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Abstract—In a production high-performance computing (HPC)
data center, numerous factors, including workload compute in-
tensity, cooling infrastructure failure, and the use of economized
cooling can substantially increase the CPU temperature. CPU
thermal design-related studies have shown that slight variances in
the operational temperature can significantly impact the lifetime,
durability, and performance of a CPU. Therefore, it is critical
to monitor and control the operating temperature of the CPU.
In this study, we design an automated and continuous CPU
thermal monitoring and control methodology to maintain and
control a healthy CPU thermal state. This research utilizes
the Redfish protocol to monitor the CPU temperature and
dynamic voltage frequency scaling to control the temperature.
We developed a reference implementation and evaluated our
methodology using a cluster of 150 Raspberry Pi3 nodes. We
performed extensive CPU thermal analyses in different scenarios.
We analyzed how quickly a CPU can attain the maximum
temperature under 100% load at room temperature. Based on
our experiments, the temperature of a CPU with 100% load
can increase to ∼72°C (161.6°F) and ∼86°C (186.8°F) with the
lowest and highest CPU frequency configurations, respectively.
We analyzed the impact of applying thermal control at eight
temperature configurations on the thermal and frequency scaling
behavior of a CPU. We observed that applying thermal control at
lower temperature configurations (e.g., 70°C (158°F)) is a better
configuration for healing an overheated CPU. As a result of the
proposed model, the CPU operating at normal temperature will
consume comparatively less energy, deliver higher performance,
and augment its durability.

Index Terms—CPU Temperature, Automation, HPC, Data
Center, Kraken, Dynamic Voltage and Frequency Scaling, Pow-
ersave, Performance, Dynamic Thermal Control, Redfish, DVFS,
Kraken, Computing Cluster Dynamic Thermal Control, Dynamic
Voltage and Frequency Scaling, Data Center Automation, High
Performance Computing

I. INTRODUCTION

Thermal dissipation is one of the perennial issues in oper-

ating a high performance computing (HPC) data center. Since

the inception of large-scale computing systems, thermal con-

trol has been extensively studied from different perspectives,

including mechanical and software-based mechanisms [1].

Mechanical cooling solutions (e.g., air cooling, liquid cooling)

have effectively addressed the room- and rack-level thermal

control. However, these solutions are not sufficient to control

component-level temperature—particularly for CPUs.

As an after-effect of post-Moore’s Law and Pollack’s

rule [2], the current trend in microprocessor architecture is

increasingly based on multi-core and many-core paradigms to

deliver performance near exa-scale [3] [4]. Clearly, more cores

will draw more power, dramatically increasing the average

heat flux, i.e., the power dissipated per unit die area on

the CPU chip. Higher heat flux can increase the operating

temperature of the CPU significantly [4]. Existing studies, for

example [5], identified that CPU temperature management is

an increasingly daunting issue in large-scale HPC systems due

to inordinate power consumption.

In addition to the CPU thermal issues at the design level,

pertinent production level factors can directly or indirectly

increase the CPU’s operating temperature. These factors in-

clude transient changes in workloads, involvement of econ-

omizers [6], malfunctioning of the CPU fan, and heating,

ventilation, air-conditioning, and cooling (HVAC) failure.

Studies revealed that the CPU’s operating temperature has

a significant impact in a myriad of ways. First, the CPU’s

operating temperature can increase or decrease its lifespan

exponentially depending upon its operational temperature. For

example, with a difference of 10-15°C above or below CPU

normal operating temperature, a CPU can approximately halve

or double its lifespan, respectively [4]. Second, running the

CPU at lower operating temperature ranges enables the CPU to

deliver better performance due to minimal power leakage [4].

Third, the CPU running at higher temperature ranges can cause

additional power consumption [7]. The relationship between

power consumption and CPU temperature can be derived from

the study [4] as follows:

Power · θja = Tj − Ta, (1)

where Tj is the die temperature (in this study, CPU temper-

ature is synonymous with CPU die temperature), Ta is the

ambient temperature, and Power is the power consumed by

the CPU. By keeping Ta and θja constant, Power is directly

proportional to Tj . In other words, CPU on-chip temperature

can be controlled by reducing the power consumption.

