FlipDyn: A game of resource takeovers in dynamical systems

Sandeep Banik and Shaunak D. Bopardikar

Abstract— We introduce a game in which two players with
opposing objectives seek to repeatedly takeover a common
resource. The resource is modeled as a discrete time dynamical
system over which a player can gain control after spending a
state-dependent amount of energy at each time step. We use a
FlipIT-inspired deterministic model that governs which player is
in control at every time step. A player’s policy is the probability
with which it should spend energy to gain control of the resource
at a given time step. Our main results are three-fold. First, we
present analytic expressions for the cost-to-go as a function
of the hybrid state of the system, i.e., the physical state of
the dynamical system and the binary F1lipDyn state for any
general system with arbitrary costs. These expressions are exact
when the physical state is also discrete and has finite cardinality.
Second, for a continuous physical state with linear dynamics
and quadratic costs, we derive expressions for Nash equilibrium
(NE). For scalar physical states, we show that the NE depends
only on the parameters of the value function and costs, and is
independent of the state. Third, we derive an approximate value
function for higher dimensional linear systems with quadratic
costs. Finally, we illustrate our results through a numerical
study on the problem of controlling a linear system in a given
environment in the presence of an adversary.

I. INTRODUCTION

Rising automation, inexpensive computation and prolif-
eration of the Internet of Things have made cyber-physical
systems (CPS) ubiquitous in industrial control systems, home
automation, autonomous vehicles, smart grids and medical
devices [1], [2]. However, increased levels of connectivity
and ease of operations also make CPS vulnerable to cyber
and physical attacks [3], [4]. An adversarial takeover can
drive the system to undesirable states or can even perma-
nently damage the system causing disruption in services
and potential loss of lives. Therefore, it becomes imperative
to develop policies to continuously scan for adversarial
behavior while striking a balance between operating costs
and system integrity. This paper proposes an approach to
model and analyze the problem of resource takeovers in CPS.

As opposed to conventional adversaries perturbing the
states of the system (actuator attack) or measurements (in-
tegrity attack) [5], in this work an adversary completely takes
over a resource and can transmit arbitrary values originating
from the controlled resource.

There has been a lot of recent research into CPS security
in the controls community. The work in [6] focuses on
resilience against an adversary who can hijack and replace
the control signal while remaining undetected. This idea is
generalized in [7], [8] for any linear stochastic system to
determine its detectability, while quantifying performance
degradation. Reference [9] developed model-based observers
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to detect and isolate such stealthy deception attacks to
make water SCADA systems resilient. The authors in [10]
developed a secure estimator with a Kalman filter for CPS.

Game theory has also been extensively applied to model
CPS security problems. A two-player non-zero-sum game
with asymmetric information and resource constraints be-
tween a controller and a jammer was introduced in [11].
In [12], contract design was used at the physical layer to
ensure cloud security quality of service. Similarly, a two-
player dynamic game between a network designer and an
adversary is used to determine policies to keep the infrastruc-
ture networks of a CPS protected and enable recovery under
an attack [13]. A range of works in designing physical and
cyber security policies using game-theoretical frameworks
are presented in [14]. A non-cooperative game between a de-
fender (contractive controller) and an adversary (expanding
controller) was presented in [15], limited to finite and fixed
periods of control by each player. Covert attacks competing
against a contractive control subject to control and state
constraints were presented in [16].

The setup in this paper is inspired by the cybersecurity
game of stealthy takeover known as Fliplt [17]. FlipIT
is a two-player game between an adversary and defender
competing to control a shared resource such as a computing
device, virtual machine or a cloud service [18]. In [19],
FlipIT model is extended to a general framework of multiple
resource takeovers, termed as FlipThem, where an attacker
has to compromise all or only one resource to take over
the entire system. The FlipIT model has also been applied
to supervisory control and data acquisition (SCADA) [20]
system by deriving the probability distribution of time-to-
compromise the system and evaluating the impacts of insider
assistance for an adversary. Largely, the FlipIT setups have
been limited to a static system, i.e, the payoff does not
change over time. In this work, we model the takeover of
a dynamical system between an adversary and a defender.

In this paper, we assume that controller policies are known
and fixed for both the defender and an adversary. What is
not known are the time instants at which each player should
act to takeover the system. Thus, our set-up generalizes the
formulation considered in [15], [16] by explicitly attaching
state-dependent costs on each player.

The contributions of this paper are three-fold.

