} N (y1, y2) # 9,
B- =1, ] (1.12)
gh—> if {u = umax} N (1, y2) = 9.
‘We denote
EL) Umin 1S not an embedding eigenvalue of R g, (1.13)
(E-) Umax 18 not an embedding eigenvalue of Ry g, (1.14)
where R g is defined in (2.5). Moreover, we define
— {n{a € (1, y2)lu(@) = unin, u"(@) = B <0}, i 0 < p = gesy | ()
ta € (yi. y2)|u(@) = tmax. u”(@) — B > 0}, if g < B <0,
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and
— _inf der(0), if0 < B S g,
Mg = | €00 umin) o (1.16)
— inf  Amgta(e), if gr- <B <0,
c€(Umax,00

where Ay 4+1(c) is the (mg + 1)-th eigenvalue of the Rayleigh-Kuo BVP (2.6).
R, Z and Z™* denote the set of all the real numbers, integers and positive in-
tegers, respectively. §(K) or ff K is the cardinality of the set K. Let L be a linear
operator from a Banach space X to X. X* is the dual space of X. o (L), o.(L) and
o4(L) are the spectrum, essential spectrum and discrete spectrum of the operator
L, respectively. For ¢ € L?(Dr), the Fourier transform of ¢ in x is denoted by f/? .

2. Extension to general shear flows and outline of the proof

In this section, we first extend the main Theorem 1.2 to general shear flows
under mild assumptions, and then discuss our approach in its proof.

2.1. Main results for general shear flows

For a shear flow in H*(y;, y2), we give the exact number of traveling wave
families near the flow.

Theorem 2.1. Now a = 27/T, B # 0 and u € H*(y1, y2). Then 8(U;>; (04
(Riea,p) N R)) is exactly the number of traveling wave families near (u, 0), where
Ria,p is defined in (2.5) and the precise description of a traveling wave family near
(u, 0) is given in Definition 2.8.

Then we state our main theorem for a shear flow satisfying (H1).

Theorem 2.2. Let 8 # 0 and u satisfy (H1).

(1) If {u' = 0YN{u = umin} # Band (E.) holds foreverya € (0, \/Miﬁ]ﬂ{y‘Tﬂk €
Z" Y and B € (0, %K+), then there exists By € (0, 00) such that there exist at
most finitely many traveling wave families near (u,0) for B € (0, B+), and
infinitely many traveling wave families near (u, 0) for B € (B+, 00), where k4,
(E4) and Mg are defined in (1.6), (1.14) and (1.16), respectively. Moreover,
B+ is specified in (1.12).

2)If {u' = 0N {u = umax} # @ and (E_) holds for every a € (0, /ﬁﬁ] N
{Zanlk e Z }andpB € (%K_, 0), then there exists B— € (—o00, 0) such that there
exist at most finitely many traveling wave families near (u, 0) for B € (8-, 0),
and infinitely many traveling wave families near (u,0) for p € (—oo, B_),
where k_ and (E_) are defined in (1.6) and (1.14), respectively. Moreover, B—
is specified in (1.12).

Assume that u(y1) # u(y2) and fori = 1,2, there exist § > 0, C > 0 and

mi > 0 such that (i) u"(y) = Bj for y € (yi —8,yi +8) N I[y1, y2] or (i)

Cly —yil™ < |u"(y) = Bil < Cly — yi|™ fory € (yi =8, yi +8) N ly1, y2]

or (iii) fiu'(yi)(=1)" 2 0, where p; = u" (y;).
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(3)If {u' = 0} N {u = umin} = ¥, then there exist at most finitely many traveling
wave families near (u, 0) for g € (0, 00).

(4) If (' = 0} N {u = umax} = @, then there exist at most finitely many traveling
wave families near (u, 0) for § € (—o0, 0).

Here, the precise description of a traveling wave family near (u, Q) is given in
Definition 2.8.

As mentioned in the Introduction, (E.) or (E_) is “one spectral point" assump-
tion for small wave numbers. Note that if ZT” > \/ﬁ , then (0, \/M7,3 1N {2]‘7” |k €
Z"} =, and (E4) is not needed in Theorem 2.2 (1)-(2). One of the conditions
(1)—(ii) is the “good” endpoints assumption and rather generic. For example, if
u € C"([y1, y21), m = 3 and u®? (y;) # 0 for some 3 < k; < m, then (ii) is true
for m; = k; —2. Thus, for analytic flows, (ii) holds if u® (y;) # 0 for some k; > 3
and (i) holds otherwise. Applying Theorem 2.2 (3)—(4) to analytic monotone flows,
we have the following result:

Corollary 2.3. Let u be an analytic monotone flow: u'(y) # 0 for y € [y, y2].
Then there exist at most finitely many traveling wave families near (u, 0) for B # 0.

2.2. Outline and our approach in the proof

Non-parallel steady flows or traveling waves may be bifurcated from a shear
flow if the linearized Euler operator has an embedding or isolated real eigenvalues
[1,27,28]. Based on the existence of an embedding eigenvalue for a class of mono-
tone shear flows near Couette flow, cat’s eyes steady states are bifurcated from
these flows [28]. When the Coriolis force is involved, non-parallel traveling waves
are bifurcated from the sinus profile on account of the existence of an isolated real
eigenvalue [27]. The traveling speeds lie outside the range of the sinus profile and
are contiguous to the isolated real eigenvalue.

Now, we consider such bifurcation theorem for general shear flows, namely,
using an isolated real eigenvalue of the linearized Euler operator, we prove that such
traveling waves can be bifurcated from general shear flows. We use the following
concept:

Definition 2.4. {u. (x — c.t,y) = (ue (x — cet,y),ve (x —cet, y))|e € (0, &)
for some g9 > 0} is called a set of traveling wave solutions near (u, 0) with
traveling speeds converging to cg, if for each ¢ € (0, &p), ue (x —cet,y) =

(ue (x — cet, y), Ve (x — cgt, y)) is a traveling wave solution to (1.1)—(1.2) which
has period T in x such that

| (e, ve) — (u, O)“H3(DT) Se, (2.1
lvellL2(p,y # O, ce ¢ Ran(u) and ¢, — co.

Now we give the bifurcation result for general shear flows.
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Lemma 2.5. Let « = 27/T, B # 0 and u € H4(y1, 7). Assume that cy €
UkZl(od(RkOt,ﬂ) N R), where Ryq,p is defined in (2.5). Then there exists a set
of t;aveling wave solutions near (u,0) with traveling speeds converging to co.
Moreover, we have ug (x, y) — ce % 0.

Here, we mention some differences from the construction of traveling waves in
the literature. First, the horizontal period of constructed traveling waves in Propo-
sition 7 of [27] is not the given period 7', and for the sinus profile, the period of
traveling waves is modified to 7' by adjusting the traveling speed in Theorem 7 of
[27]. But the price is an additional condition, namely, the isolated eigenvalue cq
can not be an extreme point of | (i.e. g # \/E in Theorem 7 (ii) of [27]), where
Ay 1s the n-th eigenvalue of (2.6). In Lemma 2.5, we can construct traveling waves
for general flows no matter whether ¢ is an extreme point of ,,, and thus improve
the result in Theorem 7 of [27] even for the sinus profile. Second, it is possible that
co € 04(Ro,p) NR, which makes it subtle to guarantee that the bifurcated solutions
near the flow u is not a shear flow. Thus, the extension of the bifurcation result for
the sinus profile in [27] to general shear flows in Lemma 2.5 is still non-trivial,
since we have to treat the unsolved case that cg is an extreme point of A,,, for some
ng € ZT orcy € 04(Ro,) N R. To overcome the difficulty, we carefully modify
the flow u to a suitable shear flow, which satisfies that A, is locally monotone near
co and co ¢ 04(Ro,s) MR, and then study the bifurcation at the suitable shear flow.
Finally, the minimal horizontal periods of constructed traveling waves are possibly
less than 27 /o if cg € 04(Ra,p) N R. In fact, the Sturm-Liouville operator L,
could indeed have more than one negative eigenvalues (e.g.,if k. < 00, 8 > 9k /8
and co is close to umin), Where L, is defined in (2.6). In this case, we give suf-
ficient condition to guarantee that the minimal period is 277/« in Lemma 5.3. In
contrast, the minimal period must be 277/« in Theorem 5.1 of [25] and Theorem
1 of [28], since the corresponding Sturm—Liouville operator has only one negative
eigenvalue.

Since the isolated real eigenvalue cq lies outside the range of the flow u, by a
similar proof of Lemma 2.5 we can improve the regularity of traveling waves as
follows.

Corollary 2.6. Let « =27 /T, B # 0, u € C®°([y1, y21) and s 2 3. Assume that
co € Up>1(04(Ria,p) NR), where Ryq. g is defined in (2.5). Then the conclusion
in Lemma 2.5 holds true with (2.1) replaced by || (ug, ve) — (u, 0) || gs(py) S &.

One naturally asks whether the assumption ¢y € |J;>;(0a(Ria,p) N R) in
Lemma 2.5 is necessary. By studying the asymptotic behavior of traveling speeds
and L2 normalized vertical velocities for nearby traveling waves, we confirm that
it is true.

Lemma 2.7. Leta =27 /T, B # Oandu € H4(y1, y2). Assume that {u, (x — cet,
¥) = (Us (Xx —cet, y), e (x —cet, y))|e € (0, e0)} is a set of traveling wave so-
lutions near (u, 0) with traveling speeds converging to c.

Then ¢y € Ukzl(ad(Rkoz,ﬁ) N R) U {umin, Umax}, where Ry, g is defined in
(2.5). Moreover, lf_C() € Ui>1(04(Ria,p) N R), then there exists ¢q, € ker(Ge,)
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such that
e —> @c, in H* (D7), (2.2)
where the operator G, is defined by
_ M// ( )
Gy = —A POV 2 120 2.3)
u(y) —co

with periodic boundary condition in x and Dirichlet boundary condition in y, and
Ve = Ue/||vs||L2(DT)-

The limit function ¢, in Lemma 2.7 is a superposition of finite normal modes,
see Remark 5.1.If ¢p € (U, > (04(Rka,g) NR) in Lemma 2.7, the vertical velocities
of the nearby traveling waves have simple asymptotic behavior as seen in (2.2).
However, if co € {#min, “max}, then the asymptotic behavior of vertical velocities
might be complicated, see Remark 5.2. The proofs of Lemmas 2.5-2.7 are given in
Section 5.

By Lemma 2.7, for any set of traveling waves near (u, 0) with traveling speeds
converging to cp, co must be an isolated real eigenvalue of the linearized Euler
operator (besides umin and umax). By Lemma 2.5, every isolated real eigenvalue
is contiguous to the speeds of nearby traveling waves. As the minimal periods of
traveling waves in x can be less than 27 /«, there might be two or more sets of
traveling wave solutions near (u, 0) with traveling speeds converging to a same
isolated real eigenvalue. For example, if ((i + Da)? = —Mn, (c0), Ay; is monotone
near co for i = 1,2, and (ka)? # A, (co) for k ¢ {2,3} and n ¢ {n1, n»}, then an
application to Lemma 2.5 (see Case 1 in its proof) gives two sets of traveling wave
solutions, which has minimal periods 7/« and 27 /(3«) respectively, near (u, 0)
with traveling speeds converging to cg. Moreover, traveling wave solutions could
be bifurcated from nearby shear flows, which might induce more sets of traveling
wave solutions near (u, 0) with traveling speeds converging to cg. This suggests us
to define a traveling wave family near («, 0) by an equivalence class as follow:

Definition 2.8. A traveling wave family near (u, 0) is defined by an equivalence
class under ~, where if {u; ¢ (x — ciot, y) = (i (x — cit, ¥), vie (x — ciel,
y)le € (0,¢1)}, 1 = 1,2, are two sets of traveling wave solutions near (u, 0)
with traveling speeds converging to ¢; ¢ Ran(u), then {u (x —Clel, y) le €
(0, e1)} and {uy ¢ (x — ¢t y) le € (0, &2)} are equivalent, {u; . (x — Cl¢t, y) le
€ (0, D)} ~ {uze (x — c2et,y) |e € (0, 2)}, if c1 = 2.

By Lemma 2.7, there exists ¢; € ker(Ge,;) such that v; , —> ¢; in H? (D7),
where V; ¢ = Vi ¢/ ||Vi.e ||L2(DT) and v; ¢, € € (0, &), are given in Definition 2.8. By
Lemmas 2.5 and 2.7 , we obtain the exact number of traveling wave families near
aflow u € H*(y1, y2) in Theorem 2.1.

Thus, the number of isolated real eigenvalues of the linearized Euler operator
plays an important role in counting the traveling wave families near the shear flow.
In terms of the stream function v, (1.4) can be written as 9; Ay + ud, Ay + (B —
u”)d,y = 0. By taking Fourier transform in x, we have that

07 — o)y = ia(W’ — B) —u(d; — ). (2.4)
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For o > 0 and 8 € R, the linearized Euler operator is given by
Rap i=—(0; —a) (" — B) —u(@d; —a?)). (2.5)

Then (2.4) becomes — - 9,9 = Rq, 4. Recall that o, (Ry,5) = Ran(u). Then the
setofisolated real eigenvalues 04 (R, )R C (=00, Umin)U(Umax, 00). Moreover,
itis well-known that o4 (Re,g) "R = Bif B = 0;04(Ry, ) N (Umax, 00) = Bif B >
0;and 04 (R, ) N(—00, umin) = Bif B < 0,see [22,27,35,42]. Therefore, we only
need to study #1(o4(Rq,p) N (=00, Umin)) for B > 0 and #(04(Ry,p) N (Umax, 00))
for B < 0. We mainly study f(04(Rg,g) N (—00, umin)) for B > 0, since the other
is similar. ¢ € 04(Rq,p) if and only if its corresponding eigenfunction v, satisfies
the Rayleigh-Kuo BVP

Lo ="+ "Lo=10. son=90n=0 @0

where ¢ € HO1 N H%(y1, y») and A = —a?. This equation is formulated by Kuo
[22]. For ¢ < umin, it follows from [39] that the n-th eigenvalue of (2.6) is

Mn(c) = inf sup (Leo, b) 2.7
dmVi=n4cpl pevulgll,2=1

| - B
- up f <|¢| + ol
dmVa=n " yenl eV, lpll,2=1

In this way, we have that

0d(Rap) N (=00, ttmin) = |_J{c < tmin : An(c) = —a?}.
n>1

To determine whether #(04 (Ry, )N (—00, umin)) is finite, we need to study the num-
ber of solutions ¢ < i, suchthati, (c) = —a?forn 2> 1.Sincelime—s oo An(c) =

4 71 > 0 by Proposition 4.2 in [27] and X, (c) is real-analytic on (—00, Umin),
the only possibility such that ff(0(Re,g) N (=00, umin)) = oo is that there ex-
ists a sequence {c;(«, /3)}?11 - Unzl{c < Umin : An(c) = —a?} such that
cj(a, B) — ug, . Thus, the key is to study the asymptotic behavior of A,(c) as
¢ — U, We divide that it into two steps.

Step 1. We study how many »’s such that A, (c) — —ooasc — u_; . We deter-
mine a transitional B8 value such that the number #{n > 1 : A,,(c) — —oo0 as ¢ —

U in} changes suddenly from finite to infinite when 8 passes through it.

Theorem 2.9. Let u satisfy (H1). (1) Let 0 < 8 < 2 gK+. Then
(i) Lm A,(c) =—o00, 1= n < mg;

L*)Mmm

(ii) Mg < oc;
(1ii) there exists an integer Ng > mg such that inf Ang(€) > 0.

CE(—00,Umin)

(2) Let %K, < B < 0. Then
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A
A
\_/\
An,(€) : "
Unjrin o C
H c
N ——~
‘ n(€)
/\l((') nm((') : )\1((1)
9 9
0<B< gkt B> 5K+

Fig. 1. The transitional value 8 = %K+

(i) hm An(c) = —00, 1=n<mg;
C—)Mmdx
(ii) Mg < oc;
(iii) there exists an integer Ng > mpg such that  inf ANg (€) > 0.

¢€(max,00)

(3) Let B > K+ Then lim,_, - An(c) = —oo forn = 1.

(4) Let B < g/c_. Then 11mL_>u+ An(c) = —oco forn 2 1.
Here, K+, mg and Mg are deﬁned in(1.6)—(1.8), (1.15) and (1.16), respectively.

The transitional value 8 = K+ isillustrated in Fig. 1. We give a 51mp1e example
to explain why such a transitional value exists. Consider the flow u = 7 Zon [0, 1]
and 8 > 0. If ¢ < O is very close to 0, then the energy quadratic form in (2.7)
roughly looks like this:

(e, ) ~ f|¢>|+ 2= ay.

