


Existing

Application

Performance 

Profiles
𝚫

Error Dataset 

Generator
Synthetic

Dataset

Production 

Workload

Performance 

Profiles

Output

Dataset

Datamime

Proprietary Publicly Available

Figure 2: Brief overview of Datamime. Datamime uses the difference
in performance profiles between the synthetic benchmark and the
production workload to produce representative synthetic datasets.

reasons, black-box workload cloning has seen little adoption

within the architecture community.

We introduce data-centric benchmark generation, a new

insight to generate representative benchmarks. We observe

that the code used by production workloads is often publicly

available (e.g., memcached), or a reasonably similar open-

source alternative exists (e.g., an open-source database or

search engine). Thus, instead of trying to generate code as

in prior work, it is simpler and more effective to generate a

representative dataset, i.e., one that makes the public code

closely mimic the target workload.

Based on this observation, we present Datamime, a tech-

nique to generate representative benchmarks from production

workloads by synthesizing datasets. Fig. 2 gives an overview

of Datamime. Datamime uses three inputs: (1) performance

profiles from the target workload, (2) an existing program,

and (3) a dataset generator for the program. Datamime then

searches for a dataset that produces the closest performance

profiles to those of the target workload.

Fig. 1 shows that, unlike prior work, Datamime accurately

mimics the production Facebook workload. IPC and ICache

MPKI are within 2.8% and 2.6% of the target workload,

and results carry over to other microarchitectures: IPC on an

AMD Zen 2 machine (right of Fig. 1) is within 8.5%, whereas

other techniques vary significantly. Because our performance

profiles include many microarchitectural metrics and time-

varying behavior, Datamime accurately captures these aspects

as well, as we will see later.

We evaluate Datamime in a single-node setup across

five datacenter workloads. Datamime is able to synthesize

datasets that differ from the target workload by a mean

absolute percentage error of 3.2% on IPC. In comparison,

state-of-the-art black-box cloning suffers a 42.9% mean

absolute percentage error on IPC. Trends are similar on

other microarchitectural metrics, like memory traffic.

In addition, Datamime closely matches the distributions

of performance counters and CPU utilization. Datamime can

prioritize matching certain metrics to meet the benchmark

designer’s needs. And Datamime’s optimizer is fast, requiring

6–13 hours of serial work to produce an accurate benchmark.

Overall, Datamime makes it easy to produce benchmarks

that are representative of production services. Datamime

requires collecting a one-time, low-overhead profile of the

target workload. While this profiling step needs to be done

by the operator of the service, is has negligible performance

impact and can be gathered in production. Datamime’s dataset

generation and search can then be performed by either a third

party (e.g., a research group) or the operator of the production

service itself. This enables many use cases, such as producing

open-source benchmarks for the research community, or

quickly producing benchmarks that can be shared with

providers (e.g., processor and system designers) to guide

their designs without revealing proprietary data. Datamime is

publicly available at https://datamime.csail.mit.edu.

In summary, we make the following contributions:

• We introduce data-centric benchmark generation, a general

technique to produce representative benchmarks for pro-

duction workloads by synthesizing a representative dataset.

• We present Datamime, an implementation of data-centric

benchmark generation. Datamime is the first technique to

generate representative synthetic datasets by matching the

performance profiles of production workloads.

• We evaluate Datamime on several datacenter workloads,

showing that it is effective at generating representative

datasets. We show that Datamime can match the profile

distributions of the target application’s key metrics. We also

show that Datamime produces the dataset in few iterations,

and can generate datasets with a wide range of performance

profiles.

II. BACKGROUND

Since many datacenter applications are publicly accessible

(or have a similar open-source counterpart), creating a

representative benchmark can be accomplished by running

the application with a representative dataset. Unfortunately,

companies are often apprehensive about releasing the data

used in production environments due to confidentiality issues.

Given this limited access to production data, prior work

has designed datacenter benchmarks in two different ways.

On the one hand, numerous synthetic benchmark suites have

been proposed [12, 16, 31, 54]. These suites combine a

set of common datacenter applications along with publicly

available datasets. On the other hand, prior work has proposed

black-box workload cloning techniques [4, 5, 17, 27], which

synthesize proxy benchmarks that mimic the behavior of

production workloads. We now discuss the limitations of

these two approaches.

A. Existing Benchmarks use Unrepresentative Datasets

With the rise of numerous cloud services over the past few

decades, a number of cloud benchmark suites have been pub-

lished. Cloudsuite [12] focuses on introducing a set of scale-

out workloads that exhibit significantly different microar-

chitectural characteristics from traditional server workloads,

such as limited instruction- and memory-level parallelism

and large working set sizes. Tailbench [31] aggregates a

set of representative latency-critical applications, providing

2







Production

Workload
Profiling

(Sec III.A)
Workload

Profiles

Search 

Next 
Candidate

Dataset Space Search (Sec III.B & III.C)

Workload 

Profiling

Candidate

Synthetic
Dataset

Application

Workload

Profiles

Synthetic

Dataset

Figure 5: Structure of Datamime, with corresponding sections of the paper labeled.