1. Game-theoretic modeling of dynamic resource
takeover: We model a two-player zero-sum game between
a defender and an adversary trying to takeover a dynamical
system (resource), termed as the F1ipDyn game. Given the
controllers used by each player, this model accounts for state-
dependent takeover costs subject to the system dynamics
when controlled by either player.

2. FlipDyn control for any general system: We charac-
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Fig. 1: (a) Closed-loop system with a Fliplt setup over the control
signal between the defender and adversarial control. (b) Sample
sequence of the FlipDyn game with the defender action and
takeover indicated by the blue circles and region, respectively. Sim-
ilarly, the adversary action and takeover time period are indicated
by the red circles and region, respectively.

[ Adversary dynamics: zx.1 = Fj (2x, wk)

terize the Nash equilibrium (NE) of the F1ipDyn game as
a function of both the continuous state of the system and the
binary F1ipDyn state. For finite cardinality of the physical
state and arbitrary takeover and stage costs, we obtain the
exact value and corresponding policies for the game.

3. NE for linear dynamical systems with quadratic
costs: We derive the NE for a linear dynamical system with
takeover and stage costs that are quadratic in the state. For
scalar systems, we show that the solutions are a function
of only the parameters of the system dynamics and costs.
For higher dimensional systems, we provide an approximate
solution for the value of the F1ipDyn game. We illustrate
our findings through two numerical examples.

The paper is organized as follows. In Section II, we
formally define the F1ipDyn game. We provide a solution
methodology for any general system with arbitrary state and
takeover costs in Section III. We present the analysis for lin-
ear systems with quadratic costs in Section I'V. In Section V,
we illustrate the efficacy of the solution applied to a linear-
time invariant system. We conclude this paper and provide
future directions in Section VI. Due to space limitations, we
have included all proofs in the online technical report [21].

II. PROBLEM FORMULATION

Consider a discrete-time dynamical system governed by

Xpr1 = FL (o, uy), )]

where k € N denotes the discrete time instant, x; € R" and
uxy € R™ are the state and control input of the system, re-
spectively, Fko :R" xR™ — R” is the state transition function.
We restrict our attention to a single adversary trying to gain
control of the dynamical system resource (1). In particular,
we assume the adversary to be located between the controller
and actuator, illustrated in Figure la. The inclusion of an
adversary modifies (1) resulting into

X1 = (1 — o) B (g, uge) + 0y (xie, wie),

where F! : R" x R? — R" is the state transition function
under the adversary’s control, w; € R” represents the attack
signal, and oy € {0,1} denotes a takeover of the control
signal by either the adversary (o = 1) or the defender (og =
0), termed as the F1ipDyn state. A takeover is mutually
exclusive, i.e., only one player is in control of the system at
any given time.

The control law for each player are pre-designed with
different objectives — a defender’s objective may be to
steer the state towards an equilibrium point. In contrast, the
adversary upon gaining access into the system, implements
an attack policy to ensure maximum divergence of the state
from the corresponding equilibrium point, while keeping the
state within any defined set. In particular, we assume that

up = Ki(x),  wi =Wi(x),

where K; and W, are specified state feedback control laws.
These lead to the following closed-loop evolution

Xt = (1— o) £ (x) + o f (), (2)

where f2(xy) := FQ(x, Ki(x)) and £l (x¢) := B! (xg, Wi (x)).

To describe a takeover mathematically, the action Oc,f S
{0,1} denotes the kth move of the player j € {0,1}, with
Jj =0 denoting the defender, and j =1 as the adversary. The
dynamics of this binary F11ipDyn state based on the player’s

move satisfies
OY_1,
o = .k 1>
Js

Equation (3) states that if both players act to obtain control
of the resource at the same time, then their actions get
nullified and F1ipDyn state remains unchanged. However,
if the resource is in control by one of the players and the
other player moves to gain control at time k+ 1 while the
first player does not exert control, then the F1ipDyn state
toggles. Finally, if a player is already in control and decides
to move while the other player remains inactive, then the
FlipDyn state is unchanged.

A sample instance over a finite time period is illustrated
in Figure 1b, where the defender has a control at time
k =0, followed by a takeover action at time k = 1 and 3.
The adversary takes over at time kK =5 under a no defense
action, and remains in control till time £ = 9, when the
defender takes back control. Additionally, notice at time
k =1, both the adversary and defender move to takeover, but
their actions are cancelled out and therefore, the F1ipDyn
state does not change, i.e, the adversary maintains control.

