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Surface Luttinger arcs in Weyl semimetals
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The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs
rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature
normally associated with strongly interacting systems, namely, Luttinger arcs, defined as zeros of the electron
Green’s function. The Luttinger arcs connect surface projections of Weyl nodes of opposite chirality and form
closed loops with the Fermi arcs when the Weyl nodes are undoped. Upon doping, the ends of the Fermi and
Luttinger arcs separate and the intervening regions get filled by surface projections of bulk Fermi surfaces.
Remarkably, unlike Luttinger contours in strongly interacting systems, the precise shape of the Luttinger arcs
can be determined experimentally by removing a surface layer. We use this principle to sketch the Luttinger
arcs for Co and Sn terminations in Co3Sn2S2. The area enclosed by the Fermi and Luttinger arcs approximately
equals the surface particle density in weakly coupled systems while the correction is governed by the interlayer
couplings and the perimeter of the Fermi-Luttinger loop.
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Introduction. The past decade has seen tremendous ad-
vancements in the field of Weyl semimetals (WSMs)—three-
dimensional (3D) materials defined by the presence of nonde-
generate Bloch electron bands that intersect at arbitrary points
in the Brillouin zone [1–18]. Near the intersection points, or
Weyl nodes, the Bloch dispersion resembles the Weyl disper-
sion that is well known in high-energy physics; hence, the
name WSM. The Weyl nodes carry a chirality or handedness
of ±1, emit or absorb unit Berry flux depending on their
chirality, and are even in number such that the total chirality
vanishes. Moreover, the nodes are topological, in the sense
that they exhibit profound topological quantum anomalies,
can only be destroyed by annihilating in pairs of opposite chi-
rality, and spawn a myriad of topological transport phenomena
[19–37].

WSMs famously host metallic surface states known
as Fermi arcs (FAs) that connect projections of Weyl
nodes of opposite chirality onto the surface Brillouin zone
[8–16,38–56]. They are mandated by the bulk-boundary cor-
respondence in topological matter analogous to the Dirac cone
surface states in topological insulators [57–59]. However, the
latter are exponentially localized near the surface, whereas
the bulk penetration depth of the FA wave function depends
strongly on its surface momentum k and diverges at its end
points. The metallic nature of FAs can manifest in several
ways such as quantum oscillations due to peculiar cyclotron
orbits in mixed real and momentum space [52,54–56,60–63],
unusual collective modes due to mixing between FAs and bulk
states [64–72], and susceptibility of the surface to proximity-
induced superconductivity [73–75]. However, the absence of
a closed Fermi surface in the FA metal renders the Luttinger’s
theorem—a fundamental equality between the particle density
and the volume within the Fermi surface in Fermi liquids
[76–82]—inapplicable.

In this work, we show that the surface of a WSM also
hosts Luttinger arcs (LAs), defined as momentum space re-
gions where the electron Green’s function vanishes. LAs and
Luttinger surfaces are known to occur in strongly interacting
systems due to vanishing quasiparticle weight or diverging
self-energy [79,81–84]. Heuristically, LAs in WSMs can be
viewed as a manifestation of strong self-interactions among
surface electrons mediated by bulk states. We emphasize,
however, that the system is strictly noninteracting. Interest-
ingly, when all the Weyl nodes are undoped, the FAs and LAs
form closed loops. Moreover, LAs transform into FAs when a
surface layer is removed, which enables their detection. Using
this idea, we determine the LAs on the (001) surface of the
ferromagnetic WSM Co3Sn2S2 [50,85–88] based on recent
scanning tunneling data [87].

Surface Green’s function. Let H̃k denote the Bloch Hamil-
tonian of an L-layered system that has Dz degrees of freedom
in the zth layer. The layers are unrelated in general, but
repeat periodically in lattice models. As usual, the full single-
particle Green’s function is G̃k(ω) = (ω − H̃k)−1 and has
Ñ = ∑L

z=1 Dz poles corresponding to the eigenvalues ε̃k, j ,
j = 1 . . . Ñ of H̃k. The spectrum may have degeneracies and
generically consists of three types of states: evanescent waves
pinned to the top and the bottom surfaces and planes waves in
the bulk.

Now, let us add a layer at z = 0 that we will refer to as
the “surface.” The full and effective surface Green’s functions,
respectively, are given by

Gk(ω) =
(

ω − HS
k −hk

−h†k ω − H̃k

)−1

, (1)

gk(ω) = (
ω − HS

k − hkG̃k(ω)h†k
)−1

, (2)
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FIG. 1. Blue (green) cone and dot denotes the left- (right-
)handed bulk Weyl node and its surface projection, respectively.
While traversing a surface k-space loop (brown curve parametrized
by kλ), the phase acquired by gkλ (i0

+) on crossing the FA (purple
curve) must be canceled by crossing a LA (red curve). The FA
and LA form a closed loop and enclose a well-defined area (yellow
region). The bulk extension of the kλ curve defines a 2D insulator
on the kλ-kz manifold (brown cylinder) with Chern number equal to
the net chirality of the enclosed Weyl nodes. Ek, μk, tk, and �k are
parameters in the explicit model described later.

