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AbstractÐ We introduce a game in which two players with
opposing objectives seek to repeatedly takeover a common
resource. The resource is modeled as a discrete time dynamical
system over which a player can gain control after spending a
state-dependent amount of energy at each time step. We use a
FlipIT-inspired deterministic model that governs which player is
in control at every time step. A player’s policy is the probability
with which it should spend energy to gain control of the resource
at a given time step. Our main results are three-fold. First, we
present analytic expressions for the cost-to-go as a function
of the hybrid state of the system, i.e., the physical state of
the dynamical system and the binary FlipDyn state for any
general system with arbitrary costs. These expressions are exact
when the physical state is also discrete and has finite cardinality.
Second, for a continuous physical state with linear dynamics
and quadratic costs, we derive expressions for Nash equilibrium
(NE). For scalar physical states, we show that the NE depends
only on the parameters of the value function and costs, and is
independent of the state. Third, we derive an approximate value
function for higher dimensional linear systems with quadratic
costs. Finally, we illustrate our results through a numerical
study on the problem of controlling a linear system in a given
environment in the presence of an adversary.

I. INTRODUCTION

Rising automation, inexpensive computation and prolif-

eration of the Internet of Things have made cyber-physical

systems (CPS) ubiquitous in industrial control systems, home

automation, autonomous vehicles, smart grids and medical

devices [1], [2]. However, increased levels of connectivity

and ease of operations also make CPS vulnerable to cyber

and physical attacks [3], [4]. An adversarial takeover can

drive the system to undesirable states or can even perma-

nently damage the system causing disruption in services

and potential loss of lives. Therefore, it becomes imperative

to develop policies to continuously scan for adversarial

behavior while striking a balance between operating costs

and system integrity. This paper proposes an approach to

model and analyze the problem of resource takeovers in CPS.

As opposed to conventional adversaries perturbing the

states of the system (actuator attack) or measurements (in-

tegrity attack) [5], in this work an adversary completely takes

over a resource and can transmit arbitrary values originating

from the controlled resource.

There has been a lot of recent research into CPS security

in the controls community. The work in [6] focuses on

resilience against an adversary who can hijack and replace

the control signal while remaining undetected. This idea is

generalized in [7], [8] for any linear stochastic system to

determine its detectability, while quantifying performance

degradation. Reference [9] developed model-based observers
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to detect and isolate such stealthy deception attacks to

make water SCADA systems resilient. The authors in [10]

developed a secure estimator with a Kalman filter for CPS.

Game theory has also been extensively applied to model

CPS security problems. A two-player non-zero-sum game

with asymmetric information and resource constraints be-

tween a controller and a jammer was introduced in [11].

In [12], contract design was used at the physical layer to

ensure cloud security quality of service. Similarly, a two-

player dynamic game between a network designer and an

adversary is used to determine policies to keep the infrastruc-

ture networks of a CPS protected and enable recovery under

an attack [13]. A range of works in designing physical and

cyber security policies using game-theoretical frameworks

are presented in [14]. A non-cooperative game between a de-

fender (contractive controller) and an adversary (expanding

controller) was presented in [15], limited to finite and fixed

periods of control by each player. Covert attacks competing

against a contractive control subject to control and state

constraints were presented in [16].

The setup in this paper is inspired by the cybersecurity

game of stealthy takeover known as FlipIt [17]. FlipIT

is a two-player game between an adversary and defender

competing to control a shared resource such as a computing

device, virtual machine or a cloud service [18]. In [19],

FlipIT model is extended to a general framework of multiple

resource takeovers, termed as FlipThem, where an attacker

has to compromise all or only one resource to take over

the entire system. The FlipIT model has also been applied

to supervisory control and data acquisition (SCADA) [20]

system by deriving the probability distribution of time-to-

compromise the system and evaluating the impacts of insider

assistance for an adversary. Largely, the FlipIT setups have

been limited to a static system, i.e, the payoff does not

change over time. In this work, we model the takeover of

a dynamical system between an adversary and a defender.

