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ABSTRACT

Multiomic single-cell data allow us to perform integrated analysis to understand genomic
regulation of biological processes. However, most single-cell sequencing assays are perfor-
med on separately sampled cell populations, as applying them to the same single-cell is
challenging. Existing unsupervised single-cell alignment algorithms have been primarily
benchmarked on coassay experiments. Our investigation revealed that these methods do not
perform well for noncoassay single-cell experiments when there is disproportionate cell-type
representation across measurement domains. Therefore, we extend our previous work—
Single Cell alignment using Optimal Transport (SCOT)—by using unbalanced Gromov-
Wasserstein optimal transport to handle disproportionate cell-type representation and
differing sample sizes across single-cell measurements. Our method, SCOTv2, gives state-of-
the-art alignment performance across five non-coassay data sets (simulated and real world).
It can also integrate multiple (M � 2) single-cell measurements while preserving the self-
tuning capabilities and computational tractability of its original version.

Keywords: data integration, manifold alignment, multiomics, single-cell sequencing, unbalanced

optimal transport.

1. INTRODUCTION

S ingle-cell multiomics measurements provide critical biological insights into cell development and

diseases. New experimental protocols have recently been developed for simultaneous measurement of

different features in the same single cell (termed ‘‘coassays’’). However, no such experimental protocols are

available for many feature combinations (e.g., chromatin accessibility and three-dimensional [3D] chromatin

conformation) (Clark et al, 2020). Therefore, these features are measured in separately sampled cell popu-

lations and analyzed on their own (termed ‘‘non-coassays’’). Integrating different measurements from the

non-coassays can help explain how different molecular views interact and regulate cellular functions.
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Unfortunately, these assays lack direct sample–sample and feature–feature correspondences across the

measurements. This lack of correspondence makes it hard to use integration methods that require some

shared information to perform single-cell alignment (Cao et al, 2020). Therefore, unsupervised single-cell

multiomics data alignment methods are crucial for integrative single-cell data analysis.

Several unsupervised methods, including our previous work, Single Cell alignment using Optimal

Transport (SCOT) (Demetci et al, 2020), have shown competitive performance for integrating different

single-cell measurement domains. For example, MMD-MA (Liu et al, 2019; Singh et al, 2020) uses max-

imum mean discrepancy (MMD) measure to align and embed two data sets in a new space. UnionCom (Cao

et al, 2020) performs unsupervised topological alignment through a two-step procedure that first finds a

correspondence between the measurement domains, comparing both global and local geometries with a

hyperparameter to control the trade-off between them, and then embeds them in a new space. BindSC (Dou

et al, 2020) requires the users to bring input data sets to the gene expression feature space by constructing a

gene activity score matrix for the epigenomic domains, then finds a correspondence matrix between samples

through the bi-order canonical correspondence analysis (bi-CCA), and jointly embeds them into a new space.

Similarly, Seuratv4 (Stuart et al, 2019) also requires gene activity score matrices for epigenomic domains

and then identifies correspondence anchors through CCA. Based on these anchors, it imputes one genomic

domain based on the other domain and coembeds them into a shared space using UMAP. A recent cross-

modal autoencoder-based method (Yang et al, 2021) uses modality-specific autoencoders to map the dif-

ferent modalities to a shared latent space. Our previous method, SCOT (Demetci et al, 2020), compares data

from different measurement modalities using Gromov-Wasserstein distances and finds correspondences with

optimal transport. Pamona (Cao et al, 2021) extends the SCOT framework with partial Gromov-Wasserstein

optimal transport and attempts to identify any cells that do not have existing correspondences in alignment.

A majority of these methods have been mainly evaluated on real-world coassay data sets with underlying

1–1 correspondence between cells across domains. Therefore, our understanding of their performance on

non-coassay data sets (with measurements obtained from related but separate cell populations) is limited

even though real-world integration tasks involve these data sets. In non-coassay experiments, scientists

divide a cell population into smaller aliquots and then apply a different sequencing assay to each. Because

the aliquots essentially sample cells from the original population, the resulting data sets can consist of

varying proportions of cell types across different measurements, creating cell-type imbalance and lacking

1–1 cell correspondences. In addition, if the original cell population contains rare cell types, it is possible

for these cell types to only appear in a subset of these aliquots.

Due to these experimental considerations, we hypothesize that alignment methods that perform well on

coassay data sets may not effectively handle the differences in cell-type proportions. Indeed, Pamona (Cao

et al, 2021) demonstrated through simulations that current integration methods (Cao et al, 2020; Demetci

et al, 2020; Liu et al, 2019; Stuart et al, 2019) tend to perform worse under such settings.

We present SCOTv2, a novel extension of SCOT, that can effectively align both coassay and non-coassay

data sets using a single framework. It uses unbalanced Gromov-Wasserstein (GW) optimal transport to align

data sets with disproportionate cell-type representations while only introducing one additional hyperparameter.

This unbalanced framework relaxes the constraint that each point must be mapped with its original mass (a.k.a

initially defined marginal probability) during transport. Specifically, an underrepresented cell type in one domain

can be transported with more mass to match the proportion of that cell type in the other domains and vice versa.

The SCOTv2 framework is summarized in Figure 1. We demonstrate that SCOTv2 aligns data sets with

imbalance in cell-type representations better than state-of-the-art baselines. Furthermore, we extend SCOTv2

to integrate single-cell data sets with more than two measurements, making it a multiomics alignment tool.