Thus, if 2 — 28 > —% & B o< %, by Hardy type inequality (Lemma 3.1) we
have (L.¢, ¢) is bounded from below for any test functions ¢ with ¢(0) = 0.
From this formal observation, we may expect Ai(c) is bounded from below. If
2-28< _zlt & B> %, (Lcp, @) is unbounded from below by looking at the test
functions y%"’g with & — 0%, We will construct test functions motivated by the
function y% to show that all the eigenvalues are unbounded from below.

For general flows, the main idea in the proof of Theorem 2.9 (1)—(2) is to control
i % || dy using the L? norm of ¢’ near a singular point (see Lemma 3.2), which
involves very delicate and careful localized analysis. The transitional 8 values %Ki
are essentially due to the optimal Hardy type inequality (3.1). The idea in the proof
of Theorem 2.9 (3)—(4) is to construct suitable test functions such that the functional

in (2.7) converges to —oo as ¢ — u_.or u;,., see (3.20). This is inspired by the
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“eigenfunction” y% for the optimal Hardy type equality and a support-separated
technique. The proof of Theorem 2.9 is given in Section 3.

Then we give sharp criteria for A1(¢) — —ocasc — u_; if B € [%K_, %K+].
By Theorem 2.1, the number of traveling wave families is to count the union of
8(04(Ria,p) N R) for all k = 1. Thus, the number of traveling wave families is
infinity provided that A;(¢) — —oo as ¢ — u_ . By Theorem 2.9 (1)—-(2), we get
the sharp criteria for A1(¢) - —o0asc¢c — u; .

Corollary 2.10. Let u satisfy (H1).

(1) If {u = umin} N (y1, ¥2) # O, then a transitional B value min{%lar, U4} exists
in (0, %/q] such that inf ¢c (oo, upn) A1(¢c) > —o0 for B € (0, min{%mr, w4t
and
limcml;]in M (c) = —oofor B € (mln{8K+, nil, /c+]

(2) If {u = umax} N (y1, ¥2) # @, then a transitional B value max{%/c_, U—} exists
in [%K_, 0) such that inf cc (., 00) Al(c) > —oo for B € [max{%x_, n-1},0)
and limc_m+ M(c) = —oofor B e /c_, max{gfc_ u-1.

(3)If {u = Umin} N (1, y2) = 0, then lnfce( 00, tmin) A1(€) > —00 for B €
(0, 8K+]

(4) If {u = umax JN (1, y2) = 9, then mfus(umdx 00) A1(c) > —oofor B € [ K* 0).

Here, ki and |4 are defined in (1.6)—(1.10).

Here, a key point for Corollary 2.10 (1) and (3) is that inf .c(—co,up;) A1(C) >
—ocif and only if mg = 0 and g < 2K+
Step 2. We rule out the oscillation of 4,(c) as ¢ — u_, (or ¢ — uf, ). By
Theorem 2.9 (1), we get that for 1 < n < mg, A,(c) = —a? has only finite
number of solutions ¢ on (—00, Umin). Moreover, if n = N, 6, no solutions exist for
An(c) = —a?onc e (—00, Umin). Now, we consider whether g({1,, (¢) = —a?,ce
(=00, umin)}) < oo formg < n < Ng.Indeed, we rule out the oscillation of A, (¢)
under the spectral assumption (E41), or under the “good” endpoints assumption
(i.e. one of the conditions (i)—(iii) in Theorem 2.2), or for flows in class K. The
oscillation of A, (c) is illustrated in Fig. 2.

Case 1. Under the spectral assumption, the main argument to rule out oscillation
is to prove uniform H' bound for corresponding eigenfunctions, and the proof is
in Subsection 4.1. In this case, %Ki are also transitional 8 values for the number
of isolated real eigenvalues of the linearized Euler operator if |« | < oo.

Theorem 2.11. Assume that u satisfies (H1) and « > 0.
(1)If0 < B < %K+, 0<a?< Mg and (E) holds for this a, then
mg = 8(0d(Ra,p) N (=00, tmin)) < 00. (2.8)

If0 < B < %/q_, then (2.9) holds for a* > Mg.
(2) If%/c, < B <0,0 <a? =< Mg and (E_) holds for this a, then

mg § ﬁ(ad(Ra,ﬁ) N (Umax, 00)) < 00. (2.9
If%/c, < B <0, then (2.9) holds for a* > Mg.
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A

Umin

Ul —

Fig. 2. The oscillation of A, (c)

(3) If B > gk, then 8(04(Ra,p) N (=00, Uimin)) = 00.
(4) If B < gk—, then 8(04(Ra.p) N (max. 00)) = 00.

Here, kx, (Ex), mg and Mg are defined in (1.6)—(1.8), (1.14)—(1.14), (1.15) and
(1.16), respectively.

In fact, by Theorem 2.9 we have Mg < oo for0 < 8 < §K+ or %K_ <B<O.

Here, we focus on sufficient conditions of (2.9) and (2.9), it is unclear whether (2.9)
is true for the case f = %K+ with 0 < o? < Mg, or the case 0 < B < §K+ with
0<a?< Mg but no assumption (E, ).

Note that Theorem 2.11 (3)—(4) is a direct consequence of Theorem 2.9 (3)—(4).

Case 2. Under the “good” endpoints assumption (i.e. one of the conditions (i)—
(iii) in Theorem 2.2), a delicate analysis near the endpoints is involved to rule out
oscillation, and the proof is in Subsection 4.2. In this case, we get that no transitional
B values exist if |ky| = oco.

Theorem 2.12. Let « > 0 and u satisfy (H1). Assume that u(y1) # u(y2), and one
of the conditions (1)—(iii) in Theorem 2.2 holds. Then

(1) 8(0a(Ra,p) NR) < oo for all B € (0,00) if and only if {u’ = 0} N {u =
Umin} = @;

(2) #(04(Ra,p) NR) < o0 for all B € (—00,0) if and only if{u =0}N{u =
Umax} = V.

Consequently, §(c4(Ra,g) NR) < o0 forall B € R if and only if {u’ =0} N {u =
Umin} = {u/ =0} N{u = umax} = 9.

Note that if @ > /Mg, then (2.9) and (2.9) are true, and the “good" endpoints
assumption (i.e. one of the conditions (i)—(iii) in Theorem 2.2) is not needed in
Theorem 2.12. Consequently, if 27” > /Mg, then Theorem 2.2 (3)—(4) hold true
without this assumption (see their proof).

Let u be an analytic monotone flow and o > 0. Then fi(04(Re,5) NR) < 00
for B # 0. This is a corollary of Theorem 2.12, and can also be deduced by the
method used in Lemma 3.2 and Theorem 4.1 of [40].
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Case 3. For flows in class LT, the main tools to rule out oscillation are Hamiltonian
structure and index formula, and the proof is in Subsection 4.3. This is also the
main reason that the spectral and “good" endpoints assumptions can be removed
in Theorem 1.2.

Theorem 2.13. Let u be in class Kt and o > 0. Then mg < #$(04(Ra,p) N
(=00, Umin)) < 00 for 0 < B = G mg = £(0a(Re,p) N (Umax, 09) < 00
for %K_ < B <0;and 8(04(Ra,p) NR) = oo for B ¢ [%K_, %/q_]. Here, k4 and
mg are defined in (1.6)=(1.8) and (1.15), respectively.

The idea of the proof is as follows. The linearized equation has Hamiltonian
structure and the energy quadratic form has finite negative directions. The key
observation is that oscillation of 4, (¢) brings infinite times of sign-changes of A, (¢).
This contributes infinite negative directions of quadratic form for non-resonant
neutral modes, which is a contradiction to the index formula. Thus, the oscillation
of A, (c) can be ruled out unconditionally for flows in class K.

3. Transitional values = %Ki for the n-th eigenvalue of Rayleigh-Kuo BVP

We begin to study the asymptotic behavior of the n-th eigenvalue A,(c) of
Rayleigh-Kuo BVP. In this section, we focus on the number #{n = 1 : A,(c) —
—ooasc¢ — u_. (orc — uj,)}. We prove that the number is finite for 8 €
[%K,, %K+] and it is infinite for 8 ¢ [%Kf, §K+], which is stated precisely in
Theorem 2.9.

3.1. Finite number for B € [%/{_, %K_,_]

The optimal constant in the following Hardy type inequality plays an important
role in discovering the transitional values § = %Ki.

Lemma 3.1. Let ¢ € H'(a, b) and ¢ (yo) = 0 for some yo € [a, b]. Then

2 b —1 2
N L2 1y = yol " 'o(y)*dy
L2(a,b) max(b — yo, yo — a)

7=
y=>

S0, GD

Here the constant 4 is optimal.

Proof. Suppose that ¢ is real-valued without loss of generality. Lete = 1/ max(b—
Y0, Yo — a). First, we consider the integration on [yo, b] (if yo < b). Since

P ()?
Y — Yo

2 _
”¢ ||L2(yo,y)(y }’0) . ||¢/”2
Y — Yo - L2(y0,y)

[IA

— 0, as y—>yar, 3.2)

we have that
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? b 1 2 b 2 /
=—/ ¢<y>2d< >=_¢(y) yﬁ0+/ WY 4
L%(y0,b) 0 y—=>0 y—yo " o Y =0

b
/ 26008 () dy = s = B (b2,
s

0

7=

2

0llL2(yo,0p 1Y =0

¢< )2 P
B + 21" - /yo Yy =)0 e 2”¢”L2(m p T4l¢’ ||L2(>o b)

—ep —2¢’

L2 (y0.b)

< d)(y)2

dy + 4o’ ||L2
yo Y

(vo.b)"

< P b _ ) ¢ 2 b $(»)*
Here weused e = b=yo yo and y=yo yo b—yo‘T y— yo ”Lz(yo b)+8 fyo y=Yo dy

2 Y p()? i
é 4||¢/||L2(y0’b)' Slmllarly, m||L2(a,yO) +¢ fa 0 yOVy d < 4||¢ ” o) This

gives (3.1). Letting yo = a, ¢(y) = (y — a)%“' and sending &1 — 0+, we see
that the constant 4 is optimal. O

For other versions of Hardy type inequality, the readers are referred to [15,32].
To study the lower bound of the n-th eigenvalue A, (c) of Rayleigh-Kuo BVP for ¢
close to u_;, it is important to estimate the energy expression (2.7) near singular
points. To this end, we need the following lemma:

Lemma 3.2. Assume that a € [y, y2], u(a) = umin, ¢ € Hol(yl, ¥2), € < Umin
and B > 0. Then there exists a constant 6o > 0 (depending only on u and a) such
that for 0 < 8§ < §,

(1) if 1) u'(a) #0or (i) u'(a) =0, B < 9u”(a)/8, ¢(a) =0, then

-p

f (|¢ P10 ) dy 2 0; (3.3)
[a—8,a+8]1N[y1,y2]
(2) if (iii) a € (y1, y2), u'(a) =0, B < u”(a), then
—-B 2
¢ I* +2—£ |¢| 2 —=Cslloll; 2, B
/[a_(;,,“r(g]m[yl,yz] ( L2([a=8,a+51N[y1,y2])

(3.4)

Here Cs is a positive constant depending only on u, a and 4.

Proof. First, we assume (i). Then we have a € {y{, y2} and thus ¢(a) =

Without loss of generality, we assume that @ = y;. In this case, u’(y;) > 0. Choose
81 € (0, y» — y1) small enough such that u’(y) > # fory € (y1, y1 + 81), and
thus, there exists £, € (y1, y) suchthatu(y) —c > u(y) —umin = u’(éy)(y—yl) >

@(y — y1) > 0 for ¢ < upiy. Note that, for y € (y1, y1 + 6),
2
"(s)ds

PO = S 1191725,y 0 = 9D
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Now we take 8y € (0, §1) to be small enough such that f”+8° 2‘",(;1{3' dy
Then, for 0 < § < &,

" —p W 2 — Bl
< < 2
/yl - |¢>| dy| = lI¢’ IILz(y1 >1+5>/ “on dy = 19172y, v, 48)°

H/\

which implies (3.3) since [@ — 8, a + 8] N [y1, y2] = [y1, y1 + 8]

Now we assume (ii), then u”(a) > 0. Let §; € (0, max(y, — a,a — y;)) be
small enough such that u”(y) > # > Ofory € [a—61,a+ 8] N[y, y].
Since u € H*(y1, y2) C C([y1. y21), we have |u”(y) —u”(a)| < C|y — a| and
[1/u”(y)—1/u"(a)| £ Cly—alfory € [a—§81,a+81]1N[y1, yz].Thenthereexists
& € {z:lz—al <y —al) such that u(y) — ¢ > u(y) — ttmin = 5 (y — @)’
> %(y — a)2 > 0 forc < uminand y € [a — 81, a + 511N [y1, »21, and thus

1 2 _2+4ClE —al _ 24Cly—a
< < < ,

u(y)—c w'E)y—a)? T u @y —a)? T u"(@)(y —a)?

u"(y)—pB 2 u"(@) —Cly —al —9%u"(a)/8 = —u"(a)/8 — Cly —al,

0<

W' -p —u'@/8—Cly—al _ u"(a) 2+Cly—al Cly —al
u(y)—c ~ u(y)—c 2 8 w(@(y—a? B/ —a)?
> _1 + Coly — al
T 4y -a)?

Now we take 8y = min(dy, C(;]) > 0. For 0 < § < §j, we have that

1+ Coly — al

u// _ ﬂ )
—/ — 19| dyé/ —|¢| dy
la—8,a+81N[y1,y] U —C la—s.a+51nlyr.yal 4V — @)?
(3.5)

l[a=8.a+81Ny1,y2] 4y —a) (la=8,a+81N[y1,y21)

which implies (3.3). Here we used Lemma 3.1 in the last step.

Next, we assume (iii). In this case, u’(a) = 0. LetE =u"(a) > 0. Then E > B.
Let §; € (0, min(y, — a, a — y1)) be small enough such that u”(y) > # >0
and |u(y) — umin] £ 1/2fory € [a — 81,a + 81]. Then 0 < u(y) — ¢ < 1 for
y €[a—368,a+d]and ¢ € (umin — 1/2, tmin). Now we assume 0 < § < §y.
Direct computation implies

a+6 a+6
/ ﬂ / ﬂ — g2 d(In(u — ¢))
a—8 U - a—38

" a+sé
=(” ’3|¢>| (ln(u—c») o /5 1n(u—c>( —#

= Ics(P) + 1e5(e).

) o
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Since B — u”(a) = 0, it follows from the proof of Lemma 3.7 in [46] that e e

M/
H'(a—$1, a+31). By interpolation, we have ||| Lo (u—s.a+5) = Cslloll L2 a—s.ars)+
6"l L2(4—5.q-+s)> and thus that

‘(—” _,ﬁ|¢|2> (a+a)—<“ _/ﬂ|¢|2> (a—B)‘
u u
(ﬂwz)
u L2(a—8,a+3)
<ﬂ) |¢|2+(” _,ﬁ)zw’ 5
u u Lz(a—zS,a—HS)

2 1
<C (19135 —s.ars) + 181 xw@-s.0+9 16 | 2a—5.015)) 6

1
S(Csl1D172q—s.as) T CNY 17200501582

=

<cC 8

=

<c

and [(SLI6P) @=8)] = CloBngsary S ColblZayars
+ ClIO' 172,00 Then
I.s(¢) = (” Mf’s |¢|2> P Inquia +8) — o) + (” Mf’g |¢|2) la—s In(u — 0|21

§(Call¢lliz(a,5ya+5) + C||¢/||iz(a7§,a+§))(8% [In(u(a +6) — o) + |In(u — C)|ZJ:§|)-
Note that C'(y —a)* < u(y) —u(a)| £ C"(y —a)? for y € [a — 8, a + 8]. Then
|In(u(y) — )] = —In(u(y) — ¢) £ —In(u(y) — u(a)) < —In(C'(y — a)*) and
|In(u(a +8) — )] £ —In(C’8%) < C(|Ind| + 1) for |c — umin| < 1/2and y €
[a—6,a+5]). Letuy = max(u(a+36), u(a—4))and u_ = min(u(a+3§), u(a—>=5)).
Thenu, 2 u_ > u(a), and

_ _ 8) —
| In(u — c)}airg| =In tr ¢ <In uy — u(@) = |In u@+29) —u()
a U_ —c u_ —u(a) u(a —68) —ul(a)
for ¢ < umin = u(a). Thus,
e s @) S Collol 72 5.ars) T CNY 17205015 ¥ @) (3.6)

for ¢ € (Umin — 1/2, Umin), Where

u(a+68) —u(a)

W) =582(|Ind|+ 1) + ‘m

ula —348) —u(a)
Note that
u(a +8) —u(a) u”(Ears)
im _— | = n—-——| =0,
s—0t | ula—138)—ua)| s—0+t| u’(Es_s)

where &,45 € (a,a + 5) and &,_5 € (a — 8, a). Therefore lims_, g+ ¥ (5) = 0.
Next, we claim that In(u — ¢), ¢ € (Umin — 1/2, Umin), is uniformly bounded
in LP(a —8,a+ §) for 1 < p < oo. The proof is similar as that in Lemma 3.7
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of [46]. Note that | In(u(y) — ¢)| £ —In(C'(y — a)?) for |c — umin| < 1/2 and
y € [a — §, a 4 §]. Therefore,

a+s a+é
/ [In(u — o)|” dy §C/ (IIn(y — @)*|” + 1) dy
a—3 a—3é

)
< c/ (In|z)?|” + Hdz £ C.
-5

Now, we consider 11 s(¢).