where HS
k is the Bloch Hamiltonian of the surface layer and

hk, h
†
k capture coupling between the bulk and the surface and

gk(ω) is a matrix of dimension D0. A standard identity for the
determinant of a block matrix gives

det gk(ω) = detGk(ω)

det G̃k(ω)
=

∏Ñ
i=1 (ω − ε̃k,i )∏N
j=1 (ω − εk, j )

. (3)

Moreover, if interlayer hopping is sufficiently local, H̃k and
Hk must have the same spectrum of evanescent waves on
the z = L surface up to exponentially small corrections in L.
Thus, factors from such states cancel out in Eq. (3), leaving
det gk(ω) to only depend on the bulk and top-surface spectra
of Hk and H̃k. Similarly to single-particle Green’s functions in
interacting systems [79], det gk(ω) is a ratio of zeros to poles,
vanishes as |ω| → ∞, and is analytic away from the Re(ω)
axis.

Luttinger arcs. We now prove our main results, namely,
the existence, connectivity, and detection of surface LAs by
merely requiring det gk(ω) to be single valued. In particu-
lar, we prove that LAs (i) necessarily exist on the surface;
(ii) connect Weyl node projections of opposite chirality, thus
forming closed loops with the FAs; and (iii) can be precisely
determined by peeling off suitable layers and measuring the
new FAs. First, we derive the well-known existence of the FAs
within a setup that facilitates the proof for LAs.

Consider a momentum space loop in the surface Brillouin
zone, parametrized by kλ, that does not pass through the
surface projection of any Weyl node (Fig. 1). In the bulk,
the surface defined by kλ and kz is a closed two-dimensional
(2D) manifold. If the Weyl nodes are undoped, the manifold

FIG. 2. Invalid (a) and valid (b) LA configurations, where LAs
connect surface projections of Weyl nodes of the same and opposite
chiralities, respectively.

has a gapped spectrum and can be viewed as a 2D Chern
insulator with a Chern number ν equal to the net chirality of
the enclosed Weyl nodes. The edge of this Chern insulator is
the original kλ loop on theWSM surface, so the loop must host
a net of ν gapless, chiral modes, where each clockwise (coun-
terclockwise) mode contributes +1 (−1) to ν. In other words,
each right- (left-)handed Weyl node produces a FA state with
a velocity component along the clockwise (counterclockwise)
direction when viewed from above. In terms of Green’s func-
tions, each FA state corresponds to a vanishing nondegenerate
eigenenergy εkλ, j for a certain j and contributes a simple pole
to gk(ω) atω = 0. Moreover, the net number of poles equals ν,
where FAs with a velocity component antiparallel (parallel) to
the loop direction contribute +1 (−1). The set of all possible
loops on the WSM surface then traces out the FAs.

Now, consider the retarded surface Green’s function,
gk(ω + i0+). A necessary condition for it to be single valued
is that the change in ln det gk(ω + i0+) vanishes around an
arbitrary kλ loop. Focusing on ω = 0 and using Eq. (3),

0 =
∮

dkλ · ∇ ln det [gk(i0
+)]

= π

(∑
m

sgn
[
ṽkLAm

] −
∑
n

sgn
[
vkFAn

])
, (4)

where kLAm (kFAn ) are points on the kλ loop where ε̃k,i (εk, j )
vanishes for some i ( j), while ṽk (vk ) is the projection of
∇ε̃k, j (∇εk, j ) onto the loop direction. According to Eq. (3),
det gk(0) has zeros (poles) at these points. While the poles
correspond to FAs and ensure

∑
n sgn[vkFAn ] = −ν as argued

above, Eq. (4) implies that
∑

m sgn[ṽkLAm ] = −ν as well. In
other words, there exist net ν zeros along the kλ loop. The set
of all k-space loops yields strings of zeros, that are defined as
the LAs. Intuitively, the phase acquired by det[gk(i0+)] upon
crossing a FA must be canceled either by a FA of the opposite
chirality or a LA of the same chirality to ensure det gk(i0+) is
single valued. This implies that the LAs too connect surface
projections of Weyl nodes of opposite chiralities and form
closed loops with the FAs when the Weyl nodes are undoped.
To illustrate this point, we show an invalid and a valid config-
uration in Fig. 2.

Detection by peeling.While Luttinger surfaces and arcs are
common in strongly interacting systems, their shape is diffi-
cult to determine. There, a broad spectral function peak and
low peak height reflect diverging self-energy and vanishing
quasiparticle weight, respectively, but the precise point where
the Green’s function vanishes is inaccessible [84]. In contrast,
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FIG. 3. Schematic of FAs and LAs on the surface of Co3Sn2S2

for Co and Sn terminations. Gray region denotes the first Brillouin
zone while blue and green dots are surface projections of Weyl nodes
of opposite chirality.

we show that surface LAs in WSMs can be determined by
simply peeling off the top layer and measuring the FAs on the
new surface.