We perform alignments of six real-world single-cell data sets, with both simulated and natural cell-type

imbalance as well as two and more than two domains (M � 2), demonstrating SCOTv2’s applicability

across a wide range of scenarios. Finally, similar to the previous version, we present a self-tuning heuristic

to select hyperparameters for SCOTv2 without any corresponding information such as cell-type annotations

or matching cells or features in truly unsupervised settings.

2. METHODS

Optimal transport finds the most cost-effective way to move data points from one domain to another. One

can imagine it as the problem of moving a pile of sand to fill in a hole through the least amount of work.
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Our previous framework SCOT (Demetci et al, 2020) uses Gromov-Wasserstein optimal transport, which

preserves local geometry when moving data points from one domain to another. The output of SCOT is a

matrix of probabilities that represent how likely it is that data points from one modality correspond to data

points in the other.

Here, we reintroduce the SCOT formulation to integrate M domains (or single-cell measurements)

Xm = (xm1 ‚ xm2 ‚ . . . xmnm ) 2 Rdm for m = 1‚ . . . M with nm data points (or cells) each. For each data set, we define

a marginal distribution pm, which can be written as an empirical distribution over the data points as follows:

pm =
Xnm
i = 1

pmi dxi : (1)

Here, dxi is the Dirac measure. For SCOT, we choose these distributions to be uniform over the data.

Gromov-Wasserstein optimal transport performs the transport operation by comparing distances between

samples rather than directly comparing the samples themselves (Alvarez-Melis and Jaakkola, 2018). Therefore,

for each data set, we compute the intradomain distance matrix Dm. Next, we construct k-NN graphs based

on correlations between data points and use Dijkstra’s algorithm to compute the shortest path distance on the

graph between each pair of nodes. Finally, we connect all the unconnected nodes by the maximum finite

distance in the graph and set Dm to be the matrix resulting from normalizing the distances by this maximum.

For two data sets and a given cost function L : R·R ! R, we compute the fourth-order tensor

L 2 Rnx · nx · ny · ny , where Lijkl = L(D1
ik‚D

2
jl). Intuitively, L quantifies how transporting a pair of points x1

i ‚ x
1
k

onto another pair across domains, x2
j ‚ x

2
l , distorts the original intradomain distances and helps to preserve

local geometry. Then, the discrete Gromov-Wasserstein problem between p1 and p2 is as follows:

GW(p1‚ p2) = min
G2P(p1‚ p2)

X
i‚ j‚ k‚ l

LijklGijGkl‚ (2)

where G is a coupling matrix from the set as follws:

P(p1‚ p2) = fG 2 Rn1 · n2
+ : G1n2

= p1‚GT1n1
= p2g: (3)

One of the advantages of using optimal transport is the probabilistic interpretation of the resulting

coupling matrix G, where the entries of the normalized row 1
pi
Gi are the probabilities that the fixed data

point xi corresponds to each yj. Each entry Gij describes how much of the mass of xi should be mapped to yj.

To make this problem more computationally tractable, we solve the entropically regularized version as

follows:

GWe(p
1‚ p2) = min

G2P(p1‚ p2)
ÆL(D1‚D2) � G‚Gæ - eH(G): (4)

FIG. 1. Overview of SCOTv2 on the scNMT-seq data set (Clark et al, 2018), which contains unbalanced cell-type repre-

sentation across three domains—RNA expression, chromatin accessibility, and DNA methylation. SCOTv2 selects an anchor

domain (denoted with *) and aligns other measurements to it. First, it computes intradomain distance matricesDm form = 1‚ 2‚ 3,

which are used to solve for correspondence matrices between the anchor and other domains. The circle sizes in the matrices depict

the magnitude of the correspondence probabilities or how much mass to transport. Unbalanced GW relaxes the mass conservation

constraint, so the transport map does not need to move each point with its original mass. Finally, it either coembeds the domains

into a common space or uses barycentric projections to project them onto the anchor domain. GW, Gromov-Wasserstein.
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where e > 0 and H(G) is the Shannon entropy defined as H(G) =
Pnx

i = 1

Pny
j = 1 Gij logGij. Larger values of e

make the problem more convex but also lead to a denser coupling matrix, meaning there are more

correspondences between samples. In SCOT, we use the cost function L =L2.

2.1. Unbalanced optimal transport of SCOTv2

Our proposed solution to align data sets with different numbers of samples or proportions of cell types is

to use unbalanced optimal transport, which adds divergence terms to allow for mass variations in the

marginals (Liero et al, 2018; Sjourn et al, 2021). We follow Sjourn et al (2021) and use the Kullback–

Leibler divergence as follows:

KL(pjjq) =
X
x

p(x) log
p(x)

q(x)

� �
‚ (5)

to measure the difference between the marginals of the coupling G and the input marginals p1 and p2. Thus,

we solve the unbalanced GW problem:

GWe‚q(p1‚ p2) = min
G�0

ÆL(D1‚D2) � G‚Gæ - eH(G) + qKL(G1n2
jjp1) + qKL(GT1n1

jjp2)‚ (6)

where q > 0 is a hyperparameter that controls the marginal relaxation. When q is large, the marginals of G
should be close to p1 and p2, and when q is small, the marginals of G may differ more, allowing each point

to transport with more or less mass than it originally had. See Algorithm 1 for details.

2.2. Extending SCOTv2 for multidomain alignment

To align more than two data sets (M > 2), we use one domain as an anchor to align the other domains.

The anchor should be the domain with the clearest biological structures, for example, a data set with the

best-defined cell-type clusters. We propose selecting the anchor through the kNN graph used to compute

Dm. For every node xmi in the graph, we calculate the average of the k neighboring node values Nk(x
m
i ).