The state dynamics as a function of the binary F1ipDyn
state and the F1ipDyn dynamics are described by (2) and

e o1l 00
1f0ck'—ock,
: J
if oy =1.

3)

o1 = (00 + oy ) oy + (o + ), )

where any variable X := 1 —x. We pose the resource control
problem as a zero-sum dynamic game described by the
dynamics (2) and (4) over a finite time horizon of L, where
the defender aims to minimize a net cost given by,

L
T(x0, 00, {0t/ },{o)}) = Zg(x,) +od(x;) — awalx), (5)
=1
where g(x;) : R" — R represents the state regulation cost,
d(x;) and a(x;) are the instantaneous takeover costs for the
defender and adversary, respectively. The notation {af} =
{of,...,a}}. In contrast, the adversary aims to maximize
the cost function (5) leading to a zero-sum dynamic game,
defining our F'1ipDyn game.



We seek to find the NE of the game defined by (5).
However, a pure NE may not be guaranteed. For instance,
a one-step horizon problem results into solving a 2 x 2
matrix game, which need not admit a pure NE. To guarantee
existence of NE, we expand the set of player policies to
behavioral policies — probability distributions over the space
of discrete actions at each time step [22]. Specifically, let

yi = [Br 1*ﬁk}r7 %= % 1*?’k]T (6)

be a behavioral policy for the defender and adversary at time
instant &, such that f; € [0,1] and ¥ € [0, 1], respectively.
Thus, yi,zx € Ay, where A, is the probability simplex in
two dimensions. The cost (5) is considered in expectation
over the player policies. Over the finite horizon L, let
L = {)’1,)’2,~ . '7yL} € A% and L = {Z17Z27' "aZL} € AIZ be
the sequence of defender and adversary behavioral policies.
Thus, the expected outcome of the F1ipDyn game over the
finite horizon L is

JE('X07 a07yL7ZL) = E}’L,ZL [J(X()7 a07 {(Xfl}? {ato})L (7)

where the expectation is computed over the distributions yy,
and zr.. Specifically, we seek a saddle-point solution (yy ,zy,)
in the space of behavioral policies such that V(xp, o),

JE(.XO, (XO7yi:7ZL) S JE(-XOa aanfﬁZi) S JE('x07 aanL'Zi:)'

Together, the F1ipDyn game is completely defined by the
cost in (7) subject to the dynamics in (2) and (4).

III. FLzpDYN CONTROL FOR GENERAL SYSTEMS

In this section, we first compute NE for the F1ipDyn
game. We begin by defining the value function for the
FlipDyn game.

A. Value function

Our approach is to define a value function in each of the
two F1ipDyn states. Let V2(x) and V;! (x) be the two value
functions in state x at time instant k corresponding to the
FlipDyn state of @ =0 and 1, respectively. Then for o =0,
we have

VO (x) = gi(x) + i gk, ®)

where 32 € R?*2 ig the cost-to-go matrix, and the actions
of the defender (row player) and adversary (column player)
applied on Eg returns the value corresponding to the state at
time k4 1. This instantaneous payoff matrix has the form

co_ [ Ve, (R®) Vi (f () —a(x) ©)
VR @) ) VI (R ) +d(x) —a(x)]”

The matrix entries corresponding to 32 are determined using
the F1ipDyn dynamics (2) and (4). 32(1,1) corresponds
to both the defender and adversary staying idle. Similarly,
E2(2,2) corresponds to the action of takeover by both the
defender and adversary. The off-diagonal entries correspond
to a player taking over the resource. We observe that the
actions of the defender and adversary couple the value
functions in each F1ipDyn state V,? and Vkl.

The value function Vk1 for the F1ipDyn state & = 1, and
its corresponding cost-to-go matrix E,l is

Vi (x) = gu(x) + i Ejz, (10)

1_
=

Vil (i () Vi (fl () —alx)
Vi l((}ll?(x])c) +d(x) Vk1+1k(}/1<1 (xl)c) +d(x) —a(x) 1

B. Expected Value of the F1ipDyn game

In each Fl1ipDyn state (¢ = {0,1}), the corresponding
cost-to-go matrix defines a one-step zero-sum game with
the defender aiming to minimize the value function, and
the adversary trying to maximize the same. When a row or
column domination [22] exists, it leads to a pure policy for
at least one player. However, we first show that this game
does not admit dominated policies in the following result.

