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Abstract—Benchmarks that closely match the behavior of
production workloads are crucial to design and provision
computer systems. However, current approaches fall short:
First, open-source benchmarks use public datasets that cause
different behavior from production workloads. Second, black-
box workload cloning techniques generate synthetic code that
imitates the target workload, but the resulting program fails
to capture most workload characteristics, such as microarchi-
tectural bottlenecks or time-varying behavior.

Generating code that mimics a complex application is an
extremely hard problem. Instead, we propose a different and
easier approach to benchmark synthesis. Our key insight is
that, for many production workloads, the program is publicly
available or there is a reasonably similar open-source program.
In this case, generating the right dataset is sufficient to produce
an accurate benchmark.

Based on this observation, we present Datamime, a profile-
guided approach to generate representative benchmarks for
production workloads. Datamime uses the performance profiles
of a target workload to generate a dataset that, when used by
a benchmark program, behaves very similarly to the target
workload in terms of its microarchitectural characteristics.

We evaluate Datamime on several datacenter workloads.
Datamime generates synthetic benchmarks that closely match
the microarchitectural features of these workloads, with a mean
absolute percentage error of 3.2% on IPC. Microarchitectural
behavior stays close across processor types. Finally, time-
varying behaviors are also replicated, making these bench-
marks useful to e.g. characterize and optimize tail latency.

Keywords-benchmarking; workload generation.

I. INTRODUCTION

Representative benchmarks are critical to computer archi-
tects and systems designers. Benchmarks allow architects to
design hardware tailored to their target applications. This is
especially hard to do for modern datacenter workloads [12],
which often operate on confidential and proprietary data.

Unfortunately, existing datacenter benchmarks are rarely
representative of production workloads. These benchmarks
use synthetic or publicly available datasets that are very
different from those in production [12, 31], or use traces that
are representative at the time of construction but become
outdated as user data changes over time without continued
maintenance [16, 19, 54]. Fig. 1(left) shows an example of this
problem: it reports the instructions per cycle (IPC) on a Broad-
well processor for memcached running with two datasets: one
with a publicly available dataset representative of Facebook’s

I Production Dataset PerfProx

N Public Dataset W Datamime
_10- 14 30 - 8i8 1.0 - 1.6
o - 2o 24 - ~ 08 -
,.E 0.8 E = 24 3 0.8
g 06~ =z 18- 8 06~
o v 8
8 04- < 8 12- O 04 -
\6 0.2 - 8 £ 6 - = 0.2 -
g = '

0.0 0 0.0

Figure 1: Accuracy comparison of benchmark generators when mim-
icking memcached with a Facebook production dataset: IPC (left) and
ICache MPKI (center) on an Intel Broadwell CPU, and IPC (right) on
an AMD Zen 2 CPU. memcached with a public dataset (TailBench’s
default) and the -generated code are very different from the
production workload. By contrast, Datamime produces a dataset that
makes memcached closely mimic the production workload.

production environment [3] (in blue), and another with the
default dataset used in the Tailbench benchmark suite [31]
(in red). IPC is 2.4 x lower for the Tailbench dataset. This
stark difference comes from very different microarchitectural
behavior. For example, Fig. 1(center) shows that the Tailbench
dataset incurs 3.2x higher instruction cache misses per kilo-
instruction (ICache MPKI), but other metrics (e.g., branch
mispredictions and data misses) are also very different.

Alternatively, black-box workload cloning techniques [4,
5, 27, 41] generate synthetic code that mimics the behavior
of a target workload. These techniques directly analyze the
production workload to generate code, so in theory they need
not suffer from the mismatch between production and public
datasets. But in practice, trying to mach the behavior of a
complex program with synthetic code is very complicated.
Thus, the produced benchmark does not preserve the structure
and high-level behavior of the production workload, resulting
in an inaccurate benchmark. Fig. 1 shows this problem: when
PerfProx [41], a state-of-the-art workload cloning technique,
is used to clone memcached, the resulting benchmark has
a 1.94x higher IPC on Broadwell. PerfProx also produces
very different microarchitectural behavior, with 7.76x lower
ICache MPKI. Beyond this mismatch, the resulting clone
does not capture the overall structure of the workload, e.g.,
its request-driven nature and time-varying behavior, which
is crucial to study and optimize many key metrics, like tail
latency, and mechanisms, like OS interactions. For these
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Figure 2: Brief overview of Datamime. Datamime uses the difference
in performance profiles between the synthetic benchmark and the
production workload to produce representative synthetic datasets.
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reasons, black-box workload cloning has seen little adoption
within the architecture community.

We introduce data-centric benchmark generation, a new
insight to generate representative benchmarks. We observe
that the code used by production workloads is often publicly
available (e.g., memcached), or a reasonably similar open-
source alternative exists (e.g., an open-source database or
search engine). Thus, instead of trying to generate code as
in prior work, it is simpler and more effective to generate a
representative dataset, i.e., one that makes the public code
closely mimic the target workload.

Based on this observation, we present Datamime, a tech-
nique to generate representative benchmarks from production
workloads by synthesizing datasets. Fig. 2 gives an overview
of Datamime. Datamime uses three inputs: (/) performance
profiles from the target workload, (2) an existing program,
and (3) a dataset generator for the program. Datamime then
searches for a dataset that produces the closest performance
profiles to those of the target workload.

Fig. 1 shows that, unlike prior work, Datamime accurately
mimics the production Facebook workload. IPC and ICache
MPKI are within 2.8% and 2.6% of the target workload,
and results carry over to other microarchitectures: IPC on an
AMD Zen 2 machine (right of Fig. 1) is within 8.5%, whereas
other techniques vary significantly. Because our performance
profiles include many microarchitectural metrics and time-
varying behavior, Datamime accurately captures these aspects
as well, as we will see later.

We evaluate Datamime in a single-node setup across
five datacenter workloads. Datamime is able to synthesize
datasets that differ from the target workload by a mean
absolute percentage error of 3.2% on IPC. In comparison,
state-of-the-art black-box cloning suffers a 42.9% mean
absolute percentage error on IPC. Trends are similar on
other microarchitectural metrics, like memory traffic.

In addition, Datamime closely matches the distributions
of performance counters and CPU utilization. Datamime can
prioritize matching certain metrics to meet the benchmark
designer’s needs. And Datamime’s optimizer is fast, requiring
6—13 hours of serial work to produce an accurate benchmark.