Next, we measure the difference between this average and the true value of the node. This difference

reflects how well the averaged neighborhood represents the given node. We then average these differences

across the graph and select the domain with the lowest averaged difference as the anchor. Intuitively, we

select the anchor whose kNN graph best reflects its data set. Suppose X1 is the anchor data set. Then, for

m = 2‚ 3‚ . . . ‚N, we compute the coupling matrix Gm according to Equation (4).

Algorithm 1: Pseudocode for Unbalanced GW Optimal Transport (UGWOT)

Input: Marginal probabilities p1 and p2, intradomain distance matrices

D1 and D2, relaxation coefficient q, regularization coefficient e
Initialize the coupling matrix: G =p = p1 � p2

while G not converged do

G)p
G(mass))

P
i‚ j Gi‚ j ~�)G(mass)�, ~q)G(mass)q

//Compute cost C:

G1)G1n2
‚G2)GT1n1

A)(D1)�2G1, B)(D2)�2G2

D)D1GD2

E)�
P

ij log
Gi‚ j

p1
i
p2
j

� �
Gi‚ j + q

P
i log

G1
i

p1
i

� �
G1
i +

P
j log

G2
j

p2
j

� �
G2
j

� �

C)A+B - 2D +E
//Perform Sinkhorn iterations

while (u‚ v) not converged do

u)- ~�~q
~� + ~q log

P
i‚ j exp (vj -Cij)=~� + log p2

h i

v)- ~�~q
~�+ ~q log

P
i‚ j exp (ui -Cij)=~� + log p1

h i
end

//Update: pij) exp ui + vj -Cij

� �
p1
i p

2
j

//Rescale: p)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G(mass)=p(mass)

p
p

end

Return: G
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To have all of the data sets aligned in the same domain, we can either use barycentric projection to

project each Xm for m = 2‚ 3‚ . . . ‚M onto X1 or find a shared embedding space as described in Section 2.3.

In the first iteration of SCOT, we used a barycentric projection to align and project one data set onto the

other. Due to the marginal relaxation, we now search for a non-negative n1 · nm dimensional matrix G
instead of G 2 P(p1‚ pm). Because of this change, the adjusted barycentric projection is as follows:

xmi 1

Pn1

j = 1 G
m
ij x

1
jPn1

j = 1 G
m
ij

: (7)

2.3. Embedding with the coupling matrix

Other methods such as MMD-MA and UnionCom align data sets by embedding them into a common

latent space of dimension p � minm = 1‚ ...‚M dm. Here dm represents the original dimension size of mea-

surement (or domain) m. Embedding the data sets in a new space often leads to a better alignment as it

introduces the additional benefits of dimensionality reduction, allowing more meaningful structures in the

data sets, such as cell-type clusters, to be more prevalent. Due to these benefits, we also enable the

embedding option through a modification of the t-Distributed Stochastic Neighbor Embedding (t-SNE)

method (Van der Maaten and Hinton, 2008) as proposed by UnionCom (Cao et al, 2020).

For each domain m, we compute Pm, an nm · nm cell-to-cell transition matrix; each entry Pm
jji is the

conditional probability that a data point xmi would pick xmj as its neighbor when chosen according to a

Gaussian distribution centered at xmi :

Pm
jji =

exp ( - jjxmi - xmj jj
2=2r2

i )P
k 6¼i exp ( - jjxmi - xmk jj

2=2r2
i )
: (8)

Here, the bandwidth ri is chosen according to the density of the data points through a binary search for

the value of ri that achieves the user-supplied perplexity value. Pm is computed by averaging Pm
ijj and Pm

jji to

give more weight to outlier points:

Pm
ij =

Pm
ijj +P

m
jji

2nm
(9)

Similarly, for the lower dimensional embeddings, we compute a cell-to-cell probability matrix Qm0

through a Student-t distribution with one degree of freedom:

Qm0

ij =
(1 + jjxm0

i - xm0
j jj) - 1

P
k 6¼l 1 + (jjxm0

k - xm0
l jj) - 1

: (10)

Then, to jointly embed all domains through the anchor domain X1, the optimization problem is as

follows:

min
X10 ‚ ...‚XM0

XM
m = 1

KL(PmjjQm0
) + b

XM
m = 2

jjX10 -Xm0
(Gm)T jj2F‚ (11)

where Xm0
is the lower dimensional embedding of Xm, and Gm is the coupling matrix from solving Equation

(6) for m = 2‚ . . . ‚M. These two terms seek to find an embedding that both preserves the local geometry in

the original domain and aligns the domains according to the correspondence found by GW. The intuition

behind the term KL(PmjjQm0
) is very similar to that of GW; if two points have a high transition probability

in the original space, then they should also have a high transition probability in the latent space. The term

jjX10 -Xm0
(Gm)T jj2F measures how well aligned the new embeddings X10 and Xm0

are according to the

prescribed coupling matrix Gm. Finally, b > 0 controls the trade-off between preserving the original

geometry with the KL term and enforcing the alignment found with GW. We solve this optimization

problem using a gradient descent from UnionCom with a default latent space dimension size p = 3 (Cao

et al, 2020). The overall SCOTv2 method is presented as Algorithm 2.
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Algorithm 2: Pseudocode for SCOTv2 Algorithm

Input: Data sets X1‚ . . . ‚XM , number of neighbors in nearest neighbor graphs k, entropic regularization coefficient e,
mass conservation relaxation coefficient q.

for m = 1‚ . . . ‚M do

//Initialize marginal probabilities: pm)Uniform( X
m);

//Construct Gm, a k -NN graph based on pairwise correlations

//Compute intradomain distance matrix Dm on Gm with Dijkstra’s algorithm.