11.5()] <(28)% || In(u - N L4@a—s.a+8) (3.7

L2(a—8,a+3)

(” _,ﬁ|¢|2>
u

1
SCsD72 0508y T CNO 7200500587

Combining (3.6) and (3.7), we get for ¢ € (Umin — 1/2, Umin),

a+é u' — "g 5 5 ' 1
f T P A Sl g iy + CrIP 1) G + YO
a—

Since lims_q+ W(8) = 0, we have lims_o+ (5% + W(3)) = 0, and there exists
5o € (0,81) such that C;(8% + ¥(3)) < 1. Then for 0 < 8 < 8 and ¢ €
(tmin — 1/2, min), we have

u// _ /3 I,[” _ /3 2
/ 62 dy z/ 62 dy
[a—8,a+8]N[y1,y2] U4 —C la—8,a+8]N[y1,y2] U4 —C€

1
2 — (CsllBl 2 s a5y + CLIO 172005 aps) GF + W ()
1
2 = Csllpl 72 p.0s) % + W) = 19172015048

which implies (3.4) since [a — 8, a + §] N [y1, y2] = [a — §, a + §]. On the other
hand, for 0 < § < §p and ¢ < umin — 1/2, we have that

u' — B u' — I'g 5
/ lp>dy = / |¢|* dy
la—8,a+81N[y1,y2] U —C la—8,a+81N[y1,y2] U —C

1 2
>-2 " — Blipl*dy = —CllglZs, s,
L2(a—8,a+9)
[a—6,a+68]1N[y1,y2]

which implies (3.4). This completes the proof. O

Now, we are ready to prove Theorem 2.9 (1)—(2).

Proof of Theorem 2.9 (1)-(2). We first give the proof of (1), and (2) can be proved
similarly. Consider 1 = n = mg. It suffices to show thatlim__ - A, ,(c) = —o0.
Let

{ae O,y u=umnu"@—p <0} ={ar, -, any), 3.8)
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and

-1
n(x) = {“eXp (1—_2> xe (LD, (3.9)
0, x¢(—1,1),

where © > 0 is a constant such that f_ll n(x)2dx = 1. Thenn € C5°(R). Define

y—
30

,% a;
@i(y) =38y °n , Y€yl

where 1 < i < mg, and §p > 0 is small enough such that (a; — 8o, a; +380) N (a; —
80, aj+80) = Wfori # jandu”(y)—pB < Oforall y € Ui<i<mg (@i =80, ai+8o) C
(y1, y2). Then (@il 12(y, .y,) = 1 and supp (¢;) = (a; — 8o, a; +3o). Thus, solhpj in
the L? sense for i # j. Let Ving = span{@1, -+, ¢my}. rihen Ving C Ho 1, ¥2)-
By (2.7), there exist b; . € R,i = 1,--- ,mg, with Zizﬁl |b,~,c|2 = 1 such that
9 = Y0, bici € Viny with @c|2, = 1, and

V. ﬁ
Amg(€) S sup /<|¢|2 |¢|2)
g1l 2=1.$€Viny J y1

» u
=/ (l L+ ﬂ|§oc| ) dy
i

+380 u// _IB
—sz o (|¢;|2+ —|<pl-|2> dy
u—=c

—30

a;+48g u’ — '3
< max / <|<P,',|2 + |‘Pi|2> dy = —00 as ¢ = uy,.
a; —do u—c

(3.10)

Next, we prove (ii). Let §; > O be a sufficiently small constant such that
(@ —é1,a+681) Clyi, y2lfora € {u = umin} \ {y1, y2}, and |a — b| > 23 for
a,b € {u = umin} and a # b. There are four cases for zeros of a € {u = umin} as
follows:

Case 1.a € {y1, y2} and u'(a) # 0;

Case 2.a € {y1, y2}, u'(a) =0 (thus B8 < %K+ < 9" (a)/8);

Case 3.a € (y1, y2) and 8 < u”(a);

Case4.a € (y1, y2) and u”(a) < B < 9u”(a)/8.

Then we divide our proof into four cases as above. In fact, for Cases 1-2, by
Lemmall 3.2 (1) there exists 8(a) > 0 such that for 0 < § < §(a), ¢ < Umin and
¢ € H,

/ (|¢| + ’3|¢| ) dy > 0. 3.11)
[a—6,a+58]1N[y1,y2]
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For Case 3, by Lemma 3.2 (2) there exists § (a) > 0 such thatfor0 < § < §(a),
¢ < Umin and ¢ € HJ,

- B
/ (|¢| +— |¢| dy 2 —C(8,a) 1> dy.
[a—8,a+81N[y1,y2] [a—8,a+81N[y1,y2]
3.12)

Here C(8, a) depends only on u, a, 6. Moreover, if ¢ (a) = 0, then by Lemma 3.2
(),

/ (|¢ ? + ﬁ|¢|2) dy = 0. (3.13)
[a—8,a+8]1N[y1,y2]

For Case 4, we have a € {aj, - -+ , amy}. By Lemma 3.2 (1), there exists §(a) > 0
such that for 0 < 8 < 8(a), ¢ < Umin, ¢ € HO1 and ¢ (a) =0,

/ (|¢ ? + ﬁ|¢|2) dy = 0. (3.14)
[a—8,a+8]1N[y1,y2]

Now let 8o = min({6(a) : a € {# = umin}} U {§1}). Define

(u”(y):ﬁ’ D yelynynl\ Uae{u=ttn }(a — &g, a + 8o),
@ (), ) = { w0 .
q1ly), q;\y {(O, 0) y € UaG{LlZlein} ((a — (S(), a+ 80) N [yls YZ]) 5
@0 o) = 2L 01— a00 v e by val.

u(y) —c

Then there exists Cy > 0 such that for ¢ < umin,

lg1(M] = Co for y € [y1, y2].
For ¢ € Hy and ||p]l,2 = 1,

/y) (|¢>| + ﬁ|¢|)

_ 2 0712 2 2 0 4712 2 _
= [ (a9 +q1|¢>|)dy+ (91612 + q2112) dy = Le(@) + 11:().
Vi

Y1

Let us first consider 1.(¢). For ¢ € H& and ||¢]|;2 = 1, we have

> [ (=colP) dy = — 3.15
Ic(¢) 2 Colg|”) dy 2 =Co (3.15)
i
for ¢ < umin. We proceed to consider 1 1.(¢).
—B
@)=Y / <|¢| +5 =Ly ) (3.16)
aelu=umy} Y [4=80.a+0100y1. 2]

- B
=( >+t / <|¢| L =F |¢|)
( Z Z ) [a—é0,a+3801N[y1.y2]

Case 1 Case 4
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Recallthatay, - - - , a;, 5 are defined in (3.8). For any (mg+1)-dimensional subspace
V = span{y1. -+ Ymge1} in Hy (31, y2), there exists 0 # (51 -+ Emy41) €
R™8%! guch that vi(a)+ -+ fmﬁ+1'(ﬂmﬂ+1(a,’) =0,i =1,---,mg. Define
Vv =8V1+ + Emp+1¥mp+1. Then ¥ (a;) =0,i =1, .-+, mp. We normalize
Y such that ||y |2 y = L. Then by (3.11), (3.12), (3.14) and (3.16), we have

O1.y2
that
vt ~ u' —B -
LA EDD (Iw’l2 - —|w|2) dy
Case 3 ¥ [4—00,a+801N[y1.y2] u—c
2= ), Coa) [ *dy 2 — max C(. a).

Case 3 la—d0,a+3801N[y1.y2]

This, along with (2.7) and (3.15), yields that inf e (oo, upiy) Amp+1(¢) > — max

Case 3
C (80, a) — Cop. This proves (ii).
Finally, we prove (iii). Let g1, g2, I.(¢), 11.(¢) and C¢ be defined as in (ii).
Let 1 ([a, b]) be the principal eigenvalue of

—¢" =i, $(a)=¢(b) =0.

Then we have 1 ([a, b]) = |7/(b — a)|?, and
b b
/ /1> dy = m([a,bD/ l¢|>dy for ¢ € Hj(a,b). (3.17)

Let 8, = yr/CO%. Then we have 1 ([a, b]) = Cofor0 < b —a < §,. Let
M=({né:neZ}Ufa+b:a € {u=umpn} b€ {300,351} Uy, )Ny, yl
Then M is a finite set, and we can write its elements in the increasing order
M = {ay, - ,a;\,ﬂ}, yi=ay<-- <a;\,‘3 = .
Then 0 < ;| — a; = 82 and i ([ay, aj 1) = Co for 0 = k < Ng. Let
My ={keZ:0=<k< Ng, [a,’c,a,/<+l]ﬂ(a—80,a+80)=(/), Va e {u=unmn}}

Then we have [y1, y2] \ (Uae(u=umn} (@ — 80, @ + 80)) = Ukem, [ay, ai ]
For any Ng-dimensional subspace V = span{y,---, ¥y,} in HO1 y1, ¥2),

there exists 0 # (51, -+, §ny) € RM# such that &1y (@) +---+ ENg YNy (a)) =
0.i=1,---,Ng — 1. Define §/ = &y + - + &, ¥n,. Then §(a)) = 0,i =
L - ,Nﬂ—l.Wenormalizeiﬂ such that ||¢||L2(y.,y2) = 1.Since ¢ € HO1 1, y2),
we also have ¥/ (a)) = ¥ (y1) =0, w(a}\,ﬂ) = ¥ (y2) =0, and thus ¥ (a;) = 0 for
i=0,---,Ng, ie ¥|y = 0.By (3.17), we have

/
A
a/

k

+1 . , Gpr G
WP dy = wilag. apy ) f WPy = Co / WPy, k=0, Np— 1.
A A
(3.18)
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First, we consider [C(IZI). By (3.18), we have that

1z [ (97— coiP)dy  (19)
1,2\ (Yaeu=up;, ) (@—B0,a+30))

= fk (1912 = Col¥ ) dy 2 0.

keM, a

Next, we consider IIC(&). Fora € {u = umin}, we haye a € M and 1/~/(a) =0.
Then by (3.11), (3.13), (3.14) and (3.16), we have I1.(1) = 0. This, along with
(2.7) and (3.19), yields that inf cc(— o0, uin) Ang(€) > 0. This proves (iii). O

3.2. Infinite number for B ¢ [%K_, %/q_]

In this subsection, we prove Theorem 2.9 (3)—(4). The proof is based on con-
struction of suitable test functions such that the energy in (2.7) converges to —oo
as ¢ — U, Orc — Ut .

Proof of Theorem 2.9 (3)—(4). We only prove Theorem 2.9 (3), since (4) can be
proved similarly. Let 8 > %/q. Then there exists a € [y;, y2] such that 8/u” (a) >
9/8, u'(a) = 0 and u(a) = umpn. If a € [y1, y2), our analysis is completely
on [a,a + 8] C [y1,y2) for § > 0 small enough. If a = y,, the analysis is
only on [a — §, a] and the proof is similar as a € [y}, y2). Now we assume that
a =0 € [y, y2). Then u”(0) > 0 and there exists &g > 0 such that u”(z) > 0 and

2w —p _ 1
u”(z) 4 — g

for y, z € [0, 3] C [y1, y2) and § > 0 small enough. Let vp = mingeqo,51{”" (2)} >
0Oand J(x) = n(2x — 1), x € R, where 7 is defined in (3.9). Define

1
v (B i), ye O,
@i, r(y) =
0, y € [y1,0],
where i = 1,---,n, and R is large enough such that e™® < §. Then ¢; g €

Hy (y1, y2) and supp @i g = [e” (DR =R i =1 ... n. Thus, i g L @jrin
the L? sense for i # j. Note that u”(y) — B < Ofory € [0,8]. For 1 <i < n, we
define

. 1 ~ - .
QiR = W%,R, and Vy, g = span{@1 g, -, ¥n R}
i, RIIL
—2(n+1)R _
Choose R > 0 such that 2(umpin — ¢) = % Thenc — u_;, < R — o00.

We shall show that for 1 <i < n,

) 2/ W —B .
lim <|¢E,R|2 + c |‘Pi,R|2> dy = —oo. (3.20)

c—>u u—

min ¥ Y1
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Assume that (3.20) is true. Similar to (3.10), there existd; . € R,i = 1,--- ,n,
with 37, |d;.¢|* = 1 such that

% /o u' —pB
An(c) = Z \d; . |* <|(,0i’R|2 + —oc |§0i,R|2) dy = —o0 as ¢ — u,,.
i= Y1
(3.21)

Now we prove (3.20). Direct computation gives that

u"()—p u"(y) — B 20" (y) = B) - 2" (y) — B)

_ - _ . .. 2 L ars
u(y) —c u(y) — Umin + Umin — € u//(%_y)y + 2(umin — ©) (M//(gy) + fou 8@})) y2

_4,180 “,/(Ey) 1 1

< " - =
(u”(éy) + %:(Ey)) y2 4 —e0) (1+ %) 2 4 —ep)y?

for y € [e” DR =R and 2(umin — ¢) = M, where &, € (0, y) and
2
g1 =3+ %0. Then
V2 5 W' — B 5 e iR ) W’ — B )
!
/ <|§0i,R| + @i, R ) dy =/ _ (Iw{,RI + @i, R ) dy
" u—c DR u—c

(3.22)

</e 6 kP — ————lgi k) dy
—G+DR " (4—eny*

Note that, for y € [e (T DR =ik}

, 5 —2x=1 1 1 1 _1 2
lo; g™ = ](x)mR_yyz + 5V 2J(x)
Qx—D* 1 2x—1 1

1
I ) 4+ —J(x)%
) 16x4(x — 1)* R2y x) 4x2(x — 1) Ry * 4y 0

where x = 2 41 + 1. Since |1 ()? 34
for x € [0, 1], we get that

< Cand (J(x)2 201

el <
4x2(x—12 | = ¢

e iR 2
x—12 1 , -1 1
T — g )4
DR ( ) Toxtr = 1)4 Ry O G TRy )

iR

Cc (¢ C
<— / =—+4+C=C.
~R? J-G+vr y (i+DR y R

Then we infer from (3.22) that

» u// _ 13
f (|¢{,R|2 + m,mz) dy
v u—=c

—iR

‘ I
e[ () o
S | iene \ay J(x)? @ _El)yzl%,kl y (3.23)




500 ZHIWU LIN, DONGYI WEI, ZHIFEI ZHANG & HAO ZHU

—iR
¢ —&1 1R
:C—i—/ —(x)—dy— S )
i+ 4(4 — €1) 84 —e¢p)
when R is large enough. Direct computation gives that

iR 2

loi.x 12 / S i
o ny
iRl e—(i+1)Ry R

1
gczef PRO=I=D) gy — C(e 2R _ = 20+DR) < 2R
0

1
dy=/ Re*RO=1=D y(x)2 dx
0
(3.24)

Combining (3.23) and (3.24), we have that
» - u// _ - 1 » , u// _
/ (|<p,-,R|2 e =f m,mz) dr=imo [ (lw,-,RP e =f m,mz) a
yi u—c ||‘/7i,R||Lz Vi u—c

< (C _ 1R ) 1 (C _ 1R ) e2iR S oo
- 84 —e1)/ llgirl?, 84—e) C

as R — oo. This proves (3.20). O

A

4. Rule out oscillation of the n-th eigenvalue of Rayleigh-Kuo BVP

Let B € [k, gk4]. By Theorem 2.9 (1)~(2), An(c) = —a? has only finite
number of solutions ¢ outside the range of u for 1 < n < mg, and no solutions
exist for n = Ng. It is non-trivial to study whether the number of solutions is
finite for mg < n < Ng. Recall that Ng is obtained in Theorem 2.9 such that

inf  Ay,(c) = 0for0 < B < gky, inf  An,(c) = Oforgr_ < B <O.

c€(—00,Umin) c€(Umax,00)
The main difficulty is that A, (c¢) might oscillate when c is close to u ;i Or Umax. In
this section, we rule out the oscillation in the following three cases:

4.1. Rule out oscillation under the spectral assumption

We rule out the oscillation of A, (c) under the spectral assumption (E. ), which
is stated in Theorem 2.11 (1)—(2). To this end, we first consider the compactness
near a class of singular points.