Overall, Datamime makes it easy to produce benchmarks
that are representative of production services. Datamime
requires collecting a one-time, low-overhead profile of the

target workload. While this profiling step needs to be done
by the operator of the service, is has negligible performance
impact and can be gathered in production. Datamime’s dataset
generation and search can then be performed by either a third
party (e.g., a research group) or the operator of the production
service itself. This enables many use cases, such as producing
open-source benchmarks for the research community, or
quickly producing benchmarks that can be shared with
providers (e.g., processor and system designers) to guide
their designs without revealing proprietary data. Datamime is
publicly available at https://datamime.csail.mit.edu.
In summary, we make the following contributions:

o We introduce data-centric benchmark generation, a general
technique to produce representative benchmarks for pro-
duction workloads by synthesizing a representative dataset.

o We present Datamime, an implementation of data-centric
benchmark generation. Datamime is the first technique to
generate representative synthetic datasets by matching the
performance profiles of production workloads.

o« We evaluate Datamime on several datacenter workloads,
showing that it is effective at generating representative
datasets. We show that Datamime can match the profile
distributions of the target application’s key metrics. We also
show that Datamime produces the dataset in few iterations,
and can generate datasets with a wide range of performance
profiles.

II. BACKGROUND

Since many datacenter applications are publicly accessible
(or have a similar open-source counterpart), creating a
representative benchmark can be accomplished by running
the application with a representative dataset. Unfortunately,
companies are often apprehensive about releasing the data
used in production environments due to confidentiality issues.

Given this limited access to production data, prior work
has designed datacenter benchmarks in two different ways.
On the one hand, numerous synthetic benchmark suites have
been proposed [12, 16, 31, 54]. These suites combine a
set of common datacenter applications along with publicly
available datasets. On the other hand, prior work has proposed
black-box workload cloning techniques [4, 5, 17, 27], which
synthesize proxy benchmarks that mimic the behavior of
production workloads. We now discuss the limitations of
these two approaches.

A. Existing Benchmarks use Unrepresentative Datasets

With the rise of numerous cloud services over the past few
decades, a number of cloud benchmark suites have been pub-
lished. Cloudsuite [12] focuses on introducing a set of scale-
out workloads that exhibit significantly different microar-
chitectural characteristics from traditional server workloads,
such as limited instruction- and memory-level parallelism
and large working set sizes. Tailbench [31] aggregates a
set of representative latency-critical applications, providing
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Figure 3: Accuracy comparison of five different target workloads against three other schemes. Each of the five plots shows the comparison of
IPCs of different schemes against each target workload (mem-fb, mem-twtr, silo, xapian, dnn). For each group of bars in a given plot, we
report the IPC measured on a system with different processor microarchitectures (Intel Broadwell, AMD Zen 2, and Intel Silvermont). The
leftmost bar (blue) is the target workload’s IPC, and the red bar is the IPC of the same application with a different dataset. We also report
the IPCs of benchmarks generated by PerfProx and Datamime (orange and green) which mimic the microarchitectural characteristics of the
target workload. See Sec. IV for details on our experimental setup, such as the target and different datasets used for the evaluation.

a testbench where it is possible to run these workloads
with different network configurations. The DeathStarBench
Suite [16] instead shifts its focus onto microservices: tens to
hundreds of loosely-coupled collaborative services that form
a single end-to-end application.

A major shortcoming of cloud benchmark suites is that
the benchmarks are driven with input data that are not repre-
sentative of datasets encountered in production environments.
In part, this is because the benchmark suites use datasets that
were never intended to be representative in the first place.
For example, Cloudsuite and Tailbench both use YCSB [7],
which is intended for performance benchmarking rather than
being a representative workload.

In addition, even when benchmark designers drive the ap-
plications with traces or queries from real-world applications
with anonymized customer data, the fact remains that these
benchmarks cannot represent the wide range of different
datasets that arise in production environments. For instance,
analysis of key-value stores running on Facebook [51] and
Twitter [57] have shown that production datasets differ widely
in many dimensions, like their read/write ratio, hit rate, and
key/value size distributions.

This discrepancy in the input dataset induces significant
differences between the benchmark and the workload it tries
to represent, making it difficult to use these benchmarks
instead of the actual workloads for microarchitectural design-
space exploration. For instance, consider Fig. 3, which
extends the IPC comparison study in Fig. 1 to five target
workloads. mem-£fb and mem-twtr both use memcached as
its application; the former uses a public dataset that closely
matches a Facebook production service [3], and the latter
uses a publicly available anonymized trace from Twitter’s
Twemcache [57]. silo is an in-memory database driven with
a synthetic bidding dataset, xapian is a search engine driven
with the default Tailbench dataset [31], and dnn is an object
recognition neural network using the ResNet-50 model [20].
Each target workload (blue) and the same application running
a different dataset (red) are evaluated on three systems with
different microarchitectures (Intel Broadwell, AMD Zen 2,
and Intel Silvermont).

Notice that for the mem-fb workload, running the same
application with a different input can result in as much as 59%
difference in the average IPC on the Broadwell processor,
indicating that a representative input is crucial to producing
accurate benchmarks. Datamime (green) is able to bridge this
gap, generating a representative benchmark that results in
only 4.1% difterence in IPC averaged across all three systems.
This trend clearly holds for the four other target workloads
as well (see Sec. IV for details on our experimental setup).

B. Black-Box Workload Cloning Cannot Generate Represen-
tative Benchmarks

Prior work has proposed black-box workload cloning [4,
5, 17, 27] to automatically generate proxy benchmarks that
mimic real-world applications. Black-box workload cloning
operates on the assumption that neither the code nor the
data of the target application can be shared publicly. Thus,
workload cloning first profiles the target application to gather
several key metrics that it seeks to replicate with the synthetic
proxy. These often include instruction mix, basic block size,
and memory access patterns. Based on this information, it
generates a synthetic program that mimics these metrics.

A common shortcoming of black-box workload cloning
techniques is their inability to capture application-level
behavior, instead opting to create a sequence of instructions
that mimic the specific metrics of interest. For instance, Joshi
et al. [27] create a graph of basic blocks where the transition
probability is equal to how often the branch terminating each
basic block was taken, disregarding the application context
within which the branch was taken. This approach extends to
other metrics, such as generating a sequence of instructions
to match instruction mixes, creating data dependences, and
generating synthetic memory access streams.

We observe that this limitation makes black-box cloning
unable to produce benchmarks that match the original work-
load well, limiting its usefulness in microarchitectural design
exploration. Fig. 3 shows the average IPC measurements of
benchmarks created by PerfProx [41] (orange), a state-of-
the-art black-box workload cloning technique, that mimic
the behavior of the five corresponding target workloads.
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Figure 4: Comparison of the empirical cumulative distribution func-
tions (eCDFs) of CPU Utilization and memory bandwidth usage of
mem-£b. Each line shows the samples measured for each scheme against
each metric: the target workload is memcached running a production
dataset, and the two benchmarks are generated by and
Datamime, respectively.

The benchmarks are generated on the Broadwell machine,
and validated on the AMD Zen 2 and Intel Silvermont
processors. Notice that PerfProx is unable to generate an
accurate proxy that matches the target workload’s IPC across
all microarchitectures, especially for certain workloads, such
as mem-fb, where its IPC is up to 2.5x higher than the target
workload’s.