TLB misses. Data footprint is captured by measuring the

miss rate at all cache levels and also measuring data TLB

misses. Other key behaviors are also tracked, including branch

mispredictions (which relate to data-dependent code paths),

CPU utilization (which relate to request arrival rates and

service time distributions in cloud workloads), and memory

bandwidth.

We use hardware performance counters to measure these

metrics over a sufficient period of time. Importantly, we

profile entire distributions of samples (e.g., producing a

histogram of IPC over time), not just average values. Dis-

tributions capture not only the average behavior over the

application’s lifetime, but also the variability in the appli-

cation’s activity across phases of execution. Capturing this

time-varying behavior is important for datacenter workloads

because infrequent events, such as a sudden burst of requests

that induce server-side queueing, can dominate the overall

service-level performance [9].

In addition to the above metrics, we capture the memory

access pattern of the application by measuring its sensitivity

to cache capacity. To measure these we use Dynaway [11],

a technique that measures LLC miss curves and IPC curves

at low overhead. These curves capture the sensitivity of the

workload to different cache sizes.

Our profiling technique generates enough samples to con-

struct accurate distributions of these metrics. Each profiling

iteration takes 2–4 minutes, depending on the CPU utilization

of the profiled workload (lower CPU utilization requires

additional time to capture stable profiles). This profiling time

is important because Datamime not only profiles the target

workload, but also the program and dataset for each iteration

of the search. Datamime converges in under 200 iterations,

so the whole search process takes a few hours.

B. Parameterizing the Dataset

Requirements for dataset parameterization: Having a

good dataset generator is a key requirement for Datamime to

produce accurate benchmarks. Ideally, the dataset generator

should produce datasets that exhibit a wide range of perfor-

mance behaviors and distributions to capture the full range

of behaviors of the production workload. With an appropriate

dataset generator, Datamime’s problem is reduced to finding

a set of parameters that produce similar behavior to the target

workload. However, if the dataset generator is insufficiently

broad, it may miss key characteristics of the target workload’s

dataset, and Datamime will not be able to find a close-enough

dataset no matter how much it searches.

Importantly, Datamime uses an efficient optimizer that

handles high-dimensional search spaces well (Sec. III-C).

Thus, dataset generators can use a large number of parameters

to capture a wide range of behaviors, and when writing a

generator, it is not necessary to skimp on the number of

parameters to keep search cost reasonable.

In addition, parameter selection does not require any

knowledge of the target workload’s dataset. Writing a

generator simply requires some basic understanding of the

target workload’s program so that varying dataset parameters

results in a wide range of behaviors. For example, when

choosing the set of parameters for a web search engine, we

use the fact that processing a request consists of retrieving

the set of documents associated to the search term. Thus,

the distributions of document sizes and search terms are the

natural dataset parameters.

Systematically choosing parameters: Though building a

dataset generator may seem like an ad-hoc process at first, by

building several generators we have realized that the process is

nearly identical across applications, and can be systematized,

at least for request-driven applications. Our approach consists

of parameterizing both requests and program data.

The first set of parameters that we include are ones

that characterize the rate and types of requests for the

application. This can be as simple as just adding the request

rate (in queries per second, QPS) as a parameter for some

applications with uniform requests, such as a search engine.

For programs that have heterogeneous request types, we add

parameters that control the ratio of these requests, such as

the GET/SET request ratio for memcached, or the ratio of

database transaction types for silo.

Next, our parameter selection strategy for the data itself

largely depends on the structure of the resulting dataset.

We categorize a dataset as being unstructured if there are

no restrictions in the organization of the data, such as the

5



keys and values of a key-value store. Conversely, structured

datasets have specific schemas that we must adhere to, such

as the organization of tables in a relational database or the

structure of layers in a neural network.

For unstructured data, we opt the simple approach of

creating the datasets following certain distributions about

their sizes. For instance, consider memcached, which simply

consists of two different datatypes: keys and values. We start

with the assumption that their sizes are normally distributed,

then add the mean and standard deviation of each as the

parameters to be adjusted.

For structured data, we take an application-specific strategy,

since each application has different requirements in terms of

how its dataset should be formed. For some, this is as simple

as scaling up an existing synthetic dataset with the required

structure or taking a subset of a publicly existing dataset.

For example, in the case of silo, an in-memory database,

where the dataset structure is tightly linked to the request

types, we choose the scaling of an existing synthetic dataset

(TPC-C). In the case of xapian, which searches through text

documents that have certain properties like word frequency

and sentence structure, we select a subset of documents from

a public web crawl using the document length as its parameter.

Finally, some applications such as dnn, a DNN-as-a-service

application, have datasets which can be composed of simple

building blocks, each of which can be a parameter of the

dataset (in the case of dnn, this would be the number of

layers for each layer type).

Refining parameters iteratively: Beyond the above process,

the user can observe how well the produced dataset matches

the behavior of the target workload, and add, change, or

remove parameters if Datamime does not converge to a

sufficiently accurate benchmark. In our experience, following

the above parameter selection process is sufficient for most

workloads (memcached, silo, dnn), and no refinement was

required. For xapian, we had to refine some parameters

(specifically, generalizing the distributions of document sizes

and search terms) as our initial set of parameters did not

imitate the target workload’s behavior.

