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Rapid global change has increased interest in developing ways to identify suitable refu-
gia for species of conservation concern. Correlative and mechanistic species distribu-
tion models (SDMs) represent two approaches to generate spatially-explicit estimates 
of climate vulnerability. Correlative SDMs generate distributions using statistical 
associations between environmental variables and species presence data. In contrast, 
mechanistic SDMs use physiological traits and tolerances to identify areas that meet 
the conditions required for growth, survival and reproduction. Correlative approaches 
assume modeled environmental variables influence species distributions directly or 
indirectly; however, the mechanisms underlying these associations are rarely verified 
empirically. We compared habitat suitability predictions between a correlative-only 
SDM, a mechanistic SDM and a correlative framework that incorporated mechanis-
tic layers (‘hybrid models’). Our comparison focused on green salamanders Aneides 
aeneus, a priority amphibian threatened by climate change throughout their disjunct 
range. We developed mechanistic SDMs using experiments to measure the thermal 
sensitivity of resistance to water loss (ri) and metabolism. Under current climate con-
ditions, correlative-only, hybrid and mechanistic SDMs predicted similar overlap in 
habitat suitability; however, mechanistic SDMs predicted habitat suitability to extend 
into regions without green salamanders but known to harbor many lungless salaman-
ders. Under future warming scenarios, habitat suitability depended on climate sce-
nario and SDM type. Correlative and hybrid models predicted a 42% reduction or 
260% increase in area considered to be suitable depending on the climate scenario. In 
mechanistic SDMs, energetically suitable habitat declined with both climate scenarios 
and was driven by the thermal sensitivity of ri. Our study indicates that correlative-
only and hybrid approaches produce similar predictions of habitat suitability; however, 
discrepancies can arise for species that do not occupy their entire fundamental niche, 
which may hold consequences of conservation planning of threatened species.
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Introduction

Climate change has been implicated in driving the five doc-
umented mass extinction events (Erwin 2001, Wake and 
Vredenburg 2008) and is currently associated with a poten-
tial sixth mass extinction event that is targeting amphibians 
(Pounds  et  al. 2006). Warming temperatures are linked to 
several threats that amphibians face, including more favor-
able conditions for emerging infectious diseases (Gray et al. 
2009, Vasquez et al. 2009, Martel et al. 2013) and reductions 
in habitat suitability as climate warming and drying increase 
the likelihood of overheating and desiccation (Lertzman-
Lepofsky et al. 2020). These threats are likely to cause further 
species extinctions due to the loss or rapid shifts of suitable 
habitat for herpetofauna with limited dispersal capacities 
(Araújo et  al. 2006). Developing methods for ranking spe-
cies’ vulnerability to climate change is important for mak-
ing more informed conservation and management decisions 
(Barrett et al. 2014).

A wide range of tools are available to forecast spe-
cies response to climate change (Füssel and Klein 2006, 
Butchart et al. 2010, Sutton et al. 2015). Among the avail-
able tools, species distribution models (SDMs) provide 
spatially explicit predictions of vulnerability and resilience. 
While the maps produced from such models offer conserva-
tion practitioners guidance on where to exert efforts, there 
are important caveats associated with many of the distribu-
tion modeling approaches (Buckley et al. 2010, Barrett et al. 
2014, Roach  et  al. 2017). Specifically, correlative models, 
which examine the association between climatic variables and 
species locality data (Kearney et al. 2010, Barrett et al. 2014), 
assume some underlying relationship between environmen-
tal conditions and the geographic distribution of the animal. 
Importantly, traits relevant to an organism’s performance in 
nature are not explicitly incorporated. As a result, correlative 
models may poorly project habitat suitability in environments 
outside the range of the training data or in non-analogous 
climates (Fitzpatrick and Hargrove 2009, Elith et al. 2010, 
Milanovich  et  al. 2010). Mechanistic SDMs offer an alter-
native approach to distribution modeling. These models 
estimate animal performance (e.g. active foraging time or 
reproduction) across habitats using empirically-derived rela-
tionships between animal physiology and environmental 
conditions. Once these relationships are known, the distri-
bution of an organism can be mapped onto a range of envi-
ronmental conditions (Mathewson et al. 2017, Riddell et al. 
2017). Despite the different philosophies between correlative 
and mechanistic models, they are not incompatible.

Research suggests that incorporating mechanism into 
correlative models can enhance predictions of climati-
cally suitable habitat for a species (Mathewson et al. 2017). 
Specifically, correlative models can make use of both known 
species presences across the landscape and estimates of 
environmentally-sensitive performance. However, very few 
models that project the ecological impact of climate change 
consider any physiological, behavioral or life history mecha-
nisms (Urban et al. 2016). The rarity of these models (relative 

to correlative approaches) may result from the expertise and 
data required to build them (i.e. experimentally-derived esti-
mates of animal physiology under a range of environmen-
tal conditions). Nevertheless, mechanistic approaches are 
becoming more popular – especially for ectotherms (Buckley 
2008, Buckley  et  al. 2010, Kolbe  et  al. 2010, Riddell and 
Sears 2015, 2020, Riddell et al. 2017). Hybrid models that 
inform correlative models with physiological mechanism 
have begun to address the ecological impact of climate 
change (Mathewson et al. 2017, Enriquez-Urzelai et al. 2019, 
Rodríguez et al. 2019), yet we still lack an understanding of 
how mechanistic variables contribute to hybrid models rela-
tive to climatic variables.

We used green salamanders, Aneides aeneus (Cope and 
Packard 1881), to assess the influence of adding physiologi-
cal mechanisms to correlative SDMs. Green salamanders are 
a near threatened species that have experienced population 
declines in the Blue Ridge Escarpment (BRE) portion of their 
range (North Carolina, South Carolina and Georgia) begin-
ning in the 1970s (Snyder 1983, Corser 2001). In addition 
to habitat loss, over-collection and disease, climate change 
has also been implicated as a threat to this species due to 
the direct effects of warmer, drier environments limiting their 
ability to forage and find mates (Corser 2001, Riddell et al. 
2018). Several correlative models have been applied to 
green salamanders in all or parts of their range (Lipps 2005, 
Barrett et al. 2014, Hardman 2014). These correlative mod-
els evaluated habitat associations and helped researchers 
document new sites in states where green salamanders are 
vulnerable (Snyder 1983, Brodman 2004). Additionally, the 
mid-century and end-of-century predictions of habitat suit-
ability from these models are likely to aid in conservation-
based decisions.

