2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid) | 978-1-6654-9956-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/CCGRID54584.2022.00061

2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

Automating CPU Dynamic Thermal Control for
High Performance Computing

Ghazanfar Ali*, Lowell Wofford®, Christopher Turner*, and Yong Chen*

* Texas Tech University, Lubbock, TX
Email: {ghazanfar.ali, christopher.turner, yong.chen} @ttu.edu

t Ultrascale Systems Research Center, Los Alamos National Laboratory, Los Alamos, NM
Email:lowell @lanl.gov

Abstract—In a production high-performance computing (HPC)
data center, numerous factors, including workload compute in-
tensity, cooling infrastructure failure, and the use of economized
cooling can substantially increase the CPU temperature. CPU
thermal design-related studies have shown that slight variances in
the operational temperature can significantly impact the lifetime,
durability, and performance of a CPU. Therefore, it is critical
to monitor and control the operating temperature of the CPU.
In this study, we design an automated and continuous CPU
thermal monitoring and control methodology to maintain and
control a healthy CPU thermal state. This research utilizes
the Redfish protocol to monitor the CPU temperature and
dynamic voltage frequency scaling to control the temperature.
We developed a reference implementation and evaluated our
methodology using a cluster of 150 Raspberry Pi3 nodes. We
performed extensive CPU thermal analyses in different scenarios.
We analyzed how quickly a CPU can attain the maximum
temperature under 100% load at room temperature. Based on
our experiments, the temperature of a CPU with 100% load
can increase to ~72°C (161.6°F) and ~86°C (186.8°F) with the
lowest and highest CPU frequency configurations, respectively.
We analyzed the impact of applying thermal control at eight
temperature configurations on the thermal and frequency scaling
behavior of a CPU. We observed that applying thermal control at
lower temperature configurations (e.g., 70°C (158°F)) is a better
configuration for healing an overheated CPU. As a result of the
proposed model, the CPU operating at normal temperature will
consume comparatively less energy, deliver higher performance,
and augment its durability.

Index Terms—CPU Temperature, Automation, HPC, Data
Center, Kraken, Dynamic Voltage and Frequency Scaling, Pow-
ersave, Performance, Dynamic Thermal Control, Redfish, DVFS,
Kraken, Computing Cluster Dynamic Thermal Control, Dynamic
Voltage and Frequency Scaling, Data Center Automation, High
Performance Computing

I. INTRODUCTION

Thermal dissipation is one of the perennial issues in oper-
ating a high performance computing (HPC) data center. Since
the inception of large-scale computing systems, thermal con-
trol has been extensively studied from different perspectives,
including mechanical and software-based mechanisms [1].
Mechanical cooling solutions (e.g., air cooling, liquid cooling)
have effectively addressed the room- and rack-level thermal
control. However, these solutions are not sufficient to control
component-level temperature—particularly for CPUs.

As an after-effect of post-Moore’s Law and Pollack’s
rule [2], the current trend in microprocessor architecture is
increasingly based on multi-core and many-core paradigms to
deliver performance near exa-scale [3] [4]. Clearly, more cores
will draw more power, dramatically increasing the average
heat flux, i.e., the power dissipated per unit die area on
the CPU chip. Higher heat flux can increase the operating
temperature of the CPU significantly [4]. Existing studies, for
example [5], identified that CPU temperature management is
an increasingly daunting issue in large-scale HPC systems due
to inordinate power consumption.

In addition to the CPU thermal issues at the design level,
pertinent production level factors can directly or indirectly
increase the CPU’s operating temperature. These factors in-
clude transient changes in workloads, involvement of econ-
omizers [6], malfunctioning of the CPU fan, and heating,
ventilation, air-conditioning, and cooling (HVAC) failure.
Studies revealed that the CPU’s operating temperature has
a significant impact in a myriad of ways. First, the CPU’s
operating temperature can increase or decrease its lifespan
exponentially depending upon its operational temperature. For
example, with a difference of 10-15°C above or below CPU
normal operating temperature, a CPU can approximately halve
or double its lifespan, respectively [4]. Second, running the
CPU at lower operating temperature ranges enables the CPU to
deliver better performance due to minimal power leakage [4].
Third, the CPU running at higher temperature ranges can cause
additional power consumption [7]. The relationship between
power consumption and CPU temperature can be derived from
the study [4] as follows:

Power -0, =T; — Ty, (N

where T is the die temperature (in this study, CPU temper-
ature is synonymous with CPU die temperature), 7T, is the
ambient temperature, and Power is the power consumed by
the CPU. By keeping 7T}, and 6;, constant, Power is directly
proportional to 7. In other words, CPU on-chip temperature
can be controlled by reducing the power consumption.
Furthermore, the Arrhenius equation has been widely stud-
ied and applied to predict the influence of temperature on
chemical and biological processes [8]. The Arrhenius-based
equation has also been redesigned to estimate the impact

978-1-6654-9956-9/22/$31.00 ©2022 IEEE 514

DOI 10.1109/CCGrid54584.2022.00061

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

of steady-state temperature on the failure rate of electronic

devices [9], i.e.,
Edev
— 2
fun), &

)\z)\ref-exp<

where A\, A\rcf, Fgev, k, and T' represent failure rate, reference
failure rate, device activation energy, Boltzmann’s constant,
and steady-state absolute temperature, respectively. The in-
verse of A is called mean-time-to-failure (MTTF) [9], i.e.
1

MTTF = 3 3)
Equations 2 and 3 show that the device’s MTTF is inversely
proportional to the device operating temperature.

To maintain a healthy CPU temperature and heal an over-
heated CPU, in this research, we design and implement a
methodology to automate a CPU’s thermal control in HPC
systems. This methodology is implemented in a framework
called Kraken for automation and control functionalities and
leverages the CPU’s frequency scaling mechanisms to control
CPU thermal conditions. Overall, this study presents two
techniques in the automation of healing of the overheated
CPU. First, it monitors the CPU thermal state and the operating
CPU frequency simultaneously. Second, it mutates the CPU
frequency to heal the CPU temperature when it is overheated.
We have tested this methodology on real-world CPUs.