In addition, datacenter applications often have important
time-varying behavior that workload cloning techniques fail
to capture. Benchmarks should capture these transients as
they heavily influence the important end-to-end metrics, such
as the tail latency distribution that is shaped by intermittent
long-latency requests [9, 29]. However, black-box cloning
only captures average statistics, such as average IPC and
predominant memory access stride, and reduce the original
application down to a small binary that only mimics aggregate
behavior, and is unable to mimic the different phases of
activity within the real workload.

Fig. 4 shows that datacenter workloads have temporal
changes in their behavior that black-box cloning fails to
address. Each plot shows the empirical cumulative distribution
functions (eCDF) plotted against the CPU utilization (left)
and memory bandwidth usage (right). Each line shows the
eCDF of a single scheme against the respective metrics: The
Target (blue), which is memcached with a dataset that is
representative of Facebook’s production environment, and
the two benchmarks generated by Datamime (green) and
PerfProx (orange) for the target workload. We observe that
the target workload exhibits meaningful distributions in both
metrics, which PerfProx is incapable of imitating with its
benchmark. In contrast, Datamime generates a benchmark
that produces similar distributions for both metrics.

1II. DATAMIME DESIGN

We now describe the Datamime data-centric benchmark
generator. Datamime creates representative benchmarks by
automatically synthesizing datasets. Fig. 5 shows an overview
of Datamime’s design and usage flow.

The first step is profiling the target production workload
to gather several key metrics. We choose a set of metrics that
characterizes multiple facets of a program’s behavior, such as

TABLE I. METRICS CAPTURED BY THE DATAMIME PROFILER.

Profiled Metrics

Instruction Cache MPKI
Instruction TLB MPKI

L1 Data Cache MPKI
L2 Cache MPKI
Data TLB MPKI

Last-level Cache MPKI Curve (across
cache sizes)
IPC Curve (across cache sizes)

Branch MPKI
CPU Utilization
Memory Bandwidth Usage (in GB/s)

Category

Instruction Footprint

Data Footprint

Cache Sensitivity

Miscellaneous

instruction and data footprint, data locality, and request arrival
rate. These include cache misses per kilo-instruction (MPKI),
memory traffic, TLB misses, CPU utilization, and branch
MPKI (Sec. III-A). In addition, we profile the sensitivity of
the workload to cache capacity by measuring the last-level
cache (LLC) MPKI and overall IPC with respect to various
cache partition sizes.

Datamime uses two other inputs to produce a representative
benchmark: a program (which should be the same or similar
to the target workload’s program), and a dataset generator for
that program. The dataset generator takes a set of parameters
and should be able to generate datasets that produce a wide
range of microarchitectural behaviors. Although the dataset
generator needs to be built for each program, we describe
a systematic procedure for constructing useful generators
(Sec. III-B).

Datamime uses the profiles from the target workload to
search a space of possible dataset configurations (Sec. III-C).
Datamime formulates this search as an optimization problem.
Each iteration of the optimizer runs the program with a
dataset generated from specific parameters, profiles it, and
evaluates the error between the resulting profile and that of
the target workload. The optimizer iterates over the dataset
parameters, exploring the space to find a set of parameters
that minimizes the error with the target workload.

A. Profiling

Datamime begins by gathering detailed profiles of the
target workload. To make sure that we create a benchmark
that is truly representative, the chosen metrics must be diverse
enough to capture the various application behaviors, such
as instruction-level parallelism, memory access patterns, and
frequency of branch mispredictions.

To capture the overall application behavior, we measure
10 metrics of interest, listed in Table I. We choose a wide
variety of metrics such that we capture multiple aspects of
the target workload’s behavior and to avoid overfitting to the
microarchitecture of the machine used to generate the bench-
marks. We track the instruction footprint of the workload
by measuring the instruction cache misses and instruction
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Figure 5: Structure of Datamime, with corresponding sections of the paper labeled.

TLB misses. Data footprint is captured by measuring the
miss rate at all cache levels and also measuring data TLB
misses. Other key behaviors are also tracked, including branch
mispredictions (which relate to data-dependent code paths),
CPU utilization (which relate to request arrival rates and
service time distributions in cloud workloads), and memory
bandwidth.

We use hardware performance counters to measure these
metrics over a sufficient period of time. Importantly, we
profile entire distributions of samples (e.g., producing a
histogram of IPC over time), not just average values. Dis-
tributions capture not only the average behavior over the
application’s lifetime, but also the variability in the appli-
cation’s activity across phases of execution. Capturing this
time-varying behavior is important for datacenter workloads
because infrequent events, such as a sudden burst of requests
that induce server-side queueing, can dominate the overall
service-level performance [9].

In addition to the above metrics, we capture the memory
access pattern of the application by measuring its sensitivity
to cache capacity. To measure these we use Dynaway [11],
a technique that measures LLC miss curves and IPC curves
at low overhead. These curves capture the sensitivity of the
workload to different cache sizes.

Our profiling technique generates enough samples to con-
struct accurate distributions of these metrics. Each profiling
iteration takes 2—4 minutes, depending on the CPU utilization
of the profiled workload (lower CPU utilization requires
additional time to capture stable profiles). This profiling time
is important because Datamime not only profiles the target
workload, but also the program and dataset for each iteration
of the search. Datamime converges in under 200 iterations,
so the whole search process takes a few hours.

B. Parameterizing the Dataset

Requirements for dataset parameterization: Having a
good dataset generator is a key requirement for Datamime to
produce accurate benchmarks. Ideally, the dataset generator
should produce datasets that exhibit a wide range of perfor-
mance behaviors and distributions to capture the full range
of behaviors of the production workload. With an appropriate

dataset generator, Datamime’s problem is reduced to finding
a set of parameters that produce similar behavior to the target
workload. However, if the dataset generator is insufficiently
broad, it may miss key characteristics of the target workload’s
dataset, and Datamime will not be able to find a close-enough
dataset no matter how much it searches.

Importantly, Datamime uses an efficient optimizer that
handles high-dimensional search spaces well (Sec. III-C).
Thus, dataset generators can use a large number of parameters
to capture a wide range of behaviors, and when writing a
generator, it is not necessary to skimp on the number of
parameters to keep search cost reasonable.

In addition, parameter selection does not require any

knowledge of the target workload’s dataset. Writing a
generator simply requires some basic understanding of the
target workload’s program so that varying dataset parameters
results in a wide range of behaviors. For example, when
choosing the set of parameters for a web search engine, we
use the fact that processing a request consists of retrieving
the set of documents associated to the search term. Thus,
the distributions of document sizes and search terms are the
natural dataset parameters.
Systematically choosing parameters: Though building a
dataset generator may seem like an ad-hoc process at first, by
building several generators we have realized that the process is
nearly identical across applications, and can be systematized,
at least for request-driven applications. Our approach consists
of parameterizing both requests and program data.