We observe that parameterization and subsequent genera-

tion of an application’s synthetic dataset requires a modest

amount of time from the benchmark designer. The only

significant manual work required is the parameterization step,

as exploring the search space is carried out automatically by

Datamime (Sec. III-C). In our experience, all of our workloads

took less than a week of manual work to determine a suitable

set of parameters that resulted in a well-matching dataset.

C. Searching the Parameterized Dataset Space

Error Model: To search the optimal set of parameters, we

must first define the goodness of a given dataset. We do

this by defining the error in performance profiles between

the synthesized benchmark and the target workload. Note

that Datamime aims not only to match the averages of the

performance metrics of interest, but also to match the distri-

butions of the performance profiles between the production

workloads and the corresponding benchmarks. A matching

distribution indicates that the benchmark mimics both the

long-term average behavior of the production workload and

the short-term variations in its performance.

We use the Earth Mover’s Distance (EMD) [46] metric

to quantify the error between two distributions. Given two

distributions with the N samples, we first define the cost

of moving a single sample a unit distance from its original

value as 1
N

. Then, the EMD between the two distributions is

defined as the minimal total cost of moving samples from

one distribution such that it matches the other. In the case of

one-dimensional samples, this is simply the area between the

two cumulative distribution functions [21]. Although other

choices for measuring the error in distributions may be viable

[8, 39], we found EMD to work well in our setting.

Given a set of parameters p = {p1, p2, ..., pn} within the

space of possible parameters P, we define the overall error

Ep̂(p) between the synthetic and target profiles p and p̂ by

summing the pairwise EMDs between individual profiles pi

and p̂i:
Ep̂(p) = ∑

i

EMD(pi, p̂i) (1)

We normalize each metric to lie within [0,1], and weight

all metrics equally to make sure one mismatched metric does

not dominate this error.

Formulating the optimization problem: It is prohibitively

expensive to do a direct search for the right parameters, e.g.,

using random or grid-based search. First, the search space is

extremely large due to the number of parameters we wish to

add for dataset generation. For example, even if we allow

only integer values, memcached has 329 trillion possible

combinations of parameter values. In addition, evaluating

each set of parameter values takes a non-trivial amount of

time—typically a couple of minutes to obtain a sufficient

number of samples—so evaluating even a few thousand points

in the search space would take days to complete.

To search this large space efficiently, we formulate the

search as an optimization problem, where the goal is to find

a set of parameters p that minimize the overall error Ep̂:

p = argmin
x

Ep̂(x) (2)

The major challenges with solving this optimization

problem are that the objective function is black-box, expensive,

and noisy. The objective function being a black-box means

that the function’s analytical form is unknown. Thus, a

gradient can only be approximated by measuring points in the

solution space. Expensiveness indicates that each function

evaluation takes a long time, so we would like to find a

suitable solution with few evaluations. Finally, because the

microarchitectural characteristics that we are measuring are

subject to variations even with the same dataset, two function

evaluations at the same point may result in different errors.

6



The black-box nature of the problem excludes simpler

gradient-based optimization techniques such as gradient

descent [33] because the convexity of the solution space is

not guaranteed and exact gradient information is unavailable.

Each function evaluation is expensive since profiling takes

2–4 minutes to complete. This rules out global optimization

algorithms such as Simulated Annealing [32] and Genetic

Algorithms [23] since such global optimization techniques

typically require a large number of function evaluations [26].

The challenges we outlined naturally guided us towards

using Bayesian Optimization, often used for problems with

a noisy, expensive black-box objective function [26, 50].

Bayesian optimization has been successfully used in settings

where the requirements are similar to those we face, such

as hyperparameter tuning for machine learning models [13,

49, 50], robotics [2, 35], and finding optimal job co-location

strategies in datacenters [45]. In addition, Bayesian optimiza-

tion has been shown to handle optimization problems with

up to 20 dimensions [15], which significantly eases the task

of selecting dataset parameters as adding a few ineffectual

ones will not significantly degrade the performance of the

optimizer. We find that, in practice, the Bayesian Optimizer

is very effective at generating a suitable dataset in a few

hundred function evaluations (see Sec. V-D).

After the optimizer provides the next set of dataset param-

eters to evaluate, we generate the dataset and, together with

the application, run the entire benchmark. We generate the

same set of profiles as the target workload for the benchmark,

and measure the EMD error. The measured error between the

two set of profiles is then fed back to the optimizer, which

selects the next point to evaluate in the search space.

D. Limitations of Dataset Generation

Our dataset generators do not produce values that match

those of the target workload (e.g., some use randomly

generated strings, others use a corpus of open-source data).

This will introduce inaccuracies on systems that use value-

dependent techniques, such as cache or memory compression.

(Luckily, few systems use these features.) Solving this

problem in general is hard, because capturing and mimicking

the values of the target workload would leak proprietary data.