The core contributions of this work include: 1) design of a
methodology for monitoring and control of CPU thermal and
frequency states and its implementation in the Kraken frame-
work; 2) analysis of maximum attainable CPU temperatures
for CPU frequency scaling states; 3) analysis of the impact
of different temperature thresholds on CPU temperature and
frequency; and 4) CPU temperature healing strategies.

The rest of this paper is organized into the following
sections. Section II discusses the background and motivations
of this study. Section III describes the general design of
the automated healing of the overheated CPU. We discuss
the reference implementation in section IV and present the
results in section V. Section VI explains the related work, and
section VII concludes this study and discusses possible further
research.

II. BACKGROUND AND MOTIVATIONS

Numerous studies have investigated the data center ther-
mal design problem at different levels, including the chip
level [10], server level [11], chassis level [3], rack level [12],
and plenum level [3]. The objective of this study is to provide
thermal control of the CPU at the chip level. Real-world ex-
periences indicate that extraordinary compute-intensive work-
loads, cooling failures, or use of economizers can significantly
increase the CPU temperature from a normal to a critical level.
For example, at the High Performance Computing Center
(HPCC) of Texas Tech University (TTU) [13], we experienced
the following real-world scenarios where the proposed auto-
mated thermal control methodology can be applied.

100
90
807
701

60

50

Temperature (°C)

40
30 iy

20
Jun 01

My ||| i

Jun07 Jun13 Jun19 Jun25 JuloO1
Date 2019

Fig. 1: CPU temperature analysis of the node “compute-6-2”
over a month at the High Performance Computing Center of
Texas Tech University.

A. Effect of Extraordinary Compute-intensive Workloads

Fig. 1 shows the CPU temperature analysis of a typical
node in an HPC cluster. This time-series data was acquired
at the sampling rate of 60 seconds, over a period of one
month. As depicted in Fig. 1, the CPU temperature of the node
compute-6-2 in the cluster frequently jumped to the critical
temperature level. The observation indicated that continuous
compute-intensive workloads are the major reason behind
these fluctuations and driving CPU temperatures into the
critical range. As this CPU was frequently running at a critical
temperature over a long period of time, eventually the CPU
completely stopped functioning. This finding shows that the
average reflection plenum temperature is not always a reliable
metric. The critical thermal state of an individual CPU can
easily be ignored, which occurs due to extraordinary compute-
intensive workloads. Therefore, it is important to track and
control the CPU temperature at an individual node rather
than rely solely on the data center room temperature. The
techniques proposed in this research study effectively identify
and heal an overheated CPU.

B. Cooling Infrastructure Failure

The occurrence of a cooling infrastructure (e.g., computer
room air conditioning (CRAC) unit, chiller, CRAC power)
failure can cause a sudden increase in the CPU temperature
across the HPC cluster. This is another instance of a thermal
related incident occurring at TTU’s HPCC. At approximately
3:20 pm, March 21st, 2019, the chiller of the facility started
delivering water at a higher than expected temperature, which
led the CRAC units to blow insufficiently cooled air to
remove the heat generated by the CPUs. As a result, the
temperature of these CPUs started rising to higher than an
acceptable level. We observed that this had little impact on
CPU temperature of idle nodes; however, the CPUs with nodes
running jobs had a drastic temperature increase. Fig. 2 shows

515

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

O
o

A\

-~~~
O
&’
o 70 -
1=
3
© 60 ——Nodel
[——Node2
250 | Node3| |
o ——Node4
=

407

30 L L L L 1

14:30 14:45 15:00 15:15 15:30 15:45 16:00

Time Mar 21, 2019

Fig. 2: Sudden increase of CPU temperature of some HPC
nodes from the normal temperature to the critical level, due
to the malfunction of the chiller.

the increase of the CPU temperatures of some HPC nodes
from the normal to the critical level as a result of this incident.
The proposed techniques in this study will prevent a sudden
dramatic increase of the CPU temperature to the critical level
and augment the ride-through time, which is the duration of the
time before equipment starts going into thermal shutdown [6].

C. Usage of Economizers

Using economizers has a direct impact on improving power
usage effectiveness (PUE) [14] and total-power usage effec-
tiveness (TUE) [15]. Economized-based cooling uses up to
70% less energy [16]. However, due to economizers’ strong
dependency on unpredictable environmental conditions (e.g.,
seasonal variations including day and night temperature and
humidity), economizer-based cooling is a common cause of
thermal transients in HPC data centers. ASHRAE TC9.9 notes
that normally the data center’s ambient temperature fluctuates
about 2°C (3.6°F) from the normal operating temperature
in HVAC-cooled data centers [6]. By comparison, in an
economizer-cooled data center, the ambient temperature of
the data center could fluctuate between 18°C (64.4°F) and
27°C (80.6°F) from the normal operating temperature [6]. This
wide range in operational thermal levels in an economized
data center can be a source of a transient rise in the CPU’s
temperature. The proposed techniques are also helpful to
control thermal conditions of CPUs in the HPC data center
using economizers for cooling.

The above subsections describe representative scenarios that
can have adverse impacts on the CPU’s temperature and the
resulting consequences. If the CPU thermal conditions are not
automated and controlled appropriately, this may lead to a
component loss and consumption of more power (e.g., more
revolutions per minute (RPM) of CPU fans) in an effort to
reduce the CPU temperature.

ITII. AUTOMATED DYNAMIC THERMAL CONTROL DESIGN

The objectives of this study are to define a new level of
instrumentation and deterministic methodologies for main-
taining the CPU temperature to deliver desired performance,
ensure infrastructure health, and consume energy efficiently
in an autonomic manner. The design goals for the automated
dynamic thermal control of the CPU include: 1) allowing the
scaling up of the CPU performance when operating within a
normal temperature range and 2) healing the temperature of the
overheated CPU to be within its normal operating temperature
range by scaling down CPU performance. We discuss the
methodologies in detail below.