The first set of parameters that we include are ones
that characterize the rate and types of requests for the
application. This can be as simple as just adding the request
rate (in queries per second, QPS) as a parameter for some
applications with uniform requests, such as a search engine.
For programs that have heterogeneous request types, we add
parameters that control the ratio of these requests, such as
the GET/SET request ratio for memcached, or the ratio of
database transaction types for silo.

Next, our parameter selection strategy for the data itself
largely depends on the structure of the resulting dataset.
We categorize a dataset as being unstructured if there are
no restrictions in the organization of the data, such as the



keys and values of a key-value store. Conversely, structured
datasets have specific schemas that we must adhere to, such
as the organization of tables in a relational database or the
structure of layers in a neural network.

For unstructured data, we opt the simple approach of
creating the datasets following certain distributions about
their sizes. For instance, consider memcached, which simply
consists of two different datatypes: keys and values. We start
with the assumption that their sizes are normally distributed,
then add the mean and standard deviation of each as the
parameters to be adjusted.

For structured data, we take an application-specific strategy,

since each application has different requirements in terms of
how its dataset should be formed. For some, this is as simple
as scaling up an existing synthetic dataset with the required
structure or taking a subset of a publicly existing dataset.
For example, in the case of silo, an in-memory database,
where the dataset structure is tightly linked to the request
types, we choose the scaling of an existing synthetic dataset
(TPC-C). In the case of xapian, which searches through text
documents that have certain properties like word frequency
and sentence structure, we select a subset of documents from
a public web crawl using the document length as its parameter.
Finally, some applications such as dnn, a DNN-as-a-service
application, have datasets which can be composed of simple
building blocks, each of which can be a parameter of the
dataset (in the case of dnn, this would be the number of
layers for each layer type).
Refining parameters iteratively: Beyond the above process,
the user can observe how well the produced dataset matches
the behavior of the target workload, and add, change, or
remove parameters if Datamime does not converge to a
sufficiently accurate benchmark. In our experience, following
the above parameter selection process is sufficient for most
workloads (memcached, silo, dnn), and no refinement was
required. For xapian, we had to refine some parameters
(specifically, generalizing the distributions of document sizes
and search terms) as our initial set of parameters did not
imitate the target workload’s behavior.

We observe that parameterization and subsequent genera-
tion of an application’s synthetic dataset requires a modest
amount of time from the benchmark designer. The only
significant manual work required is the parameterization step,
as exploring the search space is carried out automatically by
Datamime (Sec. III-C). In our experience, all of our workloads
took less than a week of manual work to determine a suitable
set of parameters that resulted in a well-matching dataset.

C. Searching the Parameterized Dataset Space

Error Model: To search the optimal set of parameters, we
must first define the goodness of a given dataset. We do
this by defining the error in performance profiles between
the synthesized benchmark and the target workload. Note
that Datamime aims not only to match the averages of the

performance metrics of interest, but also to match the distri-
butions of the performance profiles between the production
workloads and the corresponding benchmarks. A matching
distribution indicates that the benchmark mimics both the
long-term average behavior of the production workload and
the short-term variations in its performance.

We use the Earth Mover’s Distance (EMD) [46] metric
to quantify the error between two distributions. Given two
distributions with the N samples, we first define the cost
of moving a single sample a unit distance from its original
value as ﬁ Then, the EMD between the two distributions is
defined as the minimal total cost of moving samples from
one distribution such that it matches the other. In the case of
one-dimensional samples, this is simply the area between the
two cumulative distribution functions [21]. Although other
choices for measuring the error in distributions may be viable
[8, 39], we found EMD to work well in our setting.

Given a set of parameters p = {pi,p2, ..., pn} Within the
space of possible parameters P, we define the overall error
Ep(p) between the synthetic and target profiles p and p by
summing the pairwise EMDs between individual profiles p;

and p;:
P Ep(p) = ZEMD(Pi,ﬁi) (D

We normalize each metric to lie within [0, 1], and weight

all metrics equally to make sure one mismatched metric does
not dominate this error.
Formulating the optimization problem: It is prohibitively
expensive to do a direct search for the right parameters, e.g.,
using random or grid-based search. First, the search space is
extremely large due to the number of parameters we wish to
add for dataset generation. For example, even if we allow
only integer values, memcached has 329 trillion possible
combinations of parameter values. In addition, evaluating
each set of parameter values takes a non-trivial amount of
time—typically a couple of minutes to obtain a sufficient
number of samples—so evaluating even a few thousand points
in the search space would take days to complete.

To search this large space efficiently, we formulate the
search as an optimization problem, where the goal is to find
a set of parameters p that minimize the overall error Ep:

p = argmin Ej(X) 2)

The major challenges with solving this optimization
problem are that the objective function is black-box, expensive,
and noisy. The objective function being a black-box means
that the function’s analytical form is unknown. Thus, a
gradient can only be approximated by measuring points in the
solution space. Expensiveness indicates that each function
evaluation takes a long time, so we would like to find a
suitable solution with few evaluations. Finally, because the
microarchitectural characteristics that we are measuring are
subject to variations even with the same dataset, two function
evaluations at the same point may result in different errors.



The black-box nature of the problem excludes simpler
gradient-based optimization techniques such as gradient
descent [33] because the convexity of the solution space is
not guaranteed and exact gradient information is unavailable.
Each function evaluation is expensive since profiling takes
2—4 minutes to complete. This rules out global optimization
algorithms such as Simulated Annealing [32] and Genetic
Algorithms [23] since such global optimization techniques
typically require a large number of function evaluations [26].

The challenges we outlined naturally guided us towards
using Bayesian Optimization, often used for problems with
a noisy, expensive black-box objective function [26, 50].
Bayesian optimization has been successfully used in settings
where the requirements are similar to those we face, such
as hyperparameter tuning for machine learning models [13,
49, 501, robotics [2, 35], and finding optimal job co-location
strategies in datacenters [45]. In addition, Bayesian optimiza-
tion has been shown to handle optimization problems with
up to 20 dimensions [15], which significantly eases the task
of selecting dataset parameters as adding a few ineffectual
ones will not significantly degrade the performance of the
optimizer. We find that, in practice, the Bayesian Optimizer
is very effective at generating a suitable dataset in a few
hundred function evaluations (see Sec. V-D).

After the optimizer provides the next set of dataset param-
eters to evaluate, we generate the dataset and, together with
the application, run the entire benchmark. We generate the
same set of profiles as the target workload for the benchmark,
and measure the EMD error. The measured error between the
two set of profiles is then fed back to the optimizer, which
selects the next point to evaluate in the search space.

D. Limitations of Dataset Generation

Our dataset generators do not produce values that match
those of the target workload (e.g., some use randomly
generated strings, others use a corpus of open-source data).
This will introduce inaccuracies on systems that use value-
dependent techniques, such as cache or memory compression.
(Luckily, few systems use these features.) Solving this
problem in general is hard, because capturing and mimicking
the values of the target workload would leak proprietary data.
However, dataset generators could be extended in technique-
specific ways that allow them to remain representative without
revealing program data. For instance, to evaluate the impact
of cache compression techniques, Datamime could profile
the compression ratio of the target workload’s memory
snapshots, and the dataset generator could then produce
similarly compressible data. We leave this to future work.