//Compute a ‘‘neighborhood correlation’’ score, cm:

cm = 1
nm

Pnm
i= 1

1
k

P
xm
j
2Nk(xm

i
)

corr(xmj ‚ xmi )

end

//Select an anchor domain Xm�: m� = argmaxm = 1‚ ...M cm

for m = 1‚ . . . ‚M (m 6¼ m�) do

//Compute pairwise coupling matrices between the anchor domain

Xm� and all other domains:

Gm)GWe‚q(pm‚ pm�)

if Barycentric projection then

xm
0

i )

Pn1

j= 1
Gm
ij x

m�
jPn1

j= 1
Gm
ij

end

else

//Find shared embedding

X10 . . .XM0
)minXm0 ‚ ...‚XM0

XM

m = 1
KL(PmjjQm0

)

+ b
X

m6¼m� jjX
m�0

-Xm0
(Gm)T jj2F

end

end

Return: Aligned data sets, X10 . . .XM0
.

Algorithm 3: Unsupervised hyperparameter search procedure

Input: Data sets X1‚ . . . ‚XM .

//Find k for each domain

for m = 1‚ . . . ‚M do

km = argmax
k2f10‚ 20‚ ...‚ 150g

1
nm

Pnm
i= 1

1
k

P
xm
j
2Nk(xm

i
)

corr(xmj ‚ xmi )

//Use km to compute Dm

end

//Use the GW distance to pick q and e
for m = 2‚ . . . ‚M do

�m‚ qm = argmin�‚qGW�‚q( jj�=

n1
‚ jj�=

nm
)

end

Return: km‚ �m‚ qm.

2.4. Heuristic for self-tuning hyperparameters

SCOTv2 has three hyperparameters: (1) k for the number of neighbors to consider in nearest neighbor

graphs, (2) the weight of the entropic regularization term, e, and (3) the coefficient of the mass relaxation

constraint, q. The barycentric projection of one domain onto another does not require any hyperparameters.

However, jointly embedding the domains in a latent space requires selecting the dimension p.

Ideally, orthogonal correspondence information such as 1–1 correspondences and cell-type labels can

guide hyperparameter tuning as validation. However, such information is hard to obtain in most cases. First,

no validation data on cell-to-cell correspondences exist for non-coassay data sets. Second, it is challenging

to infer cell types for certain sequencing domains such as 3D chromatin conformation. Lastly, the cell-type

annotations may not always agree across single-cell domains.

6 DEMETCI ET AL.

D
ow

nl
oa

de
d 

by
 B

ro
w

n 
U

ni
ve

rs
ity

 fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

0/
28

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



We provide a heuristic to self-tune hyperparameters in a completely unsupervised setting. We first

choose a k for the neighborhood graphs that yields a high average correlation value between the neigh-

borhood predicted values and measured genomic values of the graph nodes. This step is the same as the one

used to select the anchor domain for multiomics alignment in Section 2.2. Next, we choose e and q values

that minimize the Gromov-Wasserstein distance between the aligned data sets. Algorithm 3 gives the

details of this procedure.

3. EXPERIMENTAL SETUP

3.1. Data sets

We evaluate SCOTv2 on single-cell data sets with disproportionate cell types using two schemes. (1) We

subsample different cell types in coassay data sets to simulate cell-type representation disparities between

sequencing modalities. (2) We select real-world single-cell data sets with separately assayed measurement

modalities, which lack 1–1 cell correspondences and have different cell-type proportions across modalities

due to the fact that they were profiled on separate cell populations. In addition, we present results on the

original coassay data sets with 1–1 cell correspondence to demonstrate the flexibility of SCOTv2 across

balanced and unbalanced single-cell data sets.

3.1.1. Coassay single-cell data sets with 1–1 cell correspondence. We use three coassay data

sets to validate our model, sequenced by SNARE-seq, scGEM, and scNMT-seq technologies. SNARE-seq

is a two-modality sequencing technology that simultaneously captures the chromatin accessibility and

transcriptional profiles of cells (Chen et al, 2019). This data set contains a total of 1047 cells from four cell

lines: BJ (human fibroblast cells), H1 (human embryonic cells), K562 (human erythroleukemia cells),

and GM12878 (human lymphoblastoid cells; Gene Expression Omnibus access code: GSE126074). We

follow the same data preprocessing steps outlined by Chen et al (2019) and work with the top 10 principal

components of the gene expression domain and the 19 topics selected by cisTopic (González-Blas et al,

2018) in the chromatin accessibility domain.

The scGEM technology is a three-modality sequencing technology that profiles the genetic sequence,

gene expression, and DNA methylation states in the same cell (Cheow et al, 2016). The data set we use

is derived from human somatic cell samples undergoing conversion to induced pluripotent stem cells

(Sequence Read Archive accession code SRP077853) (Cheow et al, 2016). We access the preprocessed

data provided by Welch et al (2017), which only contain the gene expression and DNA methylation

modalities.* The data set sequenced by the scNMT-seq method (Argelaguet et al, 2019) contains three

modalities of genomic data: gene expression, DNA methylation, and chromatin accessibility, from mouse

gastrulation samples, going through the Carnegie stages of vertebrate development (Gene Expression

Omnibus access code: GSE109262).

We access the preprocessed data through the Bioconductor package named ‘‘Mouse Gastrulation Data,’’{

which was released by the authors. They also provide the scripts they use to preprocess the raw data.{ While

the SNARE-seq and scGEM data sets contain the same number of cells across measurements, scNMT-seq

modalities contain different cell-type proportions after preprocessing due to varying noise levels in mea-

surements. Table 1 lists the number of cells belonging to different cell types in each domain for the scNMT-

seq data set.