A. CPU Thermal Control

This study uses an existing framework, Kraken [17], [18],
for CPU thermal control. Kraken is a distributed state discov-
ery and control engine that can maintain many states across a
large-scale computing cluster. The overall framework consists
of the Kraken core and modules. The Kraken core provides a
set of generic service engines that automate and control node
states. The Kraken modules are a counterpart of the Kraken
core and implement specific node management functions. The
modules can perform functionalities, including the discovery
of states, states’ mutations, or both. By design, Kraken works
in a parent and child manner (the term parent is synonymous
to master). The Parent and Child Krakens communicate via a
UDP protocol. They are identical and instances of the same
codebase; however, various Kraken modules can be enabled
and executed in the context of either parent or child. The
Parent Kraken is deployed if it runs on a central node, whereas
the Child Kraken is deployed if it runs locally on each node in
the cluster. The state mutations or state discoveries can either
run in the context of the Child or Parent Kraken, but not in the
context of both simultaneously. To assist in understanding the
proposed design, we further explain three key terms frequently
used in Kraken-based design. First, a configured state refers
to the configuration data, which describes the desired state of
the node. The configuration state data is injected into Kraken
at the deployment time. Second, a discovery state is an actual
state of the node as monitored by Kraken in real-time. Third,
a state mutation is a mechanism to control the state. It is a
transition from one state to another, to achieve the configured
(desired) state.

Kraken monitors CPU thermal and CPU frequency states
and performs related mutations in a real-time manner using
CPU thermal state discovery, CPU frequency scaling state
discovery, CPU thermal state mutation, and CPU frequency
scaling state mutation functions, which are described below.

B. CPU Thermal State Discovery

The CPU thermal state is an indicator of the inten-
sity of CPU temperature. The CPU temperature is moni-
tored in a real-time manner and the temperature is catego-
rized as either CPU_TEMP_NORMAL, CPU_TEMP_HIGH or
CPU_TEMP_CRITICAL thermal state, based on the lower and
upper thresholds of those thermal states as shown in Fig. 3.

516

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

I CPU_TEMP_NORMAL l
I LowerNormal

CPU_TEMP_HIGH |
UpperNormal l LowerHigh

CPU_TEMP_CRITICAL |
UpperHigh ILoWerCr\ticai

UpperCritical |

Fig. 3: Characterization of Thermal States

e*.f,“’“"‘" e*./,"’“"‘" e*g“’“"‘" e*.f,“’“"‘"
[HustThermaIDiscoveryJ [Hns(ThermalDiscnveryJ [HosxThermmmscoveryJ
ling]| {(HostFreq ling | (Hostreq ing | HostFrequencyScaling

Node 1 (Child Kraken)) \Node 2 (Child Kraken)) \Node 3 (Child Kraken), Node n (Child Kraken),

! !

[l—[ostrm1

Kraken |API

.

HostThermalDiscovery

HostFrequencyScaling

Node (Parent Kraken)

_ HPC Cluster

Fig. 4: In-band CPU Thermal Control Model

The temperature monitoring can be performed through in-band
or out-of-band models.

1) In-band CPU Thermal State Discovery: An in-band
CPU thermal state discovery involves accessing temperature
information through the operating system (OS) of the node.
The overall in-band thermal state discovery involves the Parent
Kraken on a central node and the Child Kraken and the
HostThermalDiscovery module [19] on each node as depicted
in Fig. 4. The Child Kraken using the HostThermalDiscovery
module discovers the CPU thermal state. Fig. 5 shows the CPU
thermal state discovery process, which includes three major
steps: 1) acquisition of CPU temperature, 2) determination of
the CPU thermal state, and 3) generation of the thermal state
discovery event to the Kraken core. The CPU temperature
is acquired by reading the CPU thermal sensor using a
generic OS routine or sensor-specific interface. The module
keeps track of the previously acquired CPU temperature and
performs steps 2 and 3 when the CPU temperature changes.
Lastly, a thermal state discovery event is generated when
the CPU temperature changes. The Child Kraken periodically
synchronizes its thermal state with the Parent Kraken.

2) Out-of-Band CPU Thermal Discovery: An out-of-band
(OOB) CPU thermal state discovery comprises accessing
CPU temperature remotely via the baseboard management
controller (BMC) without OS support. The OOB commu-
nication is performed through the BMC using the out-of-
band protocols, such as the intelligent platform management
interface (IPMI) [20] or the DMTF Redfish API [21]. The
Redfish API is a RESTful standard interface used to manage
the data center infrastructure. The API is specified in terms
of a standard, machine-readable schema, with the payload of
the messages being expressed in JavaScript Object Notation.
Hojati, et al. [22] is a study based on the advantages of
Redfish [23] to calculate energy efficiency and performance of
equipment in data centers. We used Redfish API to perform
OOB thermal discovery. The CPU thermal state discovery us-

VN
L

HostFrequencyScaling
! HostThermalDiscovery

Thermal Discovery _ Node (Child Kraken) /

{ Temp>=98 implies CPU_TEMP_CRITICAL J

Sync

e&a fraken

A 4

Node (Parent Kraken) @

92<Temp<98 implies CPU_TEMP_HIGH

Temp<93 implies CPU_TEMP_NORMAL J

Fig. 5: In-band CPU Thermal Discovery

BMC (Redfish API) BMC (Redf_ish API) BMC (Red_ﬂsh API)
Refish Redfish Redfish
Node 1 Node 2 Node 3

{ ! ! :

A HPC Cluster

ol
v Redfish

{ RFAggregator }

o
b Rediich

RFThermalDiscover % 5
&"m" | & d

Node (Parent Kraken)

Fig. 6: Out-of-band Temperature Control Model

ing the OOB paradigm requires RFThermalDiscovery module
[19] and the Redfish Aggregator (RFAggregator) on the Parent
Kraken. The RFThermalDiscovery module interacts with the
remote Redfish-enabled BMCs to acquire CPU temperature
using Redfish via the RFAggregator. The CPU temperature
acquisition setup is shown in Fig. 6. The RFThermalDiscovery
module in the Parent Kraken periodically initiates the Redfish
group request via the RFAggregator for the acquisition of the
CPU temperature from a group of BMCs. The RFAggregator
fans out the Redfish API request to the individual Redfish-
enabled BMCs. The BMC reads the CPU thermal sensor and
sends the response to the RFAggregator. The RFAggregator
then combines individual responses into a single aggregated
response. The RFAggregator sends the aggregated response to
the RFThermalDiscovery module in the Parent Kraken. The
module compares the current CPU temperature with the pre-
viously acquired CPU temperature. As the CPU temperature
changes, the module determines the CPU thermal state and
generates the thermal state discovery event to the Kraken core.