However, dataset generators could be extended in technique-

specific ways that allow them to remain representative without

revealing program data. For instance, to evaluate the impact

of cache compression techniques, Datamime could profile

the compression ratio of the target workload’s memory

snapshots, and the dataset generator could then produce

similarly compressible data. We leave this to future work.

IV. METHODOLOGY

Evaluation Platforms: Our evaluation uses three systems

with different processor microarchitectures, listed in Table II

We generate all of our benchmarks with PerfProx and

TABLE II. SPECIFICATIONS OF THE SYSTEMS USED IN THE EVALUATION.

Cores 8 Xeon D-1540 cores (Broadwell), 2.0 GHz

L1 caches 32 KB per core, 8-way set-associative, split D/I

L2 cache 256 KB, core-private, 8-way set-associative

L3 cache

12 MB, shared, 12-way set-associative, inclusive,
DRRIP policy [25, 55]; Way-partitioning with
Intel CAT [22], supports 12 partitions

Memory 32 GB (2 × 16 GB DIMMs), DDR4 2133 MT/s

OS Ubuntu 18.04, Linux kernel version 4.15

Cores
32 Ryzen ThreadRipper PRO 3975WX cores
(Zen2), 3.50 GHz

L1 caches 32 KB per core, 8-way set-associative, split D/I

L2 cache 512 KB, core-private, 8-way set-associative

L3 cache
128 MB, 16 MB per chiplet, 16-way
set-associative

Memory 256 GB, DDR4 3200 MT/s

OS Ubuntu 20.04, Linux kernel version 5.4

Cores 8 Atom C2750 cores (Silvermont), 2.40 GHz

L1 caches
24 KB/32 KB per core, 8-way set-associative,
split D/I

L2 cache 1 MB, core-private, 8-way set-associative

Memory 32 GB, DDR3 1600 MT/s

OS Ubuntu 18.04, Linux kernel version 4.15

Datamime on the 8-core Intel Broadwell system. For cross-

microarchitecture IPC validation (Fig. 3), we use two different

machines: a 32-core AMD Zen2 machine and a 8-core

Silvermont machine. We choose these machines as they

are quite different from the Broadwell machine: the Zen2

machine is more recent, has deeper buffers, and uses different

predictors; and Silvermont is a low-power core with limited

pipeline width and small OOO buffers.

Experimental Setup: We use hardware performance coun-

ters to derive the metrics of interest as discussed in Sec. III-A,

and use Intel CAT [22] to derive IPC and LLC MPKI

curves. All performance counters are measured at 20 M

cycle intervals, and we measure the IPC and memory traffic

curves every 10 B cycles to minimize its effect on application

performance. We disable TurboBoost to prevent performance

fluctuations [30], and make sure that no other processes or

threads are co-located on the same core as the profiled thread.

We generate the PerfProx benchmarks with the original

code, which the PerfProx authors graciously provided. When

generating the benchmarks, we follow the exact steps and

configurations laid out in the original paper. Note that the

PerfProx paper [41] reports generally lower errors in its IPC

and other metrics compared to our findings. We attribute

this to the fact that PerfProx was originally evaluated on

a different set of database applications, whereas we target

workloads that have a wider range of behavioral differences.

7



TABLE III. SUMMARY OF DATASET PARAMETERS FOR EACH WORKLOAD.

Workload Parameters

memcached QPS, get/set ratio, key size mean and standard
deviation, value size mean and standard deviation

silo QPS, # warehouses, ratio of TPC-C transactions
(new order, payment, delivery, order status, stock
level)

xapian QPS, Zipfian skew, term frequency, average doc-
ument length

dnn QPS, # 3×3 conv. layers, # 3×3 strided conv.
layers, # maxpool layers, # FC layers, # output
channels of first layer

For all the target workloads and benchmarks generated by

Datamime, the client and the server both reside on the same

machine, and communicate either through the network stack

(mem-fb, mem-twtr) or through shared memory using the

Tailbench integrated configuration [31] (silo, xapian, dnn).

We run Datamime’s optimizer for 200 iterations, and choose

the set of parameters determined as the lowest-cost point by

the optimizer to generate the final synthetic dataset. Datamime

runs each iteration sequentially on a single machine in our

setup. Parallelizing the search process is possible by using

parallel Bayesian optimization [6, 48, 56], but the serial

process is fast enough, so we leave this to future work.

Applications: We evaluate Datamime using four applica-

tions: memcached (in-memory caching), silo (in-memory

database), xapian (search engine), and dnn (object recog-

nition). For each application, we choose an existing public

dataset as the target workload (two for memcached) that

we aim to match with the dataset generated by Datamime.

Table III summarizes our choice of parameters for the dataset

generators. We describe each application, its target dataset(s),

and our selection of synthetic dataset parameters below:

memcached [14] is an open-source distributed in-memory

key-value store widely used in industry. memcached is often

deployed across hundreds of nodes to service millions of

queries per second, where each node caches a portion of

frequently accessed data. memcached-based services are

commonly used in production settings [3, 37, 57].