Lemma 1 For any k € N, there is no pure policy equilibrium
for the one-step zero-sum games defined by the matrices 52
and E,l under the condition

Vi (i () > Vi () () + max{d (x),a(x) },

Please refer to [21] for the proof.

12)

The analysis of Lemma 1, particularly (12) provides a
condition for a mixed policy NE of the one-step game. Using
this condition, we recursively derive the (mixed) value at any
time instant k for each binary F1ipDyn state as summarized
in Theorem 1.

Theorem 1 Given the cost-to-go matrices (9) and (11) for
oy =0 and 1, respectively, the value of the state x at time k
satisfies,

VO() = g(x) +d(x) + V0, (F2(2) m (13)
Ve () = g(x) —al@) + Vs (F00) + w (14)
where Vi1 (x) ==V, (i (x)) — Vkole (R(x)). O

Given any zero-sum game matrix with no row or column
domination, the unique mixed policy of the row and column
player and the value of the game can be found in [23] with
the complete proof in [21]

For a finite cardinality of the state x and a finite horizon
L, Theorem 1 yields an exact value of the state and saddle
point of the F1ipDyn game. However, the computational
and storage complexity scales undesirably for continuous
state spaces. For this purpose, we will provide a parametric
form of the value function for the case of linear dynamics
with quadratic costs in the next section.

IV. FLnipDyN CONTROL FOR LQ PROBLEMS

For linear dynamics and quadratic costs, we split our anal-
ysis into two cases, a 1-dimensional and an n-dimensional
system. The F1ipDyn setup (2) reduces to

X1 = Fix 4 (1 — 04 ) Brug + o Biwy, (15)

where F, € R"*" is the state transition matrix, By € R is
the control matrix.

It has been shown in [24] that the optimal control law
for any linear time system is achieved using state-feedback



information. Therefore, in this work, we will assume a state-
feedback controller for both players of the form

uy = —Kyx, wy = Wix, (16)

where K € R™" W, € R™" are possibly time varying
matrices denoting the defender’s and adversary’s control
gains, respectively. We will now simplify the recursive
equations (13) and (14) under the following assumed costs.

Assumption 1 (Quadratic state-dependent costs) The
stage and takeover costs for each player satisfy
g(x)=xTQx, d(x)=x"Dx, a(x)=x"Ax,

where Q,D and A are given positive definite matrices.

a7

Under Assumption 1, the recursions in (13) and (14) yield

TDxxTA
vko(x):xT(Q+D)x+v£+1(f£(x))—% (18)

+

TDxxTA
w%w:x%QfAn+wLmﬁ@»+f@{%§i (19)

Jr

where V., {(x) has been defined in Theorem 1.
Assuming a parametric form for the value function corre-
sponding to &« =0 and 1 as,

V2(x) == x"Blx, V!(x):=x"PBlx,

where P,? and Pk1 are positive semi-definite matrices corre-
sponding to the F1ipDyn states & = 0 and 1, respectively.
Therefore, the value function (18) and (19) under this para-
metric form satisfy

T T
~ x' Dxx' Ax
Vko(x)=xT(Q+D+§,{P,?+lBk)x—~7, (20)
xT Ppyix
T T
~ ~ x' Dxx" Ax
Vi) =x"(Q-A+ WPl Wix+—=——, (1)

X Pyix

where VZ{ = (F +1?1{Wk)7§k := (Fy — ByK}) and E{+] =
WkTPk1 1 Wk fB,{P,? "t 1Br. This quadratic form yields the fol-
lowing expressions for the mixed policies of each player at

time k as summarized in the following result.

Corollary 1 For the linear dynamics (15) and affine con-
trols (16), under Assumption 1 the players’ policies satisfy

Va0 = [Br) 1-Br )" (22)
G @ =[1-7) FW]" (23)

Zog=0%) = 1= Zg =1 (%), Yijom1 () = 1 = g0 (%),
where,
TAx

A X
Bi=—=—

g 7
xT Peyyx

. xI'Dx
1—-f; = =
X! Peyix
The terms y,’;l ” and z;:‘ @ correspond to the defender’s and

adversary’s policy for the F1ipDyn state 0y at time k,
respectively. O

Substituting B from (22) in (20), and 1— 7y from (23)
in (21), we obtain the following form,

V() =x"(Q+D+B" P, B)x—x" Dx(B (), (24)

V() = (Q - A+ WTBL W)+ Ax(1 - 5 (x). (25)

We observe that both (24) and (25) are nonlinear in x.
Therefore, a quadratic parameterization cannot necessarily
represent the value function with quadratic costs. However,
we show that for a scalar system (1-dimensional), this
parameterization is sufficient.