In this paper, we assume that controller policies are known

and fixed for both the defender and an adversary. What is

not known are the time instants at which each player should

act to takeover the system. Thus, our set-up generalizes the

formulation considered in [15], [16] by explicitly attaching

state-dependent costs on each player.

The contributions of this paper are three-fold.

1. Game-theoretic modeling of dynamic resource

takeover: We model a two-player zero-sum game between

a defender and an adversary trying to takeover a dynamical

system (resource), termed as the FlipDyn game. Given the

controllers used by each player, this model accounts for state-

dependent takeover costs subject to the system dynamics

when controlled by either player.

2. FlipDyn control for any general system: We charac-





We seek to find the NE of the game defined by (5).

However, a pure NE may not be guaranteed. For instance,

a one-step horizon problem results into solving a 2 × 2

matrix game, which need not admit a pure NE. To guarantee

existence of NE, we expand the set of player policies to

behavioral policies ± probability distributions over the space

of discrete actions at each time step [22]. Specifically, let

yk =
[
βk 1−βk

]T
, zk =

[
γk 1− γk

]T
(6)

be a behavioral policy for the defender and adversary at time

instant k, such that βk ∈ [0,1] and γk ∈ [0,1], respectively.

Thus, yk,zk ∈ ∆2, where ∆2 is the probability simplex in

two dimensions. The cost (5) is considered in expectation

over the player policies. Over the finite horizon L, let

yL = {y1,y2, . . . ,yL} ∈ ∆
L
2 and zL = {z1,z2, . . . ,zL} ∈ ∆

L
2 be

the sequence of defender and adversary behavioral policies.

Thus, the expected outcome of the FlipDyn game over the

finite horizon L is

JE(x0,α0,yL,zL) := EyL,zL
[J(x0,α0,{α1

t },{α0
t })], (7)

where the expectation is computed over the distributions yL

and zL. Specifically, we seek a saddle-point solution (y∗L,z
∗
L)

in the space of behavioral policies such that ∀(x0,α0),

JE(x0,α0,y
∗
L,zL)≤ JE(x0,α0,y

∗
L,z

∗
L)≤ JE(x0,α0,yL.z

∗
L).

Together, the FlipDyn game is completely defined by the

cost in (7) subject to the dynamics in (2) and (4).

III. FLIPDYN CONTROL FOR GENERAL SYSTEMS

In this section, we first compute NE for the FlipDyn

game. We begin by defining the value function for the

FlipDyn game.

A. Value function

Our approach is to define a value function in each of the

two FlipDyn states. Let V 0
k (x) and V 1

k (x) be the two value

functions in state x at time instant k corresponding to the

FlipDyn state of α = 0 and 1, respectively. Then for α = 0,

we have

V 0
k (x) = gk(x)+ yT

k Ξ
0
kzk, (8)

where Ξ
0
k ∈ R

2×2 is the cost-to-go matrix, and the actions

of the defender (row player) and adversary (column player)

applied on Ξ
0
k returns the value corresponding to the state at

time k+1. This instantaneous payoff matrix has the form

Ξ
0
k=

[
V 0

k+1( f 0
k (x)) V 1

k+1( f 1
k (x))−a(x)

V 0
k+1( f 0

k (x))+d(x) V 0
k+1( f 0

k (x))+d(x)−a(x)

]
.(9)

The matrix entries corresponding to Ξ
0
k are determined using

the FlipDyn dynamics (2) and (4). Ξ
0
k(1,1) corresponds

to both the defender and adversary staying idle. Similarly,

Ξ
0
k(2,2) corresponds to the action of takeover by both the

defender and adversary. The off-diagonal entries correspond

to a player taking over the resource. We observe that the

actions of the defender and adversary couple the value

functions in each FlipDyn state V 0
k and V 1

k .