We target memcached running two different datasets:

a dataset representative of Facebook’s environment [3]

(mem-fb), and an anonymized trace from Twitter’s Twem-

cache [57] (mem-twtr). We use mutilate [34] to generate

requests for memcached according to the input dataset.

Parameters for the synthetic dataset include the QPS and

get/set ratio for request distribution, and knobs to control

the key and value size distributions, which we assume to be

Gaussian. We use the same set of parameters to generate the

synthetic datasets for both target workloads.

silo [53] is a fast transactional in-memory database. In-

memory databases like silo are the backbone of online

transaction processing workloads (OLTP) that have high

throughput and low latency requirements [58].

The target workload for silo uses a synthetic bidding

benchmark, where each transaction generates a bid on a

random item in a table and, if larger than the current bid,

overwrites the current entry. We parameterize the dataset by

scaling the number of warehouses in a TPC-C benchmark,

and varying the transaction ratios.

xapian [1] is an open-source search engine library allowing

easy integration of indexing and search capabilities, and

is used in popular websites (e.g., Debian web search) and

integrated in multiple search applications (e.g., Recoll). Web

search engines in production typically handle petabytes of

data spread across thousands of leaf nodes [12, 31], and each

node is responsible for handling a portion of the queries. We

model our workload as a single leaf node in our setup.

The target workload for xapian uses the default input from

Tailbench, an index of the 2013 English Wikipedia dump

with a Zipfian query distribution. The synthetic dataset is

constructed by indexing pages of a StackOverflow dump [52]

whose sizes are within 50 bytes of the desired average

document length. Queries are generated from a parameterized

portion of all possible terms based on an upper limit of the

term frequency, and we also control the Zipfian skew of the

query distribution.

dnn is an object recognition workload using convolutional

neural networks. Neural network inference in the cloud using

CPUs has been a popular model for cloud providers due to

their flexibility and availability [42]. We implement a simple

inference setup using the PyTorch C++ frontend [43], and

use the Tailbench harness to set up the client-server interface.

We drive the application using validation images from the

ImageNet library [47].

The dataset of interest in this workload is the neural

network model, not the images themselves. The target

workload for dnn uses a pre-trained ResNet-50 [20] model

as its dataset, a popular network for object recognition.

We construct a synthetic dataset using four frequently-

encountered layer types: 3×3 convolution, 2×2 maxpool,

3× 3 strided convolution, and fully-connected layers. We

vary the number and position of each layer, except for the

locations of the fully-connected layers, which are always

positioned at the end of the network. In addition, we vary

the number of output channels of the first layer to vary the

total number of features at each layer.

In addition to the datasets mentioned above, Fig. 1 and

Fig. 3 report results with alternative, publicly available

datasets for each application (shown in red bars). For

memcached and silo, these are Tailbench’s defaults: YCSB-

A and TPC-C. For xapian, we use an index constructed

from a portion of the StackOverflow dump [52]. And for

dnn, we use a pre-trained ShuffleNet model [36].

V. EVALUATION

We now analyze the effectiveness of Datamime in creating

representative benchmarks. We evaluate Datamime’s ability

8











VI. ADDITIONAL RELATED WORK

We now discuss related work not covered in Sec. II.

A. Synthetic Cloud Benchmark Suites

Several synthetic cloud benchmark suites exist today.

Cloudsuite [12] gathers a set of scale-out and throughput-

oriented benchmarks, and analyzes the microarchitectural

requirements of cloud applications. BigDataBench [54]

focuses on evaluating a wide variety of data types and a

broader set of workloads. Tailbench [31] includes a set of

latency-critical applications, and introduces an evaluation

methodology focused on tail latency. DeathStarBench [16]

introduces a set of workloads that use the microservices

model, consisting of tens to hundreds of loosely coupled tiny

services instead of one or few large monolithic applications.

All of these benchmark suites are constructed by selecting

a set of datacenter applications and using a set of publicly

available datasets to drive them. Benchmark suites often use

synthetic datasets, such as TPC-C or public web crawls, that

are not representative of production data. Using anonymized

production datasets or traces can temporarily elide this issue,

but a single dataset rarely is enough to model the variety of

data encountered in production settings [3, 51, 57], nor does

it stay representative over time [3, 51]. Datamime resolves

these issues by constructing workloads that accurately imitate

the target workload’s performance profiles. This makes it easy

to keep benchmarks up-to-date with production workloads:

it simply requires generating a new benchmark from a recent

performance profile.

B. Black-Box Workload Cloning

The seminal work in black-box workload cloning is

Bell and John [5], which produces small testcases from

an application’s performance statistics using statistical flow

graphs. Although the original goal was to generate short,

representative test cases that could be simulated and quickly

compared to the target applications, it has spawned a line

of work that leverages the fact that profile-based benchmark

synthesis hides information about the target application’s

code.

Joshi et al. [27] improves upon prior work by using

microarchitecture-independent models to capture program

characteristics, allowing the synthetic workload to preserve

the application characteristics across microarchitectures.