Currently, we have little understanding of whether physi-
ological constraints influence the geographic distribution of 
green salamanders, though several studies have shed light 
on their physiology. Green salamanders can withstand des-
iccating conditions longer than sympatric species of similar 
size (Gordon 1952). Further, multiple studies have dem-
onstrated that green salamanders may prefer warmer, drier 
slopes of mountain ranges over more mesic slopes (Bruce 
1968, Newman et al. 2018, Williams et al. 2020), suggest-
ing that green salamanders might have evolved physiologi-
cal adaptations for resisting the loss of water. For this study, 
we modeled the geographic range of green salamanders 
using the program MaxEnt (maximum entropy), a method 
for modeling species distributions using presence-only data 
(Phillips et  al. 2006) and recently developed approaches in 
mechanistic species distribution modeling for terrestrial sala-
manders (Riddell et al. 2018). We modeled suitable climatic 
habitat for green salamanders throughout their disjunct range 
using both approaches, and then developed hybrid models by 
integrating mechanistic layers (e.g. durations of activity, ener-
getics) into MaxEnt. In addition, we evaluated the sensitivity 
of hybrid models by running mechanistic models with aver-
age and thermally sensitive water loss rates measured from 
laboratory experiments. By combining these two methods, 
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our study offers a statistical framework to determine whether 
mechanistic layers are important predictors of salamander 
distributions, particularly when jointly modeled alongside 
climatic layers. In doing so, our approach develops a robust, 
quantitative approach informed by multiple perspectives for 
predicting the ecological impact of climate change on species 
of conservation concern.

Material and methods

Salamander care and collection

We conducted experiments on green salamanders to evaluate 
the thermal sensitivity of water loss rates and metabolic rates. 
We collected 2–6 green salamanders (avoiding nesting and 
gravid females as well as juveniles) from four sites in South 
Carolina (n = 19) at night from April to May 2017. Sites 
were located in Table Rock State Park and Nine Times Forest 
(precise locality withheld due to conservation concerns). We 
selected these sites because previous surveys suggested animal 
densities were high enough to provide sufficient captures for 
our trials without compromising the population. We trans-
ported salamanders in Ziploc® bags (with moist leaf litter) to 
Clemson University in Clemson, South Carolina and placed 
them in an incubator (15°C). Salamanders were acclimated 
in individual plastic containers (15.6 × 15.6 × 5.7 cm) with-
out food on a wet paper towel for five days to ensure that 
physiological measurements occurred during a post-absorp-
tive state (Riddell  et  al. 2018). As part of our animal care 
protocol, we estimated a baseline mass (to the nearest 0.001 
g) at the beginning of the experiment to ensure that sala-
manders did not lose more than 10% of their baseline mass 
while in the laboratory. Salamanders that did not maintain 
a baseline mass were excluded from the experiment (below). 
After the acclimation period, we measured water loss rates 
and metabolic rates using a flow through system. All experi-
ments were approved by the Institute for Animal Care and 
Use Committee at Clemson Univ. (AUP 2016-035), and 
approval for collections and experimentation were granted by 
the South Carolina State Park Service and the South Carolina 
Dept of Natural Resources. After the experimental trials, all 
collected animals were returned to capture sites.

Flow through system and physiological 
measurements

We measured the thermal sensitivity of water loss rates and 
metabolic rates using a flow through system. Our system 
continuously exposed salamanders to combinations of tem-
perature and humidity while simultaneously measuring their 
physiology. We controlled the environmental temperature 
using a programmable incubator (Percival VL36). The flow 
through system pumped air beginning with a sub-sampler 
(SS-4; Sable Systems International (SSI)) to push air through 
a dewpoint generator (DG-4; SSI) controlling the vapor pres-
sure deficit (VPD; the difference between the amount of 

moisture in the air and the amount of moisture the air can 
hold). A flow manifold (MF-8; SSI) was then used to divide 
the airstream into the individual cylindrical acrylic chambers 
and control flow rate (150 ml min−1). The chambers (16 × 
3.5 cm; volume ~ 153 ml) contained an individual green sala-
mander placed on hardwire mesh to expose its surface to the 
airstream (simulating posture during activity). We cycled air 
between each chamber three times every ten minutes using a 
multiplexer (M8; SSI). The airstream was then sampled using 
a vapor analyzer (RH-300; SSI) which measured the change in 
water vapor pressure (kPa). Then, the air was scrubbed of water 
vapor and carbon dioxide using Drierite (W. A. Hammond 
Drierite Co. Ltd.) and soda lime, respectively. After scrub-
bing, we measured the partial pressure of oxygen using a dual 
channel, differential oxygen analyzer (Oxzilla SSI).

We moved the individual plastic containers to an environ-
mental chamber set to a regulated experimental temperature 
(12, 18, 24°C) two hours prior to measuring water loss rates. 
These temperatures were chosen to reflect the temperatures 
that green salamanders would experience in nature during 
their active season (April–October; Gordon 1952). We calcu-
lated skin resistance to water loss of green salamanders using a 
combination of one of the three treatment temperatures (12, 
18, 24°C) and a single VPD (0.5 kPA). This VPD was chosen 
because it is ecologically relevant for terrestrial salamanders 
(Riddell and Sears 2015, Riddell et al. 2017). We randomized 
the temperature treatments with respect to night of experi-
ment to avoid acclimation effects. Physiological traits were 
measured between 19:00 and 01:00 hours to reduce influ-
ence of circadian rhythm of metabolism. Salamanders were 
allowed to acclimate to the flow through chambers for 30 min 
to adjust to their new surroundings. To ensure animals were 
resting, we did not include any measurements in our analyses 
with spikes or irregularities in vapor pressure that would be 
indicative of activity. We measured water loss rates and meta-
bolic rates separately because metabolic rates were too low to 
detect using the flow rates from the water loss measurements.

Thermal sensitivity of metabolism

Energy balance for an ectotherm depends upon the tempera-
tures that the organism experiences. We used the same flow 
through system in the laboratory to measure volume of oxy-
gen consumption (VO2) to estimate energy expenditure for 
the mechanistic distribution models. We reduced the flow 
rate to 50 ml min−1 allowing for increased resolution of the 
oxygen depletion curves during cooler temperature treat-
ments when salamanders exhibit very low metabolic rates. 
We held VPD (0.5 kPa or 64–83% relative humidity) con-
stant across temperature treatments. Using Oxzilla (SSI), we 
measured partial pressure of oxygen to measure volume of 
oxygen consumption at four experimental temperatures (6, 
12, 18, 24°C) on different nights. We measured volume of 
oxygen consumption at a fourth, lower temperature treat-
ment (6°C) that was not used in the water loss trials due 
to limitations with the equipment. We randomized the 
order of each experimental temperature to avoid acclimation 
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effects. We excluded two individuals from the metabolic trials 
because they failed to return to baseline mass after the water 
loss experiment. Partial pressures of gases were converted into 
meaningful physiological values using a series of established 
calculations (see following section).