The value function V 1
k for the FlipDyn state α = 1, and

its corresponding cost-to-go matrix Ξ
1
k is

V 1
k (x) = gk(x)+ yT

k Ξ
1
kzk, (10)

Ξ
1
k=

[
V 1

k+1

(
f 1
k (x)

)
V 1

k+1

(
f 1
k (x)

)
−a(x)

V 0
k+1

(
f 0
k (x)

)
+d(x) V 1

k+1

(
f 1
k (x)

)
+d(x)−a(x)

]
.(11)

B. Expected Value of the FlipDyn game

In each FlipDyn state (α = {0,1}), the corresponding

cost-to-go matrix defines a one-step zero-sum game with

the defender aiming to minimize the value function, and

the adversary trying to maximize the same. When a row or

column domination [22] exists, it leads to a pure policy for

at least one player. However, we first show that this game

does not admit dominated policies in the following result.

Lemma 1 For any k ∈N, there is no pure policy equilibrium

for the one-step zero-sum games defined by the matrices Ξ
0
k

and Ξ
1
k under the condition

V 1
k ( f 1

k (x))>V 0
k ( f 0

k (x))+max{d(x),a(x)}, (12)

Please refer to [21] for the proof.

The analysis of Lemma 1, particularly (12) provides a

condition for a mixed policy NE of the one-step game. Using

this condition, we recursively derive the (mixed) value at any

time instant k for each binary FlipDyn state as summarized

in Theorem 1.

Theorem 1 Given the cost-to-go matrices (9) and (11) for

αk = 0 and 1, respectively, the value of the state x at time k

satisfies,

V 0
k (x) = g(x)+d(x)+V 0

k+1( f 0
k (x))−

d(x)a(x)

Ṽk+1(x)
, (13)

V 1
k (x) = g(x)−a(x)+V 1

k+1( f 0
k (x))+

d(x)a(x)

Ṽk+1(x)
, (14)

where Ṽk+1(x) :=V 1
k+1( f 1

k (x))−V 0
k+1( f 0

k (x)). □

Given any zero-sum game matrix with no row or column

domination, the unique mixed policy of the row and column

player and the value of the game can be found in [23] with

the complete proof in [21]

For a finite cardinality of the state x and a finite horizon

L, Theorem 1 yields an exact value of the state and saddle

point of the FlipDyn game. However, the computational

and storage complexity scales undesirably for continuous

state spaces. For this purpose, we will provide a parametric

form of the value function for the case of linear dynamics

with quadratic costs in the next section.

IV. FLIPDYN CONTROL FOR LQ PROBLEMS

For linear dynamics and quadratic costs, we split our anal-

ysis into two cases, a 1-dimensional and an n-dimensional

system. The FlipDyn setup (2) reduces to

xk+1 = Fkxk +(1−αk)Bkuk +αkBkwk, (15)

where Fk ∈R
n×n is the state transition matrix, Bk ∈R

n×m is

the control matrix.

It has been shown in [24] that the optimal control law

for any linear time system is achieved using state-feedback



information. Therefore, in this work, we will assume a state-

feedback controller for both players of the form

uk =−Kkxk, wk =Wkxk, (16)

where Kk ∈ R
m×n,Wk ∈ R

m×n are possibly time varying

matrices denoting the defender’s and adversary’s control

gains, respectively. We will now simplify the recursive

equations (13) and (14) under the following assumed costs.

Assumption 1 (Quadratic state-dependent costs) The

stage and takeover costs for each player satisfy

g(x) = xT Qx, d(x) = xT Dx, a(x) = xT Ax, (17)

where Q,D and A are given positive definite matrices.

Under Assumption 1, the recursions in (13) and (14) yield

V 0
k (x) = xT (Q+D)x+V 0

k+1( f 0
k (x))−

xT DxxT Ax

Ṽk+1(x)
(18)

V 1
k (x) = xT (Q−A)x+V 1

k+1( f 1
k (x))+

xT DxxT Ax

Ṽk+1(x)
, (19)

where Ṽk+1(x) has been defined in Theorem 1.

Assuming a parametric form for the value function corre-

sponding to α = 0 and 1 as,

V 0
k (x) := xT P0

k x, V 1
k (x) := xT P1

k x,

where P0
k and P1

k are positive semi-definite matrices corre-

sponding to the FlipDyn states α = 0 and 1, respectively.