Benchmaker [28] profiles workloads at a much coarser gran-

ularity, collecting average statistics over the entire program

instead of at basic-block granularity. Ganesan et al. [17]

incorporate memory-level parallelism in characterizing the

target workload. WEST [4] generates benchmarks that focus

on accurately mimicking data cache behavior.

While black-box workload cloning does have the benefit

of producing short benchmarks that are quick to evaluate,

they fail to capture the high-level program behavior and

the temporal changes in program characteristics. Workload

cloning techniques reduce the target workload to a few set

of average statistics, a process that loses much of the crucial

information about the program. In contrast, Datamime uses

the same or similar application as that used in the target

workload, thereby preserving the program structure and more

successfully imitating its overall behavior.

C. Synthetic Data Generators

Given the inaccessibility of production datasets, prior work

has also proposed data generators that produce structured

and unstructured data using statistical modeling of the target

dataset [18, 24, 40, 44]. These techniques generate synthetic

data by first modeling existing datasets (either real-world or

synthetic), and then generating datasets that follow this model,

such as the distribution of topics in a text document [40].

These data generation techniques are different in purpose

to the dataset generators used in Datamime, and do not

seek to generate representative benchmarks. The major

shortcoming of prior data generators is that they focus on

matching the characteristics of the real dataset, rather than the

characteristics of the resulting workload. Without guiding

the data generation process with how the dataset would

change the application performance, the representativeness

of the dataset cannot be guaranteed. In addition, all prior data

generators either do not care about the representativeness

of their dataset [18, 24], or never validate their synthetic

data against production workloads [40, 44]. This makes

it difficult to rely on these datasets to provide accurate

performance characteristics of production workloads. In

contrast, Datamime uses profiling information to guide its

dataset generation, and validates its resulting performance

profiles against those of the production workload.

In addition, prior data generators need an accurate model

of the target dataset in generating the synthetic data, which

introduces the danger of leaking information about the

production dataset. For instance, The text data generator

of BigDataBench [54] uses detailed information about an

existing text dataset such as the distribution of words and

topics. If the production dataset is used as the input to the

modeling phase, which is needed if the data generator wishes

to produce representative datasets, the resulting synthetic

dataset may leak information about the confidential data

because it mimics its characteristics.

Lastly, Dataset generation using statistical techniques can

be complementary to Datamime’s profile-guided generation.

Datamime can confine the possible set of synthetic datasets

to those that match the target dataset’s statistical properties,

which would significantly speed up its search process. We

note that this approach requires access to the target dataset

(or its relevant statistical properties), and necessitates the

dataset to be easily modeled statistically. For instance, it

would be difficult to incorporate statistical modeling into

creating a silo benchmark since key aspects such as the

ratio of different transactions is difficult to model statistically.

13



VII. CONCLUSION

We have introduced data-centric benchmark generation, a

new insight that shows that using publicly available code

along with synthetically generated datasets is an effective

approach to generating representative benchmarks. We have

presented Datamime, a technique that leverages this insight.

Datamime uses publicly available applications along with syn-

thetically generated datasets to create benchmarks that closely

mimic cloud workloads. We have shown that Datamime

creates benchmarks that are much more representative of

target workloads compared to prior black-box cloning tech-

niques, matches the temporal behavior of workloads, and

also matches key metrics such as IPC and LLC MPKI

even when the target workload’s program is unavailable.

Datamime is publicly available to enable the community

to easily produce representative benchmarks and ultimately

accelerate architecture research and design.

VIII. ACKNOWLEDGMENTS

We sincerely thank Quan Nguyen, Victor Ying, Yifan Yang,

Axel Feldmann, Nikola Samardzic, Fares Elsabbagh, Shabnam

Sheikhha, Robert Durfee, Nithya Attaluri, Kendall Garner,

Joel Emer, and the anonymous reviewers for their helpful

feedback. We thank Lizy John for graciously sharing the

PerfProx code, and we thank Abhishek Dhanotia for his

feedback on earlier versions of Datamime. This work was

supported in part by a Facebook Research Award and by NSF

grant SHF-1814969. Hyun Ryong Lee was partially supported

by a Kwanjeong Educational Foundation fellowship.

REFERENCES

[1] “Xapian project,” https://github.com/xapian/xapian.

[2] R. Antonova, A. Rai, and C. G. Atkeson, “Deep kernels for
optimizing locomotion controllers,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in
Proceedings of the ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of
Computer Systems, 2012.

[4] G. Balakrishnan and Y. Solihin, “WEST: cloning data cache
behavior using stochastic traces,” in Proceedings of the 18th
IEEE international symposium on High Performance Computer
Architecture (HPCA-18), 2012.

[5] R. H. Bell Jr. and L. K. John, “Improved automatic testcase
synthesis for performance model validation,” in Proceedings
of the International Conference on Supercomputing (ICS’05),
2005.

[6] E. Contal, D. Buffoni, A. Robicquet, and N. Vayatis, “Parallel
gaussian process optimization with upper confidence bound
and pure exploration,” in Proceedings of Machine Learning and
Principles and Practice of Knowledge Discovery in Databases,
European Conference (ECML PKDD), 2013.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking cloud serving systems with
YCSB,” in Proceedings of the 1st ACM Symposium on Cloud
Computing (SoCC), 2010.