Calculations for skin resistance to water loss and 
metabolic rate

We measured skin resistance to water loss using a suite of 
calculations presented in Riddell et al. (2017). First, we con-
verted the water vapor pressure (e; kPa) to water vapor den-
sity (pv; g ml−1) using the following equation (eq. 1):

rv
v
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T R

=
´( )
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where T is temperature in Kelvin (K) and Rv is the gas constant 
for water vapor (461.5 J K−1 kg−1). We then converted the vapor 
density to evaporative water loss (EWL; g s−1) using eq. 2:

EWL FR= ´ ´rv
1
60

	  (2)

where FR is the flow rate of the air stream (ml min−1) and 
1/60 is a conversion factor to convert FR to ml s−1. Next, we 
calculated cutaneous water loss (CWL; g s−1 cm−2) by divid-
ing the rate of water loss by the surface area of each salaman-
der. The surface area (cm2) was estimated by an empirically 
derived formula for the family Plethodontidae, where surface 
area = 8.42 × mass (g)0.694 (Whitford and Hutchison 1967). 
We used CWL to calculate total resistance to water loss (rT, s 
cm−1) as follows (eq. 3):

rT = r
CWL

	  (3)

where ρ is the vapor density gradient (g cm−3).
We then estimated the resistance of boundary layer assum-

ing free convection conditions using a series of calculations in 
Riddell et al. (2017). Boundary layer resistance (rb) is required 
to calculate skin resistance to water loss (ri), and once we esti-
mated rb, we calculated skin resistance using eq. 4:

r r ri T b= - 	  (4)

where rT is the total resistance (s cm−1) and rb is the boundary 
layer resistance (s cm−1). We then estimated volume of oxy-
gen consumption (VO2; µl h−1) using eq. 5:

VO FR FO F O FOi i2 2 2 21= -( ) -( )²e e / 	  (5)

where FRe is the excurrent flow rate (ml), FiO2 is the incur-
rent fractional concentration of oxygen (20.95%), and F″eO2 

is the excurrent fractional concentration of oxygen (Lighton 
2008). We then integrated the thermal sensitivity of ri and 
VO2 into physiologically-structured species distribution 
models to estimate activity and energetics throughout the 
range of A. aeneus.

Estimation of environmental data for mechanistic 
species distribution model

Mechanistic models can predict activity, survival, growth 
and reproduction as a function of environmentally sensitive 
processes that influence energy and mass balance. Similar 
mechanistic SDMs have used microclim (Kearney et al. 2014) 
to estimate the relevant temperatures experienced by terres-
trial salamanders; however, we used air temperatures from 
bioclimatic layers (Worldclim) for green salamanders (Fick 
and Hijmans 2017). Green salamanders are typically active 
at night on the surface of large boulders (Gordon 1952; see 
Supporting information for typical green salamander habi-
tat); thus, the temperatures that they experience are likely 
closer to air temperature 1–2 m off the ground. Moreover, 
environmental temperatures near the surface are often very 
similar to air temperatures at night, especially in shaded 
habitats such as the southern Appalachians. To validate this 
assumption, we used NicheMapR (Kearney  et  al. 2014) to 
assess the relationship between air temperature and soil sur-
face temperature. We used a randomly generated coordinate 
(35.23, −82.76) within the disjunct green salamander geo-
graphic range to model air and soil temperature assuming 
90% shade on a typical loamy soil. We then assessed the cor-
relation between air temperature and soil surface temperature 
at night (21:00–06:00) for each month of the year using the 
micro_global function in NicheMapR. The validation analy-
sis indicates that air temperatures closely approximate soil 
surface temperatures at night with correlations near unity 
(Supporting information). To validate our assumptions in 
the field, we measured air temperatures every 40 min using 
iButtons (Maxim Integrated) encased in hardwire mesh con-
tainers placed on the leaf litter and the surface of a tree trunk 
roughly 1.5 m from the surface of the ground from 25 June 
2016 to 9 October 2016. We collected 3412 measurements 
of temperature from the leaf litter and 1706 measurements 
from the tree trunk during nighttime hours (21:00–06:00). 
We then averaged the temperatures for each hour of the 
night and assessed the correlation between leaf litter tem-
perature and tree trunk temperature as proxies of near soil 
temperature and air temperature, respectively. Consistent 
with the NicheMapR analysis, we found a close association 
between the two temperatures with correlations near unity 
(Supporting information), suggesting air temperatures pro-
vide a reasonable estimate of temperature for green salaman-
ders. We caution, however, that this assumption will not be 
valid for many other organisms and is only reasonable given 
the unique behavior and natural history of our focal species. 
With the Worldclim layers, we estimated hourly variation in 
temperature from monthly minimum and maximum tem-
peratures using equations 2.2 and 2.3 described in Campbell 
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and Norman (1998). Similar to previous mechanistic mod-
els, we estimated vapor pressure deficits under the established 
pattern that minimum nightly temperatures approach the 
dew point temperature (Riddell et al. 2017).

Mechanistic species distribution model

Our mechanistic species distribution model predicts activ-
ity and energy balance based upon thermal sensitivities of 
traits and the typical activity patterns of green salamanders. 
We used a custom script developed in Python (ver. 3.8.3), 
which is available online (<https://github.com/ecophysi-
ology/salascape>). We simulated nightly activity for each 
location based upon the average hourly air temperature and 
humidity data over the entire year (Supporting information). 
Salamander activity was restricted to nighttime conditions 
(21:00–06:00 h), and activity only occurred when air tem-
peratures were suitable (5–25°C) (as described in Spotila 
1972). While active, we estimated body temperatures by 
accounting for the effect of evaporative cooling using humid 
operative temperatures (Teh; Campbell and Norman 1998). 
We estimated Teh using eq. 6:
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where Ta is ambient temperature, s is the slope of satura-
tion mole fraction function, Rabs is the absorbed short- and 
long-wave radiation, γ* is the apparent psychrometer con-
stant, εs is the emissivity of the salamander (0.96), sigma 
is the Stefan–Boltzmann constant, cp is the specific heat of 
air at constant pressure, gHr is the sum of boundary layer 
and radiative conductance, D is the vapor pressure deficit 
of the air and pa is the atmospheric air pressure (Campbell 
and Norman 1998). For Rabs, we included long-wave radia-
tion from the sky and ground (eq. 10.7 in Campbell and 
Norman (1998)), assuming the sky and ground were roughly 
the same temperature (see Supporting information for vali-
dation). We assumed emissivities of 1.0 for both the sky and 
the ground due to the near blackbody conditions (Campbell 
and Norman 1998). Direct and diffuse short-wave radia-
tion were excluded because salamanders were only active at 
night. By assuming Teh is equivalent to body temperature, we 
assume steady state thermal conditions, which is reasonable 
given the small body size of these salamanders and the lim-
ited temperature fluctuations that occur at night. In the field, 
we assumed the boundary layer resistance was a combination 
of free and forced convection at 0.1 m s−1 (Campbell and 
Norman 1998, Bird et al. 2002). We also compared estimates 
of body temperature from our simulations to estimates pro-
duced by NicheMapR for an ectotherm with a high ri (1000 
s cm−1) and low ri (6 s cm−1) at a cool, wet site in the North 
Carolina mountains (35.00, −82.70) and a warm, dry site 
in the Mojave Desert (35.33, −115.308). Comparisons were 
nearly identical (Supporting information), with the excep-
tion of an ectotherm with very low ri in a hot, dry environ-
ment in which we found up to a 20% difference at the hottest 