517

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

Thermal Discovery

[Temp>=98 implies CPU_TEMP_CRITICAL ‘

[92<Temp<98 implies CPU_TEMP_HIGH ‘

® [Temp<93 implies CPU_TEMP_NORMAL]

Node (Parent Kraken)

HostThermalDiscovery
HostFrequencyScaling

G

Camd®
CPU
Frequency

_ Node (Child Kraken) /

R R0
]

Frequency Scaling Mutation

POWER_SAVE to PERFORMANCE

PERFORMANCE to POWER_SAVE

Fig. 8: CPU Frequency Scaling Procedure

Fig. 7 shows the major steps related to the discovery of the
CPU thermal state via OOB.

C. CPU Frequency Scaling State Discovery

The CPU frequency scaling state corresponds to a generic
CPU frequency scaling governor in the Linux CPUFreq
subSystem [24]. In this study, we used POWER_SAVE
and PERFORMANCE as CPU frequency scaling states. The
POWER_SAVE and PERFORMANCE states correspond to the
selection of the lowest CPU clock frequency and the highest
CPU clock frequency, respectively. The Child Kraken discov-
ers the CPU frequency scaling state of the node using the
HostFrequencyScaling module [19] as shown in Fig. 8. The
HostFrequencyScaling module periodically reads the current
CPU frequency scaling state and compares it with the previous
CPU frequency scaling state. In the event that the CPU
frequency scaling state is changed, the module generates a
CPU frequency scaling state discovery event to the Kraken
core.

D. State Diagram of CPU Thermal Mutations

We designed a state diagram of Thermal Mutations.
The CPU Thermal State Mutation allows Kraken to con-
trol CPU thermal state. When the CPU thermal state is
CPU_TEMP_HIGH or CPU_TEMP_CRITICAL, CPU thermal
state mutations provide a mechanism to revert to the de-
sired CPU thermal state (i.e., CPU_TEMP_NORMAL). When
a CPU_TEMP_NORMAL state is discovered, no thermal state
mutation is performed. When the discovered thermal state is

f (v 1

[cPu_TevP_worWAL | cpu_Tewp_niGH o, | <CPU_TEMP_CRITICAL"|
A
|

P——
(—_Node_POWER_ON

Fig. 9: State Diagram of CPU Thermal Mutations

POWER_SAVE PERFORMANCE

Fig. 10: State Diagram of CPU Frequency Scaling Mutations

not the same as the desired thermal state, a corresponding mu-
tation is performed. The possible CPU thermal state mutations
are shown in Fig. 9.

E. State Diagram of CPU Frequency Scaling Mutations

We designed a state diagram of CPU Frequency Scaling
Mutations. The CPU frequency scaling state mutations enable
scaling up or down the CPU operating frequency. The CPU
frequency scaling state can be mutated from POWER_SAVE to
PERFORMANCE and vice versa. These mutations are governed
by real-time CPU thermal states. Fig. 10 shows the possible
CPU frequency scaling state mutations. The Child Kraken
mutates CPU frequency scaling states locally using the Host-
FrequencyScaling module [19] as depicted in Fig. 8. When
the Kraken core receives a CPU thermal state discovery event,
a CPU frequency scaling state discovery event, or both, the
Kraken core computes a CPU frequency scaling state mutation
path corresponding to the received discovery event(s). The
Kraken core signals the HostFrequencyScaling module to
handle the mutation, which mutates the CPU frequency scaling
state by changing the CPU frequency. The Child Kraken
periodically synchronizes its state to the Parent Kraken.

IV. REFERENCE IMPLEMENTATION

This section describes an example implementation of the
automated dynamic thermal control design (section III). It
illustrates the experimental setup, software implementation,
and the Kraken dashboard that visualizes the cluster.

A. Experimental Setup

Hardware Setup: The hardware infrastructure includes a
cluster of 150 Raspberry Pi3 nodes, one master node, and a
fan. This arrangement is intended to emulate an HPC data
center. Table I provides information related to the hardware
involved in this implementation. System Software: The mas-
ter node and Raspberry Pi3 nodes used CentOS 7.6 and u-
root, respectively. u-root is a root file system, which packages
firmware images along with Linux Kernel and other binaries
as a single root binary [25].

518

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Hardware Specifications

TABLE II: Thermal Configuration

Master Node Specifications:

HostThermalDiscovery Module Configuration:

CPU 2 x 4 cores AMD Opteron™ 6100, x GHz Parameter Description
RAM 23 GB DDR3 PollingInterval sampling rate at which temperature is collected from
STORAGE 2TB HDD Pi3 node. Its default value is 1 second.
NETWORK 1Gbit/s, Broadcom NetXtreme II TempSensorPath CPU temperature reading location. In Pi3
Raspberry Pi 3 Node Specifications: node, CPU temperature is available at
SoC Broadcom BCM2837 /sys/class/thermal/thermal_zoneO/temp.
CPU 4x ARM Cortex-A53, 1.2 GHz LowerNormal lower temperature threshold for the
RAM 1GB LPDDR2, 900 MHz CPU_TEMP_NORMAL state. The default value
NETWORK 10/100M Ethernet is 3°C (37.4°F)
UpperNormal upper temperature threshold for the
CPU_TEMP_NORMAL state. The default value
is 79°C (176°F)
B. Software Stack LowerHigh lower temperature threshold for the
CPU_TEMP_HIGH state. The default value is
The Kraken and relevant Kraken modules are used in the re- 80°C (176°F)
alization of automated thermal control. Kraken Framework: UpperHigh upper temperature threshold for the

It consists of the Parent Kraken and the Child Kraken, which
are exactly the same binary image and identify themselves
as either the parent or the child at the Kraken launch time.
The Parent Kraken runs on the master node and the Pi3 nodes
acquire the Child Kraken image (u-root) via Preboot Execution
Environment (PXE). Kraken Modules: The implementation
requires the following modules:

a) pipxe: Provides PXE-boot capabilities for Raspberry Pi3
nodes.

b) rfpipower: Emulates Redfish power control capabilities.
Powers on and off the Raspberry Pi3 nodes remotely.