3.1.2. Single-cell data sets with simulated cell-type imbalance. To test alignment performance

sensitivity to different levels and types of cell-type proportion disparities across modalities, we generate

simulation data sets by subsampling SNARE-seq and scGEM cosequencing data sets in three ways. (1) We

remove a cell type from one modality. (2) We reduce the proportion of a cell type in one modality by

subsampling it at 50% and another cell type in the other modality by subsampling it at 75%. We simulate

*Preprocessed data for the scGEM data set accessed here: https://github.com/jw156605/MATCHER
{‘‘Mouse Gastrulation Data’’ from scNMT-seq accessed through Bioconductor by following these steps: https://

bioconductor.org/packages/release/data/experiment/vignettes/MouseGastrulationData/inst/doc/MouseGastrulationData
.html

{Preprocessing scripts for the scNMT-seq data accessed here: https://github.com/PMBio/scNMT-seq
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this setting to test how the alignment methods will behave when multiple cell types have disproportionate

representation at different levels (e.g., half or quarter percentage of cell types missing) across modalities.

(3) We randomly pick a modality and downsample it at one of the following five downsampling rates:

10%‚ 20%‚ 30%‚ 40%‚ and 50% to test the robustness of alignment algorithms to varying downsampling

rates.

For these cases, we uniformly pick at random which cell type to subsample or remove. Specifically, for

scGEM in simulation case (1), we remove ‘‘d16T+’’ cells in the DNA methylation domain while retaining

the original gene expression domain, and remove the ‘‘d24T+’’ cells in the gene expression domain while

retaining the original DNA methylation domain. For the SNARE-seq data set, we remove ‘‘GM’’ cells in

the gene expression domain and ‘‘K562’’ in the chromatin accessibility domain. In simulation case (2), we

subsample the ‘‘d8’’ cluster of the scGEM data set at 75% in the gene expression modality and the

‘‘d16T+’’ cluster at 50% in the DNA methylation modality. For SNARE-seq, we subsample the ‘‘H1’’

cluster at 75% and the ‘‘K562’’ cluster at 50% in the gene expression and chromatin accessibility domains,

respectively.

3.1.3. Single-cell data sets without 1–1 correspondences. We also align non-coassay data sets

containing separately sequenced single-cell measurements. Bonora et al (2021) generated the first data set

we use, which we call ‘‘sciOmics.’’ This data set consists of sciRNA-seq, sciATAC-seq, and sciHiC

measurements, capturing gene expression, chromatin accessibility, and 3D chromosomal conformation

profiles of mouse embryonic stem cells undergoing differentiation. The measurements were taken at the

following five stages: days 0, 3, 7, 11, and as fully differentiated neural progenitor cells (NPCs). The

second non-coassay data set, ‘‘MEC,’’ contains gene expression and chromatin accessibility measurements

taken using the 10X Chromium scRNA-seq and scATAC-seq technologies on mouse mammary epithelial

cells (MECs). Since each modality consists of separately sampled cell populations, these contain disparate

cell-type proportions across modalities.

Lastly, to demonstrate the general applicability of SCOTv2 to measurement modalities beyond sequ-

encing data sets, we align unpaired single-cell chromatin images and gene expression profiles of T cells

Table 1. Number of Cells in (and Percentages of) Each Cell Type Across Different Modalities in the

scNMT-seq Coassayed Data Set After Quality Control Procedures and the Non-Coassay Data Sets

Modality 1

(gene expression)

Modality 2

(chromatin accessibility

or chromatin imaging)

Modality 3

(DNA methylation or 3D

chromosomal conformation)

scNMT data set n = 579 n= 647 n = 725

E4.5: 76 (12.73%) E4.5: 63 (9.73%) E4.5: 65 (8.96%)

E5.5: 104 (17.42%) E5.5: 89 (13.76%) E5.5: 91 (12.55%)

Day 6.5: 146 (24.46%) E6.5: 220 (34.00%) E6.5: 278 (38.34%)

E7.5: 271 (45.39%) E7.5: 175 (42.50%) E7.5: 291 (40.14%)

sciOmics data set n = 1058 n= 1296 n = 2154

Day 0: 489 (46.22%) Day 0: 164 (12.65%) Day 0: 987 (45.82%)

Day 3: 127 (12.00%) Day 3: 702 (54.17%) Day 3: 435 (20.19%)

Day 7: 78 (7.37%) Day 7: 77 (5.94%) Day 7: 243 (11.28%)

Day 11: 145 (13.71%) Day 11: 175 (13.50%) Day 11: 164 (7.61%)

NPC: 219 (20.70%) NPC: 178 (13.73%) NPC: 325 (15.09%)

MEC data set n = 26,273 n= 21,262

Basal: 11,138 (42.39%) Basal: 13,353 (62.80%)

L-Sec (Prog): 7683 (29.24%) L-Sec (Prog): 3343 (15.72%)

L-HR: 3439 (13.09%) L-HR: 2624 (12.34%) N/A

L-Sec (Mat): 2869 (10.92%) L-Sec (Mat): 1165 (5.48%)

L-Sec (Prolif): 758 (2.89%) L-Sec (Prolif): 7 (0.033%)

Stroma: 386 (1.47%) Stroma: 770 (3.62%)

RNA-imaging

data set

n = 1166 n= 3482

Quiescent T cells: 545 (46.74%) Quiescent T cells: 343 (9.85%) N/A

Poised T cells: 621 (53.26%) Poised T cells: 3139 (90.15%)

3D, three dimensional; MEC, mammary epithelial cell; NPC, neural progenitor cell.