IV. METHODOLOGY

Evaluation Platforms: Our evaluation uses three systems
with different processor microarchitectures, listed in Table II
We generate all of our benchmarks with PerfProx and

TABLE II. SPECIFICATIONS OF THE SYSTEMS USED IN THE EVALUATION.

Cores 8 Xeon D-1540 cores (Broadwell), 2.0 GHz
L1 caches 32KB per core, 8-way set-associative, split D/I
L2 cache 256KB, core-private, 8-way set-associative
12 MB, shared, 12-way set-associative, inclusive,
L3 cache DRRIP policy [25, 55]; Way-partitioning with
Intel CAT [22], supports 12 partitions
Memory 32GB (2 x 16 GB DIMMSs), DDR4 2133 MT/s

OS Ubuntu 18.04, Linux kernel version 4.15

32 Ryzen ThreadRipper PRO 3975WX cores

Cores  Zen2), 3.50 GHz
L1 caches 32KB per core, 8-way set-associative, split D/I
L2 cache 512KB, core-private, 8-way set-associative
128 MB, 16 MB per chiplet, 16-way
L3 cache . ossociative
Memory 256 GB, DDR4 3200 MT/s

OS Ubuntu 20.04, Linux kernel version 5.4

Cores 8 Atom C2750 cores (Silvermont), 2.40 GHz
24 KB/32 KB per core, 8-way set-associative,
L1 caches split D/I
L2 cache 1MB, core-private, 8-way set-associative
Memory 32GB, DDR3 1600 MT/s

OS Ubuntu 18.04, Linux kernel version 4.15

Datamime on the 8-core Intel Broadwell system. For cross-
microarchitecture IPC validation (Fig. 3), we use two different
machines: a 32-core AMD Zen2 machine and a 8-core
Silvermont machine. We choose these machines as they
are quite different from the Broadwell machine: the Zen2
machine is more recent, has deeper buffers, and uses different
predictors; and Silvermont is a low-power core with limited
pipeline width and small OOO buffers.
Experimental Setup: We use hardware performance coun-
ters to derive the metrics of interest as discussed in Sec. III-A,
and use Intel CAT [22] to derive IPC and LLC MPKI
curves. All performance counters are measured at 20 M
cycle intervals, and we measure the IPC and memory traffic
curves every 10 B cycles to minimize its effect on application
performance. We disable TurboBoost to prevent performance
fluctuations [30], and make sure that no other processes or
threads are co-located on the same core as the profiled thread.
We generate the PerfProx benchmarks with the original
code, which the PerfProx authors graciously provided. When
generating the benchmarks, we follow the exact steps and
configurations laid out in the original paper. Note that the
PerfProx paper [41] reports generally lower errors in its IPC
and other metrics compared to our findings. We attribute
this to the fact that PerfProx was originally evaluated on
a different set of database applications, whereas we target
workloads that have a wider range of behavioral differences.



TABLE III. SUMMARY OF DATASET PARAMETERS FOR EACH WORKLOAD.

Workload Parameters
memcached QPS, get/set ratio, key size mean and standard
deviation, value size mean and standard deviation
silo QPS, # warehouses, ratio of TPC-C transactions
(new order, payment, delivery, order status, stock
level)
xapian QPS, Zipfian skew, term frequency, average doc-

ument length

dnn  QPS, # 3x3 conv. layers, # 3x3 strided conv.
layers, # maxpool layers, # FC layers, # output
channels of first layer

For all the target workloads and benchmarks generated by
Datamime, the client and the server both reside on the same
machine, and communicate either through the network stack
(mem-£fb, mem-twtr) or through shared memory using the
Tailbench integrated configuration [31] (silo, xapian, dnn).
We run Datamime’s optimizer for 200 iterations, and choose
the set of parameters determined as the lowest-cost point by
the optimizer to generate the final synthetic dataset. Datamime
runs each iteration sequentially on a single machine in our
setup. Parallelizing the search process is possible by using
parallel Bayesian optimization [6, 48, 56], but the serial
process is fast enough, so we leave this to future work.
Applications: We evaluate Datamime using four applica-
tions: memcached (in-memory caching), silo (in-memory
database), xapian (search engine), and dnn (object recog-
nition). For each application, we choose an existing public
dataset as the target workload (two for memcached) that
we aim to match with the dataset generated by Datamime.
Table III summarizes our choice of parameters for the dataset
generators. We describe each application, its target dataset(s),
and our selection of synthetic dataset parameters below:
memcached [14] is an open-source distributed in-memory
key-value store widely used in industry. memcached is often
deployed across hundreds of nodes to service millions of
queries per second, where each node caches a portion of
frequently accessed data. memcached-based services are
commonly used in production settings [3, 37, 57].

We target memcached running two different datasets:
a dataset representative of Facebook’s environment [3]
(mem-£b), and an anonymized trace from Twitter’s Twem-
cache [57] (mem-twtr). We use mutilate [34] to generate
requests for memcached according to the input dataset.

Parameters for the synthetic dataset include the QPS and
get/set ratio for request distribution, and knobs to control
the key and value size distributions, which we assume to be
Gaussian. We use the same set of parameters to generate the
synthetic datasets for both target workloads.
silo [53] is a fast transactional in-memory database. In-
memory databases like silo are the backbone of online
transaction processing workloads (OLTP) that have high
throughput and low latency requirements [58].

The target workload for silo uses a synthetic bidding
benchmark, where each transaction generates a bid on a
random item in a table and, if larger than the current bid,
overwrites the current entry. We parameterize the dataset by
scaling the number of warehouses in a TPC-C benchmark,
and varying the transaction ratios.
xapian [1] is an open-source search engine library allowing
easy integration of indexing and search capabilities, and
is used in popular websites (e.g., Debian web search) and
integrated in multiple search applications (e.g., Recoll). Web
search engines in production typically handle petabytes of
data spread across thousands of leaf nodes [12, 31], and each
node is responsible for handling a portion of the queries. We
model our workload as a single leaf node in our setup.

The target workload for xapian uses the default input from
Tailbench, an index of the 2013 English Wikipedia dump
with a Zipfian query distribution. The synthetic dataset is
constructed by indexing pages of a StackOverflow dump [52]
whose sizes are within 50 bytes of the desired average
document length. Queries are generated from a parameterized
portion of all possible terms based on an upper limit of the
term frequency, and we also control the Zipfian skew of the
query distribution.
dnn is an object recognition workload using convolutional
neural networks. Neural network inference in the cloud using
CPUs has been a popular model for cloud providers due to
their flexibility and availability [42]. We implement a simple
inference setup using the PyTorch C++ frontend [43], and
use the Tailbench harness to set up the client-server interface.
We drive the application using validation images from the
ImageNet library [47].