Furthermore, the Arrhenius equation has been widely stud-

ied and applied to predict the influence of temperature on

chemical and biological processes [8]. The Arrhenius-based

equation has also been redesigned to estimate the impact
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of steady-state temperature on the failure rate of electronic

devices [9], i.e.,

λ = λref · exp

(

−
Edev

k · T

)

, (2)

where λ, λref , Edev , k, and T represent failure rate, reference

failure rate, device activation energy, Boltzmann’s constant,

and steady-state absolute temperature, respectively. The in-

verse of λ is called mean-time-to-failure (MTTF) [9], i.e.

MTTF =
1

λ
. (3)

Equations 2 and 3 show that the device’s MTTF is inversely

proportional to the device operating temperature.

To maintain a healthy CPU temperature and heal an over-

heated CPU, in this research, we design and implement a

methodology to automate a CPU’s thermal control in HPC

systems. This methodology is implemented in a framework

called Kraken for automation and control functionalities and

leverages the CPU’s frequency scaling mechanisms to control

CPU thermal conditions. Overall, this study presents two

techniques in the automation of healing of the overheated

CPU. First, it monitors the CPU thermal state and the operating

CPU frequency simultaneously. Second, it mutates the CPU

frequency to heal the CPU temperature when it is overheated.

We have tested this methodology on real-world CPUs.

The core contributions of this work include: 1) design of a

methodology for monitoring and control of CPU thermal and

frequency states and its implementation in the Kraken frame-

work; 2) analysis of maximum attainable CPU temperatures

for CPU frequency scaling states; 3) analysis of the impact

of different temperature thresholds on CPU temperature and

frequency; and 4) CPU temperature healing strategies.

The rest of this paper is organized into the following

sections. Section II discusses the background and motivations

of this study. Section III describes the general design of

the automated healing of the overheated CPU. We discuss

the reference implementation in section IV and present the

results in section V. Section VI explains the related work, and

section VII concludes this study and discusses possible further

research.

II. BACKGROUND AND MOTIVATIONS

Numerous studies have investigated the data center ther-

mal design problem at different levels, including the chip

level [10], server level [11], chassis level [3], rack level [12],

and plenum level [3]. The objective of this study is to provide

thermal control of the CPU at the chip level. Real-world ex-

periences indicate that extraordinary compute-intensive work-

loads, cooling failures, or use of economizers can significantly

increase the CPU temperature from a normal to a critical level.

For example, at the High Performance Computing Center

(HPCC) of Texas Tech University (TTU) [13], we experienced

the following real-world scenarios where the proposed auto-

mated thermal control methodology can be applied.

Fig. 1: CPU temperature analysis of the node “compute-6-2”

over a month at the High Performance Computing Center of

Texas Tech University.

A. Effect of Extraordinary Compute-intensive Workloads

Fig. 1 shows the CPU temperature analysis of a typical

node in an HPC cluster. This time-series data was acquired

at the sampling rate of 60 seconds, over a period of one

month. As depicted in Fig. 1, the CPU temperature of the node

compute-6-2 in the cluster frequently jumped to the critical

temperature level. The observation indicated that continuous

compute-intensive workloads are the major reason behind

these fluctuations and driving CPU temperatures into the

critical range. As this CPU was frequently running at a critical

temperature over a long period of time, eventually the CPU

completely stopped functioning. This finding shows that the

average reflection plenum temperature is not always a reliable

metric. The critical thermal state of an individual CPU can

easily be ignored, which occurs due to extraordinary compute-

intensive workloads. Therefore, it is important to track and

control the CPU temperature at an individual node rather

than rely solely on the data center room temperature. The

techniques proposed in this research study effectively identify

and heal an overheated CPU.

B. Cooling Infrastructure Failure

The occurrence of a cooling infrastructure (e.g., computer

room air conditioning (CRAC) unit, chiller, CRAC power)

failure can cause a sudden increase in the CPU temperature

across the HPC cluster. This is another instance of a thermal

related incident occurring at TTU’s HPCC. At approximately

3:20 pm, March 21st, 2019, the chiller of the facility started

delivering water at a higher than expected temperature, which

led the CRAC units to blow insufficiently cooled air to

remove the heat generated by the CPUs. As a result, the

temperature of these CPUs started rising to higher than an

acceptable level. We observed that this had little impact on

CPU temperature of idle nodes; however, the CPUs with nodes

running jobs had a drastic temperature increase. Fig. 2 shows
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Fig. 2: Sudden increase of CPU temperature of some HPC

nodes from the normal temperature to the critical level, due

to the malfunction of the chiller.

the increase of the CPU temperatures of some HPC nodes

from the normal to the critical level as a result of this incident.