Lemma 4.1. Let ¢ € Ran(u), yo € u”! {c}N (1, y2), ' (yo) = 0and § > 0 so that

" (yo) = B)W"(y) = B) > 0on[yo—38, yo+8] C [y1, y2] and [yo 8, yo+41N
u~Yc} = {yo}. Assume that B/u” (yo) < 9/8. Let ¢, w, € H' (yo — 8, yo + 8)
and ¢, € Csothatc >0,¢, > ¢, ¢y 0,0, > 0in H! (yo — 8, yo + 6) and

W — cn) (@) — a’py) — W' — B)pn =

holds on [yg — 6§, yo + 8]. Then ¢, — O in Hl(yo — 8, y0 + 9).
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Here cf1 = Im(c,). The proof of Lemma 4.1 is the same as that of Lemma 3.4
in [46], where we only used the condition B/u” (yg) < 9/8 rather than the stronger
condition:

H) ue H*(yi,y), u"(ye) #0, B/u"(y.) < 9/8 at critical points u’(y.) = 0.

Since otherwise, we can construct i such that & € H*(yy, y2), Ul[yg—3,y0+8] =
ul[yy—8,yo+s) and @)~1oy = { yo}. Recall that all the conditions and conclusions
depend only on u|[y,—s,y,+s]- Then we prove the uniform H' bound for the eigen-
functions. More precisely, we have the following result:

Proposition4.2. Let 0 < B < %fq. Assume that mg < n < Npg, {ct} C

(=00, Umin), Ck —> Uy, and —Ay(ck) = o > 0, where mg and Ng are given
in (1.15) and Theorem 2.9, and L, (cy) is the n-th eigenvalue of

p —_cf Yk = dn(c)Vk, Yy = Ya(y2) =0 4.1)

_I/IIQ, +
with the L* normalized eigenfunction V. Then

1kl 1 gy S Co k2 1. (4.2)

Proof. Suppose that (4.2) is not true. Up to a subsequence, we can assume that
Vi N e B
”wk”H'()q ) = = k. Let I/Ik Hl//k”Hl(yl,yz) n [yi, y2]. Then —y  + " Y =

Ck
—azwk on [y1, y21, ||1ﬁk||1-11(y1,y2) = 1 and ||1//k||L2(y1,y2) = 1/||1ﬂk||1-11(y1,yz) =
1/k — 0. Thus, ¥ —0in H!(y1, y2).

Similar to Lemma 3.1 in [46], we have 1/7;{ —> 0inH'((a=8,a+9) N[y1, »21)
for a € {u = umm} N {u’ # 0}. Similar to Lemma 3.5 and Remark 3.6 in [46], we
have i — 0in H'((a—8, a+8) N[yt y2]) fora € {u = umin} N {y1, y2} Nt =
0} N {u” # B}. Similar to Lemma 3.7 and Remark 3.8 in [46], we have yx — 0
in H'((a — 8,a +8) N [y1, y2]) fora € {u = umin} N {u’ = 0} N {u” = B}. The
main difference is that ¢, € R rather than Im(c;) > 0, and we can overcome this
difficulty by perturbation of ¢ as in the next case.

Ifa € {u = umin} N (y1, y2) N{u” # B}, then0 < B < K+ < 9u"(a)/8. Take
8 € (0, min(y, — a,a — y;)) small enough so that (u”(a) Bw’(y) —B) >0
onla—48,a+ 8] C [y, yland [a —b,a + 5] N {u = umm} {a}. Noting that
Ve, B e H'(a—8,a+8), wehave v — oy = Ly € H' (a—8,a+8),

u—cg u—cg

and there exists € > 0 such that (1 + ||1/;k// -« wk||H|(a75)a+5)) — 0. Let
Cr =cr+iepand wp = —ieg (wAk// — a?4). Then we have (u —E'k)(lif,g —a?yy) —
W' =Bk = o, okl gias.ass) — O Ck — Umin, Im() > 0and ¥ —0in
H'(a-3, a+8) ByLemma4.1,wehave 1/A/k — Oin Hl((a—B,a+6)ﬂ[y1, 2 ]).
Note that ‘ﬁk — Oin Cloc([yl, y21\{#t = umin}). Therefore, lﬁk — Oin Hl(yl, ¥y2),

which contradicts ||1pk|| HI y = 1. Thus, (4.2) is true.

1.2
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Following Definition 3.10 in [46], we call umin (Or umax) to be an embedding
eigenvalue of Ry g if there exists a nontrivial ¥ € H& (y1, y2) such that for any

@ € Hy(y1,y2) and supp ¢ C (y1, y2) \ {y € V1, y2) : u(y) = min, u” (y) # B},

» »2 " __
/ W'¢ +a*ye)dy + p-v-/ W —Pie,,
1

Vi U — Umin

=0.

Equivalently, umin (Or umax) is an embedding eigenvalue of the linearized operator
of (1.1) (in velocity form) defined on L? x L. Infact,v = (', —iay) # O is the
corresponding eigenfunction.

We are now in a position to prove Theorem 2.11 (1)-(2).

Proof of Theorem 2.11 (1)-(2). First, we prove Theorem 2.11 (1). Suppose
#(04(Ra,p) N (=00, umin)) = 0. Then by Theorem 2.9, there existmg < n < Ng
and {ck} C (—00, Umin) With ¢x — u_. such that A,(cx) = —a? is the n-
th eigenvalue of (4.1) with the L? normalized eigenfunction V. By the defini-
tion of Mg we have a? = —dn(cr) < Mg, which implies the second state-
ment of Theorem 2.11 (1). To prove the first statement, we now assume that
0 <a® < Mg and 0 < B < %K+. By Proposition 4.2, up to a subsequence,
there exists Yo € H{(y1, y2) such that % — v in HJ(y1, y2). In a manner
similar to (3.28) in [46],

[P W = By W — B)Yop

lim ————"dy=p.o. —— " dy

k=00 J,_s U — Ck a—$ U — Umin

forany a € {u = umin} N (y1, y2) N{u” = Bl and ¢ € Hol(a —8,a +9). Since
W' =By - " =B Yoy

U—Ck U—Umin

in CP.((y1, y2) \ {# = umin}), taking limits in

" = B e d

u — Ck

y2
/ W' + oY) + y=0
Y1

for any ¢ € Hl(yi1,y2) and supp ¢ C (vi,y2) \ {y € (i,»2) : u(y) =
Umin» M//(y) 7’é ﬂ}? we get

»2 »2 u// —
(Yo' + azw()(p) dy + p.v./ ﬂ dy = 0.
)

Vi 1 U — Umin
If v is nontrivial, uy;, is an embedding eigenvalue of R, g, which is a contradic-
tion. Therefore, Y — %o = 0in H'(y1, y2), which contradicts that 1Vl 220y, v0) =

1,k = 1. Thus, #(04(Ra,g) N (=00, Umin)) < 00. Theorem 2.11 (2) can be proved
similarly. O

4.2. Rule out oscillation under “good” endpoints assumption

We rule out the oscillation of A,(c) under the “good” endpoints assumption
(i.e. one of the conditions (i)—(iii) in Theorem 2.2). The statement is given in
Theorem 2.12. To this end, we need the following two lemma:
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Lemma 4.3. Let u € Cz([yl, vaD), u(y1) = umin and u’(y;) # 0. For fixed y €
(0, 1/2], there exist constants C > 0 and § € (0, y» — y1) such that if 51 €
0,8], z=y1 +681, 0 < ttmin — ¢ < 1, ¢ € C*([y1, z]) and ¢" = F, then

Bl < COY | — )* Y Flreg + 19(2)| + 8] 19/ (D)), 4.3)

[ — &)V plLooiy + 8] | — ) P |y (4.4)
SCEY I =) Fliee + 9] + 8716/ (D)),

[ — )l 4.5)

SC((u — )TV F 1oy + [(min — )7 Lo )| + 19 ()| + 18" (2)D),
[ — ) Plroey £ COY I — ) ™7 Flrsoe) + [(min — ) o) + 16" (),
(4.6)

where | f L) = SUPye[y;,2] Lf I

Proof. Since 0 < upin—c < land —C < upmin S u(y) < C, wehave 0 < u(y) —
c<Cfory e[y, zl.Let Ay = |(u—c)*F|p=@ and B, = |(u — )¢ |Loo(y) for
u € R. Let § > 0 be small enough such that u’(y) > # > 0fory e[y, z] C
[y1, y1 + 8] C [y1, y2]. Then

/Z(u(s) —c)*ds £ fz w' (s)(u(s) —c) Hds
y M/(yl) y

_ 2@ —oMEZE 2w — o'
o WD—-D T WD —1)

for fixed u > 1 and y € [y1, z], and thus

z _ 1-
/ W) — oy rds < V=D < gy ot r @
y 'y —1)

Similarly, for fixed © < 1 and y € [y;, z], we have that

) N l—p 5=y
) —oy s < 24O =) o < cy—otr 48)
. WO — )

Since u(s) — ¢ 2 u(s) — umin = ' (y1)(s — y1)/2 and u(s) — ¢ = u(y) — c for
yi £y <5 <z, we have for fixed u = 1 — y,

Z Z
/ (u(s) —c) Mds £ / W' ) (s —y/2)Y uy) — )7 ds  (4.9)
y y

SCu(y) —o)trr /Z<s —y)? s £ Cuy) — o) TV — )
y
=C3] (u(y) =)' 77"

For fixed ¢ > 1, using (4.7) and the definition of A,,, we have, for y € [y, z],
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1¢'(») — ¢'(2)] é/ I¢”(S)|dS=/ |F(s)|ds é/ (u(s) —c) A, ds
y y y

< Clu(y) =)' 7A,,
and

16’ 16" @] + Cu(y) — ) A,

() — "'’ = w(y) — )" ¢ ()| + CAu < Cl¢' ()| + CA,.
Then by the definition of B, we have

Bu_1= sup |u(y)—c)"'¢'(n| S CAy +Cl¢/(2)] for fixed u > 1.
yelyi.z]
(4.10)

Similarly, for fixed 4 = 1 — y, using (4.9) and the definition of A, we have for
y €.zl
z 4
lp(y) — ¢ (2)] = / 19" (s)| ds é/ (u(s) — ) "By ds < C8] (u(y) — )" V7" B,,.
y ¥

This implies
[ — ) TP ooy < C8) B, + Clg(z)| forfixedp =1 —y. (4.11)
Using (4.11) for u = 1 — y and (4.10) for u = 2 — y, we have
|plLo) < C8Y Bi—y + Clp(2)| < €8] (Aa—y, + 14" (D)) + Cle(2)],

which implies (4.3) by recalling the definition of A,,. Using (4.11) for u =2 —2y
and (4.10) for u = 3 — 2y, we have

l(u — ) 7V Plro) + 8 Baay < C8) Brgy + Clo(2)]
< €8/ (As—zy + 18" @)D + Clo(2)],

which implies (4.4) by recalling the definition of A, and B,.
For fixed u < 1, using (4.8) and the definition of A, we have for y € [y1, zl,

y y
o) — (Dl = / ¢'(s)lds = / (u(s) =) *Byds < Cu(y) —c)' "By,
Y1 y

1
and

g < o) + Cu(y) — ) "By,
) — )" eI £ @) — )* oyl + CBy < (min — )" p(y1)| + CBy,
where we used u(y) — ¢ 2 tmin — ¢ > 0and u — 1 < 0. Thus,
| — )" plroo) £ (umin — ) N (y1)| + CB, forfixed u < 1. (4.12)
Using (4.12) for © = y and (4.10) for © = 1 + y, we have
[ — )" ' Plrooi) S (min — )" o ()| + CB,
< (umin — )" PO + C(ALgy + 19/ @D,

which implies (4.5) by recalling the definition of A,,. Using (4.9) for u =1 —y
and the definition of A, we have for y € [y1, z],
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16'(3) — ¢'(2)] < / 10" (s)Ids
y
= / |F(s)]ds < /Z<u<s) — o)’ 1AL, ds S C8] Ay
y y

Then by the definition of By, we have that
Bo= sup |¢'(y)| < C8] Ai—y +Clp'(2)I. (4.13)

Yelyr,zl

Using (4.12) for u = 0 and (4.13), we have that

I — ) Pl < (min — )P + CBy < (umin — )~ (1)
+CEAI—y + 16/ @)D,

which implies (4.6) by recalling the definition of A,.

Lemma4.4. Let u € Cz([yl, vaD), u(y1) = umin and u’(y;) # 0. For fixed y €
(0, 1/2], there exist constants C > 0 and §1 > 0 such that if z = y1 + 61, 0 <
umin — ¢ < 1, ¢ € C*(Iy1, z]) and

p oW =B
-+ ———p=—a"¢p—F onlyi,zl, (4.14)

u—=c

then the inequalities (4.3)—(4.6) are still true.

Proof. Let F = ”L:T_fqb +a?¢ + F and 81 € (0, 8] be given in Lemma 4.3. Then
" = Fon [y, zl. By Lemma 4.3, (4.3)~(4.6) are still true with F replaced by F.
As|u”"—B| < Cand|u—c| £ C,wehave |F—F| < Cl¢/(u—c)|fory € [y, z].
Thus, for 1 € R, we have that
[ — ) Flrooiy S | — )*Flreg) + [ — " (F = F)lpoi)  (4.15)
S| — 0" Flreg) + Clu — "'l
Using (4.3) with F replaced by F and (4.15) for © = 2 — y, we have that
|plLoe) = C(5)1/|(M - C)2_VF|L°°(Z) + 9| + 511/|¢/(Z)|) (4.16)
SC8 | — ) TV lreiy + COY 1w — )V Flroy + 9] + 8] 16" @)D
§C15{|¢|L°°(z) + C((Si’l(u - C)2_VF|L°°(Z) + 1@+ 3f|¢/(2)|)~
Using (4.4) with F replaced by F and (4.15) for © = 3 — 2y, we have that
[ =)' 7 plroeiy + 8] [ — ©)* 77 ¢ | o) (4.17)
SCOY I — ) Flrog) + 10(2)] + 8] 16 @)])
SCOY I — e Flrooiy + 9] + 8] ¢/ + C8] [ — ¢)* 7 ¢l o)
SCE] | — )" Flroe) + 161+ 8] ¢/ @) + C18] [ — ©)' 77 ¢l (o).
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Using (4.6) with F replaced by F and (4.15) for © = 1 — y, we have that
[ =) Pl S COUNw =)' Flroey + [min — )~ ¢ ()] + ¢/ (D) (4.18)
SCOY 1 — ) TV Flreoy + [@min — ) oD + 19/ @D + C8) [(u — )7 Pl ooz
SCE] | =)' Flregy + min — )7 'o D] + 19/ @) + C18] [ — ) ' pl 1o
Here, C1 > 0 is a constant depending only on y, «, B, u, § (and independent of
81). Taking 81 € (0, 8] small enough such that C18i/ < 1/2in (4.16)—(4.18), we
obtain (4.3), (4.4) and (4.6).

Note thaty > 0and2 —y = y + 1. Using (4.15) for u = y + 1 and (4.3), we
have that

[ — )Y T F|pooiy S 1 — o) T F| ooy + Clu — ©)Y plroy  (419)
<l — )" o) + Clgle
<l — )T F o) + COY [ — >V Flrseg) + 9] + 87 19/ ()
SC((u— )"l + 16 + 19/ @))).

Using (4.5) with F replaced by F and (4.19), we have that

[ — ) L plroog
<C( — )" F 1oy + [min — ) ol + 19 @) + 19/ (2)])
SC((u — ) TV F ey + [(min — )7 Lo )| + 19 )] + 19’ @)).

Thus, (4.5) is also true. O
We are now in a position to prove Theorem 2.12.

Proof of Theorem 2.12. We only prove (1), and the proof of (2) is similar. If {' =
0yN{u = umin} # ¥, then0 < k; < 00. By Theorem 2.11 (3), #(04(Ra,p) NR) =
oo for B > %K+. If {u' =0} N {u = umin} = 0, then {u = umin} C {y1, y2} Gi.e.
U = umin can be achieved only at the endpoints). We assume that u#(y;) = umin.
Then u(y2) > u(y;) and u’(y;) > 0. By taking § € (0, y; — y;) smaller, we can
assume that u’ > # ony € [y1, y1 +6]. Let ¥, ¢ € C\Ran(u), be the solution
of

M// ,3

u—=c

—0} e + Ve =—a’Ye on [y, y2l. Ye(y2) =0, dy¥e(y2) = 1.

(4.20)

Note that for ¢ € (—00, umin), ¢ € 04(Rq,p) if and only if ¥.(y1) = 0. Suppose
that 04 (Re,g) N (—00, Upin) = {ck},fil. Then ¢ — u_;,. Note that if (iii) is true
for i = 1, then B; < 0 and thus B8 # B for all 8 > 0. So we divide the discussion
into two cases.

Case 1. 8 = B and (i) holds for i = 1.

Case 2. 8 = B and (ii) holds fori = 1; or 8 # B;.