The dataset of interest in this workload is the neural
network model, not the images themselves. The target
workload for dnn uses a pre-trained ResNet-50 [20] model
as its dataset, a popular network for object recognition.
We construct a synthetic dataset using four frequently-
encountered layer types: 3 X 3 convolution, 2 X 2 maxpool,
3 x 3 strided convolution, and fully-connected layers. We
vary the number and position of each layer, except for the
locations of the fully-connected layers, which are always
positioned at the end of the network. In addition, we vary
the number of output channels of the first layer to vary the
total number of features at each layer.

In addition to the datasets mentioned above, Fig. 1 and
Fig. 3 report results with alternative, publicly available
datasets for each application (shown in red bars). For
memcached and silo, these are Tailbench’s defaults: YCSB-
A and TPC-C. For xapian, we use an index constructed
from a portion of the StackOverflow dump [52]. And for
dnn, we use a pre-trained ShuffleNet model [36].

V. EVALUATION

We now analyze the effectiveness of Datamime in creating
representative benchmarks. We evaluate Datamime’s ability
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Figure 6: Comparison of performance metrics of and
Datamime, normalized to the Target metrics for each workload. The
absolute value for each metric is labeled on each bar.

to match various performance profiles on five different target
workloads, and compare it against PerfProx. We also evaluate
Datamime’s ability to accurately match performance profile
distributions. Finally, we analyze various performance aspects
of Datamime: its speed of convergence and the possible range
of profiles it can generate.

A. Datamime matches performance profiles much better than
black-box cloning

Fig. 6 summarizes the effectiveness of Datamime’s bench-
mark generation strategy compared to PerfProx. Each graph
reports results for a different microarchitectural metric:
instructions per cycle (IPC), last-level cache misses per kilo-
instruction (LLC MPKI), instruction cache MPKI (ICache
MPKI), and branch MPKI. Within each graph, each group
of bars reports results for a single application. Each group
consists of three bars: Target is the workload we wish to
mimic, is the black-box cloning technique we
compare against, and Datamime is our workload generation
technique. The height of each bar is the average of the
performance metric normalized to Target. Thus, values close
to 1.0 are better. In addition, the bottom of each bar lists the
absolute (non-normalized) average value for each metric.

Datamime matches the target workloads much more closely
than PerfProx. Averaged across workloads, Datamime results
in 3.2% mean absolute percentage error on IPC, which is
defined as |IPCarget — IPCpenchmark |/ TPCrarger averaged across
workloads. By contrast, PerfProx has an 42.9% mean absolute
percentage error on IPC. Datamime also matches other
metrics well, for which we measure the mean absolute error
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Figure 7: Comparison of IPC and LLC MPKI curves between the
Target workload, benchmark, and benchmark generated
by Datamime. Each workload/benchmark is allocated a cache size
between 1IMB to 12MB in 1MB increments, and we measure the IPC
and LLC MPKI for each allocation.

defined as |Metriciarger — Metvichenchmark| averaged across
workloads. Datamime achieves an error of 0.34 for LLC
MPKI, 1.16 for ICache MPKI, and 0.47 for branch MPKI.
This is a much smaller gap compared to the error of 1.62
for LLC MPKI, 16.3 for ICache MPKI, and 3.22 for branch
MPKI that PerfProx achieves.

Datamime is particularly effective at matching the key
metrics that most influence the target workload’s behavior.
These include the high instruction cache misses for mem-f£b
and mem-twtr, the high LLC MPKI for silo, and the
branch MPKI for all workloads. In contrast, PerfProx is not
able to match the code behavior effectively except for two
workloads (mem-twtr and silo) for which it only matches
the branching behavior well.

Looking at individual workloads, we see that Datamime
matches mem-fb particularly well. This is expected, as its
dataset is unstructured and therefore completely defined by
our distribution parameters. It is noteworthy that we match
mem-£fb when our assumed value distribution (Gaussian) is
different from that of the target workload’s dataset (gener-
alized Pareto) [3], indicating that exactly matching all the
characteristics of the target dataset is not needed to match
its performance profile.
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Figure 8: Detailed plots of the distributions of the performance counter samples we measure across all workloads. Each plot shows the empirical
cumulative distribution function (eCDF) of the measured profile for the three schemes: the Target workload, benchmark generated by y

and Datamime’s synthetic benchmark.

There are some metrics where Datamime has high relative
errors, such as mem-twtr and xapian’s LLC MPKI and
xapian’s [Cache MPKI. However, note that in absolute terms
these metrics are small in the target workload, and their impact
on end-to-end performance is limited. Although we do not
particularly bias the search to prioritize matching metrics
where absolute values are large, by including IPC as one of
the metrics, the search naturally gives more importance to

metrics that have a large influence on end-to-end performance.

Fig. 7 shows the IPC and LLC MPKI of each workload
when different cache sizes are allocated to the worker thread
for the Target workload and the benchmarks generated by

and Datamime. Note that dnn has a higher IPC
and lower LLC MPKI at 12MB compared to Fig. 6 because

cache capacity is allocated to a single profiled worker thread.

In general, Datamime is able to match both the shapes
and values of the curves. Even in cases where Datamime is
unable to match the exact curve (e.g., xapian’s LLC MPKI
curve), Datamime matches the shape of the curve, indicating
that the generated benchmark is able to match the memory

access pattern and cache sensitivity of the target workload.

In contrast, PerfProx is unable to match the IPC and LLC
MPKI curves for most applications. In particular, it produces
benchmarks with sharp cache cliffs at IMB for silo and
dnn, which the target workloads do not exhibit.
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B. Datamime matches performance profile distributions

Fig. 8 shows the statistical distributions of several key
metrics: IPC, CPU utilization, ICache MPKI, .2 Cache MPKI,
branch MPKI, and memory bandwidth. Each plot shows
the empirical cumulative distribution function (eCDF, i.e.,
cumulative histogram) of the samples (taken at 20 MCycle
intervals) from the Target workload, and ’s and
Datamime’s benchmarks. Note that a low slope of the eCDF
curve indicates a high variance in the measured samples.

First, we see that even for metrics where PerfProx matches
the target reasonably well, such as the IPC for silo and
xapian, it cannot match their distributions. PerfProx does
not produce meaningful distributions because its behavior
is static over time. This is expected, as workload cloning
techniques mimic average behavior. This trend is more readily
apparent in certain metrics, such as branch MPKI and memory
bandwidth in dnn, which exhibit wide variances.

In contrast, Datamime clearly follows the time-varying
behavior of the target workloads, such as the variance in
CPU utilization due to long requests. Similar to the memory
traffic curves in Fig. 7, Datamime matches the shapes of the
distributions even when it does not match the values, such
as the branch MPKI for xapian.