The proposed techniques in this study will prevent a sudden

dramatic increase of the CPU temperature to the critical level

and augment the ride-through time, which is the duration of the

time before equipment starts going into thermal shutdown [6].

C. Usage of Economizers

Using economizers has a direct impact on improving power

usage effectiveness (PUE) [14] and total-power usage effec-

tiveness (TUE) [15]. Economized-based cooling uses up to

70% less energy [16]. However, due to economizers’ strong

dependency on unpredictable environmental conditions (e.g.,

seasonal variations including day and night temperature and

humidity), economizer-based cooling is a common cause of

thermal transients in HPC data centers. ASHRAE TC9.9 notes

that normally the data center’s ambient temperature fluctuates

about 2°C (3.6°F) from the normal operating temperature

in HVAC-cooled data centers [6]. By comparison, in an

economizer-cooled data center, the ambient temperature of

the data center could fluctuate between 18°C (64.4°F) and

27°C (80.6°F) from the normal operating temperature [6]. This

wide range in operational thermal levels in an economized

data center can be a source of a transient rise in the CPU’s

temperature. The proposed techniques are also helpful to

control thermal conditions of CPUs in the HPC data center

using economizers for cooling.

The above subsections describe representative scenarios that

can have adverse impacts on the CPU’s temperature and the

resulting consequences. If the CPU thermal conditions are not

automated and controlled appropriately, this may lead to a

component loss and consumption of more power (e.g., more

revolutions per minute (RPM) of CPU fans) in an effort to

reduce the CPU temperature.

III. AUTOMATED DYNAMIC THERMAL CONTROL DESIGN

The objectives of this study are to define a new level of

instrumentation and deterministic methodologies for main-

taining the CPU temperature to deliver desired performance,

ensure infrastructure health, and consume energy efficiently

in an autonomic manner. The design goals for the automated

dynamic thermal control of the CPU include: 1) allowing the

scaling up of the CPU performance when operating within a

normal temperature range and 2) healing the temperature of the

overheated CPU to be within its normal operating temperature

range by scaling down CPU performance. We discuss the

methodologies in detail below.

A. CPU Thermal Control

This study uses an existing framework, Kraken [17], [18],

for CPU thermal control. Kraken is a distributed state discov-

ery and control engine that can maintain many states across a

large-scale computing cluster. The overall framework consists

of the Kraken core and modules. The Kraken core provides a

set of generic service engines that automate and control node

states. The Kraken modules are a counterpart of the Kraken

core and implement specific node management functions. The

modules can perform functionalities, including the discovery

of states, states’ mutations, or both. By design, Kraken works

in a parent and child manner (the term parent is synonymous

to master). The Parent and Child Krakens communicate via a

UDP protocol. They are identical and instances of the same

codebase; however, various Kraken modules can be enabled

and executed in the context of either parent or child. The

Parent Kraken is deployed if it runs on a central node, whereas

the Child Kraken is deployed if it runs locally on each node in

the cluster. The state mutations or state discoveries can either

run in the context of the Child or Parent Kraken, but not in the

context of both simultaneously. To assist in understanding the

proposed design, we further explain three key terms frequently

used in Kraken-based design. First, a configured state refers

to the configuration data, which describes the desired state of

the node. The configuration state data is injected into Kraken

at the deployment time. Second, a discovery state is an actual

state of the node as monitored by Kraken in real-time. Third,

a state mutation is a mechanism to control the state. It is a

transition from one state to another, to achieve the configured

(desired) state.

Kraken monitors CPU thermal and CPU frequency states

and performs related mutations in a real-time manner using

CPU thermal state discovery, CPU frequency scaling state

discovery, CPU thermal state mutation, and CPU frequency

scaling state mutation functions, which are described below.

B. CPU Thermal State Discovery

The CPU thermal state is an indicator of the inten-

sity of CPU temperature. The CPU temperature is moni-

tored in a real-time manner and the temperature is catego-

rized as either CPU_TEMP_NORMAL, CPU_TEMP_HIGH or

CPU_TEMP_CRITICAL thermal state, based on the lower and

upper thresholds of those thermal states as shown in Fig. 3.
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Fig. 3: Characterization of Thermal States

HostThermalDiscovery
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HostThermalDiscovery

HostFrequencyScaling

Node n (Child Kraken)

HPC Cluster

HostThermalDiscovery

HostFrequencyScaling

Node (Parent Kraken)

Kraken API

Fig. 4: In-band CPU Thermal Control Model

The temperature monitoring can be performed through in-band

or out-of-band models.