[8] D. A. Darling, “The Kolmogorov-Smirnov, Cramer-von Mises
tests,” The Annals of Mathematical Statistics, vol. 28, no. 4,
1957.

[9] J. Dean and L. A. Barroso, “The tail at scale,” Communications
of the ACM, vol. 56, no. 2, 2013.

[10] L. Deng, “The MNIST database of handwritten digit images for
machine learning research,” IEEE Signal Processing Magazine,
vol. 29, no. 6, 2012.

[11] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “KPart: A hybrid cache partitioning-sharing
technique for commodity multicores,” in Proceedings of the
24th IEEE international symposium on High Performance
Computer Architecture (HPCA-24), 2018.

[12] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Al-
isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki,
and B. Falsafi, “Clearing the clouds: a study of emerging
scale-out workloads on modern hardware,” in Proceedings of
the 17th international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
XVII), 2012.

[13] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter, “Efficient and robust automated
machine learning,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems (NIPS),
2015.

[14] B. Fitzpatrick, “Distributed caching with memcached,” Linux
journal, vol. 124, 2004.

[15] P. I. Frazier, “A tutorial on Bayesian optimization,” CoRR, vol.
abs/1807.02811, 2018.

[16] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi,
Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,
L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and
C. Delimitrou, “An open-source benchmark suite for microser-
vices and their hardware-software implications for cloud &
edge systems,” in Proceedings of the 24th international con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXIV), 2019.

[17] K. Ganesan, J. Jo, and L. K. John, “Synthesizing memory-
level parallelism aware miniature clones for SPEC CPU2006
and ImplantBench workloads,” in Proceedings of the IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2010.

[18] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Wein-
berger, “Quickly generating billion-record synthetic databases,”
in Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data (SIGMOD), 1994.

14



[19] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski,
A. Khurana, R. G. Dreslinski, T. N. Mudge, V. Petrucci,
L. Tang, and J. Mars, “Sirius: An open end-to-end voice
and vision personal assistant and its implications for future
warehouse scale computers,” in Proceedings of the 20th inter-
national conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XX), 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[21] K. Henderson, B. Gallagher, and T. Eliassi-Rad, “EP-MEANS:
an efficient nonparametric clustering of empirical probabil-
ity distributions,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing (SAC), 2015.

[22] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos,
R. Singhal, and R. R. Iyer, “Cache QoS: From concept to reality
in the Intel® Xeon® processor E5-2600 v3 product family,”
in Proceedings of the 22nd IEEE international symposium on
High Performance Computer Architecture (HPCA-22), 2016.

[23] J. H. Holland, “Genetic algorithms,” Scientific American, vol.
267, no. 1, 1992.

[24] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The
HiBench benchmark suite: Characterization of the MapReduce-
based data analysis,” in Proceedings of the 26th International
Conference on Data Engineering Workshops (ICDEW 2010),
2010.

[25] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. S. Emer,
“High performance cache replacement using re-reference
interval prediction (RRIP),” in Proceedings of the 37th annual
International Symposium on Computer Architecture (ISCA-37),
2010.

[26] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of
Global Optimization, vol. 13, no. 4, 1998.

[27] A. Joshi, L. Eeckhout, R. H. Bell Jr., and L. K. John,
“Performance cloning: A technique for disseminating pro-
prietary applications as benchmarks,” in Proceedings of the
IEEE International Symposium on Workload Characterization
(IISWC), 2006.

[28] A. Joshi, L. Eeckhout, and L. K. John, “The return of synthetic
benchmarks,” in 2008 SPEC Benchmark Workshop, 2008.

[29] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan,
T. Moseley, G. Wei, and D. M. Brooks, “Profiling a warehouse-
scale computer,” in Proceedings of the 42nd annual Interna-
tional Symposium on Computer Architecture (ISCA-42), 2015.

[30] S. Kanev, K. M. Hazelwood, G. Wei, and D. M. Brooks,
“Tradeoffs between power management and tail latency in
warehouse-scale applications,” in Proceedings of the IEEE In-
ternational Symposium on Workload Characterization (IISWC),
2014.

[31] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and
evaluation methodology for latency-critical applications,” in
Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 2016.

[32] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, 1983.

[33] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A
theoretical framework for back-propagation,” in Proceedings
of the 1988 Connectionist Models Summer School, 1988.

[34] J. Leverich and C. Kozyrakis, “Reconciling high server utiliza-
tion and sub-millisecond quality-of-service,” in Proceedings
of the EuroSys Conference (EuroSys), 2014.

[35] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans,
“Automatic gait optimization with Gaussian process regression,”
in Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI’07), 2007.

[36] N. Ma, X. Zhang, H. Zheng, and J. Sun, “ShuffleNet V2:
practical guidelines for efficient CNN architecture design,”
CoRR, vol. abs/1807.11164, 2018.

[37] S. Madappa and S. Enugula, “Evolution of
application data caching: From RAM to SSD,”
https://netflixtechblog.com/evolution-of-application-data-
caching-from-ram-to-ssd-a33d6fa7a690, 2018 (accessed May
11, 2022).