8 DEMETCI ET AL.

D
ow

nl
oa

de
d 

by
 B

ro
w

n 
U

ni
ve

rs
ity

 fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

0/
28

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



from human peripheral blood (‘‘RNA-imaging’’ data set) (Yang et al, 2021). We accessed this data set

through the GitHub repository https://github.com/uhlerlab/cross-modal-autoencoders For the imaging data

set, we use the tensor representation provided by the data loader in the repository.

Table 1 lists the number of cells belonging to different cell types in each domain for the sciOmics, MEC,

and RNA-imaging data sets.

3.2. Evaluation metrics and baseline methods

Although most of the data sets lack 1–1 cell correspondences, we can evaluate alignment using cell-type

labels through label transfer accuracy (LTA) as in Cao et al (2021), Cao et al (2020), and Demetci et al

(2020). This metric assesses the clustering of cell types after alignment by training a kNN classifier on a

training set (50% of the aligned data) and then evaluates its predictive accuracy on a test data set (the other

50% of the aligned data). Higher values correspond to better alignments, indicating that cells that belong

to the same cell type are aligned close together after integration.

We benchmark our method against the current unsupervised single-cell multiomic alignment methods

outlined in Section 1, namely, MMD-MA (Singh et al, 2020), UnionCom (Cao et al, 2020), bindSC (Dou

et al, 2020), Seuratv4 (Stuart et al, 2019), Pamona (Cao et al, 2021), cross-modal autoencoders (Yang et al,

2021), and the previous version of SCOT (Demetci et al, 2020), which performs alignment without the KL

term. For each of these benchmarks, we define a hyperparameter grid of similar granularity and perform

extensive tuning, as detailed in Section 3.3.

Both Pamona and cross-modal autoencoders allow the users to provide weak supervision to their

algorithms using the cell-type labels. Aligning data sets using the cell-type annotations lead to better

alignment outcomes. However, we consider the unsupervised integration scenario in this article since

annotating cell types for measurement modalities other than gene expression can be challenging and lead to

contradicting labels across domains. As a result, we do not use this optional feature in Pamona and remove

the cell-type loss term from the overall loss in the scripts provided by cross-modal autoencoders. In

addition, of all the selected baselines, only Pamona and UnionCom provide a way to align more than two

domains at once, so we only use them as baselines for experiments with multiple domains (M > 2).

3.3. Hyperparameter tuning

For each data set and alignment method, we report results with the best performing hyperparame-

ter combination in Section 4.1. When defining hyperparameter search grids, if methods share similar

hyperparameters in their formulation, we keep the range defined for these consistent across all algorithms.

Examples for such hyperparameters are dimensionality of the latent space, p, for the algorithms that

commonly embed data sets; entropic regularization constant, e, for methods that use optimal transport; and

number of neighbors, k, for methods that model single-cell data sets with nearest neighbor graphs.

Otherwise, we refer to the publication and the code repository for each method to choose a hyperparameter

range.

For Pamona, we tune the following four hyperparameters: k 2 f20‚ 30‚ . . . ‚ 150g, the number of neigh-

bors in the cell neighborhood graphs, � 2 f5e - 4‚ 3e - 4‚ 1e - 4‚ 7e - 3‚ 5e - 3‚ . . . ‚ 1e - 2g, the entropic

regularization coefficient for the optimal transport formulation, k 2 f0:1‚ 0:5‚ 1‚ 5‚ 10g, the coefficient

for the trade-off between aligning corresponding cells and preserving local geometries, and lastly,

p 2 f3‚ 4‚ 5‚ 10‚ 30‚ 32g, the output dimension for embedding. We choose the ranges for e and k to be

consistent with the corresponding hyperparameters in the SCOT and SCOTv2 algorithms and the ranges for

the embedding dimensions to be consistent with the recommended values in the MMD-MA and UnionCom

embeddings.

For UnionCom, we tune the trade-off parameter b 2 f0:1‚ 1‚ 5‚ 10‚ 15‚ 20g and the regularization

coefficient q 2 f0‚ 0:1‚ 1‚ 5‚ 10‚ 15‚ 20g based on the ranges reported by Cao et al (2020) in the publi-

cation. We additionally tune the maximum neighborhood size permitted in the neighborhood graphs,

kmax 2 f40‚ 100‚ 150g, as well as the embedding dimensionality p 2 f3‚ 4‚ 5‚ 10‚ 30‚ 32g. The sweep range

for hyperparameter kmax is smaller than the other hyperparameters because UnionCom automatically starts

from k = 2 and goes up to kmax to find the lowest k that returns a connected graph to use in the algorithm.

Therefore, more refined search is not needed.

For MMD-MA, we choose the weights k1 and k2 2 f1e - 2‚ 5e - 3‚ 1e - 3‚ 5e - 4‚ . . . ‚ 1e - 9g. This range

includes the hyperparameter range suggested by Singh et al (k1‚ k2 2 f1e - 3‚ 1e - 4‚ 1e - 5‚ 1e - 6‚ 1e - 7g)
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but extends it further to increase the granularity for the sake of more fair comparison against methods that

require a higher number of hyperparameters to test, such as Pamona and UnionCom. Similarly to other

methods, we also select the embedding dimensionality from p 2 f3‚ 4‚ 5‚ 10‚ 30‚ 32g.