1) In-band CPU Thermal State Discovery: An in-band

CPU thermal state discovery involves accessing temperature

information through the operating system (OS) of the node.

The overall in-band thermal state discovery involves the Parent

Kraken on a central node and the Child Kraken and the

HostThermalDiscovery module [19] on each node as depicted

in Fig. 4. The Child Kraken using the HostThermalDiscovery

module discovers the CPU thermal state. Fig. 5 shows the CPU

thermal state discovery process, which includes three major

steps: 1) acquisition of CPU temperature, 2) determination of

the CPU thermal state, and 3) generation of the thermal state

discovery event to the Kraken core. The CPU temperature

is acquired by reading the CPU thermal sensor using a

generic OS routine or sensor-specific interface. The module

keeps track of the previously acquired CPU temperature and

performs steps 2 and 3 when the CPU temperature changes.

Lastly, a thermal state discovery event is generated when

the CPU temperature changes. The Child Kraken periodically

synchronizes its thermal state with the Parent Kraken.

2) Out-of-Band CPU Thermal Discovery: An out-of-band

(OOB) CPU thermal state discovery comprises accessing

CPU temperature remotely via the baseboard management

controller (BMC) without OS support. The OOB commu-

nication is performed through the BMC using the out-of-

band protocols, such as the intelligent platform management

interface (IPMI) [20] or the DMTF Redfish API [21]. The

Redfish API is a RESTful standard interface used to manage

the data center infrastructure. The API is specified in terms

of a standard, machine-readable schema, with the payload of

the messages being expressed in JavaScript Object Notation.

Hojati, et al. [22] is a study based on the advantages of

Redfish [23] to calculate energy efficiency and performance of

equipment in data centers. We used Redfish API to perform

OOB thermal discovery. The CPU thermal state discovery us-

Node (Parent Kraken) HostFrequencyScaling

Node (Child Kraken)

CPU
Temp. 

1

Temp>=98 implies CPU_TEMP_CRITICAL

92<Temp<98 implies CPU_TEMP_HIGH 

Temp<93 implies CPU_TEMP_NORMAL

Thermal Discovery

2

3

Sync

HostThermalDiscovery

1

Fig. 5: In-band CPU Thermal Discovery

HPC Cluster

Node 1 

BMC (Redfish API)

Node n

BMC (Redfish API)

RFThermalDiscovery
RFThermalDiscovery

RFAggregator

Node 2 

BMC (Redfish API)

Node 3 

BMC (Redfish API)

Node (Parent Kraken)

Fig. 6: Out-of-band Temperature Control Model

ing the OOB paradigm requires RFThermalDiscovery module

[19] and the Redfish Aggregator (RFAggregator) on the Parent

Kraken. The RFThermalDiscovery module interacts with the

remote Redfish-enabled BMCs to acquire CPU temperature

using Redfish via the RFAggregator. The CPU temperature

acquisition setup is shown in Fig. 6. The RFThermalDiscovery

module in the Parent Kraken periodically initiates the Redfish

group request via the RFAggregator for the acquisition of the

CPU temperature from a group of BMCs. The RFAggregator

fans out the Redfish API request to the individual Redfish-

enabled BMCs. The BMC reads the CPU thermal sensor and

sends the response to the RFAggregator. The RFAggregator

then combines individual responses into a single aggregated

response. The RFAggregator sends the aggregated response to

the RFThermalDiscovery module in the Parent Kraken. The

module compares the current CPU temperature with the pre-

viously acquired CPU temperature. As the CPU temperature

changes, the module determines the CPU thermal state and

generates the thermal state discovery event to the Kraken core.
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Fig. 7: Out-of-band CPU Thermal Discovery
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Fig. 8: CPU Frequency Scaling Procedure

Fig. 7 shows the major steps related to the discovery of the

CPU thermal state via OOB.