If Case 1 is true, then u” — 8 = O on [y1, y; +8]. By (4.20), ¥ can be extended
to an analytic function in C\ u([y; + 6, y2]). Since umin € u([y1 + 3, y21), ¥(y1)
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has a finite number of zeros in a neighborhood of ¢ = up;y, which contradicts that
ﬁ(ad(Ra,ﬂ) N (=00, Umin)) = 00.

Now, we assume Case 2 is true. If 8 # B, define m = 0; if § = B and (ii) is
true, define m = m;. Then m = 0, by taking § > 0 smaller, we can assume that

ClUy—ml" <" (y) =Bl < Cly—y|™ for yely,y+8l. (421

As [u”(y) = Bl/ly — »il™ € Cy1 + 8, »2D, lu"(y) — Bl £ Cly — y1|™ is
also true for y € [y + 8, y2]. Since u € C!([y1, y2]), we have u(y) — umin =

u(y)—u(y)) = [} u'(2)dz = (y —y)v(y), here v(y) = Jo W i +s(y—yn) ds
andv € C([y1, y2]).If y € (31, y2], we have u(y) > umin and v(y) > 0.If y = yy,
we have v(y) = u/(y;) > 0. Thus, v(y) > 0in [y}, y2] and there exists a constant
C > 1 such that C~! < v(y) < C, which implies

C 'y =yl £ u(y) = tmin < Cly = y1l. (4.22)
Cly=wlSu@) —c for ¢ =< umin. (4.23)

Letn € N and ¥, = 9/y.. By Rolle’s Theorem, there exists {cx )2, C
(=00, umin) such that ¥, , n(y1) = 0 and ¢t , — u; as k — oo. For fixed

¢ < Umin, let k > 0 be large enough such that ¢k , € (¢, umin). Then Y, (y1) =
fc ast,n(yl) ds = f;;_n 1/fs,n+1(Y1)dS, and

Ck,n
Ck,n Umin
h”c,n(yl)l § / |1/fs,n+l(yl)|ds g / W/s,n—l-l (y1)| ds. (424)
C C
Moreover, ¥, , satisfies
u' — B
- a)z’wan + " —c wc,n = _QZWC,n - FC,I’H
n
n! u’ — B
Fen=Y_ =T =kt Venk (4.25)

k=1

where ¥, o = Y. and F. o = 0. Note that . (y) is continuous on (C \ Ran(u)) x
[v1, y21, and analytic in c. Let u (y) = inf u([y, y2]). Then ¥.(y) can be extended
to a continuous function on D; := {(c,y) : ¢ < u+(y), y € [y1, y2]}, still
satisfying (4.20) in D;. Moreover, u, is increasing and continuous on [y1, y2],
U+ (¥1) = Umin and u4(y) > umin for y € (y1, y21. By standard theory of ODE,
e =Yen € C%(Dy) and Yenlp, 1s real-valued for n € N. Using this extension,
Ve le=uny, 1S well-defined and satisfies (4.20) for y € (y1, y2]. For fixed 81 € (0, §]
and n € N, we have

[YenW)] + 10y Wen()| = C(n, 1) for y € [y1 + 81, y2]1and 0 = upin — ¢ = 1,
(4.26)

since a continuous function is bounded in a compact set. Let mq € Z be such that
mo—1<mZ<mgandy = (m+1—mg)/2. Thenmo = 0and y € (0, 1/2]. We
claim that the uniform bounds
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[Wenl £ C, Weol S Clu—cl, [We1l £ Clu— '™, 18y¥e mp2]
< Clu—cr2 (4.27)

hold for 0 < umin —¢c < 1, y € [y1,y2] and n € Z N [0, mg + 1]. Assume
that the uniform bounds (4.27) are true, which will be verified later. Let W, , =
Oy Ve nWe — 0y Wee ». Then we get by (4.25) that 9y We ,, = Fe y¥c. By (4.27) and
using u(y1) = Umin, we have for 0 < umpin — ¢ < 1,

Umin Umin

el < / sG] ds < C/ tmin — $1'7 ds < Clutmin — 27,
C C

and thus

|8ywc,mo+21/fc|(yl) = IayI/fc,mo+2(y1)||WC(yl)|

2y—2 2—
§ Clumin — | 4 [ttmin — | v =C|umin_c|ya

which implies lirrl Oy e mgr2¥e(y1) = 0. Since wck’m0+2’mo+2(yl) = 0 for
C=>Upnin

k = 1 and cg mg42 —> Uy, we have liminf [dy¥ee mo+2/(y1) = 0, and thus

C—)Mmin

liminf [We,mo+2/(v1) = 0.

C—>Unin

Since Ye(y2) = 0, 9y¥e(y2) = 1 and recall that ¥, = 9., we have
Yen(y2) =0, 8ywc,n (y2) =0and W, ,,(32) =0 for n > 0. Thus, —Wen(y1) =
220, Wen () dy = [7? Fenre(y) dy. Note that

n—1

u' — ’3 n! u' — ,3
Fc,n - '—lwc = Z

T =t = (n—k)! (u — o)t Ven—k-

Ifn e ZN[2, mo+ 2], by (4.27) and (4.21), we have for 0 < umin —c < 1 and
y €[y, y2l,

n—1

_ nlu” — By, < Z n! lu” — B " |
T ot | T = — of e
) —
<C"Z =il oy le—e T Ly =l
= pot (u — C)k+1 (u—ocm = lu — C|n—1+y ’
oo — nl@” =Bz | o Ly =il el 1y = il"u—c|
ST (= eynt] lu— =14y =7 ju —cn=lty
oy =l
T u— 2y

and thus using m — mg = 2y — 1 and (4.23), we have that
(mo +2)!u” — B)y;
(u — C)mo+3

=Cly—nl"""

— m _ m
< oy =l c_ 1y =l
lu — c|moty ly = yilmoty

[IA

Fc,mo+2‘ﬂc -
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Integrating it on [y;, y2] and using —W, ,(y1) = yylz Fe pc(y) dy, we have for
0 <tmin—c <1,

/yz (mo + 2" — B)y? ‘
y

A

y2 y2
c _ y—1
(u— c)mo+3 dy /y Fc,mo+2¢c dy‘ + C-/) ly — y1 dy

1 1

é |Wc,m0+2|(yl) + C,

1

and as liminf | W, ;,0421(y1) = 0, we have that

c=>u
lim inf /)’2 (mo +2)!(” — By,
c—up |y (u — C)m0+3

2
< dy’ < C, liminf

L—)blmin

2 (" — 2
/ wdy‘ <c.
y

3
. . (w—cymot

Since u” — B is continuous and real-valued, and C~!|y — y1|” < |u”(y) — B, it
does not change sign on y € [y1, y1 + 6]. Then for O < upin —c < 1,

/}’1+8 (M// _ﬁ)wLZ q ‘ _ '/‘,V]?LB |u// _:3|1//3 dy z C*l /)'hLB |y _yllmwg
y y y

(u — C)m0+3 (u — C)m0+3 (u _ C)'"0+3 Y-

Y1 2 1

As || SC, [u" =Bl S Cou—c 2 u—upmin = C ' ory € [y1 +6, y2], and
0 < Umin — ¢ < 1, we have that

» "_ 2 2
/ Mdy‘ < / cdy <cC.
y

1+68 (M - C)m0+3

yi+6
Thus,

yi+3 _ m,2 Vi+8 (0 2

liminf/ D=NYE ) < ¢ limin / W =PV ‘
= lpin Y1 (I/t - C)m0+ c—>up 1J oy (I/t - C)m0+
y2 " 2 » " _ 2

<C lim inf / (u—'B)wgdy‘—f-Climsup / (u—%dy‘gc,

c_)ul:lin i (M - c)m0+ C—)u[;in yi+9 (M - C)m0+

Since ¥, € C(D1), we have for fixed y € (y1, y1 + 6],

2

- Cy=wmy? o ly = nl"Y,
lim = ) , lim < = min_
o ‘ﬁc()’) I)lfumm ()’) s (u _ C)mo+3 (u _ umin)mo+3

min

Thus, by Fatou’s Lemma, we have that

NS |y — yi Myl Ny — "yl
dy = lim —— <
y Yy

. (= upip)mot3 W eou (u—cymots

yi+6 _ m,y2
< liminf/ Mdy <c.
c—up Iy (u — C)mo+
By (4.22), we have that
|y B yl |mi‘”’%min > Iy B y] |mw3min > C_lwlzmin > C_lw’%min

(U — umin)™03 = (C(y — y)™03 = |y — yy|mo=m+3 = |y — y 3
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for y € (y1, y1 + 8], where we used m < my. Thus,

fY1+5 w’%min ay < C/y1+5 ly — yl|mw3mm dy<C
hJ ly =nl? B V1 (1 — Umin)™0+3 -

Now we take ¢ = ;.. Then ¢ is real-valued and for y € (y1, y2], it satisfies

yi+é 2

@
= —a?p, () =0, ¢'(n) =1, /

u//_ﬁ
—q) —_—
yi |y_YI|3

U — Umin

—¢"+ dy £ C.
(4.28)
Thus, ¢, /|y — y1| € L*(y1, y1 +8). By (4.22), we have that for y € (y1, y1 + 381,

u" —p Clel _ Clo| u” —p

= )
U — Umin U — Umin ly —»l U — Umin

[IA

@ € L*(y1, y1 +9).

Thus, ¢” € L*(y1,y1 +8), ¢ € H*(y1,y1 +6) and ¢ € C'([y1, y1 + 8]) by
defining ¢(y1) = limy_)yrr o(y). If o(y1) # 0, then there exists §; € (0, §] such

that (V)| = le(yDI/2 = C™y — yi| for y € (y1, y1 + 811 If @(y1) = 0 and
@' (y1) # 0, then there exists 8§; € (0, 8] such that |¢'(y)| = |¢'(y1)]/2 for y €
(1, yi+é1l,and (V)| = lp(3) —e (DI = [y —yDe ED| = [y —y1lle’ (]/2
for & € (y1,y) and y € (y1, y1 + 81]. Therefore, if ¢(y1) # 0 or ¢'(y1) # 0,
then there exists §; € (0,8] and C > 0 such that |p(y)| = C_1|y — y1| for
y € (y1, y1 + 611, and

[ gz [Tl
¥ |y_yl|3 o ¥ |y_yl|3 ’

which contradicts (4.28). Thus, we must have ¢(y;) = ¢'(y1) = 0. Then by the
proof of Lemma 3 in [27], we have ¢ = Oon [y;, y2], which contradicts ¢’(y2) = 1.
This proves (1) for Case 2.

It remains to prove (4.27). Let §1 € (0, §] be fixed such that Lemma 4.4 is true.
Recall that z = y; + 61 and | f|p00(;) = SUP e[y, 2] |f(»)]. By (4.26) we know that
(4.27)istruefory € [z, y2]. Now we assumethaty € [y1, z], 0 < umin—c < 1, and
that (4.3)—(4.6) are used for F satisfying (4.14) (i.e. the condition in Lemma 4.4).
The proof of (4.27) for y € [y1, z] is divided into 7 steps as follow:

Step 1. |Y..»| £ C fory € [y1,z] and n € Z N [0, mg].

For n = 0, by (4.25), (4.3), (4.26) and F.o = 0, we have |{.olro) =
C(1Ye0@)| + 8] 1Y, (@] < C, and thus [y 9| < C for y € [y1,z]. Now, we
prove the result by induction. Assume that n € Z N (0, mo] and |, x| < C for
k € ZN[0,n) and y € [y1, z]. Then by (4.25), (4.21), (4.23) and m —mgy = 2y — 1,
we have, for y € [y1, z], that

n

n . m _ m
| Fonl < CZ [y — y1l" e n—kl < CZ ly — il
k=1

(u — c)k+! (u — c)k+!
k=1

(u—ao)
¢ (u _ C)"+1 ’

(4.29)

A

[ =)V Fepl £ Clu— )71 < Cu— )"0ty
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=Cu—c) £C. (4.30)
By (4.3), (4.26) and (4.30), we have that

|wc,n|L°°(z) § C(Sﬁ(” - C)Z_VFc,n|L°°(z) + |1//c,n(z)| + 5f|1ﬁén(1)|) § C,
“4.31)

which means | ,| < C for y € [y, z]. Thus, the result in Step 1 is true.

Step 2. |en| < Clu —c|”~! fory € [y1,z]and n = mg + 1.

Letn = mo + 1. By Step 1, we know that |, x| < C for y € [y, z] and
k € Z N[0, n). Thus, (4.29) is still true and for y € [y, z],

(=) Fopl £ Clu— )’ 2rHm=n=1 = C(u — ey —m0+1=2r = C,
which, along with (4.4) and (4.26), implies that
[ =)' Yenlro@ < COY 10— )2 Foplroe + [Wen (@] + 87 19, () < C.

Then |(u — ¢)' ™7 Y n| £ C, and thus [ x| £ Clu — c|” ! for y € [y1. z].

Step 3. [0l < Clu —c|' for y € [y, z].

If mp =0, thenm = 0 and y = 1/2. By Step 2, we have |, 1| < Clu —
V7V = Clu —¢|7Y for y € [y, zl. If mg > 0, then by Step 1, we have
[Ye il £ C < Clu—c|™? fory € [y1, z]. Thus, [¥¢ 1] < Clu —c|77 is always
true for y € [y1, z]. Then by (4.24) and u(y1) = Umin, We have [V o(y1)| =
S g 1 (Dl ds £ C [ Jumin — 5|77 ds £ Clumin — ¢|'77. By (4.5), (4.26)
and Feo = 0, we have |(u — ¢)’ e olzoe £ Clumin — ) e o) +
[Ye.02)| + ¥, o(@)]) < C. Then |(u — )" ' 0] £ C, and thus [0l £ Clu —
c|'=Y fory € [y1, zl.

Step 4. || S Cfory € [y1,z]andn = mg + 1.

Let n = mo + 1. By (4.25), (4.21), (4.22), Step 1 and Step 3, we have for
y € [y1, z], that

n n—1
ly — yil" Ve n—kl ly — " ly = y1l"[¥e,0l
< > < >
|FC’”| =C ]; (u — C)k+1 =C I; (u — C)k+1 +C (u — C)n+1
u—-c)” — 1™ — |
ccWmO" M ey
(w—oy (w—o)

[ — )2V Fop]l £ Cu—¢)> 2V = C(u — )"0 1=2r = .

Here, we used n = mo + 1 and m — mg = 2y — 1. Thus, (4.31) is still true for
n=mo+1,ie. Y < Cfory e [y,z]

Step 5. [Yc 0l = Clu —c| for y € [y1, z].

By Step 1 and Step 4, we have |y, 1| £ C for y € [y1, z]. Then by (4.24),
we have [y o(yD)| < [ Y 1(yD]ds < C [ ds < Clumin — c|. By (4.6),
(4.26) and F,. o = 0, we have | — )" Ye 0l 1) S C(umin — )~ Y01 +
[V, o@D = C, which gives |(u — ) "Weol £ Cand [P0l £ Clu — cf for
y €[y, zl
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Step 6. |3y Yen| < Clu—c|? 2 and [en| < Clu—c[?~! fory € [y, z] and
n=mqy+ 2.

Since n = mg + 2 and m — mg = 2y — 1, we have, by (4.25), (4.21), (4.23),
Step 1 and Steps 4-5, that for y € [yy, z],

— m
|FLn|<c2'y 2" Wen ] o Z'y " =l el

_ )k+1 )k+1 (u — C)"'H
(”_C)m ly — y1l"u — c| — —mg—2
< < _ \m—n o \m—m
= T g SC—" T =C -,

[ — ) 2 Fopy| £ Cu—c)t72rtm=—mo = |
Then by (4.4) and (4.26), we have that

[ — )" Yenlroey + 87 1 — )72 3y el L)
SC(U — ) Fenlroy + [Wen @]+ 18y¥en(2)]) < C.

Therefore, |3y Vel < C8; " [u—c|? =2 < Clu—c|?” 2 and [Yre,u| < Clu—c|” ™!
fory € [y1, zl.

Step 7. [Yre1| < Clu —c|'~ for y € [y, z].

Ifmo = 0, thenm = Oandy = 1/2.By Step6, wehave |, 2| < Clu—c|?~ ! =
Clu —c|7Y fory € [y1,z]. If mg > 0O, then by Step 1 and Step 4, we have
[Ye2l £ C < Clu—c|™? fory € [y1, z]. Thus, [¥e2] < Clu —c|77 is always
true for y € [yi, z]. Then by (4.24) and u(y1) = umin, We have [V, 1 (y1)| <
L s oyl ds £ C L™ Jumin — |77 ds < Clumin — c|' 7. By (4.25), (4.21)
and Step 5, we have, for y € [y1, z], that

ly = yil" [¥e.0l <Cly—yll'"lu—CI_ ly = »il™
w—c? = (u —c)? u—-c
=) il S Clu—ce)ly—ml" = C.

|[Feal = C

)

Then by (4.5) and (4.26), we have that

[ — o) e il
SO — )" M Fe il + [min — )7 " We 1 D]+ e 1 ()] + 19,91 (2)) < C,
which gives |(u — ¢)Y "' 1| £ Cand [¢.1| £ Clu —c|'~7 for y € [y1, z].