Like for averages, Datamime has larger errors on metrics
whose absolute values are small and have little impact on
end-to-end performance.
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Figure 9: Comparison of IPC and LLC MPKI curves between ,

and Datamime for masstree and img-dnn when Datamime
uses different, but functionally similar applications in its search
(memcached for masstree, and dnn for img-dnn).

C. Case study: Targeting a workload with a different program

So far we have assumed that the target workload’s appli-
cation is publicly available, and produced benchmarks using
the same program as the target workload. We now show that
Datamime is able to match a workload’s behavior in certain
dimensions even when using a different program.

We target two workloads from Tailbench: masstree, a key-
value store driven with YCSB, and img-dnn, a handwriting
recognition engine that uses a deep neural network-based au-
toencoder driven with the MNIST dataset [10]. For Datamime,
we choose the programs that most closely match the behavior
of the target workloads: memcached for masstree, and dnn
for img-dnn. We use the same dataset generators as before.

Fig. 9 shows the IPC and LLC MPKI curves of the

workload and the two benchmarks generated by

and Datamime. Since the source applications

of Datamime roughly imitates the high-level behavior of the
target workloads, Datamime is able to match the IPC and
LLC MPKI curves of masstree even though the code is
different. Datamime also matches the LLC MPKI curve of
img-dnn, but overshoots the IPC due to an inherent trade-off
in how well Datamime can match these two metrics using
dnn. To verify this, we reran Datamime’s search giving higher
weight to IPC, which resulted in an accurate IPC curve match
for img-dnn at the expense of a worse LLC MPKI match.

There are other metrics, such as the ICache and branch
misses, which Datamime cannot match as accurately due to
the differences in the code. For instance, masstree has lower
cache misses in general because it is designed to be cache-
optimized [38], whereas memcached is not. These differences
are summarized in Table IV, along with comparisons against
the proxies for each workload generated with PerfProx. Even
with the large differences in the detailed metrics, Datamime
outperforms PerfProx in matching the important end-to-end
metrics such as IPC (mean absolute percentage error of 8.6%
versus 19.4%) and LLC MPKI (mean absolute error of 1.73
versus 10.9).
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TABLE IV. MEASURED METRICS OF THE TARGET WORKLOAD, PERFPROX,
AND DATAMIME FOR MASSTREE AND IMG-DNN. DATAMIME’S RESULTS
ARE WITH BENCHMARKS GENERATED WITH A different APPLICATION THAN
THE TARGET WORKLOAD (MEMCACHED AND DNN, RESPECTIVELY).

masstree img-dnn
Metric Datz}rr}ime Dale_l{r}ime
Target  PerfProx  w/ different | Target PerfProx  w/ different
program program
IPC 0.79 1.05 0.79 225 2.11 2.63
LLC MPKI 11.4 327 10.6 0.45 0.02 3.07
CPU Util. 0.57 1.00 0.97 0.39 1.00 1.00
Branch MPKI 14.9 27.7 4.96 0.53 0.09 0.20
ICache MPKI || 1.20 0.24 16.3 053 0.11 021
LID MPKI || 8.80 14.1 342 26.1 0.13 9.17
L2 MPKI 6.14 14.7 15.7 1.70 0.05 1.96
ITLB MPKI || 0.13 0.02 0.50 0.04 0.02 0.03
DTLB MPKI 2.24 0.52 19.5 0.61 0.87 0.22
Mem. Bw (GB/s) 0.62 4.29 0.97 0.05 0.01 0.96
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Figure 10: Total EMD error of all performance profiles as a function
of the number of iterations performed by the optimizer.

D. Speed of convergence

Fig. 10 shows the rate at which the minimum observed
EMD (Datamime’s error metric) decreases with respect to
the number of iterations. The EMD is the area between the
CDFs of the target workload and the synthesized benchmark
for each metric, where the x- and y-axes are normalized to lie
between zero and one, by dividing them by maximum x and
y values observed. For example, in Fig. 8, the ICache MPKI
plot for xapian has an EMD value 0.23, as the area between
the target and Datamime CDFs is 23% of the plot’s area.
Fig. 10 reports the sum of EMDs across all 10 evaluated
metrics, so for example, a total EMD of 0.7 corresponds to
an average EMD per metric of 0.07, i.e., 7% of the area. An
iteration in this context refers to a single evaluation of a set
of parameters, feeding the resulting EMD to the optimizer,
and choosing the next set of parameters to evaluate.

When evaluated for 200 iterations, we observe that
Datamime approaches to within 90%, 0%, 48.4%, 22.6%,
and 4.7% of the achievable minimum EMD in 50 iterations
for mem-£fb, mem-twtr, silo, xapian, dnn respectively,
indicating that our technique is effective at generating a fairly
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Figure 11: Sweep of achievable target IPC and LLC MPKI for
Datamime with the four publicly available applications we use in our
setup. The x-axis is the IPC/LLC MPKI we ask Datamime to produce
with each application, and the y-axis shows the actual IPC/LLC MPKI
Datamime achieves.

representative dataset in a short amount of time. Note that
the absolute time taken per iteration largely depends on the
number of LLC MPKI and IPC curve samples taken, as these
have long profiling intervals (10 B cycles). In practice, we
find that taking 11 samples is an effective tradeoff between

accuracy and speed, resulting in 2—4 minutes per iteration.

This translates to 6—13 hours for Datamime to run 200
iterations and produce each benchmark.

E. Range of possible performance profiles generated by
Datamime

It is important for dataset generators to produce a wide
range of performance profiles. A wide range lets Datamime
match a wide variety of production workloads. We can
measure this range by using Datamime to try to match
an arbitrary value for one or more metrics, rather than the
performance profiles of a particular workload.

Fig. 11 shows the results of such an experiment. Each
graph shows results for a single target metric: IPC (left),
and LLC MPKI (right). Within each graph, each line shows
results for a separate application. For each line, we sweep
the target metric over a wide range of values, shown in the
x-axis, and the y-axis denotes the actual value that Datamime
achieves. For each experiment we configure Datamime to
only match the target metric so that we measure the maximum
achievable range for each metric, sweeping the target metric
at 15 evenly spaced points. As long as Datamime can match
the target, each line falls on the y = x line.

Fig. 11 shows that Datamime matches a varying range
of IPCs across workloads: between 0.48 and 1.14 for
memcached, 0.50 and 1.86 for silo, 1.05 and 1.60 for
xapian, and 0.50 and 2.82 for dnn. The relatively small
range of IPC for memcached and xapian can be attributed
to the fact that their operations are much more uniform
(cache misses and branch mispredictions limit IPC regardless
of the input). In contrast, dnn can have widely different
computations based on the structure of its input neural
network, which results in its wide range of IPCs.
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Figure 12: Key performance metrics of Datamime relative to Target
for mem-fb with the server and client configured to communicate over
the network.
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Figure 13: IPC and LLC MPKI curves of Target and Datamime for
the networked configuration.