For bindSC, we choose the couple coefficient that assigns weight to the initial gene activity matrix

a 2 f0‚ 0:1‚ 0:2‚ . . . 0:9g and the couple coefficient that assigns weight factor to multiobjective function

k 2 f0:1‚ 0:2‚ . . . ‚ 0:9g. In addition, we choose the number of canonical vectors for the embedding space

K 2 f3‚ 4‚ 5‚ 10‚ 30‚ 32g. For Seurat v4, we tune the number of neighbors to consider when finding

anchors, k 2 f5‚ 10‚ 15‚ 20g, dimensions of the final coembedding space, p 2 f3‚ 4‚ 5‚ 10‚ 30‚ 32g, and the

choice of the reference and anchor domains when finding anchors.

Lastly, for cross-modal autoencoders, we tune the hyperparameters that control how well the data

distribution in each domain will be preserved in the latent space, k1 2 f1e - 8‚ 1e - 7‚ 1e - 6‚ 1e - 5‚

1e - 4‚ 1e - 3‚ 1e - 2‚ 1e - 1g for the first domain, and k2 2 f1e - 8‚ 1e - 7‚ 1e - 6‚ 1e - 5‚ 1e - 4‚ 1e - 3‚

1e - 2‚ 1e - 1g for the second domain. We also consider the following values for the size of the latent space

where the aligned data are embedded, p 2 f3‚ 4‚ 10‚ 30‚ 32‚ 128‚ 256‚ 512g.

4. RESULTS

4.1. SCOTv2 gives high-quality alignments consistently across all single data sets

We first present the alignment results for real-world coassay data sets with simulated cell-type imbal-

ance. We present the results obtained by the best performing hyperparameter combinations for all methods

compared in this study. Figure 2A visualizes the barycentric projection alignments performed by SCOTv2,

with the first two, principal components (PC) plotted for the SNARE-seq and scGEM data sets, respec-

tively. We use barycentric projection for visualization purposes for the ease of comparison with the original

domains, plotted in Supplementary Figure S1.

Here, we integrate data sets under three different settings described in the previous section: (1) balanced

data sets (or ‘‘full data sets’’ with no subsampling), (2) missing cell types in the epigenomic domains, and

(3) subsampled cells in both domains (one cell type at 50% in the epigenomic domains and another cell

type at 75% in the gene expression domains). We include alignment results on the full data sets with 1–1

sample correspondences to ensure that SCOTv2 performs well for balanced cases as well.

Qualitatively, we see that SCOTv2 preserves the cell-type annotations after alignment for all three

settings. In Figure 2B, we report the quantitative performance of SCOTv2 and all the other state-of-the-art

baselines using the LTA scores. MMD-MA, UnionCom, Seurat, and bindSC fail to reliably align data sets

with disproportionate cell-type representation across modalities. While Pamona tends to yield high-quality

alignments for cases with cell-type disproportion, it fails to perform well on the SNARE-seq balanced

data set as well as its subsampling simulation. We additionally apply Pamona to randomly downsampled

coassays (Fig. 3). We show that while Pamona’s partial optimal transport framework handles cell-type

disproportion better than the balanced optimal transport formulation (demonstrated by SCOT), SCOTv2

still shows an advantage in all SNARE-seq simulations (*20% increase in LTA), as well as the smaller

downsampling schemes (*10%).

Among all the methods tested, SCOTv2 consistently gives more high-quality alignments across different

scenarios of cell-type representation. It also demonstrates a *22% average increase in LTA over the

previous version of the algorithm (SCOT) when comparing the barycentric projection results and *27%

for the embedding results. Figure 3 presents similar results (SCOTv2 attains an LTA of 0.786 followed by

Pamona at 0.62 on SNAREseq and 0.542 followed by Pamona at 0.538 on scGEM) for missing cell types in

the other (gene expression) domain, suggesting that our choice of domain with missing cell type does not

affect the performance comparison results. UnionCom, Pamona, and SCOTv2 allow us to perform both

barycentric projections and embed the single-cell domains in a lower dimensional space.

Overall, we observe that embedding yields higher LTA values than barycentric projection. Since the

barycentric projection projects one domain onto another, the separation of the domain being projected onto

(or anchor domain) limits the clustering separation after alignment. In contrast, the embedding utilizes

t-SNE to enhance cell-type separation, allowing for better-separated clusters after alignment.

Next, we report the alignment performance of SCOTv2 on single-cell data sets with inherent disparities

in cell-type representation, mostly due to sampling during experiments. We include scNMT, a coassay with

varying levels of cells across domains due to quality control procedures, along with sciOmics, MEC, and
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RNA-imaging data sets for this experiment. Note that scNMT and sciOmics have three different modalities,

and hence, we can only report the baselines for methods that provide a way to align data sets with M > 2 in

their released code. Figure 4A presents the qualitative alignment results for SCOTv2 (for visualization

purposes, the aligned data sets are reduced to a 2-dimensional space through PCA). SCOTv2 performs well

on all real-world data sets with disproportionate cell-type representation across modalities, including the

ones with three modalities.

The LTA scores in Figure 4B demonstrate that SCOTv2 consistently yields the best alignments on the

four real-world data sets. These results highlight its ability to reliably integrate separately sampled data sets

with disproportionate cell-type representation and multiple (M > 2) modalities simultaneously.

4.2. Hyperparameter self-tuning aligns well without depending on orthogonal correspondence
information

The benchmarking results above present the alignment performance of each algorithm at its best

hyperparameter setting; however, users may not have 1–1 correspondences to validate alignments, for the

purpose of hyperparameter selection, in real-world applications. While users may have access to cell-type

labels, inferring that cell types are highly difficult in specific modalities of single-cell sequencing, such as

3D chromatin conformation. In addition, different sequencing modalities might disagree on cell-type

clustering (as is often the case with the scRNA-seq and scATAC-seq data sets). In these situations, users

might not have sufficient validation data for tuning hyperparameters.