1) Scalar/1-dimensional system: The state, defense and
attack costs for a scalar system simplify to

g(x) =gx?, d(x)=dx*, a(x)=ax’ (26)

where g,d and a are positive constants and x € R. The
following result provides a closed-form expression for the
NE of the F1ipDyn game and the corresponding value of
the state at time instant k.

Theorem 2 The unique mixed Nash equilibrium at any time
k for the F1ipDyn state of o4 =0 for a scalar system with
costs (26) and dynamics (15) is given by,

_ T
a Pi+1—a

== —_— 27

Ykloy=0 [Pk+1 Pt 1 ]

P — [f”‘“_d d]T. (28)

Kloy =0 Pri1 Pir1

The saddle-point value at time instant k is parameterized by,

da
pE:g+(Fk—BkKk)2p2+1+d—ﬁ : (29)

k+1
where Piy1 = (Fk +Bka)2p11+1 — (Fk _BkKk)2p2+1-
Similarly, for the F1ipDyn state of oy = 1, the unique
Nash equilibrium at time k is,

- T
Pit1—a a
Hoel = |—— = | (30)
Velay=1 [ Prt1 Pk+1]
d  prs—d]’
Hlam = [ B £ } (1)
Pi+1 Pi+1
The saddle-point value at time k is parameterized by,
1 R da
Pi = &+ (Fi+BiWi) Pryy —a+ Benr’ (32)
+

such that (recursively) p) > 0 and (Fe+BWi)*p)., > (Fe —
BiKy)?*pY, | +max{d,a}, hold Vk € N. O

Proof: [Sketch] Beginning with the cost at terminal time
L and substituting (26) in Corollary 1, we obtain (27), (28)
and (29). The details of the proof are found in [21]. [}

Observe that the policy for the F1ipDyn state o = 1
is complementary to the policy corresponding to @ = 0
indicating the need to compute the policy for any one of



the F1ipDyn states. Using Theorem 2, the saddle points of
the F1ipDyn game for @ =0 and 1 are,

Je(x,0,1,21) =xTpdx,  Je(x,1,y1,70) =xTpix.  (33)

Thus, we have obtained an exact solution for the I-
dimensional system with the parameterized value function
and the player policies for both the F1ipDyn states. Next,
we extend this approach to derive an approximate solution
for an n-dimensional system.

2) n-dimensional system: To address the nonlinearity of
the value function, we first introduce an approximation that
will enable recursive computation of the parameters defining
the value function, thus making it independent of the state.

Theorem 3 At any time instant k € N, LAmder Assumption 1,
suppose that the nonlinear terms x Dx 3 (x) and xT Ax (1 —
Yi(x)) in (24) and in (25) can be upper bounded by a
common quadratic form in the state, i.e.,

(x"Dx) B (x) < x"D(Py) ' Ax, (34)
(x"Ax) (1= 9 (x)) < X" D(Piy1)'Ax, (35)

wherg Fk-&-l = WkTP]<1+1Wk — E{P]?+1§k, Wk = (Fk +Bka)
and Bk = (Fk —BkKk).

Then, the value functions corresponding to each F1ipDyn
state are given by V(x) :=xT P0x, V}!(x) := xTPlx, where
the matrices P,? and Pk1 are chosen to satisfy

P} 2 Q+D+B{P, B~ DP\A,
Pl = Q—A+W/!Pl,\W.+DP_\A.

Proof: [Sketch] Similar to the scalar case of substituting
(34) and (35) into (24) and (25), respectively. Details of the
proof are be found in [21]. ]

The next result shows that conditions (34) and (35) do
hold for a special class of matrices A and D.

Proposition 1 Conditions (34) and (35) hold for any posi-
tive definite matrix Py if

A=al, and D=dI, for any a,d > 0.

Please refer to [21] for the detailed proof.

Theorem 3 enables a recursive computation for an approx-
imate value function independently of the state as,

P =Q+D+B[ P, |B—DPF\A, (36)
Bl = Q- A+ W[ B, Wi+ DP\A, (37

Whel’E 15](_,_1 = WkTPlierk — §£ﬁ1<0+1gk7 Wk = (Fk +Bka)
and By := (F; — BiK}) such that

Pk-H > A and Pk_'_]%D, VkE{l,z,...,L}.
We initialize the parameterized value function at the terminal
time instant L as,

’ O+D+ul,

if A= D,

38
otherwise , (38)

where U is a constant.