C. CPU Frequency Scaling State Discovery

The CPU frequency scaling state corresponds to a generic

CPU frequency scaling governor in the Linux CPUFreq

subSystem [24]. In this study, we used POWER_SAVE

and PERFORMANCE as CPU frequency scaling states. The

POWER_SAVE and PERFORMANCE states correspond to the

selection of the lowest CPU clock frequency and the highest

CPU clock frequency, respectively. The Child Kraken discov-

ers the CPU frequency scaling state of the node using the

HostFrequencyScaling module [19] as shown in Fig. 8. The

HostFrequencyScaling module periodically reads the current

CPU frequency scaling state and compares it with the previous

CPU frequency scaling state. In the event that the CPU

frequency scaling state is changed, the module generates a

CPU frequency scaling state discovery event to the Kraken

core.

D. State Diagram of CPU Thermal Mutations

We designed a state diagram of Thermal Mutations.

The CPU Thermal State Mutation allows Kraken to con-

trol CPU thermal state. When the CPU thermal state is

CPU_TEMP_HIGH or CPU_TEMP_CRITICAL, CPU thermal

state mutations provide a mechanism to revert to the de-

sired CPU thermal state (i.e., CPU_TEMP_NORMAL). When

a CPU_TEMP_NORMAL state is discovered, no thermal state

mutation is performed. When the discovered thermal state is

Fig. 9: State Diagram of CPU Thermal Mutations

Fig. 10: State Diagram of CPU Frequency Scaling Mutations

not the same as the desired thermal state, a corresponding mu-

tation is performed. The possible CPU thermal state mutations

are shown in Fig. 9.

E. State Diagram of CPU Frequency Scaling Mutations

We designed a state diagram of CPU Frequency Scaling

Mutations. The CPU frequency scaling state mutations enable

scaling up or down the CPU operating frequency. The CPU

frequency scaling state can be mutated from POWER_SAVE to

PERFORMANCE and vice versa. These mutations are governed

by real-time CPU thermal states. Fig. 10 shows the possible

CPU frequency scaling state mutations. The Child Kraken

mutates CPU frequency scaling states locally using the Host-

FrequencyScaling module [19] as depicted in Fig. 8. When

the Kraken core receives a CPU thermal state discovery event,

a CPU frequency scaling state discovery event, or both, the

Kraken core computes a CPU frequency scaling state mutation

path corresponding to the received discovery event(s). The

Kraken core signals the HostFrequencyScaling module to

handle the mutation, which mutates the CPU frequency scaling

state by changing the CPU frequency. The Child Kraken

periodically synchronizes its state to the Parent Kraken.

IV. REFERENCE IMPLEMENTATION

This section describes an example implementation of the

automated dynamic thermal control design (section III). It

illustrates the experimental setup, software implementation,

and the Kraken dashboard that visualizes the cluster.

A. Experimental Setup

Hardware Setup: The hardware infrastructure includes a

cluster of 150 Raspberry Pi3 nodes, one master node, and a

fan. This arrangement is intended to emulate an HPC data

center. Table I provides information related to the hardware

involved in this implementation. System Software: The mas-

ter node and Raspberry Pi3 nodes used CentOS 7.6 and u-

root, respectively. u-root is a root file system, which packages

firmware images along with Linux Kernel and other binaries

as a single root binary [25].
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TABLE I: Hardware Specifications

Master Node Specifications:

CPU 2 x 4 cores AMD Opteron™ 6100, x GHz

RAM 23 GB DDR3

STORAGE 2TB HDD

NETWORK 1Gbit/s, Broadcom NetXtreme II

Raspberry Pi 3 Node Specifications:

SoC Broadcom BCM2837

CPU 4× ARM Cortex-A53, 1.2 GHz

RAM 1GB LPDDR2, 900 MHz

NETWORK 10/100M Ethernet

B. Software Stack

The Kraken and relevant Kraken modules are used in the re-

alization of automated thermal control. Kraken Framework:

It consists of the Parent Kraken and the Child Kraken, which

are exactly the same binary image and identify themselves

as either the parent or the child at the Kraken launch time.

The Parent Kraken runs on the master node and the Pi3 nodes

acquire the Child Kraken image (u-root) via Preboot Execution

Environment (PXE). Kraken Modules: The implementation

requires the following modules:

a) pipxe: Provides PXE-boot capabilities for Raspberry Pi3

nodes.

b) rfpipower: Emulates Redfish power control capabilities.