By Step 1 and Steps 4-7 we know that (4.27) is true for y € [y1,2z] =
[v1, ¥1 + 81]. This completes the proof of (4.27) and thus Case 2.

4.3. Rule out oscillation for flows in class K™

We rule out the oscillation of A, (c) for flows in class KT, which is stated in
Theorem 2.13. The proof is based on Hamiltonian structure and index theory.
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Proof of Theorem 2.13. The assumption (H1) is satisfied for a flow u in class
KT. By Theorem 2.11, it suffices to prove 804 (Ra,p) N (=00, min)) < oo for
0<a?< Mgand0 < g = %lar. Similar proof is valid for %K_ < B < 0. First,
we consider 8 € Ran(u) N (0, %K+]. Define the non-shear space

T
X ={we L2(DT) : / w(x,y)dx = 0, T-periodic in x}.
0

Note that as @ = dyvy — dyv1, fOT (x,y)dx = 0 is equivalent to fOT vi(x, y)dx
=constant. Thus, fOT v1(x, y)dx = 0 implies fOT w(x,y)dx =0.

The linearized equation (1.4) has a Hamiltonian structure in the traveling frame
(x —ugt,y,1):

wp=—(B—u")ox (w/Kg— ) =JLo.

Here J = —(B —u")dy : X* - X,L = 1/Kg — (=A)"' : X — X*. Let

Jy = —ia(B —u") and L, = KLﬂ — —% +a?)~!on L?, . It follows from
Kg

Theorem 3 in [27] that

<0 _
ke + ky +kl_ =n"(Lg),

where n~ (L) is the Morse index of L, &, is the sum of algebraic multiplicities of
positive eigenvalues of J, Ly, k. is the sum of algebraic multiplicities of eigenvalues

of Jy Ly in the first and the fourth quadrants and kiéo is the total number of non-
positive dimensions of (L, -) restricted to the generalized eigenspaces of nonzero
purely imaginary eigenvalues of Jy L.

Suppose that §(04(Rg,g) N (—00, Umin)) = 00. Then it follows from Theo-
rem 2.9 that there exists mg < n < Ng such that #({A,(c) = —a?, ¢ < umin)) =

00. Let ¢* < umin be a solution of A,(c) = —a? with eigenfunction ¢*. ¢* can
be chosen sufficiently close to umin. Then —ia(c* — ug) is a purely imaginary
eigenvalue of J, L, with eigenfunction w* = —¢*” +a>¢*. By Theorem 4 in [27],

(L™, @*) = —(c* — ug)h,(c*).

Note that ¢ — ug does not change sign when ¢ < up;; is sufficiently close to umpip.
Then

#({—(c —up)h,(c) £ 0,¢ < umin} N {An(c) = —a, ¢ < Umin}) = 00.
<
Hence, kl.:O = 0. This contradicts that
<0 — _ = 2 5
k=" <n"(Lg) =n" (Lo+a”) =n (L) < oo,

where Ly = —%—Kﬁ : H*NH] — L?.Therefore, 8(04(Rq,p)N(—00, timin)) <
0.

Then, we consider 8 € (0, %/@r] \ Ran(x”). By Corollary 1 in [27], A, (c) is
decreasing on ¢ € (—00, Umin) for any fixed n = 1. By Theorem 2.9, #(64(Re,g) N
(—00, Umin)) < Ng. O
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5. Relations between a traveling wave family and an isolated real eigenvalue

In this section, we establish the correspondence between a traveling wave family
near a shear flow and an isolated real eigenvalue of Ry, g. For a given isolated real
eigenvalue cg, we prove that there exists a set of traveling wave solutions near (u, 0)
with traveling speeds converging to co, which is stated precisely in Lemma 2.5.

We assume k, kg € Z.

Proof of Lemma 2.5. We assume that 8 > 0, and the case for 8 < 0 is similar.
Since ¢p € 0q(Riya,p) N R for some kg = 1, we have ¢y < umin and we choose
80 > 0 such that co + 89 < umin- By (1.3), u (x — ct, y) is a solution of (1.1)—(1.2)
if and only if (¢, c) solves

D@+ By ¥ —cy)
9 (x,y)

and 1 takes constant values on {y = y;}, where i = 1,2, w = curlu and u =

(dy ¥, —0x¥). Let ¥y be a stream function associated with the shear flow (u, 0),

ie., w(’) =u. Since u — ¢ > 0 for ¢ € [co — b0, co + Sol, Yo — cy is increasing on

[y1, y2l. Let I = {0 (y) — ¢y : y € [y1, y2l} for ¢ € [co — Jo, co + do], and then
we can define a function f, € C2(I.) such that

fe Wo () —cy) = wo (») + By = =¥ () + By. (5.2)

0, (5.1)

Moreover,
B—u"(y)
u(y)—c

for ¢ € [co — 8o, co + 80]. We extend fc to f. € Cg (R) such that f. = fc on /.
and 3?86]”6(1) is continuous for ¢ € [co — 8¢, co + o] and z € R. Taking c as the
bifurcation parameter, we now construct steady solutions u = (Byw, —E)xlp) near
(u, 0) by solving the elliptic equations

=AY + By = fe (b —cy) (5.3)

with the boundary conditions that i takes constant values on {y = y;},i =1, 2.
Define the perturbation of the stream function by

P, y)=v(x,y)—vo(y).
Then by (5.2)—(5.3), we have that
—A¢ — (fe(Pp+ Yo —cy) — fe (Yo —cy)) =0.

Define the spaces

fl (o (y) —cy) = Ke (v)

B={pc€ H4(DT) D e(x,y)=0,i=1,2, giseven and T-periodic in x}
and

C = {go € HZ(DT) : T-periodic inx} ,
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where T = 2m /. Consider the mapping

F : B x[co — 6p, co+ 6ol — C,
(@, 0) > —=Ap — (fe(@ + Yo —cy) — fe (Yo —cy)).

Then F(0,c) = 0 for ¢ € [co — o, co + So]. We study the bifurcation near the
trivial solution (0, c¢g) of the equation F(¢,c) = 0 in B, whose solutions give
steady flows of

For fixed ¢ € [co — 8o, co + o], by linearizing F around ¢ = 0, we have that

0 F(0,¢) =—A— fl(Yo—cy) = —A — K¢ = Gcls,

where G| g is the restriction of G, in B and G, is defined in (2.3). Then we divide the
discussion of bifurcation near (0, cg) of the equation F (¢, c¢) = 0 into three cases.
Since ¢ € 04(Riye,p) N R, there exists ng = 1 such that (koa)? = — g (€0),

where A, (co) is the no-th eigenvalue of L., and L, is defined in (2.6). Let

ky =m>ax{k : there exists ny = 1 such that — (/’coz)2 = Ay (co)}. 5.4
k=1

Then k. exists by our assumptionand 1 < kg < ky < 0o. Now we denote ny, = ny,.
Casel. A, . (co) # O (the transversal crossing condition) and co ¢ 04(Ro,g)NR.
In this case, we have 0 ¢ o (L,). Let B, = {9 € B : perlodlc in x} and

={peC: perlodlc in x}. Consider the restriction F | B, and G.|p,. Then
by the definition of ks, we have

ker(Ge,|B,) = span{gc, n, (y) cos(kxax)} and dim(ker(Gelp,)) =1, (5.5)
where ¢, , s a real-valued eigenfunction of A, (co) € o (L,). Note that

B — u L
_—C())2¢co'n* (y) cos(kyox).

9:94 F (0, cp) (¢c0,n* ) cos(k*(xx)) = (u—

Then by Lemma 11 in [27], we have that

T ry
/0 Peon, () cos(kwax) [3c05 F (0, co) (Beg,n, () cos(ksax))] dy dx
Y1

T r» B —
=- / / — |<15c0 0. (0)1? cos? (kyax) dy dx = kfl*(co) #0,
0 1 (“ - )

where we used that ¢, ,, is real-valued. By (5.5), we have ¢, », (y) cos(ksax) €
ker(Ge,lB,) and thus, 994 F (0, co) (¢co,n* (y) cos(k*ax)) ¢ Ran (G, |B,). Then
by Theorem 1.7 in [7], there exist § > 0 and a nontrivial C! bifurcating curve
{(¢y,c(»)) .y € (=8,8)} of F(¢, c) = 0, which intersects the trivial curve (0, c)
at ¢ = g, such that

@y (X, ¥) = ¥ Peo.n, (¥) cos(kyax) + o(ly D).

So the stream functions take the form

Yy (x, y) = Yo(y) + ¢y (x, ¥) = Yo(y) + ¥ Peyn, () cos(ksax) + o(ly]).
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Let the velocity uy, = (u(y), v(y)) = (0y¥y, —0x¥y) . Since co < umin, we have
that

uy)(x, ) —c(y) = dyy (x,y) —c(y) (5.6)
=u(y) = c(¥) + ¥y 0, (v) c08(kscrx) + o(|y]) > 0,

and

V) (%, ¥) = —0x ¥y (X, ¥) = kst ¥ ¢cg,n, (¥) sin(ksax) +o(ly) #0 (5.7

when y is small. Moreover, ||[(u(y), v(y)) — (u, O)||H3(DT) +le(y) —col £ Coy for
some constant Cp > 0 large enough. Thus, we can take § > 0 smaller and &g = Cé
such that for ¢ € (0, &9), (ue, Ve, ¢e) = (U(y), V), c(¥))|y=¢/c, satisfies that
[l (s, ve) — (u, 0)”H3(Dr) Se,ce = co us(x, y)—ce > Oand||v8||L2(DT) # 0.By
(5.7), B —> AT Pey.n, (¥) sin(keax) in H? (D7), where 7, = Ve /el L2(py)-

Case 2. )»;l*(co) =0and ¢y ¢ 04(Ro,g) NR.

In this case, there exist 6; € (0, o] and a € {£1} such that aA,,, is increasing
in [cg, co + 81], and thus,

akp,(c) > ary, (co) = —a(k*ot)z, Yc e (co,co+ 61l (5.8)
Let ¢ € C*°([y1, y2]) be a positive function, u| be a solution of the regular ODE
ui(u—co) — " — Byuy =21 on [y, y2l, (5.9

and 7y > 0 be such that [cg, co + 1] NRan(u + tu;) = @ for t € [—10, 10]. Since
u € H*(y1, y2) and ¢1 € C®([y1, y2]), we have u; € H*(y1, y2). Let A(c, )
denote the n-th eigenvalue of L, ; : H?N HO1 1, y2) — L2(y1, y2) defined by

u”"+tu{ — B

E. —— U
et o u+tur —c

for ¢ € [cp,co + 61] and T € [—10, To]. Then by (5.9) and the fact that ¢; is a
positive function, we have that

&Mﬂm®=/

4 4
2 u’" +tuy — B
0y | —————
Vi

u-+tur —co

2
) ’r:Od)n*,Co dy

[ @
- (u — co)? oo
Y1
2 ;1 2
— [T 2 dyso,
fyl (u — co)? Pnco 47 =

where ¢, ¢, is a L? normalized eigenfunction of A, (co) € o(L,). By the defi-
nition of k., — (ka)? ¢ 0(Ley,0) for k > k. Since cg ¢ 04(Ro,g) N R, we have
0 ¢ 0 (L¢y,0)- By the continuity of d; 1,,, and the small perturbation of o (L ), we
can take 79 > 0 and 6; > O smaller such that d; 1, (c, T) > 0 and

0¢o0(Ler) and — (k) ¢ 0(Les), Yk > ks (5.10)
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for (c, t) € [co, co + 81] X [—70, To]. By taking §; > O smaller and the Implicit
Function Theorem, there exists ¥ € C!([co, co + 81]) such that A, (c, ¥(c)) =
hn (0. 0) = —(kse)?, F(co) = 0 and [F(c)| < 1 for ¢ € [co, co + 81]. By
(5.8), we have A, (c, V() = An,(c0,0) # An,(c,0) and Y (c) # 0 for ¢ €
(co, co + 81]. Then for fixed t € (0, 7], there exists ¢; € [cg, co + 81] such that
7'(ce) # 0 and [7(co)| < 7. Note that 0 = < [, (¢, P(€))] = Bk, (¢, F(€)) +
Y'(€)drhn, (c, Y(c)).Letty = Y(cr). Then we have dcry, (¢c7, T1) = =9 (c1) 0 An,
(ce, 1) # 0.

Fix any ¢ € (0, 1). Then we can choose t € (0, t9] and 8; > 0 smaller such
that for 7; = Y (c¢),

&
and |c; —col <61 < =.

(5.11)

&€
e+ 71u1.0) = G, O3y, S Tl sy < 5

By (5.10), Ap, (¢, T1) = —(ky)? and 9chp, (cz, T1) # 0, we can apply Case 1
to the shear flow (# + tju1, 0): there exists a traveling wave solution (ug(x —
Cet, V), Ve(x — cet, ¥)) to (1.1)—(1.2) which has period T = 27 /o in x,

& &
(e, ve) — (u + T1ur, Ol g3 (pyy = 5 and e — | = ok (5.12)

ug (x,y)—ce # 0and lvellz2(pyy # 0. Then by (5.11)—(5.12), we have || (ug, ve) —
(u, Ol g3(pyy < € and |ce — ol < &.

Case 3. ¢ € 04(Ro,p) NR.

In this case, 0 € 0 (L,,) and there exists jo > no = n4 such that A j,(co) = 0.
There exist8; € (0, §planda, b € {£1} suchthatbothai,, and bA j, are decreasing
in [cg, co + 31]

Since ¢n .o 18 linearly independent of »2
such that

.o’ there exists & € C*°([y1, y2])

2 ¢n o 2 ¢120 <o
= dy = d dy = —b. 5.13
y,s(u—c)z y=a an E(u—c)z y= (5.13)
Let u1 be a solution of (5.9) with ¢ = 51, and 7o > 0 be such that [cg, co + 811 N
Ran(u + tu;) = ¥ for v € [—70, 10]. Then by (5.13), we have ad; A, (co, 0) =
a?> > 0 and bo X jy(co,0) = —b% < 0. As in Case 2, we can take 7y > 0 and
81 > 0 smaller such that

adehn, (c,7) >0 and — (ka)?> ¢ 0(Ler), Vk > ks

for (¢, ) € [co, co + 1] X [—70, T0]- Note that A j,—1(co,0) < Ajy(co,0) =0 <
Ajo+1(co, 0). By the continuity of 9;A j,, A j,—1 and A jj+1, we can choose 79 > 0
and §; > 0 smaller such that

borAjy(c,7) <0 and Aj_1(c,7) <0 < Ajpy1(c, 1) (5.14)

for (c, T) € [co, co + 61] x [—710, T0]-

Asadc Ay, (co, 0) > Oandal,, (-, 0)isdecreasingin [co, co+81], we can choose
71 € (0, o] suchthata,, (co+381, T1) < ary,,(co, 0) = —a(k*oz)2 < aip,(co, T1).
Then there exists ¢z, € (co, co + 1) such that A, (¢, T1) = —(kea)?.
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Since b: A (c, T) < 0 and b j, (-, 0) is decreasing in [co, co + d1], we have
bAj,(c, T) < bAjy(c,0) < bhj,(co, 0) = 0, which, along with (5.14), gives that

bAjy+p(c, T) > 0> brjy(c, ), (c,T) € (co,co~+ 1] x (0, 1ol

Since (c¢,, 71) € (co, co + 811 x (0, 1o, we have 0 ¢ 0(5611,11)-

Now, we can construct a desired traveling wave solution (ug (x —cgt, y), ve (x —
cet, y)) by first perturbing the shear flow (u, 0) to (u + tju1, 0) and then applying
Case 1 or Case 2 to (# + tyuy, 0) asin (5.11)—(5.12).

To prove Corollary 2.6, we only need to modify the spaces B and C from H*
and H? to H**! and H*~! in the proof of Lemma 2.5. We also use the fact that
fc € C®(I.), fe € Cg°(R) and u; € C*([y1, y2]) due to the assumption that
u € C*([y1, y2)-

Conversely, for a set of traveling wave solutions near («, 0) with traveling speeds
converging to cp, we show that cp is an isolated real eigenvalue besides u i, and
Umax, Which is given in Lemma 2.7.

Proof of Lemma 2.7. It suffices to show that if co ¢ {tmax, Umin}, then co €
UkZl (Gd(Rkot,ﬂ) N R) and (2.2) holds.