Datamime also matches a varying range of LLC MPKIs.
LLC MPKIs ranges between 0.29 and 20.1 for memcached,
0.04 and 6.18 for silo, 0.03 and 2.32 for xapian, and 2.07
and 28.5 for dnn. Just like IPC, the range of LLC MPKI
for each workload depends on the workload’s underlying
structure. For example, for xapian, the most popular queries
dominate execution, so the most frequently accessed docu-
ments are cached on-chip, resulting in limited memory traffic
regardless of the dataset.

F. Datamime on multi-machine benchmarks

So far, we have reported results for single-machine ex-
periments, where the benchmark and request generator run
under the same node. This setup is convenient, but does not
capture the original workload’s interactions with network
1/0. We now show that Datamime remains accurate in a
multi-machine setting. We focus on Memcached, as it is the
benchmark with the shortest requests among our applications
(tens to hundreds of microseconds per request) and therefore
it is the most affected by the additional network latency and
overheads. We modify our experimental setup for mem-£fb
where we host the server (Memcached) and our load generator
(mutilate) on two separate machines.

Fig. 12 shows the averages of several key metrics for the
target workload and the synthesized benchmark, similar to
Fig. 6. Datamime synthesizes a benchmark that can closely
mimic the complex networking interactions of the original
workload, resulting in 1% mean absolute percentage error for
IPC and 0.12 mean absolute error for LLC MPKI. Just like
in the single-machine configuration, Fig. 13 also shows that
Datamime closely matches the IPC and LLC MPKI curves
of the target workload.



V1. ADDITIONAL RELATED WORK

We now discuss related work not covered in Sec. II.

A. Synthetic Cloud Benchmark Suites

Several synthetic cloud benchmark suites exist today.
Cloudsuite [12] gathers a set of scale-out and throughput-
oriented benchmarks, and analyzes the microarchitectural
requirements of cloud applications. BigDataBench [54]
focuses on evaluating a wide variety of data types and a
broader set of workloads. Tailbench [31] includes a set of
latency-critical applications, and introduces an evaluation
methodology focused on tail latency. DeathStarBench [16]
introduces a set of workloads that use the microservices
model, consisting of tens to hundreds of loosely coupled tiny
services instead of one or few large monolithic applications.

All of these benchmark suites are constructed by selecting
a set of datacenter applications and using a set of publicly
available datasets to drive them. Benchmark suites often use
synthetic datasets, such as TPC-C or public web crawls, that
are not representative of production data. Using anonymized
production datasets or traces can temporarily elide this issue,
but a single dataset rarely is enough to model the variety of
data encountered in production settings [3, 51, 57], nor does
it stay representative over time [3, 51]. Datamime resolves
these issues by constructing workloads that accurately imitate
the target workload’s performance profiles. This makes it easy
to keep benchmarks up-to-date with production workloads:
it simply requires generating a new benchmark from a recent
performance profile.

B. Black-Box Workload Cloning

The seminal work in black-box workload cloning is
Bell and John [5], which produces small testcases from
an application’s performance statistics using statistical flow
graphs. Although the original goal was to generate short,
representative test cases that could be simulated and quickly
compared to the target applications, it has spawned a line
of work that leverages the fact that profile-based benchmark
synthesis hides information about the target application’s
code.

Joshi et al. [27] improves upon prior work by using
microarchitecture-independent models to capture program
characteristics, allowing the synthetic workload to preserve
the application characteristics across microarchitectures.
Benchmaker [28] profiles workloads at a much coarser gran-
ularity, collecting average statistics over the entire program
instead of at basic-block granularity. Ganesan et al. [17]
incorporate memory-level parallelism in characterizing the
target workload. WEST [4] generates benchmarks that focus
on accurately mimicking data cache behavior.

While black-box workload cloning does have the benefit
of producing short benchmarks that are quick to evaluate,
they fail to capture the high-level program behavior and
the temporal changes in program characteristics. Workload
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cloning techniques reduce the target workload to a few set
of average statistics, a process that loses much of the crucial
information about the program. In contrast, Datamime uses
the same or similar application as that used in the target
workload, thereby preserving the program structure and more
successfully imitating its overall behavior.

C. Synthetic Data Generators

Given the inaccessibility of production datasets, prior work
has also proposed data generators that produce structured
and unstructured data using statistical modeling of the target
dataset [18, 24, 40, 44]. These techniques generate synthetic
data by first modeling existing datasets (either real-world or
synthetic), and then generating datasets that follow this model,
such as the distribution of topics in a text document [40].

These data generation techniques are different in purpose
to the dataset generators used in Datamime, and do not
seek to generate representative benchmarks. The major
shortcoming of prior data generators is that they focus on
matching the characteristics of the real dataset, rather than the
characteristics of the resulting workload. Without guiding
the data generation process with how the dataset would
change the application performance, the representativeness
of the dataset cannot be guaranteed. In addition, all prior data
generators either do not care about the representativeness
of their dataset [18, 24], or never validate their synthetic
data against production workloads [40, 44]. This makes
it difficult to rely on these datasets to provide accurate
performance characteristics of production workloads. In
contrast, Datamime uses profiling information to guide its
dataset generation, and validates its resulting performance
profiles against those of the production workload.

In addition, prior data generators need an accurate model
of the target dataset in generating the synthetic data, which
introduces the danger of leaking information about the
production dataset. For instance, The text data generator
of BigDataBench [54] uses detailed information about an
existing text dataset such as the distribution of words and
topics. If the production dataset is used as the input to the
modeling phase, which is needed if the data generator wishes
to produce representative datasets, the resulting synthetic
dataset may leak information about the confidential data
because it mimics its characteristics.

Lastly, Dataset generation using statistical techniques can
be complementary to Datamime’s profile-guided generation.
Datamime can confine the possible set of synthetic datasets
to those that match the target dataset’s statistical properties,
which would significantly speed up its search process. We
note that this approach requires access to the target dataset
(or its relevant statistical properties), and necessitates the
dataset to be easily modeled statistically. For instance, it
would be difficult to incorporate statistical modeling into
creating a silo benchmark since key aspects such as the
ratio of different transactions is difficult to model statistically.



VII. CONCLUSION

We have introduced data-centric benchmark generation, a
new insight that shows that using publicly available code
along with synthetically generated datasets is an effective
approach to generating representative benchmarks. We have
presented Datamime, a technique that leverages this insight.
Datamime uses publicly available applications along with syn-
thetically generated datasets to create benchmarks that closely
mimic cloud workloads. We have shown that Datamime
creates benchmarks that are much more representative of
target workloads compared to prior black-box cloning tech-
niques, matches the temporal behavior of workloads, and
also matches key metrics such as IPC and LLC MPKI
even when the target workload’s program is unavailable.
Datamime is publicly available to enable the community
to easily produce representative benchmarks and ultimately
accelerate architecture research and design.
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