¢) cpuburn: Induces load and stresses the Raspberry Pi3
nodes.

d) RFAggregator: Emulates and handles the Redfish group
requests.

e) RFThermalDiscovery: Emulates the Redfish API to mon-
itor CPU temperature of the Raspberry Pi3 nodes using
RFAggregator.

f) HostThermalDiscovery: Performs CPU temperature mon-
itoring of the Raspberry Pi3 nodes through the in-
band mechanism. It reads temperature from a thermal
sensor located at /sys/devices/virtual/thermal/thermal_
zoneO/temp/. The sections HostThermalDiscovery Mod-
ule Configuration and HostThermal Extension Configu-
ration in Table II describe the node and cluster level
configurations, respectively.

g) HostFrequencyScaling: Makes use of DVFS to scale up
or scale down CPU frequency to control CPU temperature
and CPU performance. The HostFrequencyScaling mod-
ule accesses different CPUFreq objects available at/sys/
devices/system/cpu/cpufreq/policy0/. In particular, this
module adjusts scaling_governor, scaling_min_freq, and
scaling_max_freq objects to mitigate the CPU thermal
and CPU performance requirements. Any change to these
objects causes the selection of new frequency scaling
governor. As a result, CPU is clocked to new frequency
dynamically via platform specific CPU frequency driver
(i.e. cpufreq-cpu0). The sections HostFrequencyScaling
Module Configuration and HostFrequencyScaler Exten-
sion Configuration in Table III describe the node and
cluster level configurations, respectively.

CPU_TEMP_HIGH The default value is

98°C (208.4°F)

state.

LowerCritical lower temperature threshold for the
CPU_TEMP_CRITICAL state. The default value is

2°C (37.4°F)

UpperCritical upper temperature threshold for the
CPU_TEMP_CRITICAL. The default value is

99°C (208.4°F)

HostThermal Extension Configuration:

State This represents thermal state of CPU. It can
be CPU_TEMP_NORMAL, CPU_TEMP_HIGH, or
CPU_TEMP_CRITICAL. The desire (configuration)
thermal state is CPU_TEMP_NORMAL.

C. Kraken Dashboard

The Kraken dashboard provides different states of the nodes
in the cluster in realtime. Each box represents a node. The
four triangles and border of a node represent states. Fig. 11
shows the master and states of 150 compute nodes. The
border around each box and each of the four triangles within
the box represent node states. The CPU frequency scaling,
CPU temperature, PXE, runtime, and physical states and
their possible values are shown in the legend section (left).
As described in the legend, the border and upper triangle
represent the CPU thermal state and CPU frequency scaling
state, respectively. Overall, 139 nodes are in the desired
thermal (i.e., CPU_TEMP_NORMAL) and frequency scaling
(i.e., PERFORMANCE) states. One node is identified in an over-
heated thermal state (i.e., CPU_TEMP_HIGH) and is rightly
switched to POWER_SAVE frequency scaling state for healing
the CPU temperature. The remaining nodes are in the booting
process.

V. EXPERIMENTAL RESULTS

The results are described in three parts. First, maximum
attainable CPU temperatures for each CPU frequency scaling
state are analyzed. Second, the impact of scaling down CPU
frequency at different temperature configuration thresholds for
both CPU thermal and frequency scaling states are explored.
Third, temperature- and time-based strategies for healing an
overheated CPU is provided. All the following experiments
were conducted with a CPU load of 100% at a room temper-
ature of 30°C (86°F). An external fan was used to blow air
(at room temperature) on the Raspberry Pi3 nodes.

519

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

TABLE III: CPU Frequency Scaling Configuration

HostFrequencyScaling Module Configuration:

Parameter Description
FreqSensorUrl CPU frequency objects location. In
Pi3 node, CPU frequency policy

and attributes are available at
/sys/devices/system/cpu/cpufreq/policy0/.
specifies which frequency scaling state to
use to switch from high to low performance.
Default value is powersave.

HighToLowScaler

LowToHighScaler specifies which frequency scaling state to
use to switch from low to high performance.
Default value is performance.
TlmeBQundThrqttle If TimeBoundThrottleRetention is activated,
RetentionDuration . . o
this parameter defines time duration (in min-
utes) to keep CPU in throttling mode.
ThrottleRetention An option specifying whether or not to

enforce throttle retention.

TimeBoundThrottle A boolean value that defines whether or not

Retention to enforce time-based throttling.
A boolean value that defines whether or
ThermalBoundThrottle | 144 (o enforce throttling based on a certain
Retention temperature value.
If ThermalBoundThrottleRetention is acti-
ThermalBoundThrottle | yated. this parameter defines thermal thresh-
RetentionThreshold

old value (in Celsius).

ScalingGovernor This parameter defines the CPU frequency

scaler. Its default value is POWER_SAVE.

ScalingMinFreq This parameter defines the minimum CPU
frequency level (in MHz). Pi3 node mini-
mum frequency value is 600 MHz.