temperatures. Though animals with exceptionally low resis-
tance in hot, arid regions are rare, the results suggest that 
calculations of Teh might overestimate body temperatures 
when evaporative water loss greatly exceeds metabolic heat 
production (Campbell and Norman 1998). We then used 
body temperature to estimate energetic costs from volume 
of oxygen consumption while active for every hour. We cal-
culated energetic costs based upon the thermal sensitivity of 
VO2 measured from the laboratory experiments described 
above using the following equation (eq. 7):

log . . log .VO mass2 0 046 0 59 0 86= ´( ) + ´ ( )( ) +T 	  (7)

where VO2 is volume of oxygen consumption (µl min−1), T 
is body temperature (°C) and mass refers to the mass (g) of 
the green salamander. We then assumed a conversion factor 
of 20.1 J ml−1 to convert VO2 to standardized units of energy. 
Energy intake was estimated from the thermal sensitivity of 
energy assimilation recently recorded in plethodontids (Clay 
and Gifford 2017). We estimated energy intake using eq. 8:
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5 3
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where Ea is energy assimilated from prey (kJ g−1 day−1), and 
T is body temperature (°C). The rate of energy assimilation 
was divided by 24 to estimate hourly energy assimilation at 
the given Teh. Rates of energy consumption and assimilation 
are then summed together to estimate energy balance for 
each hour of the day. The model then tracks energy balance 
throughout the entire year to calculate annual energy balance 
for each geographic location. By using energy assimilation 
rates, the mechanistic model assumes that salamanders have 
unlimited access to prey – an assumption supported by both 
empirical and theoretical studies. Lungless salamanders are 
not limited by prey availability in nature (Hairston 1981), 
but instead by prevailing thermal and hydric conditions 
(Fraser 1976). Moreover, conclusions from mechanistic mod-
els are robust to variation in prey availability (Buckley and 
Roughgarden 2005, 2006), even for lungless salamanders 
(Gifford and Kozak 2012). Taken together, the assumption of 
high prey availability seems reasonable; however, our conclu-
sions on future habitat suitability are likely to underestimate 
climate vulnerability in the event of future declines of insect 
prey. The model also included dietary water from prey based 
upon the average water content and energy content of typical 
insects (Riddell et al. 2017).

Salamanders frequently retreat to their microhabitat to 
avoid poor microclimatic conditions (Fraser 1976). While 
inactive, we assumed that salamanders retreated to 30 cm 
below the surface of granite boulders. We assumed this depth 
because it represents the minimum depth at which below-
ground temperatures approach average air temperature for a 
given month (Campbell and Norman 1998). We estimated 



6

temperatures within the granite using equation 2.4 from 
Campbell and Norman, and we used a damping depth of 
17.0 based upon the typical properties of granite (Cho et al. 
2009). We then use this temperature to approximate body 
temperatures that salamanders experience while inactive 
inside a granite boulder. By doing so, we assume that air 
temperatures approximate the surface temperature of the 
granite boulders, which is reasonable given that the boulders 
are found in heavily forested areas with very low amounts of 
direct solar radiation (Supporting information) (Shoo et al. 
2010). We assumed that salamanders were not able to for-
age during times of inactivity. Salamanders were assumed 
to cease activity upon reaching their dehydration threshold, 
experiencing air temperatures beyond their preferred range, 
or during the daytime. We also incorporated variation using 
sensitivity analyses for parameter values in the mechanis-
tic model. For instance, we selected a range of dehydration 
thresholds (5.0, 7.5 and 10%) at which salamanders ceased 
activity based upon empirically-observed values for plethod-
ontids (Feder and Londos 1984). We also ran simulations 
across various body sizes reflected in our physiological experi-
ments (2, 3, 4 g), humidity scenarios (+25% and −25% value 
of VPD), and skin resistance to water loss.

To determine the sensitivity of hybrid models to impor-
tant physiological parameters, we ran simulations assum-
ing an average ri (6.0 s cm−1) and a dynamic estimate of ri, 
which was based on the thermal sensitivity of ri measured 
from the experiments. For the average simulations, we used 
the average ri between the 12 and 18°C treatments to assess 
the importance of ignoring physiological responses to warm 
temperatures. For the dynamic simulations, we used a qua-
dratic function (R2 = 0.66) to estimate ri when body tem-
perature fell between 12 and 24°C, which varied between 
5.7 s cm−1 at 12°C to 11.2 s cm−1 at 24°C. We assumed ri 
remained at 5.7 s cm−1 at body temperatures below 12°C and 
11.19 s cm−1 above 24°C. We compared these simulations 
because mechanistic models are often parameterized with 
static values for resistance to water loss, and to our knowl-
edge, studies have yet to incorporate the thermal sensitivity 
of resistance to water loss in mechanistic models. We ran our 
simulations for each combination of body size, dehydration 
threshold, humidity scenario and skin resistance to water loss 
to estimate activity budgets and energy balance throughout 
the year. We averaged estimates of activity and energy bal-
ance across all simulations that varied body size, dehydration 
threshold and humidity scenario for a particular ri scenario 
(average and dynamic) to generate activity and energy bal-
ance layers to integrate into the statistical framework. We also 
predicted activity and energy balance using the same climate 
warming scenarios as the correlative approach (described 
below) to evaluate the sensitivity of hybrid models to climate 
scenario projections.