Powers on and off the Raspberry Pi3 nodes remotely.

c) cpuburn: Induces load and stresses the Raspberry Pi3

nodes.

d) RFAggregator: Emulates and handles the Redfish group

requests.

e) RFThermalDiscovery: Emulates the Redfish API to mon-

itor CPU temperature of the Raspberry Pi3 nodes using

RFAggregator.

f) HostThermalDiscovery: Performs CPU temperature mon-

itoring of the Raspberry Pi3 nodes through the in-

band mechanism. It reads temperature from a thermal

sensor located at /sys/devices/virtual/thermal/thermal\
zone0/temp/. The sections HostThermalDiscovery Mod-

ule Configuration and HostThermal Extension Configu-

ration in Table II describe the node and cluster level

configurations, respectively.

g) HostFrequencyScaling: Makes use of DVFS to scale up

or scale down CPU frequency to control CPU temperature

and CPU performance. The HostFrequencyScaling mod-

ule accesses different CPUFreq objects available at/sys/

devices/system/cpu/cpufreq/policy0/. In particular, this

module adjusts scaling governor, scaling min freq, and

scaling max freq objects to mitigate the CPU thermal

and CPU performance requirements. Any change to these

objects causes the selection of new frequency scaling

governor. As a result, CPU is clocked to new frequency

dynamically via platform specific CPU frequency driver

(i.e. cpufreq-cpu0). The sections HostFrequencyScaling

Module Configuration and HostFrequencyScaler Exten-

sion Configuration in Table III describe the node and

cluster level configurations, respectively.

TABLE II: Thermal Configuration

HostThermalDiscovery Module Configuration:

Parameter Description

PollingInterval sampling rate at which temperature is collected from
Pi3 node. Its default value is 1 second.

TempSensorPath CPU temperature reading location. In Pi3
node, CPU temperature is available at
/sys/class/thermal/thermal zone0/temp.

LowerNormal lower temperature threshold for the
CPU_TEMP_NORMAL state. The default value
is 3°C (37.4°F)

UpperNormal upper temperature threshold for the
CPU_TEMP_NORMAL state. The default value
is 79°C (176°F)

LowerHigh lower temperature threshold for the
CPU_TEMP_HIGH state. The default value is
80°C (176°F)

UpperHigh upper temperature threshold for the
CPU_TEMP_HIGH state. The default value is
98°C (208.4°F)

LowerCritical lower temperature threshold for the
CPU_TEMP_CRITICAL state. The default value is
2°C (37.4°F)

UpperCritical upper temperature threshold for the
CPU_TEMP_CRITICAL. The default value is
99°C (208.4°F)

HostThermal Extension Configuration:

State This represents thermal state of CPU. It can
be CPU_TEMP_NORMAL, CPU_TEMP_HIGH, or
CPU_TEMP_CRITICAL. The desire (configuration)
thermal state is CPU_TEMP_NORMAL.

C. Kraken Dashboard

The Kraken dashboard provides different states of the nodes

in the cluster in realtime. Each box represents a node. The

four triangles and border of a node represent states. Fig. 11

shows the master and states of 150 compute nodes. The

border around each box and each of the four triangles within

the box represent node states. The CPU frequency scaling,

CPU temperature, PXE, runtime, and physical states and

their possible values are shown in the legend section (left).

As described in the legend, the border and upper triangle

represent the CPU thermal state and CPU frequency scaling

state, respectively. Overall, 139 nodes are in the desired

thermal (i.e., CPU_TEMP_NORMAL) and frequency scaling

(i.e., PERFORMANCE) states. One node is identified in an over-

heated thermal state (i.e., CPU_TEMP_HIGH) and is rightly

switched to POWER_SAVE frequency scaling state for healing

the CPU temperature. The remaining nodes are in the booting

process.

V. EXPERIMENTAL RESULTS

The results are described in three parts. First, maximum

attainable CPU temperatures for each CPU frequency scaling

state are analyzed. Second, the impact of scaling down CPU

frequency at different temperature configuration thresholds for

both CPU thermal and frequency scaling states are explored.

Third, temperature- and time-based strategies for healing an

overheated CPU is provided. All the following experiments

were conducted with a CPU load of 100% at a room temper-

ature of 30°C (86°F). An external fan was used to blow air

(at room temperature) on the Raspberry Pi3 nodes.
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TABLE III: CPU Frequency Scaling Configuration

HostFrequencyScaling Module Configuration:

Parameter Description

FreqSensorUrl CPU frequency objects location. In
Pi3 node, CPU frequency policy
and attributes are available at
/sys/devices/system/cpu/cpufreq/policy0/.