Remark 1 Given an initial state xo, we can create a game
tree in an extensive form [22] and compute the policy
for each player at every stage k € {1,2,...,L}. However,
the memory requirement for such an extensive form scales
exponentially in the horizon length. The memory requirement
is 4°2L and the number of zero-sum games to be solved is
AL=12L Iy contrast, the approximation (36) and (37) has a
memory requirement of 4L and L number of zero-sum game
evaluation for the entire state space.

V. NUMERICAL EVALUATION

In this section, we will evaluate our analytic results on
a linear time-invariant system (LTI) with a linear quadratic
regulator (LQR) control law used by the defender. Without
any loss of generality, we make the following assumption.

Assumption 2 The system is under the defender’s control
at time k=0, i.e, ap:=0.

Assumption 2 is only for convenience and is reasonable to
expect that the system designer would have complete control
of the system upon initialization.

We will now specify the parameters of the FlipDyn
game. The dynamical system is assumed to be given by

K@) = (F=BK)x,  fi () = (F+BW)xe = Faxy,

where we have assumed that the adversary’s control gain
W, =W =0,Vke{1,2,...,L}, i.e., the adversary applies zero
control input commands deterring or deviating the state from
reaching its equilibrium state. We use a double integrator
dynamics (n=2) of the form

7 2
) = ( {jof ﬂ - [O'SAA ] K>xkv fi (w) = Fa,
—— N —
F B

where A > 0 is the sample time. The system represents a
second order system with acceleration as the control input.
We obtain the defender’s gain K using the LQR method. We
solve the approximate parameterized value function matrices
(P,?,P,(I,Vk € {1,...,L}) for both FlipDyn states over a
horizon length L = 100. The minimum eigenvalue of the
value function matrices are shown in Figures 2a and 2c,
corresponding to 7 :=0.99 and f := 1.01, respectively.

We observe a trend of converging coefficients when f <
1, i.e., the system remains bounded upon lack of control,
whereas the coefficients diverge for f > 1 indicating a large
incentive for an adversary in the initial time instants of
the F1ipDyn game. Since the player policies for the n-
dimensional case are functions of state, and the F1ipDyn
state is a random variable, the attack and defense policies
averaged over 500 independent simulations for f :=0.99 and
f :=1.01 are shown in Figures 2b and 2d, respectively, with
the initial state xop = [0 1] " We observe a dynamic policy
over the horizon length for the case of f:=0.99, and a
converging pure policy for £ :=1.01 for the F1ipDyn state
a =0, respectively. The converging pure policy for f:=1.01
is reflective of the ever increasing value of the adversary over
the horizon length.
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Fig. 2: (a) Minimum eigenvalue of the parameterized semi-definite value function matrices, A,(£°) and A, (P') for a bounded (f < 1)
n-dimensional system. (b) Attack and defense policies corresponding to the value function in Figure 2a for the given set of state, defense
and attack costs. (c) Minimum eigenvalue of the parameterized semi-definite value function matrices, A,(P°) and A, (P!) for an unbounded
(f > 1) n-dimensional system. (d) Attack and defense policies for the value function from Figure 2c given the F1ipDyn state o = 0.

VI. CONCLUSION AND FUTURE DIRECTIONS

We introduced a resource takeover game between a de-
fender and an adversary, in which the resource represents
the control input signals of a dynamical system. We posed
the takeover problem as a zero-sum two-player game over a
finite time period, inspired by the well-studied FlipIT model.
The payoffs for our F1ipDyn game are modeled as state-
dependent costs incurred by both the defender and adversary.
We computed for the policy of each player, i.e., at what time
instances should a player choose to takeover the resource. We
derived the value of the physical state for a given F1ipDyn
state for any general system. In particular, we derived closed-
form expressions for linear dynamical system leading to
an exact value function computation for the 1-dimensional
case, and an approximate value function for n-dimensional
systems. Finally, we illustrate the results of the FlipDyn game
on numerical examples and comment on the recovery of such
a setup from loss of control.

Our current work relies on full state observability of
even the FlipDyn state. In future works, we will infer
the F1ipDyn state of the system. We also plan to include
bounded process and measurement noise and evaluate its
impact on the policy of the F1ipDyn game. Finally, we
will compare the existing solution against a learning-based
method for general systems and costs.
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