Correlative species distribution model

We used MaxEnt to assess correlations between climatic fac-
tors and presence data because it performed as well or better 

than other tools during a comprehensive model evaluation 
(Elith et al. 2006). It is also commonly used to generate dis-
tribution models of climate vulnerability (Pearson et al. 2007, 
Loarie  et  al. 2008, Puschendorf  et  al. 2009, Bradley  et  al. 
2010). We focused on the disjunct population of green 
salamanders (North Carolina, South Carolina and Eastern 
Georgia), excluding the recently described Hickory Nut 
Gorge green salamander Aneides caryaensis (Patton  et  al. 
2019), due to evidence of their recent population declines 
(Snyder 1983, Corser 2001). Genetic studies have revealed 
that this disjunct population is an evolutionarily significant 
unit from the mainland population (Patton et al. 2019). To 
create the spatial boundaries of our model, we used mini-
mum bounding geometry in ArcGIS based on known local-
ity points for the species. We created a 25-km buffer around 
this disjunct range. We extrapolated data on green salaman-
der movement and predicted that green salamanders could 
potentially disperse ~15 km in 33 years if projecting to 2050 
(Gordon 1952, Canterbury 1991; Supporting information). 
The remaining 10 km accounts for the possibility that the 
current range extends beyond currently cataloged localities.

We collected green salamander presence data from the 
South Carolina Dept of Natural Resources, Georgia Dept 
of Natural Resources, North Carolina Wildlife Resources 
Commission and publicly-accessible online databases (Price 
and Dorcas 2007, Cicero et al. 2010, USGS 2013). We also 
gathered new sites in South Carolina from a recent extensive 
habitat association survey (Newman et al. 2018). All points 
were uploaded into ArcMap ver. 10.3. We reduced clusters of 
points (and thus minimized potential sampling biases such as 
repeated sampling from easily accessible sites) by using a ran-
dom point generator in ArcMap. Because the average north–
south distance of rock outcrop of sites in South Carolina was 
31 m (Newman et al. 2018), we randomly removed points in 
clusters that were less than 31 m apart.

We selected seven bioclimatic variables (BIO 1–2, 4, 8–9, 
12, 15; Table 1), from a list of 19 (Hijmans et al. 2005) based 
on low pairwise correlations between variables. Though vari-
ables BIO1 and BIO15 exhibit a high pairwise correlation 
value (0.74), we included both of these variables to include 
an additional dimension of precipitation in the analysis. This 
pairwise comparison approach was first used by Rissler and 
Apodaca (2007) for a west coast congener species, Aneides fal-
vipunctatus and has since been used several times to generate 
distribution models for amphibians (Milanovich et al. 2010, 
Barrett et al. 2014, Sutton et al. 2015). WorldClim derives 
these bioclimatic variables from a 30-year (1960–1990) data-
set of monthly averages compiled of temperature and rainfall 
data at a spatial resolution of ~1 km2 (Hijmans et al. 2005). 
Elevation was excluded because it had a high pairwise cor-
relation with several bioclimatic variables. We intersected 
these climatic variables with both green salamander pres-
ence points and background points in ArcMap (ArcGIS ver. 
10.3.1, ESRI). We generated background points by randomly 
placing ~2000 herpetofaunal presence points (Plethodon yon-
halosse, P. teyahalee, P. metcalfi, P. jordani, Terrapene carolina, 
Chrysemy picta, Pantherophis obsoletus, Diadophis punctatus 
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and Storeria dekayi) collectively distributed through the entire 
buffered disjunct range of the green salamander (Price and 
Dorcas 2007, Cicero et al. 2010, USGS 2013).

We used two different global climate models (GCM), 
with one representative concentration pathway (RCP) each. 
We downloaded two widely used GCMs from WorldClim: 
HadGEM2-CC (Hadley) and CCSM4. Model selection 
was based on hindcast accuracy in the northern hemisphere 
(Overland  et  al. 2011) and availability of projected data 
of the RCP 8.5 for 2050. We included two GCMs as the 
Hadley GCM tends to predict wetter future macroenviron-
mental conditions while the CCSM4 GCM tends to pre-
dict drier future macroenvironmental conditions (CIESIN 
2000). We included the RCP 8.5 trajectory to provide 
a perspective representing rapid increase in greenhouse 
gas emission or the ‘business-as-usual’ climate scenario 
(Schwalm et al. 2020). MaxEnt produces species distribu-
tion models with probability of presence (ranging from 0 
to 1 representing low to high habitat suitability). We used 
two thresholds (strict and moderate) to generate distribu-
tional range shifts in projected suitable habitat within the 
disjunct range of green salamanders. We used the fixed 
cumulative value 10 (F10; a moderate threshold resulting 
in 10% omission of training data), and the equal training 
sensitivity and specificity (ETSS; a relatively more restric-
tive threshold that balances the probability of missing suit-
able sites with the probability of assigning suitability to 
a site where the species is absent). Using default settings 
in MaxEnt can result in overly complex models (Moreno-
Amat et al. 2015), and so we ran models using the linear 
and quadratic thresholds in MaxEnt based on suggestions 
from Merow et al. (2013).

Statistical analysis and model comparison

Statistical analyses for physiological experiments were con-
ducted in R (ver. 4.0.2). We conducted linear mixed effects 
models for ri and VO2 separately using the lme4 package. For 
each analysis, we included temperature as a factor and body 
mass as a covariate. For each model, we used the lmerTest 
package to calculate the predicted marginal means for each 
effect, using a Kenward–Roger approximation of the degrees 
of freedom (Kuznetsova et al. 2017). For analyses on VO2, 

we log scaled body mass to meet the assumptions of homo-
geneity of variance. For each analysis, we also reported effect 
sizes (ω2) for variables using the sjstats package (Olejnik and 
Algina 2003). For the habitat suitability models, we created 
a suite of climatic suitability models for green salamanders 
under current and future climatic conditions. Both correla-
tive and mechanistic layers were used within an inductive, 
presence-only modeling approach MaxEnt (Phillips  et  al. 
2006). Correlative-only models were built using only cli-
matic variables, whereas our hybrid models contained cli-
matic variables and two experimentally-derived mechanistic 
layers: activity and energy balance. Each of these mechanis-
tic layers were also developed for average ri and dynamic ri 
to test the sensitivity of hybrid models. We compared the 
number of cells containing suitable habitat that were lost or 
gained after mechanistic predictors were added to the cor-
relative model. In addition, we compared correlative only 
models to hybrid models that only contained mechanistic 
variables. Then we analyzed variable contribution among 
all models using two summary statistics, percent contribu-
tion and permutation importance. The percent contribu-
tion measures how much each variable contributed to the 
final model output, although it can change depending on 
the path the algorithm takes to arrive at a final solution 
(Phillips 2006). Permutation importance indicates the 
importance of a variable by randomly changing the value 
and measuring the change in training area under the curve. 
The results are normalized to percentages across all variables 
in the model (Phillips 2006). To assess model performance, 
we calculated the percentage of presence locations that fell 
within or outside suitable habitat under the current climate 
scenario predicted by the different modeling frameworks 
(correlative only, hybrid and overlap) within each model 
iteration (i.e. strict and moderate sensitivity thresholds, 
average and dynamic resistance to water loss assumptions). 
We also provided a minimum convex polygon with 2 km 
buffer to illustrate the general spatial distribution of pres-
ences for green salamanders. Lastly, we overlaid United 
States parks (including national, state, county, regional and 
local) with the climate model outputs of habitat suitability 
to determine the proportion of protected climate refugia in 
the green salamander’s disjunct range under each climate 
scenario.