ScalingMaxFreq This parameter defines the maximum CPU

frequency level. Pi3 node maximum fre-
quency value is 1400 MHz.
HostFrequencyScaler Extension Configuration:

States This represents frequency scaling state
of CPU. It can be PERFORMANCE or
POWER_SAVE. The default configured state
is PERFORMANCE

e d

()
IXIIIIXXXIIPIDIIIIXXIIIIDDIDDIDDDDD
0000000000000 DBD@
0000000000000 DDDD
2@202332333DIIIIIIIIIIDIIDDDD

Unkroun:3 s Syr: 139

Fig. 11: Kraken dashboard

A. Maximum Attainable CPU Temperature for CPU Fre-
quency Scaling States

To devise a better thermal control using CPU frequency
scaling states, it is important to analyze and understand the
maximum attainable CPU temperature for each frequency scal-
ing state at room temperature. Fig. 12 depicts maximum CPU
temperatures observed for POWER_SAVE and PERFORMANCE
states. In the POWER_SAVE state, the CPU temperature in-
creased up to 72°C (161.6°F) after ~20 minutes, while in the
PERFORMANCE state, it increased up to 86°C (186.8°F) after

~10 minutes. This demonstrates that the CPU temperature can
not be reduced below 72°C (161.6°F) using POWER_SAVE
state when the CPU is running at 100% load.

B. Impact of CPU Temperature Thresholds on Temperature
and Frequency

The objective of these analyses is to understand the impact
of scaling down CPU frequency at different CPU temperature
thresholds on CPU temperature and frequency. As described
previously the CPU temperature can not be reduced below
72°C (161.6°F) when applying the POWER_SAVE state at
room temperature. However, the CPU thermal behavior is not
known when applying the POWER_SAVE state at different
temperature thresholds. Fig. 13 (a)-(h) shows variations in
CPU temperature and frequency when the CPU frequency is
scaled down at different CPU temperature thresholds, namely,
50°C (122°F), 55°C (131°F), 60°C (140°F), 65°C (149°F),
70°C (158°F), 75°C (167°F), 80°C (176°F), and 85°C (185°F).
These eight experiments were conducted to identify the best
temperature threshold for scaling down the CPU frequency,
which can provide more effective thermal control. Mathemat-
ically, the identified temperature threshold is the temperature
where the CPU thermal resistance is minimal (see Eq. 1).

Overall, the results demonstrated in Fig. 13 (a) - (h) provide
three patterns. First, when the CPU frequency scaling state
was scaled down from PERFORMANCE to POWER_SAVE in
the temperature threshold range of 50° to 65°C (122°F to
149°F), there were frequent switches between POWER_SAVE
and PERFORMANCE for an initial short interval. In other
words, when POWER_SAVE reduced the CPU temperature
below the threshold temperature, the CPU frequency scaling
state was changed to PERFORMANCE and when the CPU
temperature crossed the threshold temperature, the CPU fre-
quency scaling state was switched back to POWER_SAVE.
After a while, the frequency scaling state remained in
POWER_SAVE and the CPU temperature was accelerated
to ~72°C (161.6°F) i.e., maximum attained temperature for
the POWER_SAVE state. Second, when the CPU frequency
scaling state was scaled down in the range of 70° to 75°C
(158°F to 167°F), there were frequent switches between
POWER_SAVE and PERFORMANCE, and the temperature was
~72°C (161.6°F) for the whole duration. Third, when the
CPU frequency scaling state was scaled down in the range
of 80° to 85°C (176°F to 185°F), unlike the other two
patterns, there were fewer switches between POWER_SAVE
and PERFORMANCE. The CPU frequency scaling state mostly
remained in PERFORMANCE, and temperature increased be-
yond the thresholds (i.e., 80°C (176°F) or 85°C (185°F))
due to increased thermal resistance (i.e., temperature control
became less effective).

Fig. 14 shows the summary of the scaling down of CPU fre-
quency scaling state at eight different temperature thresholds.
Our empirical results indicated that temperature in the range
of 70° to 75°C (158° to 167°F) is the best CPU temperature
threshold to scale down the CPU frequency to reduce the CPU
temperature.

520

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

90 — 11800
@) ——CPU Temperature N
o 80 —CPU Frequency %
£ >
1200

© 70 ’ 2
o 5
L ﬁ S
£60[3
[¢b) -
2 600 o
D 50 -
o o
@) @)

40+ : : : : : :

0 10 20 30 40 50 60

Time min

90 11800
N
& I
~80 S
o =
=2 1200 2
@707 c
D | — CPU Temperature)
Q | ——CPU Frequency >
€ 607l g
O] bt
2 600 e
2 50 2
o o
@) @)

40 - ‘ ‘ ‘ : : ‘

0 10 20 30 40 50 60

Time min

Fig. 12: Maximum attainable CPU temperatures for POWERSAVE (left) and PERFORMANCE (right) states.

VI. RELATED WORK

The existing efforts related to CPU thermal control can be
grouped into two areas: a) mechanical-based thermal control
and b) software-based thermal control.

From the mechanical perspective, numerous cooling solu-
tions have been studied, including air cooling [26], [27]
and liquid cooling [28], [29]. These solutions are primarily
designed to provide efficient and dependable inlet temperature
control at the rack and room levels [30] by extricating the
heat generated by power consumption. This indirectly reduces
the CPU temperature without performance loss. While these
mechanical cooling solutions can handle room and rack level
temperature efficiently, they may not be responsive to possible
thermal violations on an individual CPU due to a compute-
intensive job.

Concerning the software-based thermal solutions, DVES is
the widely used technique to control the CPU temperature.
This software-based component-level thermal control is help-
ful to handle the on-chip temperature. It allows the last-mile
control of the thermal issues not handled by the mechanical
level cooling solutions. Peluso et al. [31] analyzed the relation-
ship between the CPU temperature and the hyper-parameters
of the convolutional neural networks (CNN) using the DVFS
knob. In comparison to their work, our method specifically
addresses thermal violation for any CPU-intensive application.
Kim et al. [32] provided a temperature-aware DVFS scheme
for mobile devices. It estimates power and performance within
the mobile device thermal budget. In contrast, the strategies
proposed in our work effectively reduce the temperature of an
overheated CPU.