HighToLowScaler specifies which frequency scaling state to
use to switch from high to low performance.
Default value is powersave.

LowToHighScaler specifies which frequency scaling state to
use to switch from low to high performance.
Default value is performance.

TimeBoundThrottle
RetentionDuration

If TimeBoundThrottleRetention is activated,
this parameter defines time duration (in min-
utes) to keep CPU in throttling mode.

ThrottleRetention An option specifying whether or not to
enforce throttle retention.

TimeBoundThrottle
Retention

A boolean value that defines whether or not
to enforce time-based throttling.

ThermalBoundThrottle
Retention

A boolean value that defines whether or
not to enforce throttling based on a certain
temperature value.

ThermalBoundThrottle
RetentionThreshold

If ThermalBoundThrottleRetention is acti-
vated, this parameter defines thermal thresh-
old value (in Celsius).

ScalingGovernor This parameter defines the CPU frequency
scaler. Its default value is POWER_SAVE.

ScalingMinFreq This parameter defines the minimum CPU
frequency level (in MHz). Pi3 node mini-
mum frequency value is 600 MHz.

ScalingMaxFreq This parameter defines the maximum CPU
frequency level. Pi3 node maximum fre-
quency value is 1400 MHz.

HostFrequencyScaler Extension Configuration:

States This represents frequency scaling state
of CPU. It can be PERFORMANCE or
POWER_SAVE. The default configured state
is PERFORMANCE.

Fig. 11: Kraken dashboard

A. Maximum Attainable CPU Temperature for CPU Fre-

quency Scaling States

To devise a better thermal control using CPU frequency

scaling states, it is important to analyze and understand the

maximum attainable CPU temperature for each frequency scal-

ing state at room temperature. Fig. 12 depicts maximum CPU

temperatures observed for POWER_SAVE and PERFORMANCE

states. In the POWER_SAVE state, the CPU temperature in-

creased up to 72°C (161.6°F) after ∼20 minutes, while in the

PERFORMANCE state, it increased up to 86°C (186.8°F) after

∼10 minutes. This demonstrates that the CPU temperature can

not be reduced below 72°C (161.6°F) using POWER_SAVE

state when the CPU is running at 100% load.

B. Impact of CPU Temperature Thresholds on Temperature

and Frequency

The objective of these analyses is to understand the impact

of scaling down CPU frequency at different CPU temperature

thresholds on CPU temperature and frequency. As described

previously the CPU temperature can not be reduced below

72°C (161.6°F) when applying the POWER_SAVE state at

room temperature. However, the CPU thermal behavior is not

known when applying the POWER_SAVE state at different

temperature thresholds. Fig. 13 (a)-(h) shows variations in

CPU temperature and frequency when the CPU frequency is

scaled down at different CPU temperature thresholds, namely,

50°C (122°F), 55°C (131°F), 60°C (140°F), 65°C (149°F),

70°C (158°F), 75°C (167°F), 80°C (176°F), and 85°C (185°F).

These eight experiments were conducted to identify the best

temperature threshold for scaling down the CPU frequency,

which can provide more effective thermal control. Mathemat-

ically, the identified temperature threshold is the temperature

where the CPU thermal resistance is minimal (see Eq. 1).

Overall, the results demonstrated in Fig. 13 (a) - (h) provide

three patterns. First, when the CPU frequency scaling state

was scaled down from PERFORMANCE to POWER_SAVE in

the temperature threshold range of 50° to 65°C (122°F to

149°F), there were frequent switches between POWER_SAVE

and PERFORMANCE for an initial short interval. In other

words, when POWER_SAVE reduced the CPU temperature

below the threshold temperature, the CPU frequency scaling

state was changed to PERFORMANCE and when the CPU

temperature crossed the threshold temperature, the CPU fre-

quency scaling state was switched back to POWER_SAVE.

After a while, the frequency scaling state remained in

POWER_SAVE and the CPU temperature was accelerated

to ∼72°C (161.6°F) i.e., maximum attained temperature for

the POWER_SAVE state. Second, when the CPU frequency

scaling state was scaled down in the range of 70° to 75°C

(158°F to 167°F), there were frequent switches between

POWER_SAVE and PERFORMANCE, and the temperature was

∼72°C (161.6°F) for the whole duration. Third, when the

CPU frequency scaling state was scaled down in the range

of 80° to 85°C (176°F to 185°F), unlike the other two

patterns, there were fewer switches between POWER_SAVE

and PERFORMANCE. The CPU frequency scaling state mostly

remained in PERFORMANCE, and temperature increased be-

yond the thresholds (i.e., 80°C (176°F) or 85°C (185°F))

due to increased thermal resistance (i.e., temperature control

became less effective).