Table 1. Predictor variables used in MaxEnt models for green salamander distribution models including bioclimatic variables (<www.world-
clim.org/bioclim>; accessed in 2017) and mechanistic layers.

Variable Definition

BIO1 Annual mean temperature
BIO2 Mean diurnal range (mean of monthly [max temp–min temp])
BIO4 Temperature seasonality (standard deviation × 100)
BIO8 Mean temperature of wettest quarter
BIO9 Mean temperature of driest quarter
BIO12 Annual precipitation
BIO15 Precipitation seasonality (coefficient of variation)
Activity Annual average activity before an animal retreats to its microhabitat 
Energy balance The annual energetic expenditure 
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Results

Physiological experiments

Skin resistance to water loss varied significantly with tem-
perature (Fig. 1a, F = 112.9, p < 0.001, ω2 = 0.85) and body 
mass (slope (β) ± standard error: 1.71 ± 0.32, F = 35.2, p 
< 0.001, ω2 = 0.62). Green salamanders exhibited the high-
est ri under the warmest temperature treatment and the low-
est ri under the coolest temperature treatments (Fig. 1a). We 
also found that VO2 increased with temperature (Fig. 1b, 
F = 100.9, p < 0.001, ω2 = 0.85) and body mass (β = 123.2 
± 22.9, F = 30.8, p < 0.001, ω2 = 0.62).

Mechanistic-based habitat suitability

Under contemporary climate scenarios, the majority of 
green salamander presences were found in regions predicted 
to be in positive energy balance (69.2% with average ri and 
55.9% with dynamic ri). Under future warming scenarios, 
fewer of these presence locations were associated with posi-
tive energy balance (Hadley: 2.4% with average ri and 2.7% 
with dynamic ri; CCSM4: 6.8% with average ri and 6.8% 
with dynamic ri). Estimates of energy balance under climate 
change scenarios were sensitive to using average or dynamic 
ri (Fig. 2). In simulations with average ri, the proportion of 
areas with positive energy balance (i.e. energetically suit-
able) declined by 6.2–9.3% under climate change scenarios, 
whereas in simulations with dynamic ri, energetically suit-
able areas declined by 2.7–3.4%. Average energy balance (kJ) 
from models with dynamic ri were also 18.5% higher relative 
to models with average ri (Fig. 2). Overall, energy balance 
was 1.9–3.1-fold lower under climate change scenarios rela-
tive to contemporary climates. Under all climate change sce-
narios, mechanistic models predicted that regions associated 
with positive energy balance will shift northward into North 
Carolina (Fig. 2). Energy balance in South Carolina and 

Georgia was predicted to become primarily negative and thus 
energetically unsuitable (Fig. 2 and Supporting information).

Mechanistic models indicated that the duration of activity 
will decline under climate change scenarios, ranging from a 
35.2 to 56.3% decline in activity (Supporting information). 
The greatest decline in activity occurred under the Hadley 
climate change scenarios (56.3% for average ri and 35.2% for 
dynamic ri), and activity declined by 47.6–50.4% under the 
CCSM scenario (Supporting information).

Hybrid species distribution models

Variable contribution analyses indicated the consistent 
importance of annual mean temperature, temperature sea-
sonality and precipitation seasonality for predicting habitat 
suitability of green salamanders in all models. Upon adding 
mechanistic layers to correlative models, activity was also des-
ignated as a contributing variable (Table 2, Fig. 3). Response 
curves for annual mean temperature revealed an optimum for 
habitat suitability around 13°C (Fig. 3), and the predicted 
probability of suitable habitat increased with temperature 
seasonality and decreased with precipitation seasonality for 
all models (Fig. 3). The duration of activity also exhibited an 
optimum, with the greatest predicted probability of suitable 
habitat occurring at intermediate levels of activity (Fig. 3). 
Energy balance was not indicated as an important variable.

Under the current climate scenario, we found a high degree 
of overlap between models with and without mechanistic 
layers (Fig. 4). These patterns held whether hybrid models 
incorporated average or dynamic ri (Fig. 4). Correlative-only 
models consistently predicted more suitable habitat than 
hybrid models, and this was especially apparent when the 
moderate threshold was applied to the dynamic ri value. In 
the assessment of model performance, we found 74.5–92.3% 
of presence locations occurred within regions predicted to be 
suitable by both correlative and hybrid models (Supporting 
information), with more locations occurring in suitable 

Figure 1. Thermal sensitivity of (a) skin resistance to water loss (ri) and (b) volume of oxygen consumption (VO2) for green salamanders. 
Experiments revealed that ri increased substantially at the warmest temperature and VO2 increased non-linearly with temperature. These 
experimental values were then used to parameterize the mechanistic species distribution model.
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habitat in models that incorporated the thermal sensitivity of 
ri with the moderate threshold.

Hybrid models that only incorporated mechanistic layers 
(i.e. no climate layers) exhibited a high degree of divergence 
from correlative-only models (Supporting information). In 
general, mechanism only models suggested suitable habitat 
was widespread, except for the most southern, low elevation 
regions. However, predictions were highly sensitive to the 
threshold (strict versus moderate), with the greatest diver-
gence between models occurring with moderate thresholds. 
Under the moderate threshold, both correlative and mecha-
nism-only models predicted 90.9% of presence locations to 

occur in suitable regions for average and dynamic ri, respec-
tively. Under the strict threshold, mechanism-only mod-
els predicted 63.9–68.2% of presence locations to occur in 
suitable regions for average and dynamic ri, respectively, and 
correlative models predicted 75.7% of presence locations to 
occur in suitable regions for both average and dynamic ri.

Habitat suitability under climate change

Correlative-only and hybrid models predicted similar pat-
terns of habitat suitability across the disjunct range of green 
salamanders; however, there were some important differences. 