Therefore, the value function (18) and (19) under this para-

metric form satisfy

V 0
k (x) = xT (Q+D+ B̃T

k P0
k+1B̃k)x−

xT DxxT Ax

xT P̃k+1x
, (20)

V 1
k (x) = xT (Q−A+W̃ T

k P1
k+1W̃k)x+

xT DxxT Ax

xT P̃k+1x
, (21)

where W̃k := (Fk + BkWk), B̃k := (Fk − BkKk) and P̃k+1 :=
W̃ T

k P1
k+1W̃k − B̃T

k P0
k+1B̃k. This quadratic form yields the fol-

lowing expressions for the mixed policies of each player at

time k as summarized in the following result.

Corollary 1 For the linear dynamics (15) and affine con-

trols (16), under Assumption 1 the players’ policies satisfy

y∗k|αk=0(x) =
[
β̂ ∗

k (x) 1− β̂ ∗
k (x)

]T
, (22)

z∗k|αk=1(x) =
[
1− γ̂∗k (x) γ̂∗k (x)

]T
, (23)

z∗k|αk=0(x) = 1− z∗k|αk=1(x), y∗k|αk=1(x) = 1− y∗k|αk=0(x),

where,

β̂ ∗
k =

xT Ax

xT P̃k+1x
, 1− γ̂∗k =

xT Dx

xT P̃k+1x
.

The terms y∗
k|αk

and z∗
k|αk

correspond to the defender’s and

adversary’s policy for the FlipDyn state αk at time k,

respectively. □

Substituting β ∗
k from (22) in (20), and 1 − γ∗k from (23)

in (21), we obtain the following form,

V 0
k (x) = xT (Q+D+ B̃T P0

k+1B̃)x− xT Dx(β̂ ∗
k (x)), (24)

V 1
k (x) = xT (Q−A+W̃ T P1

k+1W̃ )x+ xT Ax(1− γ̂∗k (x)). (25)

We observe that both (24) and (25) are nonlinear in x.

Therefore, a quadratic parameterization cannot necessarily

represent the value function with quadratic costs. However,

we show that for a scalar system (1-dimensional), this

parameterization is sufficient.

1) Scalar/1-dimensional system: The state, defense and

attack costs for a scalar system simplify to

g(x) = gx2
, d(x) = dx2

, a(x) = ax2
, (26)

where g,d and a are positive constants and x ∈ R. The

following result provides a closed-form expression for the

NE of the FlipDyn game and the corresponding value of

the state at time instant k.

Theorem 2 The unique mixed Nash equilibrium at any time

k for the FlipDyn state of αk = 0 for a scalar system with

costs (26) and dynamics (15) is given by,

y∗k|αk=0 =

[
a

p̃k+1

p̃k+1 −a

p̃k+1

]T

, (27)

z∗k|αk=0 =

[
p̃k+1 −d

p̃k+1

d

p̃k+1

]T

. (28)

The saddle-point value at time instant k is parameterized by,

p0
k = g+(Fk −BkKk)

2p0
k+1 +d −

da

p̃k+1
, (29)

where p̃k+1 := (Fk +BkWk)
2p1

k+1 − (Fk −BkKk)
2p0

k+1.

Similarly, for the FlipDyn state of αk = 1, the unique

Nash equilibrium at time k is,

y∗k|αk=1 =

[
p̃k+1 −a

p̃k+1

a

p̃k+1

]T

, (30)

z∗k|αk=1 =

[
d

p̃k+1

p̃k+1 −d

p̃k+1

]T

. (31)

The saddle-point value at time k is parameterized by,

p1
k = g+(Fk +BkWk)

2p1
k+1 −a+

da

p̃k+1

, (32)

such that (recursively) p0
k ≥ 0 and (Fk +BkWk)

2p1
k+1 ≥ (Fk −

BkKk)
2p0

k+1 +max{d,a}, hold ∀k ∈ N. □

Proof: [Sketch] Beginning with the cost at terminal time

L and substituting (26) in Corollary 1, we obtain (27), (28)

and (29). The details of the proof are found in [21].