Note that (ig, vs)

solves

(g — )y we + Vedyw, + P, = 0. (5.15)
Moreover,
los — @oll 2pyy S Cllute, ve) — @, )l 3y S Ce.
By taking g9 > 0 smaller,
e — cel 2 |u —cel —u —ue| = C™ (5.16)

fore € (0,0) and y € [y1, y2]. Note that 2 |[vell12(pyy = IVVellL2(pyy- By
Sobolev embedding, we have that

||Us||L4(DT) < C||Ua||H1(DT) S C”VUS”LZ(DT)s (5.17)
19y (@e — @)l 14(pyy = CllOy(@e — @0l g1 (pyy = Cllwe — wollp2(p,y = Ce.
(5.18)
Since dywe = 9y (dxve — dyute) = Ave, we get by (5.15) that
3y (wg — w —u”
A, 4 D@z B (5.19)
Ug — Cg Ug — Ce

where v, = v8/||v8||L2(DT)~ By (5.16), we have ’% < Cfory € [y, y2] and

1AVl L2(pyy S CllOy(@e — @) L4y 1Vell L4(pyy + CllVell 2Dy

o +C

<Cellfell i1 (py) + Clell 2y < Celliellyfay,
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her d (5.17)~(5.18) and | i | < Cliellyla g 156 50
where we use . —(J. a Ve Hl(Df) = Ve Hz(DT) j)g LZ(DT)'
Ve(x,yi) = 0 fori = 1,2, we have [[ve| g2(p,,) < CllAvellz2(pyy- Thus,
196l 2(pyy = € and

Since

I10e lcoo, 71 1y1,ya1) = Cllvellg2(ppy = C, (5.20)
10xell L4y + 10y Vel L4ppy = Cllvell g2y = C- (5.21)
Up to a subsequence, there exists 79 € H?(D7) such that 7, — 7o in H>(Dy),
¥ — Do in HY (D7) and Vol 2(p,) = 1. Taking derivative in (5.19) with respect

to x and y, we get by (5.18) and (5.20)—(5.21) that

||8xAﬁe||L2(DT)

dy — dy —
<o, ( y (e CUO)) b + y (we — o) 3,7
Uy — Cg Ug — Cg
—u"\ —u
~|—3X</3 )vs—i— P Oy Vg
Ug — Ce Ug — Ce LZ(DT)

=C (”axy(a)a - 600)||L2(DT) + 119y (we — C<)O)||L2(DT)) ”55||C°([0,T]><[y1,yz])+
Cll9y(@e — @) | L4(pyy 19x Vel L2 (pyy + CllVell L2(pyy + ClOxVellL2(p,y = C,

and

10y AVell2(pyy

0y (we — w 0y (we — w
é ay( )( & 0))5s+ }( e 0)8)'{)5
Ug — Cg Ug — C¢
—u"\ —u
+8y</g >v5+ P 0y Vg
Ug — Cg Ug — Cg ~ L2(Dr)

<c (192 @. = @0)ll 20y + 135 @ = @0) 200, ) 18 leoo, ity pon+
Cllay(we — @)l L4(ppy 19y Vel L4(pyy + CllVell L2pyy + ClOy Vel 2pyy = C,
which implies that || 0 || ;73(p,) < C and thus, 5, —> ¥ in H*(Dr). For any ¢ €

H'(D7) with periodic boundary condition in x and Dirichlet boundary condition
in y, we have that

T _ _
/ f” (—Vﬁg v Wm0, B 56¢> dydy =0. (5.22)
0 Jy

Ug & & e

Since [|Ve |l 4 py) < Cllvell g1 (pyy < C, we have by (5.16) and (5.18) that

T2 3 (we — wp)
y (We ~
- —¥.¢dydx
~/() /;71 Ug — Cg ‘

§C||8y(a)€ - “)O)HL“(DT)||178||L4(DT)”¢||L2(DT) = C<9||¢||L2(DT) —> 0 ase > 0",

T r» .
gch/ 10, (e — w0)]]5e 11| dy dx
Y1
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Noting that #, —> ¥ in H>(D7) and sending ¢ — 07 in (5.22), we have that

T pry»n ,3 —u”
/ [ <—v50 Vo + ﬁo¢) dydx = 0.
0 Y1 u—cqo

Thus, 7 € H2(D7) is a weak solution of

"
Goyii = — A — P 5y = 0. (5.23)

u—co
Since ¢p ¢ Ran(u), we have ’Z :'Z(;/ < Cfory € [y1, y2]. Then by elliptic regularity

theory, we have that v is a classical solution of (5.23). Thus, ¢, := Vo € ker(Ge,).
Since —A¢ = 0 has no nontrivial solutions satisfying the boundary conditions, we
have |co| < o0.

Since ¢y = D pez g’oﬁco,k(y)e"k"”‘ # 0 solves (5.23), there exists kg € Z such
that @, x, # 0 solves

"

- B ~
_@/(Lk() + (koa)zgoco,ko - Deo kg = O,

u—co
with Qe ko (V1) = @ep.ko (v2) = 0. Now we show that ko # 0. Let Py f(x,y) =
%fOT f(x,y)dxfor f € L2(Dr). Then Py is abounded linear operator on L*(D7).
Since U = ve/llvell2(py = —0xVe/llvellL2(pyy» We have Pove = Pyve = 0.
Taking limit as ¢ — 0T, we have Powe, = Polo = 0 and thus, @.0(y) =
Po@c,(x, y) = 0, which implies that kg # 0. Thus, cp € Uk#)(od (Ria,p) NR) =

Uk>1(04(Ria,p) NR), where we used the fact that 04 (Ria,p) = 04 (R—ka,p)-
‘We give two remarks to Lemma 2.7: the first is to study the Fourier expansion of
the limit function ¢, and the second is to show that the asymptotic behavior of L?
normalized vertical velocities v, might be complicated if c; — ¢¢ € {#min, Umax }-
O

Remark 5.1. The function ¢., in Lemma 2.7 is a superposition of finite normal
modes. In fact, since 0 # @c, (X, ¥) = Y pez Peo.k (e € ker (Gg,) and
inf o (L) > —oo, we have n, := #({k € Z : —(ka)? € o(Ley))) € [1,00).
Let {k € Z : —(ka)? € 0 (L)} = {kn : 1 < n < ny,}. Then

Peo (X, ¥) = D0 Deo ke (y)e'*n** and @, , is an eigenfunction of — (k,a)? €
o (Ley)-

Remark 5.2. Consider a flow u satisfying (H1), {#' = 0} N {4 = umin} # 9,
o> 0and B > %fq. By Theorem 2.9 (3), there exists {cn};’f’zl =04(Rep) NR
such that ¢, — u_; . cu1 > ¢, and a? = —iu(cy) forn > 1. By Lemma 2.5,
we can choose ¢, — 0 and nearby traveling wave solutions u,, (x — Cg, t, y) =
(e, (x = co,t, ) s Ve, (x — cg,t, y)) with period 277 /o in x such that || (g, , ve,) —
(u, Ol g3 (pyy < én, |ce, — cnl — 0T, llve, ll22(p,y # O and there exists ¢, €
ker(Ge,) such that || Vg, — P, } co is small enough for large n, where Vg, =
Ve, /1Ve, | L2(pyy- Then cg, — . A possible case is that there exists a sub-
sequence {nj};?ozl such that ¢,; ¢ Uk=1(04(Ria,p) NR) for j = 1. In this case,
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e, (x,y) = WQSCHJ_ (y) sin(ax) since it is odd in x (see the construction in
Lemma 2.5), where qb% is a L? normalized eigenfunction of Anj(en;) = —a? e
U(ﬁcn_,- ). Since q&cnj has n; — 1 sign-changed zeros in (y1, y2), f;gnj oscillates fre-
quently in the y-direction for large j.

The minimal period of any nearby traveling wave solution in x can be deter-
mined under the following condition:

Lemma 5.3. Under the assumption of Lemma 2.7, if

co € 04(Rap) "R and co ¢ | J(0a(Reap) NR). (5.24)
k=2

then uy (x — c¢t, y) has minimal period 2/« in x for ¢ > 0 small enough.

Proof. Let the minimal horizontal period of the traveling wave solution
ue (x —cet,y) be T/n, for & € (0,&9), where n, € Z* and T = 2n/a. Fix
e € (0,&0) and let v, = vg/||v5||LzFDT). Since v, (x, y‘) = Dg(x + T/ng,y) for
x € Randy € [y, yz],wehavefoT eV (x, y)dx = eloT/ns fOT e v (x, y) dx.
Thus, if n, > 1, then ¢/®T/7% = ¢27i/7e £ ] and fOT e P (x, y)dx = 0 for
y € [y1, y2l.

Suppose that there exists a sequence {&; : k = 1} C (0, &) such that g —
0% and Ug, (x — Cgit, y) has minimal period 7/n., < T in x for k = 1. Then
fOT e“”f)ek (x,y)dx =0fork 2 1 and y € [y1, y2]. By Lemma 2.7, 0, —> ¢,
in H2 (D7), where @, € ker(Ge,) and G, is defined in (2.3). Then

T T
/(; €' pey(x, y)dx = kll)rrgo/(; €' g (x, y)dx =0 (5.25)

fory € [Y]v y21. By (5.24) and @0,0 = 0, we have ¢ (x,y) = aco,l()’)emx +
©co.1(y)e "% where @, 1 # 0 is an eigenfunction of —a? e 0 (L¢,)- On the other
hand, we have that

T
/0 €' ey (x, y)dx = T ey 1(y) #0,

which contradicts (5.25). O

Remark 5.4. (1) Let ¢9 € (Jy>(0a(Ria,p) N R) and k be defined in (5.4). It
follows from Lemma 5.3 that under the assumption of Lemma2.7,ifu, (x — c¢t, y)
has period 27 / (ko) in x for € € (0, £9), then the period 27 / (ko) is minimal for
& > 0 small enough.

(2) In Proposition 7 of [27], it should be corrected that the minimal period
of constructed traveling wave solutions in x might be less than 27 /g, since it is
possible that (cg, kag, B, ¢x) is a non-resonant neutral mode for some k = 2 and
¢k € Hy N H?(y1, y2).

Consequently, the minimal period of constructed traveling wave solutions near
the sinus profile in Theorem 7 (i) of [27] might be less than 27 /«, see Example



522 ZHIWU LIN, DONGYI WEI, ZHIFEI ZHANG & HAO ZHU

7.1 for systematic study of traveling wave families near the sinus profile. If (5.24)
holds true for @ = «, then the minimal period of these traveling wave solutions in
Proposition 7 and Theorem 7 (i) of [27] is 27 /ap.

6. The number of traveling wave families near a shear flow

In this section, we prove the main theorems-Theorems 2.2 and 1.2 . The proof is
based on the study on the number of isolated real eigenvalues of the linearized Euler
operator in Sections 3-4, and correspondence between a traveling wave family near
the shear flow and an isolated real eigenvalue in Section 5. We only prove Theorem
2.2, since the other is similar.

Proof of Theorem 2.2. Let the number of traveling wave families near (u, 0) be
denoted by 6. By Theorem 2.1, 6 = #( ;> (04(Rka,p) NR)). Here o = 27/ T.

Proof of (1): Since {u’ = 0} N {u = umin} # @, we have 0 < k. < oo. First,
let {u = umin} N (y1, y2) # ¥ and we divide the discussion into two cases.

Case 1a. B € (0, min{gx4, pui}).

By Corollary 2.10 (1),

inf ri(c) > —o0. 6.1)

c€(—00,Umin)

Thus, there exists 1 < kg < oo such that

U (0a(Reap) NR) = 0. (6.2)
k>ko

By Theorem 2.11 (1), we have that

ko

0 =1(|J(0a(Raap) NR)) £ Y #(04(Reap) NR) = Y #(04(Riap) NR) < 00.

k=1 k=1 k=1
(6.3)

Case 1b. B € (min{3k. 114}, 00).
By Corollary 2.10 (1) for B € (min{gk4, 4}, g«+] and Theorem 2.9 (3) for
B e (%K+, o0), we have that

lim Aq(c) = —o0. (6.4)

U
Thus, there exists ¢x € 04(Rie,g) "R suchthat ¢y < cxq1 < umin for every k > 1,
and ¢y — u_, . Then 6 = ﬁ(ngl(Gd(Rka,ﬂ) NR)) = co.

Next, let {# = umin} N (y1, y2) = ¥ and we separate the proof into two cases.

Case 2a. f € (0, 2x4).

By Corollary 2.10 (3), we obtain (6.1). Thus, there exists 1 < kg < oo such
that (6.2) holds. By Theorem 2.11 (1), we obtain (6.3).

Case 2b. B € (34, 00).
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By Theorem 2.9 (3), we have that

lim A,(c) =—o00, n=1. (6.5)

C—> Ui

Using (6.5) for n = 1 and the fact that 0 = #(| ;> (0a(Rka,g) N R)), it can be
proved that & = oo by a similar way as in Case 1b. This completes the proof of (1).
The proof of (2) is similar.

Proofof (3): Since {u' = 0}N{u = umin} = ¥, we have {u = umin}N(y1, y2) =
¢ and k. = oo. Fix B8 € (0, 00). By Corollary 2.10 (3), we obtain (6.1), and thus,
there exists 1 < ko < oo such that (6.2) holds. By Theorem 2.12 (1), we obtain
(6.3). This completes the proof of (3). The proof of (4) is similar. O

Remark 6.1. In Cases 15 and 2b of the above proof, the infinitely many traveling
wave families are produced by the asymptotic behavior of the first eigenvalue A1 (c)
of L, see (6.4). There could be many other traveling wave families in general, which
are produced by the asymptotic behavior of A, (c) for n = 2, see (6.5). In fact, if
B € (%/q_, 00), for fixed n 2 2, there exists ¢k, € 04(Ria,p) N R such that
An(ckn) = —(ka)? forevery k > 1.If etk = 1,n 22} \{ck 1 k = 1} # 0,
then a simple application of Theorem 2.1 yields other traveling wave families.

7. Application to the sinus profile

In this section, we apply our main results to the sinus profile. Moreover, we
calculate the explicit number of isolated real eigenvalues of R, g and traveling
wave families near sinus profile.

Example 7.1. The sinus profile is u(y) = m, y € [—1, 1]. We determine

ﬁ(ad (Ra,p)N R) and the number of traveling wave families for the sinus profile
on the (a, B)’s region. For the sinus profile, we have umin = 0, umax = 1, {4’ =
0} N {u = umin} = {1}, (' = 0} N {4 = tmax} = (0}, ks = u”(£1) = 37* and
k_ =u"(0) = —%7{2. We divide the plane into nine parts as follows:

In Fig. 3,

_ 9 5
I =l pBla>0p <o)

/ 3 9 1 11
Il ={(e, )0 <a<m/—r2—r+ 7 ——16712 <B< —znz,r € [Z, E)}’
3 9 1 11
111 = {(a, >a-r2—r4+ >, ——a?< s -, U
{(a, B)loe 2 7y —r r+4 T <B< i re[4 2)}

(e B0 < & < ?n, g = —%nz},

1V = {(a, B)I0 < <\/1T,_%n2 < B < B,

3-1 1
V ={(a,B)rv1—rt <a < /Ag, f4 < B< znz},
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(63
I VIII
v :
IIr IxX
VII
v : :
II VI
7%772 7§7T2 B 0 @7\'2 %ﬂj %7\'2 ﬂ
Fig. 3. Nine parts of the plane
31 9 11
VI={ B0 Jorier+ s ot <BS —ntrel-, ok
{(, B0 <@ <7y —r r+42n <,3_167r r€[4 2)}
3-1
VII ={(a,B)0 <a < /Ag,0<B< */_Tn’*’}u
3-1 1 1 V3
{(e, B)I0 < o« < /1 — 12, anz <B< Enz,r € (5, %)}u
3 1 9 11
(@ Blmyf=r2—r+ 7 Sa<m 1—r2,5n2§ﬂ < R”z’r ly 50
9
VII = {(a, B)la>0,p> Enz},
V3 1
IX ={(@ p)la 2 -7, p = =37} U{(@ Bl > /Ay,

—~ %nz <p< %nz} U{(a, B)l

a=/Ag,0<p= ﬁ4_1n2}U{<a,ﬁ>|azwl—ﬂ,%zﬁgﬂ

11
G J—
=167 <l gl
where Ag = sup ¢, 1 max{—A(c), 0}, r = 4—1‘ + ,/% + % for —%nz <B <0,
r = }‘ + ,/19—6 — % for0 < B < %n2, and B is given by Theorem 6 of [27].
Moreover, mg = 0 and max{Mg, 0} = Ag for B € [—372,0) U (0, %], and
mg =1and Mg = (= —r+ %)n2 for B € [—%nz, —%nz).
The explicit number f (od (Ra,p) N R) is given as follows:
(o, B) € IX = £ (0a(Ra,p) NR) = 0;
(a,B) € 11 UVII = #(04(Ra,p) NR) = 1;
(@,B) e IVUVUVI = 1(04(Rep) NR) = 2; (7.1)
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(a, B) € Il = #(04(Ra,p) NR) = 3;
(a, ) € IUVIII => i (04(Ra,p) NR) =

In addition, ti(ad(Ra ) mR) =1if (@, p) € T := {(&, Pl = /Ap, — 7% <

,3<,310r Ln2 <,8<—} Now we fix o =2 /T.
The number (denoted by 0) of traveling wave families near the sinus profile is
given by

(0, ) eI X = 6 =0; (7.2)
(a, B) e VII = 1 <0 < o0

(0, ) e IVUVUVI =2 <0 < o0
2
(@, f) € IUITUIITUVIII, ,375—%:>9=oo

In addition, 6 = #(04(Re,p) NR) = 1if (a, B) € I'. Moreover,

(@.B) € IITUIVUVUVII=60=) #(04(Reap) NR). (7.3)
k=1

If(a, ) e ITTUIVUVUVIIUT, then
co € 04(Ra,p) "R = u, (x — c¢t, y) has minimal period 27 /e inx  (7.4)

fore > Osmallenough, where u, (x — c.t, y) satisfies the assumption of Lemma2.7.