Figure 2. Projected energy balance from mechanistic species distribution model for green salamanders for three climatic scenarios. (a) The 
disjunct range of green salamanders located in North Carolina, South Carolina and Georgia, USA with minimum convex polygon (white 
outline) of green salamander presence locations. (b) Energy balance projections for current (CU), CCSM4 (CC) and Hadley (HG) GCMs 
with average ri and thermally sensitive ri (dynamic). White boundary surrounds regions with positive energy balance.

Figure 3. Response curves for contributing variables underlying green salamander distribution models. (a–e) Variables influencing models, 
regardless of scenario (a–c), included (a) mean annual temperature (BIO1), (b) temperature seasonality (BIO4) and (c) precipitation sea-
sonality (BIO15). Variables influencing models when mechanistic layers were added (d–e), included (d) activity with average ri and (e) 
activity with dynamic ri.
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In the CCSM4 scenario, habitat suitability in hybrid mod-
els declined by 41.7% on average relative to contemporary 
climates (Fig. 4). In the Hadley climate change scenarios, 
however, habitat suitability increased by 2.6-fold relative to 

contemporary climates, and correlative-only models consis-
tently extended habitat suitability further south relative to 
hybrid models (Fig. 4). In general, there were few suitable 
regions predicted by hybrid models alone, indicating hybrid 

Figure 4. Projected suitable habitat from hybrid models for green salamanders throughout their disjunct range for current and 2050 climatic 
scenarios using average (panels a–f ) and dynamic (panels g–l) skin resistance to water loss. Models for 2050 are derived from global circula-
tion models (Hadley or CCSM4) representing Representative Concentration Pathway 8.5. Moderate (F10) or strict (ETSS) thresholds were 
applied to convert continuous predictions of suitability into binary categories of suitable/unsuitable. Modeled suitability is overlaid on a 
map of elevations (higher elevations appear as lighter shading). Bar graphs represent the number of cells of suitable habitat for green sala-
manders under each model type.
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models were more conservative than correlative-only mod-
els. On average, models predicted 27.0% less suitable habi-
tat under the strict threshold relative to the moderate. The 
hybrid models that only included mechanistic layers did 
not identify suitable habitat under the Hadley scenario and 
identified 0.3% of the region as suitable under the CCSM4 
scenario.

Identification of conservation areas

By mapping suitable habitat with protected areas, we found 
that 78.3% of suitable habitat is unprotected under current 
scenarios and 58.7–76.3% of suitable habitat will remain 
unprotected under either future climate change scenario 
(Fig. 5). The lack of protection for suitable habitat was con-
sistent between models that used average and dynamic ri in 

the hybrid models (Fig. 5). We identified specific parks at the 
national, state and local level for conservation of green sala-
manders based on their overlap with areas of suitable habitat 
(Supporting information).

Discussion

Our study evaluated the predictions of habitat suitability 
using correlative, mechanistic and hybrid SDMs for a spe-
cies of concern. The results suggest that the degree of over-
lap between approaches depends on the type of model used, 
climate change scenario and physiological parameterization. 
For instance, correlative-only and hybrid models projected a 
reduction in habitat suitability under the CCSM4 warming 
scenario, whereas they projected an increase in suitable habi-
tat under the Hadley warming scenario (Fig. 4). The great-
est divergence between correlative only and hybrid models 
occurred under the Hadley warming scenario (Fig. 4) or 
when hybrid models only contained mechanistic layers (i.e. 
no climate layers) (Supporting information). Despite the dif-
ferences in energy balance between simulations with average 
and dynamic ri, the effect of a dynamic ri was very minimal 
on hybrid models (Fig. 4). Both correlative and hybrid mod-
els performed well at predicting the distribution of green sala-
mander presences (Supporting information). The duration of 
activity was identified as informative by the hybrid frame-
work, whereas energy balance was not (Table 2). The lack of 
support for energy balance and effect of activity on suitability 
highlights an important limitation of hybrid models.

Our analysis indicates that hybrid models should be inter-
preted cautiously for species that do not occupy their entire 
fundamental niche. Mechanistic SDMs estimate the funda-
mental niche (Kearney 2006, Kearney and Porter 2009) and 

Table 2. Variable contributions within three Maxent models of habi-
tat suitability for green salamanders in their disjunct range using 
percent contribution and permutation test. We used bioclimatic 
variables (Table 1) derived from two global circulation models 
(<www.worldclim.org/bioclim>) and experimentally-generated 
mechanistic variables. Percentages are in parentheses (see Methods 
for interpretation of the two approaches).

Model Percent contribution
Permutation 
importance

Correlative BIO15(58.1), BIO4(28.3) BIO15(60.8), 
BIO1(31.8)

Hybrid [avg]1 BIO15(55.3), BIO4(20.6), 
Activity(9.9)

BIO15(63.1), 
BIO1(24.8)

Hybrid [dyn]2 BIO15(57.3), Activity(19.1), 
BIO4(11.5)

BIO15(63.1), 
BIO1(20.5)

1Average ri used to predict mechanistic variables (duration of activity 
and annual energy balance).
2Dynamic ri used to predict mechanistic variables (duration of activ-
ity and annual energy balance).

Figure 5. Proportion of suitable habitat for green salamanders protected by parks. Parks and protected areas protect the minority of suitable 
habitat, regardless of climate scenario or physiological parameters. Shown are the proportion of suitable habitat protected for all climate 
scenarios under strict and moderate thresholds with the two ri simulations (a = average and b = dynamic).
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therefore may identify regions as suitable even though the 
species does not occupy these regions for ecological reasons 
(i.e. competition, predation) or if the species range is not in 
equilibrium with climate (Araújo et al. 2005, Buckley et al. 
2010). Our mechanistic SDMs predicted that the northern 
half of the disjunct range was energetically suitable and suit-
able for activity, despite green salamanders not occurring this 
far north (Fig. 2). Although green salamanders do not live 
there, this region is characterized by the highest density of 
salamander species in the world (Petranka 1998). Multiple 
lines of evidence suggest green salamanders may be sensi-
tive to competitive interactions (Gordon 1952, Cliburn and 
Porter 1987), possibly explaining the lack of green salaman-
ders in these regions and their more restricted realized niche 
(Fig. 2A). Salamanders in this area also exhibit similar meta-
bolic rates and resistances to water loss (Riddell et al. 2018), 
providing evidence for a conserved fundamental niche among 
lungless, terrestrial salamanders (Kozak and Wiens 2006). 
These results indicate that the performance of hybrid models 
likely depends upon the extent to which species occupy their 
fundamental niche. The lack of support for energy balance 
as an informative predictor and the parabolic relationship 
between activity and suitability likely stems from the limited 
distribution of green salamanders. Similar studies that used 
hybrid approaches found activity (Mathewson  et  al. 2017) 
and energy balance (Briscoe  et  al. 2016) were important 
predictors of species’ distributions. Whether these patterns 
are generalizable likely depends upon the species’ traits and 
natural history. More specifically, hybrid models are likely to 
identify mechanistic layers as uninformative or to have unin-
tuitive relationships with suitability if species do not occupy 
their entire fundamental niche. Understanding these impor-
tant aspects of hybrid models may be important for interpret-
ing hybrid models and predicting the resilience of species to 
climate change.