[38] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast
multicore key-value storage,” in Proceedings of the EuroSys
Conference (EuroSys), 2012.

[39] F. J. Massey Jr, “The Kolmogorov-Smirnov test for goodness
of fit,” Journal of the American Statistical Association, vol. 46,
no. 253, 1951.

[40] Z. Ming, L. Chunjie, W. Gao, R. Han, Q. Yang, L. Wang, and
J. Zhan, “BDGS: A scalable big data generator suite in big
data benchmarking,” CoRR, vol. abs/1401.5465, 2014.

[41] R. Panda and L. K. John, “Proxy benchmarks for emerging
big-data workloads,” in Proceedings of the 26th International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT-26), 2017.

[42] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. S. Khudia,
J. Law, P. Malani, A. Malevich, N. Satish, J. M. Pino, M. Schatz,
A. Sidorov, V. Sivakumar, A. Tulloch, X. Wang, Y. Wu, H. Yuen,
U. Diril, D. Dzhulgakov, K. M. Hazelwood, B. Jia, Y. Jia,
L. Qiao, V. Rao, N. Rotem, S. Yoo, and M. Smelyanskiy, “Deep
learning inference in Facebook data centers: Characterization,
performance optimizations and hardware implications,” CoRR,
vol. abs/1811.09886, 2018.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“PyTorch: An imperative style, high-performance deep learning
library,” in Proceedings of the 32nd International Conference
on Neural Information Processing Systems (NeurIPS), 2019.

[44] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch, “A data
generator for cloud-scale benchmarking,” in Proceedings
of the Second TPC technology conference on Performance
evaluation, measurement and characterization of complex
systems (TPCTC’10), 2010.

15



[45] R. B. Roy, T. Patel, and D. Tiwari, “SATORI: Efficient and fair
resource partitioning by sacrificing short-term benefits for long-
term gains,” in Proceedings of the 48th annual International
Symposium on Computer Architecture (ISCA-48), 2021.

[46] Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distri-
butions with applications to image databases,” in Proceedings
of the Sixth International Conference on Computer Vision
(ICCV-98), 1998.

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C.
Berg, and L. Fei-Fei, “ImageNet large scale visual recognition
challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, 2015.

[48] A. Shah and Z. Ghahramani, “Parallel predictive entropy search
for batch global optimization of expensive objective functions,”
in Proceedings of the 28th International Conference on Neural
Information Processing Systems (NIPS), 2015.

[49] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. D.
Freitas, “Taking the human out of the loop: A review of
bayesian optimization,” Proceedings of the IEEE, vol. 104,
no. 1, 2015.

[50] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” Advances in
neural information processing systems, vol. 25, 2012.

[51] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding
acceleration opportunities for data center overheads at hyper-
scale,” in Proceedings of the 25th international conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXV), 2020.

[52] Stack Exchange Inc., “Stack exchange data dump,” https:
//archive.org/details/stackexchange, 2018 (accessed May 11,
2022).

[53] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden,
“Speedy transactions in multicore in-memory databases,” in
Proceedings of the 24th Symposium on Operating System
Principles (SOSP-24), 2013.

[54] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,
Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li,
and B. Qiu, “BigDataBench: A big data benchmark suite
from internet services,” in Proceedings of the 20th IEEE
international symposium on High Performance Computer
Architecture (HPCA-20), 2014.

[55] H. Wong, “Intel ivy bridge cache replacement policy,” https:
//perma.cc/M59C-HPBN, 2013 (accessed May 11, 2022).

[56] J. Wu and P. I. Frazier, “The parallel knowledge gradient
method for batch bayesian optimization,” in Proceedings of
the 29th International Conference on Neural Information
Processing Systems (NIPS), 2016.

[57] J. Yang, Y. Yue, and K. V. Rashmi, “A large scale analysis
of hundreds of in-memory cache clusters at Twitter,” in
Proceedings of the 14th USENIX symposium on Operating
Systems Design and Implementation (OSDI-14), 2020.

[58] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma,
and R. Shen, “Reducing the storage overhead of main-memory
OLTP databases with hybrid indexes,” in Proceedings of the
2016 ACM SIGMOD International Conference on Management
of Data (SIGMOD), 2016.

16


	Introduction
	Background
	Existing Benchmarks use Unrepresentative Datasets
	Black-Box Workload Cloning Cannot Generate Representative Benchmarks

	Datamime Design
	Profiling
	Parameterizing the Dataset
	Searching the Parameterized Dataset Space
	Limitations of Dataset Generation

	Methodology
	Evaluation
	Datamime matches performance profiles much better than black-box cloning
	Datamime matches performance profile distributions
	Case study: Targeting a workload with a different program
	Speed of convergence
	Range of possible performance profiles generated by Datamime
	Datamime on multi-machine benchmarks

	Additional Related Work
	Synthetic Cloud Benchmark Suites
	Black-Box Workload Cloning
	Synthetic Data Generators

	Conclusion
	Acknowledgments
	References