FIG. 2. Alignment results for simulations and balanced coassay data sets. (A) Visualizes the barycentric projection

alignment on SNARE-seq and scGEM for the full coassay data sets, simulations with a missing cell type in the

epigenomic domain, and subsampled cell types in both domains. (B) Compares the alignment performance of SCOTv2

with the benchmarks through LTA. For SCOTvs, Pamona, and UnionCom, we report results on both embedding into a

shared space (solid bars) and the barycentric projection (dotted bars). LTA, label transfer accuracy.
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We design a heuristic process (described in Section 2.4), as done previously for SCOT, that allows

SCOTv2 to select hyperparameters in a completely unsupervised manner. Other alignment methods do

not provide an unsupervised hyperparameter tuning procedure. Therefore, without validation data, a user

would have to use the default parameters. In Table 2, we compare the alignment performance for our

heuristic against the default parameters of other methods. While our heuristic does not always yield the

optimal hyperparameter combination, it does give more favorable results over the default settings of the

other methods. Thus, we recommend using it in cases that lack orthogonal information for hyperparameter

tuning.

4.3. SCOTv2 scales well with increasing number of samples

We compare the runtime of SCOTv2 with the top performing methods: Pamona, MMD-MA, UnionCom,

and the previous version of SCOT by subsampling various numbers of cells from the MEC data set. MMD-

MA, UnionCom, and SCOTv2 have GPU versions, while Pamona and SCOT only have CPU versions. We

run MMD-MA and UnionCom on a single NVIDIA GTX 1080ti GPU with VRAM of 11 GB and Pamona

FIG. 3. Alignment performance under varying subsampling ratios. (A) Presents results on SNARE-seq data set and

(B) presents results on scGEM data set. (C) For both, we randomly subsample cells at different subsampling ratios and

perform alignment with SCOT, SCOTv2, and Pamona. Each case is repeated five times. SCOT, Single Cell alignment

using Optimal Transport.
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and SCOT on Intel Xeon e5-2670 CPU with 16 GB memory. We also run SCOTv2 on the same CPU to

give comparable results with Pamona’s runtimes. Figure 5 depicts that SCOT, MMD-MA, Pamona, and

SCOTv2 show similar computational scaling.

5. DISCUSSION

We present SCOTv2, an improved unsupervised alignment algorithm for multiomics single-cell align-

ment. It extends the alignment capabilities of SCOT to data sets with cell-type representation dispro-

portions across different sequencing measurements. It also performs alignment for single-cell data sets

with more than two measurements (M > 2). Experiments on real-world subsampled coassay data sets

and separately sampled and sequenced single-cell data sets demonstrate that SCOTv2 reliably yields

high-quality alignments for a wide range of cell-type disproportions without compromising its compu-

tational scalability. Furthermore, SCOTv2’s flexible marginal constraints enable it to consistently give

good alignment results for both balanced and unbalanced single-cell data sets. In addition to effec-

tively handling cell-type imbalances and multiomics alignment, SCOTv2 can self-tune its hyperpara-

meters making it applicable in complete unsupervised settings. Therefore, SCOTv2 offers a convenient

way to align multiple single-cell measurements without requiring any orthogonal correspondence

information.

In this second iteration of SCOT, we have utilized the coupling matrix in a new way to find a latent

embedding space. While this dimension reduction improves cell-type separation, using the coupling matrix

Table 2. Alignment Performance Benchmarking in the Fully Unsupervised Setting

SNARE

(full data

set)

SNARE

(missing

cell type)

SNARE

(subsam.data

set)

scGEM

(full data

set)

scGEM

(missing

cell type)

scGEM

(subsam.data

set) scNMT sciOmics MEC

SCOTv2 0.826 0.653 0.751 0.509 0.521 0.415 0.727 0.537 0.584

SCOT 0.852 0.572 0.588 0.423 0.323 0.314 N/A N/A 0.466

Pamona 0.554 0.423 0.419 0.385 0.414 0.308 0.588 0.329 0.417

MMD-MA 0.523 0.407 0.431 0.360 0.296 0.287 N/A N/A 0.233

UnionCom 0.411 0.406 0.422 0.332 0.315 0.276 0.474 0.306 0.349

Cross-m. AE 0.511 0.327 0.412 0.363 0.281 0.344 N/A N/A 0.326

bindSC 0.713 0.584 0.475 0.387 0.254 0.262 N/A N/A 0.412

Seurat 0.428 0.517 0.503 0.408 0.377 0.329 N/A N/A 0.387

Values in bold show the best alignment performance, as measured by LTA.

We run SCOTv2 and SCOT using their heuristics to approximately self-tune hyperparameters. We use default parameters for other

methods due to a lack of similar procedures for unsupervised self-tuning.

LTA, label transfer accuracy; SCOT, Single Cell alignment using Optimal Transport.

FIG. 5. Runtimes for SCOTv2, SCOT, Pamo-

na, UnionCom, and MMD-MA as the number of

samples increases.
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directly may offer even more insights into interactions between the aligned domains. Future work will

consider how to use the probabilities in the coupling matrix directly for downstream analysis such as

improved clustering and pseudotime inference. Although SCOTv2 has runtimes that scale with other

methods, it requires O(n2) memory storage for the distance matrices, which may be an issue for especially

large data sets. One way to address this limitation would be to develop a procedure to align a representative

subset of each domain that can be extended to the entire data set. Therefore, we will explore this direction

to further improve the scalability of SCOTv2.
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