Range-wide correlative models show some resiliency 
in parts of the disjunct range of the green salamander 
(Barrett et al. 2014). Similarly, our hybrid models suggested 
some resiliency, although the regions of resiliency across 
models did not always overlap. Nevertheless, in all model 
runs, some suitable habitat is projected to remain for the 
species under future warming scenarios. However, not all 
plethodontids are likely to experience similar degrees of resil-
iency as green salamanders. Green salamanders may present 
a unique case for modeling suitable habitat because of their 
association with rock outcrops, a behavior not shared with 
most plethodontids (Gordon 1952, Jaeger 1971, Mount 
1975). Green salamanders prefer moist crevices within 
rocky outcrops which may act as a buffer, allowing green 
salamanders to tolerate warmer and dryer temperatures of 
xeric slopes (Gordon 1952, Cho et al. 2009). Further, recent 
documented interspecific interactions between green sala-
manders and Philomycus slugs suggest that salamanders may 
utilize slugs for moisture within rock outcrops, eliminating 
the need for green salamanders to disperse long distances as 
much as other salamanders reliant on moist soil (Jaeger 1971, 
Cupp Jr. 2017, 2020). Therefore, green salamanders may be 

uniquely resilient to climate change given their behavior and 
natural history.

Our hybrid model projections indicate annual mean tem-
perature and environmental seasonality (both temperature 
and precipitation) play a major role in shaping the green 
salamander distribution. Green salamanders are known to 
use and breed in moist rock crevices (Gordon 1952), and 
moisture appears to be a limiting factor in the distribution 
of other Aneides species (Rosenthal 1957, Spickler  et  al. 
2006, Haan et al. 2007). Interestingly, both the CCSM4 and 
the Hadley GCMs predict a wetter future within the BRE 
(Supporting information), yet only the Hadley scenarios 
were associated with an increase in habitat suitability. The 
reliance of green salamanders on moist environments also 
likely explains why presence locations were associated with 
less seasonality in precipitation. The association with temper-
ature seasonality is likely a reflection of inhabiting high eleva-
tions, where climatic conditions are more variable (Sømme 
and Block 1991, Ferguson and Messier 1996). Similarly, 
model selection curves also indicated a clear optimum aver-
age temperature (~13°C) associated with green salamander 
habitat suitability. Though green salamanders may not expe-
rience average annual temperatures frequently, the average 
annual temperature may be associated with more ecologi-
cally relevant temperatures experienced in granite outcrops 
that are important for maintaining positive energy balance 
or physiological performance. Exploring variation in opti-
mum temperatures across species might also help to generate 
hypotheses on species-specific thermal performance or pre-
ferred temperatures that influence species’ distributions.

The laboratory experiments demonstrated that green sala-
manders may exhibit similar resilience to climate change as 
other plethodontids due to the same physiological mecha-
nisms. Green salamanders increased skin resistance to water 
loss when exposed to warm temperatures, shedding light on 
their tolerance to warm and dry conditions in laboratory stud-
ies (Gordon 1952, Canterbury 1991). Values of ri and VO2 
in our study were comparable to measurements on other ter-
restrial plethodontids (Riddell et al. 2018), suggesting shared 
physiological traits may drive similar ecological responses to 
climate change. Long-term acclimation studies have revealed 
that plethodontid salamanders regulate water loss rates using 
combinations of perfusion, vascular regression and regulation 
of lipid composition in the skin (Riddell et al. 2019). Given 
that the green salamanders in our study only had a few hours 
to respond to the experimental temperature, we suggest that 
perfusion (i.e. the limiting of blood flow to the skin) repre-
sents the most likely regulatory mechanism, which has also 
been reported in similar species (Brown 1972). Despite shar-
ing similar underlying mechanisms, green salamanders may 
struggle to track shifting climates in the absence of rock out-
crops. Future studies that explicitly simulate these dispersal 
and habitat limitations might further improve predictions of 
habitat suitability.

Knowing when to use a particular distribution model can 
contribute to cost effective conservation. Under current cli-
mate conditions, several studies demonstrate that correlative 
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models can accurately predict species distribution and show 
minimal changes when mechanistic layers were incorporated 
(Buckley et al. 2010, Briscoe et al. 2016). We showed sub-
stantial overlap between models, suggesting correlative-only 
models are probably sufficient for many species under cur-
rent climate conditions. Justification for a correlative-only 
approach is valuable given the data-intensive nature of 
mechanistic models. On the other hand, several studies have 
shown that mechanism-based forecasts diverge from those 
made when using correlative-based models (Briscoe  et  al. 
2016, Mathewson et al. 2017). Mechanistic SDMs generated 
projections that were, in some cases, more optimistic than 
models based on correlative data. We recommend the use 
of such SDMs as stand alone approaches or layers in a cor-
relative framework for projections assessing climate change 
vulnerability if resources are available. It is unclear whether 
mechanistic models are more accurate, so there may be an 
argument to use a more conservative (i.e. restrictive) thresh-
old. Lastly, our models only evaluated climate data. In order 
to make management decisions about where to conserve 
green salamander habitat, it would be beneficial to incorpo-
rate landscape data (i.e. rocky outcrops) to make the most 
informed decisions.

Integrating these two approaches might also guide con-
servation efforts on species of conservation concern, such as 
the green salamander. Overlap in the approaches can spe-
cifically guide conservation practitioners to focus on spe-
cific areas for conservation planning. For instance, only one 
model scenario predicted suitable habitat on protected land 
in Georgia (Supporting information), and this information 
may help managers allocate time and resources more effi-
ciently. According to our models, less than 50% of the suit-
able habitat for green salamanders will occur on protected 
land in 2050 under the most optimistic of scenarios (Fig. 5). 
Land acquisition in areas predicted to have suitable green 
salamander habitat (but are outside of public lands) will help 
conserve green salamanders should range shifts occur in the 
future. Additionally, periodic monitoring of occupied sites 
that are predicted to lose suitability may offer an early-warn-
ing signal related to climate vulnerability. Regardless of the 
conservation actions, our study demonstrates that integration 
of mechanistic and statistical approaches offer new insights 
for protecting species of concern.
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