Observe that the policy for the FlipDyn state α = 1

is complementary to the policy corresponding to α = 0

indicating the need to compute the policy for any one of



the FlipDyn states. Using Theorem 2, the saddle points of

the FlipDyn game for α = 0 and 1 are,

JE(x,0,y
∗
L,z

∗
L) = xTp0

0x, JE(x,1,y
∗
L,z

∗
L) = xTp1

0x. (33)

Thus, we have obtained an exact solution for the 1-

dimensional system with the parameterized value function

and the player policies for both the FlipDyn states. Next,

we extend this approach to derive an approximate solution

for an n-dimensional system.

2) n-dimensional system: To address the nonlinearity of

the value function, we first introduce an approximation that

will enable recursive computation of the parameters defining

the value function, thus making it independent of the state.

Theorem 3 At any time instant k ∈N, under Assumption 1,

suppose that the nonlinear terms xT Dx β̂ ∗
k (x) and xT Ax(1−

γ̂∗k (x)) in (24) and in (25) can be upper bounded by a

common quadratic form in the state, i.e.,

(xT Dx)β̂ ∗
k (x)≤ xT D(P̃k+1)

−1Ax, (34)

(xT Ax)(1− γ̂∗k (x))≤ xT D(P̃k+1)
−1Ax, (35)

where P̃k+1 := W̃ T
k P1

k+1W̃k − B̃T
k P0

k+1B̃k, W̃k := (Fk + BkWk)

and B̃k := (Fk −BkKk).
Then, the value functions corresponding to each FlipDyn

state are given by V 0
k (x) := xT P0

k x, V 1
k (x) := xT P1

k x, where

the matrices P0
k and P1

k are chosen to satisfy

P0
k ⪯ Q+D+ B̃T

k P0
k+1B̃k −DP̃−1

k+1A,

P1
k ⪰ Q−A+W̃ T

k P1
k+1W̃k +DP̃−1

k+1A.

Proof: [Sketch] Similar to the scalar case of substituting

(34) and (35) into (24) and (25), respectively. Details of the

proof are be found in [21].

The next result shows that conditions (34) and (35) do

hold for a special class of matrices A and D.

Proposition 1 Conditions (34) and (35) hold for any posi-

tive definite matrix P̃k+1 if

A = aI, and D = dI, for any a,d > 0.

Please refer to [21] for the detailed proof.

Theorem 3 enables a recursive computation for an approx-

imate value function independently of the state as,

P̂0
k = Q+D+ B̃T

k P̂0
k+1B̃k −DP̌−1

k+1A, (36)

P̂1
k = Q−A+W̃ T

k P̂1
k+1W̃k +DP̌−1

k+1A, (37)

where P̌k+1 := W̃ T
k P̂1

k+1W̃k − B̃T
k P̂0

k+1B̃k, W̃k := (Fk + BkWk)

and B̃k := (Fk −BkKk) such that

P̌k+1 ≽ A and P̌k+1 ≽ D, ∀k ∈ {1,2, . . . ,L}.

We initialize the parameterized value function at the terminal

time instant L as,

P̂0
L = Q, P̂1

L =

{
Q+A+µI, if A ≽ D,

Q+D+µI, otherwise ,
(38)

where µ is a constant.

Remark 1 Given an initial state x0, we can create a game

tree in an extensive form [22] and compute the policy

for each player at every stage k ∈ {1,2, . . . ,L}. However,

the memory requirement for such an extensive form scales

exponentially in the horizon length. The memory requirement

is 4L2L and the number of zero-sum games to be solved is

4L−12L. In contrast, the approximation (36) and (37) has a

memory requirement of 4L and L number of zero-sum game

evaluation for the entire state space.

V. NUMERICAL EVALUATION

In this section, we will evaluate our analytic results on

a linear time-invariant system (LTI) with a linear quadratic

regulator (LQR) control law used by the defender. Without

any loss of generality, we make the following assumption.