Fig. 14 shows the summary of the scaling down of CPU fre-

quency scaling state at eight different temperature thresholds.

Our empirical results indicated that temperature in the range

of 70° to 75°C (158° to 167°F) is the best CPU temperature

threshold to scale down the CPU frequency to reduce the CPU

temperature.
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Fig. 12: Maximum attainable CPU temperatures for POWERSAVE (left) and PERFORMANCE (right) states.

VI. RELATED WORK

The existing efforts related to CPU thermal control can be

grouped into two areas: a) mechanical-based thermal control

and b) software-based thermal control.

From the mechanical perspective, numerous cooling solu-

tions have been studied, including air cooling [26], [27]

and liquid cooling [28], [29]. These solutions are primarily

designed to provide efficient and dependable inlet temperature

control at the rack and room levels [30] by extricating the

heat generated by power consumption. This indirectly reduces

the CPU temperature without performance loss. While these

mechanical cooling solutions can handle room and rack level

temperature efficiently, they may not be responsive to possible

thermal violations on an individual CPU due to a compute-

intensive job.

Concerning the software-based thermal solutions, DVFS is

the widely used technique to control the CPU temperature.

This software-based component-level thermal control is help-

ful to handle the on-chip temperature. It allows the last-mile

control of the thermal issues not handled by the mechanical

level cooling solutions. Peluso et al. [31] analyzed the relation-

ship between the CPU temperature and the hyper-parameters

of the convolutional neural networks (CNN) using the DVFS

knob. In comparison to their work, our method specifically

addresses thermal violation for any CPU-intensive application.

Kim et al. [32] provided a temperature-aware DVFS scheme

for mobile devices. It estimates power and performance within

the mobile device thermal budget. In contrast, the strategies

proposed in our work effectively reduce the temperature of an

overheated CPU.

VII. CONCLUSIONS AND FUTURE WORK

Often, modern CPUs are prone to overheating in unfavor-

able thermal conditions, including compute-intensive work-

loads on CPU, cooling infrastructure failures, and usage of

economizers. Hence, an automated thermal state discovery

and healing of overheated CPUs in the data center setting

is highly desirable. This study has successfully shown the

automated healing of the CPU temperature of a node. This

implementation leverages state-of-the-art Kraken, which is an

HPC automation and control framework. Our methodology

discovers the CPU temperature using the DMTF Redfish API

and exerts thermal control utilizing the DVFS mechanism.

This methodology performs periodic discovery of the CPU

thermal state. It reverts the CPU temperature within a normal

temperature range of an overheated CPU by scaling down

its CPU frequency. Our method allows scaling up the CPU

frequency when the CPU thermal state is back to normal. This

methodology heals the transient overheating of a CPU mainly

caused by compute-intensive workloads or air economizers

that cannot provide sufficient cooling (due to high outside air

temperature). In case of CPU overheating due to fundamental

failures (cooling equipment power failure or malfunctioning),

this methodology increases ride-through time.

Further study and development are needed to cover more

thermal control use cases. First, more investigation is needed

to scale down the CPU frequency coherently to heal a node

involved in a group of nodes executing a message passing

interface (MPI) job. Second, we plan to perform a graceful

powering-off of a node when the CPU thermal state reaches

an irreversible critical level. Third, more study is needed to

integrate the proposed thermal control with other data center

infrastructure management solutions.
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(a) POWER_SAVE at 50°C. (b) POWER_SAVE at 55°C.

(c) POWER_SAVE at 60°C. (d) POWER_SAVE at 65°C.

(e) POWER_SAVE at 70°C. (f) POWER_SAVE at 75°C.

(g) POWER_SAVE at 80°C. (h) POWER_SAVE at 85°C.

Fig. 13: Variations in CPU temperature and frequency at different CPU temperature thresholds, namely, 50°C (122°F), 55°C

(131°F), 60°C (140°F), 65°C (149°F), 70°C (158°F), 75°C (167°F), 80°C (176°F), and 85°C (185°F).
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Fig. 14: Summary of scaling down of CPU frequency scaling

state at eight different temperature thresholds.
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