VII. CONCLUSIONS AND FUTURE WORK

Often, modern CPUs are prone to overheating in unfavor-
able thermal conditions, including compute-intensive work-
loads on CPU, cooling infrastructure failures, and usage of
economizers. Hence, an automated thermal state discovery
and healing of overheated CPUs in the data center setting

is highly desirable. This study has successfully shown the
automated healing of the CPU temperature of a node. This
implementation leverages state-of-the-art Kraken, which is an
HPC automation and control framework. Our methodology
discovers the CPU temperature using the DMTF Redfish API
and exerts thermal control utilizing the DVFS mechanism.
This methodology performs periodic discovery of the CPU
thermal state. It reverts the CPU temperature within a normal
temperature range of an overheated CPU by scaling down
its CPU frequency. Our method allows scaling up the CPU
frequency when the CPU thermal state is back to normal. This
methodology heals the transient overheating of a CPU mainly
caused by compute-intensive workloads or air economizers
that cannot provide sufficient cooling (due to high outside air
temperature). In case of CPU overheating due to fundamental
failures (cooling equipment power failure or malfunctioning),
this methodology increases ride-through time.

Further study and development are needed to cover more
thermal control use cases. First, more investigation is needed
to scale down the CPU frequency coherently to heal a node
involved in a group of nodes executing a message passing
interface (MPI) job. Second, we plan to perform a graceful
powering-off of a node when the CPU thermal state reaches
an irreversible critical level. Third, more study is needed to
integrate the proposed thermal control with other data center
infrastructure management solutions.

ACKNOWLEDGMENT

This manuscript has been approved for unlimited release
and has been assigned LA-UR-21-25032. This work was
supported by the U.S. Department of Energy through the Los
Alamos National Laboratory. Los Alamos National Labora-
tory is operated by Triad National Security, LLC, for the
National Nuclear Security Administration of U.S. Department
of Energy (Contract No. 89233218CNA000001). This work
was also supported by the Ultrascale Systems Research Center
which is a collaboration between the New Mexico Consortium

521

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

.90 — . 1800 = 90 1800 __
OCJ emperature T Q — CPU Temperature N
~— — CPU Frequency) I
® 80| = — CPU Frequency =
o = o 80
— N—
= ll‘ 1200 & S 1200 2
= 70 (M| S © [c
g \ S s S
\ Q. \ =)
% 6o M | 600 g £ ‘ 5
F ! 1 — L L]
— LC g 60 M 600 0
| e D
0. 50 0 O 50t o
O O O O
0 7.2 14.4 21.6 28.8 0 7.2 14.4 21.6 28.8
Time min Time min
(a) POWER_SAVE at 50°C. (b) POWER_SAVE at 55°C.
.90 1800 __ 90 1800 __
QO —— CPU Temperature N QO —— CPU Temperature N
_ — CPU Frequency I < — CPU Frequency =
@ 80| = o 80} =
— D — e
= > = >
2 1200 8 2 1200 8
= 70 = 70
(b} (b}
8 > 3 >
£ 3 E 3
g 60 1600 Llh_ g 60 1600 Llh_
2 2 3 2
S 50 O O 507 (@]
7.2 14 .4 21.6 28.8 7.2 14.4 21.6 28.8
Time min Time min
(c) POWER_SAVE at 60°C. (d) POWER_SAVE at 65°C.
___90 1800 __ __90 1800 __
(@] —— CPU Temperature N QO —— CPU Temperature N
S —— CPU Frequency L < —— CPU Frequency -
@ 80F = @ 80} =
— N— — N—
= =
2 1200 § 2 1200 §
= 70} = 70}
[<B] [<B]
8 S & S
% 60 600 g % 60 600 g
[1 S [1 S
— L — L
2 2 3 2
S 50 O O S0 O
7.2 14.4 21.6 28.8 7.2 14.4 21.6 28.8
Time min Time min
(e) POWER_SAVE at 70°C. (f) POWER_SAVE at 75°C.
90 1800 90 1800
5 e g
80 1 80 1
S = £ =
= 1200 8 = ‘." ,\ I\"I | | ‘.F 1200 8
o 70 —— CPU Temperature D o 70 / i |] <kl
Q. — CPU Frequency g_ Q. | f / [/ 8_
S eol leoo € 5eo s {eco &
— b L
E | E E | — CPU Temperature E
O 50 Q O 50 — CPU Frequency Q
7.2 14 .4 21.6 28.8 7.2 14.4 21.6 28.8
Time min Time min

(g) POWER_SAVE at 80°C. (h) POWER_SAVE at 85°C.

Fig. 13: Variations in CPU temperature and frequency at different CPU temperature thresholds, namely, 50°C (122°F), 55°C
(131°F), 60°C (140°F), 65°C (149°F), 70°C (158°F), 75°C "~ 77", 80°C (176°F), and 85°C (185°F).
522

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

Fig.

CPU Temperature (°C)

0
o

co
o
T

~l
o

L —— LT — |
S e
oo il g
e

=
Thermal Control Thresholds: | |
——85°C ——65°C
——80°C 60°C
75°C—5h5°C
—70°C —50°C

14.4 216
Time

(2)]
o

[4)]
o

28.8
min

14: Summary of scaling down of CPU frequency scaling

state at eight different temperature thresholds.

and the Los Alamos National Laboratory. This research was
supported in part by the National Science Foundation under
grant CNS-1939140 (A U.S. National Science Foundation
Industry-University Cooperative Research Center on Cloud
and Autonomic Computing) and OAC-1835892. The authors

are

grateful to Cory Donald Lueninghoener, Kevin Pelzel,

Elham Hajati and Alan Sill for reviewing and assisting this
work.

[1]
[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

M. B. Taylor, “A Landscape of The New Dark Silicon Design Regime,”
IEEE Micro, vol. 33, no. 5, pp. 8-19, 2013.

S. Borkar, “Thousand Core Chips: a Technology Perspective,” in Pro-
ceedings of the 44th annual design automation conference, 2007, pp.
746-749.

Y. Joshi and P. Kumar, Energy Efficient Thermal Management of Data
Centers. Springer Science & Business Media, 2012.

R. Viswanath et al., “Thermal Performance Challenges from Silicon to
Systems,” 2000.

R. A. Bridges, N. Imam, and T. M. Mintz, “Understanding GPU
Power: A Survey of Profiling, Modeling, and Simulation Methods,” ACM
Computing Surveys (CSUR), vol. 49, no. 3, pp. 1-27, 2016.