To prove (7.1)—(7.4), we need the following asymptotic behavior, signatures
and monotonicity of A,,.

(1) lime—s 00 Ay (c) = —n > 0 for B € R;

(2)lim,_, ¢- A, (c) = —ooand A, is decreasing on (—oo, 0) for 8 € (%nZ, 00);

(3) lim,_, - An(c) = A, (0), A1 (0) < A2(0) <0, A3(0) > 0 and A, is decreas-
ing on (—o0, 0) for B € [%nz, %7‘[2];

@) lim._,o- Xp(c) = A,(0), Al(O) < 0, 2 > 0 on (—o0, 0], there exist

¢ < ¢y € (—00,0) such that A1(c¢) = Ai(c;) = 0 for ¢ € (—o0, c1), Ap is
decreasing on (cy, ¢2), A1(c2) = infee(—o0,0) A1(c) and Ay is increasing on (c3, 0)
for g € (B=1n2, 1x2);

) lim._,g- Ay(c) = 2,(0), 21(0) < 0, A2 > 0 on (—o0, 0], there exists
¢1 € (—o0,0)suchthat A1(c) = Ai(c1) = Oforc € (—o0, ¢1) and A is decreasing
on (c1,0) for B € (0, L=L72];

(6) A1 = 0 on (1, 00) for B € [B, 0);

(7 limg_, 1+ Ap(c) = A (1), (1) > 0, A > 0 on (1, 00), there exist ¢ <
¢y < c3 € (1,00)suchthat A1(c) = Ai(c1) = Aq(c3) = Oforc € (1, ¢1)U(c3, 00),
A1 is decreasing on (c1, €2), A (c2) = infie(1,00) A1(c) and A; is increasing on
(c2,c3) for B € (— 72, B);

®) lim,._, 1+ Ay (c) = Ap(D), A1(1) < 0, X2(1) = 0 and A, is increasing on
(1, 00) for g = —%nz;

9) limg 1+ A1 (c) = —00, lime, 1+ Apq1(c) = Ap(1), A1(1) = A2(1) < O,

A3(1) > 0 and A, is increasing on (1, oo) for B € [—%nz, —%nz);



526 ZHIWU LIN, DONGYI WEI, ZHIFEI ZHANG & HAO ZHU
(10) lim,_, 1+ A, (c) = —ooand A, isincreasing on (1, 00) for 8 € (—o0, —f72),
where n > 1, 4,(0) = ((r + sy’ 1) 72 for B € (0, 272, Au(1) =

(r—14727)° - 1) 72 for p e [—&n2, —ix?) U (=1x2,0), and A, (1) =
(% — D for B = —%nz by Proposition 1 in [27].

Assertions (1)—(10) provide pictures of the negative eigenvalues of £, for fixed
B. Assume that (1)—(10) are true. Note that 04 (Rq,) N (1,00) =@ if @ € R and
B >0,and 04(Re,p) N (—00,0) =P if e € Rand B < 0. Then we claim that

CRE

(04 (Ria.p) NR) N (04 (R ja,p) NR) =4, (7.5)
0d(Riap) "R = {c € R\ [0, 1]]A1(0) = —(ka)?} (7.6)

fork,j e Zt,k # jand (o, ) € IITUIV UV UVIIUT. In fact, (7.6)
implies (7.5). If (a, B) € 111, then by (8)—(9) we have 1y > Ax(1) = —a? on
(1, 00), which gives (7.6). If (a, ) € IV UT with B < 0, then by (7) we have
A2 > 0on (1, co) and thus, £, has at most one negative eigenvalue for ¢ € (1, 00),
which gives (7.6). Similarly, we can prove (7.6) for (¢, 8) € VU VII UT with
0 < B < Z by #)-(5). If (@, B) € VII with = %, then by (3) we have
A2 > A2(0) = —a? on (—o0, 0), which gives (7.6).

By applying Theorem 2.1, we get (7.1)—(7.3). (7.4) is a direct consequence of
Lemma 5.3. Here, (7.5) is used in the proof of (7.3)—(7.4).

Using (7.3) we can evaluate 6 for (o, ) & VI as follow:

1 2 9 2
ﬁe(—oo,—zﬂ )U(1—67T ,+OO):>9:C>07

PR P Y (7.7)
2 2a

A A
L,

)

1
—§n2<,3<,81:>0=
B=B=0=06=0;
31 JA
0<ﬂ§“/_Tn2:>9=(—’3 -

1-1
o
ﬁ_1n2<,3<1712:>0=p/ﬂj+|-&1
4 2 o o
_Ln—.l—rZJ_]
o ;

3 1 9 V1—r?
w4 s Sa cntSpE Tt == 1.
\ 4 2 16 o

The case (o, ) € VI is more complicated. By (3), we have 6 = (A U A,) with
Ai = {c < 0|Ai(¢) = —(ka)?, k € Z}. Then by (3) and the expression of A;(0),

T —r<—r i
i=1,2,wehave#(Ay) = [T=27 1 1(4,) = [—Vzﬂl—l,andﬁ(Al) <
6 < 8(A) + B(Ay). ie. [TV 1 < < Yy (TG
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fact, 0 = (A1) + 2(A2) — (A1 N A»), but it seems difficult to give an explicit
formulaif A N Ay # 0.

Now, we prove (1)—(10). (1) and (4)—(7) are a summary of spectral results in
Section 4 of [27]. Monotonicity of A, for 8 € (—o0, —%n2] U [%7'[2, 00) is due
to Corollary 1 in [27]. Asymptotic behavior of X, in (2) and (10) is obtained by
Corollary 2.10. Signatures of A, in (3) and (8)—(9) are due to Proposition 1 in [27]
and simple computation.

The rest is to prove the asymptotic behavior of A, in (3) and (8)—(9). First, we
consider 8 = :t%nz. We only prove that lim,._,o- A, (c¢) = 1,(0) for 8 = %nz and

ngl.Notethatﬁ‘T“znzandH%_ﬂ—_u 2

u
c<0.Let0O <é < 1. Then

C

u—c

= for
Li(-1,1)

LY(-1,1)

c

2 cos(% (1-8)) —c 1 -
= — ———=dz S Cs/—c— 0
L1(1-8.1) 77/0 2—c1=22

u-—=c

4
u—c

as ¢ — 07. Similarly, — 0. Clearly,

L1(=1,-1+9) L1 (=1+8,1-9)

Then Lt — 0.Itfollows from Theorem 2.1 in [21] thatlim,._, - A, (c) =

An(0) forn = 1.

We then consider § € (%nz, %nz). We use the eigenfunctions of A, (8, 0) in
Proposition 1 (iii) of [27]. Here, we rewrite A, (8, ¢) = A,(c) to indicate its depen-
dence on g if necessary. There exist ¢, (y) = ¢,§ﬂ’0) (y) = cos?” (FY) Pt (sin(%y)),
n 2 1, satisfying

<
u—c

£
u—c

g =P s on (—=1,1), Gu(x]) = 0.

u

Here, 1,(8,0) = ((r + %)2 - 1) 7 r = % + % — % and P,_i(-) is a

polynomial with order n — 1. Moreover, ¢, € H(}(—l, 1) is real-valued, and we
normalize it such that ||¢, |2y 1) = 1. Then we have, for m, n = 1, that

1 . 1 "
_ _Jlifn=m, ' u’ — g _

/;] Gnpm dy = Spun = {Olfl’l £m, /;] <¢n¢m + " ¢n¢m> dy = 2, (0)8un.
Note that ¢, has n — 1 zeros in (—1, 1), and we denote Z,, := {y € (—1,1) :
¢n(y) = 0} = {an.1,---,ann—1}. For any n-dimensional subspace V = span
{1, -+, ¥n} in Hol(—l, 1), there exists 0 # (&1,---,&,) € R” such that
Eiviani)+ - +&Yn(an) =0,i =1,--- ,n—1.Definey =& Y1+ +E Y.
Then Y (an,;) = 0,i =1,---,n —1,ie. ¥lz, = 0. We normalize ¥ such that
¥l 2—1,1) = 1. Since ¢ € H(} (=1, 1), we have ¢ (£1) = 0. Similar to (3.2),
we have |/ (y)|?¢,(¥)/dn(y) — Oasy — a,; ory — —1+ ory — 17, where
1 £i < n — 1. Integration by parts gives
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¢/

2 ¢//
= 112 4 229 )
Gnllr2-1,1) /—1( ®n
1 -, ﬂ_ "o 5 .
=f1 (w 'Z‘T“’" — dn(O) || ) dy.
If c <0, thenusing 8 —u” > 0andu — ¢ > 0 for y € [—1, 1], we have that
1 "
/ <|w|2 - |1/f|2) dy = /l(wz—ﬂT"W) dy

z/ A (01> dy = 1,(0).

AR

This, along with (2.7), yields that inf .e(—o0,0) An (¢) = 1, (0). Now, we consider the
upper bound. Let V,, = span{¢y, --- , ¢,}. Then V,, C Hé(—l, 1). By (2.7), there
existhi . € Ri=1,---,n,with Y7 |b;|*> = I suchthat . = 37" b; @i €
V,, with |||, = 1, and

hn(€) S sup / (|¢| + ’3|¢|>
Igll, 2=1.peV, J—1
1 " _
:/1 (|¢g|2+” - ’3|goc|2) dy
—Zum/ (|¢>| + ’3|¢z|)
+ Y 2b,~,cb,~,c/ <¢¢ 4 ﬁ¢,¢,>

1Si<j<n

élréll_agn/ (chl + ﬁ|¢z|>
(56 o

1 /"
— max P24l mLAPNE: d
@énf] <|¢,| +Ligp) ay

1 " _
+ 3 L <¢;¢;+” - ’3¢i¢,-) dy'

1Si<j<n
= max 4;(0)+ »  0=2,(0), as ¢ >0~
1Si<n
1<i<j<n
Combining the upper and lower bounds, we have lim._, - A,(c) = X1,(0) for

B e (3t m?).
Now, we consider f = %nz. By Corollary 1 (i) in [27], we have for fixed
c <0, k(B.0) = M(B 0)if B < B. As Xy(B',0) 2 (B, ) ifc < <0
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(see Corollary 1 (iv) in [27]) and lim._,o- A, (8, ¢) = A, (B’, 0), we have for fixed
B e G2 Zah), (B, ¢) = 1y (B, 0) if ¢ < 0. Then

lim An(B, ¢) < liminf lim An(8',¢) = liminf A, (8, 0) = Ax(B, 0),
c—0— B'—B~ c—>0~ B —B~

lim A (B,¢) = lim lim A, (B, c) = lim A (B, 0) = An(B, 0).
c—0~ c—>0" /=B~ B—p~

Here, we used the left continuity of 1, (-, 0) at § = 16” .Thus,lim._,o- 2,(B8,¢) =
An(B,0). ,

Next, we consider 8 € (— 167r ;nz) By Proposition 1 (iv) in [27], there
exists ¢, (y) = qb(ﬁ 1)(y) | sin(5 ¥ P, (cos(57y)) if n is odd; there exists

6u(») = o7V () = sign(y) |sm<7y>|2’Pn_1<cos<7y)> if n is even; and, for
nz=l,

IB_u//
u

— g = S = 2a(Dge on (<L D\ (O} du(ED =0,

Here, i (B, 1) = ((r = 3+ 131)" = 1) 72and r = § + /35 + 5.

Moreover, ¢, € Hj(—1,1) is real-valued and we normalize it such that
@nllz2(—1.1) = 1. Then for m, n >1,

1 1 u// _ ﬂ
/]¢n¢mdy = Smn, /1 <¢;z¢;n + u—1 ¢n¢m> dy = Xy (1)n-

If n = 1 is odd, then ¢, has n zeros in (—1,1),and 0 € Z, = {y € (—1,1) :
¢on(y) = 0} = {an.1,---,ann}. For any (n + 1)-dimensional subspace V =
span{yr1, -+ , Y41} in H(}(—l 1), there exists 0 # (51, oo &) € R such

thatSle(anl)‘i' +‘§n+11[/n+l(anl) =0,i=1,---,n. Deﬁnelﬁ —511”14-

*+&n41¥n+1. Then 1/f(a,, i)=0,i=1,---,n,ie. 1//|Zn = 0. We normalize ¥

suchthat||1p||Lz( Ly =1 S1ncelﬁ € H ( 1, 1) wehavelﬁ(:lzl) = 0. Integration
1

by parts gives that
_ 2 1 - "o )
V- :f (197 + 2200 ay
H ®n L2(—1,1) -1 ®n

=/ <|w| puw |w| — n<1>|1/7|2) dy

If ¢ > 1, thenusing B —u” <O0andu — ¢ < Ofory € [—1, 1], we have

/_(nmz P W) dy 2 /_(WP P W)dy

1
> /lxnmwﬂzdy = Jn(1).

This, along with (2.7), yields that inf.c(1, 400) Ant1(c) = A, (1). If n = 1 is even,
then Ay 11(c) 2 An(c) Z An—1(1) = X, (1). Thus, infec(1 400y Any1(c) = Au(1) s
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always true. Now, we consider the upper bound. Let Vn+1 = span{¢>o, A1, Dnl,
here ¢o = n|[—1,17 is defined in (3.9), and ¢y, - - - , @, are L? normalized eigen-
functions. Then V41 C H (—1,1). By (2.7), for ¢ > 1, there exists ¢, € Vy+1
with ”"OC”H =1, and

Ang1(c) £ sup / 1 (|¢ Py b |¢|2> dy

gl 2=1,¢€Vyt1

1 "
u —p
-/ <I<p£|2+ |¢c|2) dy.

—1 u—=c
Since V41 C HO1 (=1, 1) is finite dimensional, there exist ¢1 € V,41 and ¢;;; —
1" such that ¢, — @i in Hj(=1,1). Then [lg1[|3, = 1, f}l . [*dy —

1

I |<pi|2dy and

! , u' B 2
Any1(cm) é/ (Ifﬂéml +to— 9c,, | ) dy.
71 -

m

Sinceu” — B >0andu —c < O0fory € [—1,1] and ¢ > 1, by Fatou’s Lemma,
we have

1 7 1 "
. u . u
hmsup/ ﬂl(pcm| dy < / lim sup C'Bl%ml dy

m—>00 1 u— 1 m—oo U —

1 7
u'—p
-/ g1 dy.
-1 u-—- 1
In particular, if ¢1(0) # 0O, then

1 7 1 7
u’ —p . u"—p
/ lp1|*dy = —oc0, lim sup/ |@c,, |* dy
pu—1 _ju—cp

m— 00 1u
= —o00, limsupi,yi(cy) = —o0.
m—»00
If§0] (0) = 07 then (pl € Span{¢] s Tty ¢l’l} and

1
- B
—loil” ) d

1

. u

lim sup Ay, 41 (i) §/ <|‘P{|2+ »
—1

m—0oQ

Asllgill3, =1, there exist b; € R,i =1, -+, n, with }_i'_ [b;|* = 1 such that
o1 =Y i bi¢i € V,p1 and

! ’ u’ — :B . ﬂ
/_1 <|¢1|2+ — |¢1|2> dy =§|bi|2/ <|¢ I+ |¢,|2>

= Z i *2i (1)

max A; (1) = A, (1).
<

1Si<n

H/\
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Therefore, if ¢1(0) = 0, then limsupA,1(c) < An(1); if @1(0) # 0, this
m— 00
is clearly true since the limit is —oo in this case. By monotonicity of A,, we

have 11rn An+1(¢) £ An(1). Combining the upper and lower bounds, we have

lim x,,+1(c) = An(1) for B € (—xm?, —37).
c—>1t

For 8 = _ET[ the limits l1m Ant1(c) = Ay (1), n 2 1, can be proved
similarly as in the case f = E” . Flnally, the limit lim,_, ;+ A;(c) = —oo for

Bel— 167[ %712) follows from Theorem 2.9 (2).
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