Assumption 2 The system is under the defender’s control

at time k = 0, i.e, α0 := 0.

Assumption 2 is only for convenience and is reasonable to

expect that the system designer would have complete control

of the system upon initialization.

We will now specify the parameters of the FlipDyn

game. The dynamical system is assumed to be given by

f 0
k (xk) = (F −BK)xk, f 1

k (xk) = (F +BW )xk = Fxk,

where we have assumed that the adversary’s control gain

Wk =W = 0,∀k∈{1,2, . . . ,L}, i.e., the adversary applies zero

control input commands deterring or deviating the state from

reaching its equilibrium state. We use a double integrator

dynamics (n = 2) of the form

f 0
k (xk) =

([
f̂ ∆

0 f̂

]

︸ ︷︷ ︸
F

−

[
0.5∆

2

∆

]

︸ ︷︷ ︸
B

K

)
xk, f 1

k (xk) = Fxk,

where ∆ > 0 is the sample time. The system represents a

second order system with acceleration as the control input.

We obtain the defender’s gain K using the LQR method. We

solve the approximate parameterized value function matrices

(P̂0
k , P̂

1
k ,∀k ∈ {1, . . . ,L}) for both FlipDyn states over a

horizon length L = 100. The minimum eigenvalue of the

value function matrices are shown in Figures 2a and 2c,

corresponding to f̂ := 0.99 and f̂ := 1.01, respectively.

We observe a trend of converging coefficients when f̂ ≤
1, i.e., the system remains bounded upon lack of control,

whereas the coefficients diverge for f̂ > 1 indicating a large

incentive for an adversary in the initial time instants of

the FlipDyn game. Since the player policies for the n-

dimensional case are functions of state, and the FlipDyn

state is a random variable, the attack and defense policies

averaged over 500 independent simulations for f̂ := 0.99 and

f̂ := 1.01 are shown in Figures 2b and 2d, respectively, with

the initial state x0 =
[
0 1

]T
. We observe a dynamic policy

over the horizon length for the case of f̂ := 0.99, and a

converging pure policy for f̂ := 1.01 for the FlipDyn state

α = 0, respectively. The converging pure policy for f̂ := 1.01

is reflective of the ever increasing value of the adversary over

the horizon length.
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Fig. 2: (a) Minimum eigenvalue of the parameterized semi-definite value function matrices, λn(P̂
0) and λn(P̂

1) for a bounded ( f̂ ≤ 1)
n-dimensional system. (b) Attack and defense policies corresponding to the value function in Figure 2a for the given set of state, defense
and attack costs. (c) Minimum eigenvalue of the parameterized semi-definite value function matrices, λn(P̂

0) and λn(P̂
1) for an unbounded

( f̂ ≥ 1) n-dimensional system. (d) Attack and defense policies for the value function from Figure 2c given the FlipDyn state α = 0.

VI. CONCLUSION AND FUTURE DIRECTIONS

We introduced a resource takeover game between a de-

fender and an adversary, in which the resource represents

the control input signals of a dynamical system. We posed

the takeover problem as a zero-sum two-player game over a

finite time period, inspired by the well-studied FlipIT model.

The payoffs for our FlipDyn game are modeled as state-

dependent costs incurred by both the defender and adversary.

We computed for the policy of each player, i.e., at what time

instances should a player choose to takeover the resource. We

derived the value of the physical state for a given FlipDyn

state for any general system. In particular, we derived closed-

form expressions for linear dynamical system leading to

an exact value function computation for the 1-dimensional

case, and an approximate value function for n-dimensional

systems. Finally, we illustrate the results of the FlipDyn game

on numerical examples and comment on the recovery of such

a setup from loss of control.

Our current work relies on full state observability of

even the FlipDyn state. In future works, we will infer

the FlipDyn state of the system. We also plan to include

bounded process and measurement noise and evaluate its

impact on the policy of the FlipDyn game. Finally, we

will compare the existing solution against a learning-based

method for general systems and costs.
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