ASHRAE, “Data Center Power Equipment Thermal Guidelines and Best
Practices,” 2016, https://tc0909.ashraetcs.org/documents/ASHRAE_
TC0909_Power_White_Paper_22_June_2016_REVISED.pdf.

Y. Kodama, S. Itoh, T. Shimizu, S. Sekiguchi, H. Nakamura, and
N. Mori, “Imbalance of CPU Temperatures in a Blade System and its
Impact for Power Consumption of Fans,” Cluster computing, vol. 16,
no. 1, pp. 27-37, 2013.

J. Crapse, N. Pappireddi, M. Gupta, S. Y. Shvartsman, E. Wieschaus,
and M. Wiihr, “Evaluating the Arrhenius Equation for Developmental
Processes,” Molecular Systems Biology, vol. 17, no. 8, p. €9895, 2021.
P. Lall, “Tutorial: Temperature as an Input to Microelectronics-
Reliability Models,” IEEE Transactions on Reliability, vol. 45, no. 1,
pp. 3-9, 1996.

X. Wei, Y. Joshi, and M. K. Patterson, “Experimental and Numerical
Study of a Stacked Microchannel Heat Sink for Liquid Cooling of
Microelectronic Devices,” 2007.

S. P. Gurrum, S. K. Suman, Y. K. Joshi, and A. G. Fedorov, “Thermal
Issues in Next-Generation Integrated Circuits,” IEEE Transactions on
device and materials reliability, vol. 4, no. 4, pp. 709-714, 2004.

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

(31]

[32]

523

M. K. Herrlin et al., “Rack Cooling Effectiveness in Data Centers and
Telecom Central Offices: The Rack Cooling Index (RCI),” Transactions-
American Society of Heating Refrigerating and Air conditioning Engi-
neers, vol. 111, no. 2, p. 725, 2005.

HPCC. (2020) High Performance Computing Center.
Available: http:www.depts.ttu.edu/hpec/

V. Avelar, D. Azevedo, A. French, and E. N. Power, “PUE: a Compre-
hensive Examination of the Metric,” White paper, vol. 49, 2012.

M. K. Patterson, S. W. Poole, C.-H. Hsu, D. Maxwell, W. Tschudi,
H. Coles, D. J. Martinez, and N. Bates, “TUE, a New Energy-Efficiency
Metric Applied at ORNL’s Jaguar,” in International Supercomputing
Conference. Springer, 2013, pp. 372-382.

A. Kumar and Y. Joshi, “Use of Airside Economizer for Data Center
Thermal Management,” in 2008 Second International Conference on
Thermal Issues in Emerging Technologies. 1EEE, 2008, pp. 115-124.
J. Lowell Wofford, “Designing a Scalable Framework for Declarative
Automation on Distributed Systems,” arXiv e-prints, pp. arXiv—2104,
2021.

“HPC Kraken,” 2020, https://github.com/hpc/kraken.

Kraken-Hpe, “Kraken HPC Legacy Modules.” [Online]. Available:
https://github.com/kraken-hpc/kraken-legacy/tree/main/modules

“IPMI Specification, V2.0, Rev. 1.I: Document.” [On-
line]. Available: https://www.intel.com/content/www/us/en/servers/ipmi/
ipmi-second- gen-interface-spec-v2-rev1-1.html

DMTE. (2020) DMTF’s Redfish®. [Online]. Available: https://www.
dmtf.org/standards/redfish

E. Hojati, J. Hass, A. Sill, and Y. Chen, “Redfish Green500 Benchmarker
(RGB): Towards Automation of the Green500 Process for Data Centers,”
in 2020 IEEE Green Technologies Conference(GreenTech), 2020, pp.
47-52.

E. Hojati, Y. Chen, and A. a. Sill, “Benchmarking Automated Hardware
Management Technologies for Modern Data Centers and Cloud Environ-
ments,” in UCC ’17: Proceedings of the 10th International Conference
on Utility and Cloud ComputingDecember 2017, 2017, p. 195-196.
“CPU Performance Scaling.” [Online]. Available: https://www.kernel.
org/doc/html/v4.14/admin- guide/pm/cpufreq.html

Kraken-Hpc-uroot, “Kraken HPC u-root.” [Online]. Available: https:
//github.com/kraken-hpc/u-root

J. Wan et al., “Air Flow Measurement and Management for Improving
Cooling and Energy Efficiency in Raised-Floor Data Centers: A Survey,”
IEEE Access, vol. 6, pp. 48 867-48901, 2018.

S. V. Patankar, “Airflow and Cooling in a Data Center,” Journal of Heat
transfer, vol. 132, no. 7, 2010.

J. Gullbrand, M. J. Luckeroth, M. E. Sprenger, and C. Winkel, “Liquid
Cooling of Compute System,” Journal of Electronic Packaging, vol. 141,
no. 1, 2019.

H. B. Jang, I. Yoon, C. H. Kim, S. Shin, and S. W. Chung, “The
Impact of Liquid Cooling on 3D Multi-Core Processors,” in 2009 I[EEE
International Conference on Computer Design. 1EEE, 2009, pp. 472—
478.

J. Athavale, M. Yoda, and Y. Joshi, “Thermal Modeling of Data Centers
for Control and Energy Usage Optimization,” in Advances in Heat
Transfer. Elsevier, 2018, vol. 50, pp. 123-186.

V. Peluso, R. G. Rizzo, and A. Calimera, “Performance Profiling of
Embedded Convnets Under Thermal-Aware DVFS,” Electronics, vol. 8,
no. 12, p. 1423, 2019.

J. M. Kim, Y. G. Kim, and S. W. Chung, “Stabilizing CPU Frequency
and Voltage for Temperature-Aware DVFS in Mobile Devices,” IEEE
Transactions on Computers, vol. 64, no. 1, pp. 286-292, 2013.

[Online].

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:44:18 UTC from IEEE Xplore. Restrictions apply.