Suppose the L-layered system carries a FA that disappears
upon adding another layer. This can only happen if the unit
cell consists of more than one layer; otherwise the L- and (L +
1)-layered systems would have the same FA spectrum as L →
∞. The disappearance of FAs on adding a layer means there
exists a string of k points such that ε̃k,i = 0 for some i but
εk, j �= 0 ∀ j. According to Eq. (3), det gk(0) = 0 along this
curve, thus yielding a LA on the surface. Equivalently, the LA
transforms into a FA when the surface layer is peeled off.

This principle readily reveals the locations of LAs on the
surface of the ferromagnetic WSM Co3Sn2S2 (Fig. 3). The
crystal structure of Co3Sn2S2 consists of Co kagome layers
with a Sn at hexagon center separated by triangular layers of
Sn and S [50,85–88]. Only three spinful Co d orbitals from
the three kagome sites and a spinful p orbital from the Sn
atoms between the kagome layers are near the Fermi level;
bands from all other atoms and orbitals are far away in energy.
As a result, the material is effectively a stack of bilayers
consisting of Co-kagome and Sn-triangular layers. Recent
tunneling measurements on the (001) surface discovered well-
isolated FAs for Co and Sn terminations but with different
connectivities [87]. We predict that the LAs on the Co (Sn)
termination are simply the FAs on the Sn (Co) termination
(Fig. 5). This result is immune to the detailed orbital content
of wave functions and simply arises from the fact that LAs
appear whenever FAs are annihilated by adding a layer.

In contrast, the peeling protocol cannot reveal LAs in the
antiferromagnetic WSMs Mn3Sn and Mn3Ge [89–94]. These
materials have a layered structure where each layer consists
of a kagome lattice of Mn atoms with a Sn/Ge at the center
of each kagome hexagon. Importantly, the layers are identical
up to in-plane translations in real space, so termination at any
layer results in the same surface Green’s function in k space.

Effect of doping. So far, we have assumed every Weyl node
to be at charge neutrality. Real WSMs typically contain Fermi
pockets around Weyl nodes, which motivates an examination
of the LAs under doping.

We first need to analyze the effect of the bulk states on
gk(ω) more closely. When L → ∞, the bulk spectrum at each
2D momentum k is continuous and indexed by kz while both

FIG. 4. Surface loops parametrized by kλ exist that intersect the
FA but avoid the LA. Along such a loop, the phase acquired by
det gk(i0+) on crossing the FA is canceled by traversing a patch
where Im det gk(i0+) is finite. These patches (orange ellipses) are the
surface projections of the bulk Fermi surfaces (orange ellipsoids).

G̃k(ω) and Gk(ω) contain a continuum of poles on the Re(ω)
axis across the energy range spanned by the bulk bands at k.
Naively, one might expect the poles to cancel in Eq. (3) and
leave gk(ω) without any additional features. However, for any
finite L, the poles of G̃k(ω) and Gk(ω) are generally distinct
and typically separated by O(1/L) due to kz quantization.
Crucially, Gk(ω) has precisely N − Ñ = D0 more poles than
G̃k(ω) does, D0 being the number of degrees of freedom in
the z = 0 layer. Thus, even in the limit L → ∞, the contour
integral

∮
dω det gk(ω) around the Re(ω) axis is generically

nonzero and finite, which suggests that gk(ω) develops branch
cuts that span the bulk bands.

On the surface, doping creates patches of gapless states
corresponding to surface projections of the bulk Fermi sur-
faces (Fig. 4). Consider a kλ loop that intersects a FA and
then crosses such a patch. When k is inside the patch, ω = 0
lies within a branch cut of gk(ω), so Im det gk(i0+) is finite.
Consequently, the sign change in det gk(0) upon crossing the
FA gets gradually undone while traversing the patch without

FIG. 5. In the bilayered WSM model, removing a layer inter-
changes the FA and the LA. Dashed (dotted) black curves denote
electron (hole) Fermi surfaces that are the building blocks of the
WSM (adapted from [42]; see text for details).
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det gk(0) vanishing anywhere along the loop. This causes the
LA and the FA to separate while the patch fills the intervening
region.

Explicit model. We now demonstrate our general results
using an explicit model [42]. The model consists of a stack of
spinless, alternating 2D electron and hole metals with Fermi
surfaces given by phenomenological curves Ek = ±μk. Inter-
layer couplings−tk < 0 and�k > 0 cause each Fermi surface
to hybridize preferentially with a layer above for certain k
and a layer below for other k. The Bloch Hamiltonian opera-
tor for the stack is Ĥk = ∑L−1

z=0 ψ
†
z,k[−μk + (−1)z−1Ek]ψz,k +

(ψ†
z,khzz+1,kψz+1,k + H.c.), where ψ

†
z,k creates an electron at

2D momentum k in the zth layer and hzz+1,k equals �k (−tk)
for even (odd) z. Fourier transforming z → kz yields the bulk
Bloch Hamiltonian and dispersion:

Hk(kz ) =
( −μk + Ek �k − tke2ikzc

�k − tke−2ikzc −μk − Ek

)
,

ξ±
k (kz ) = −μk ±

√
E2
k + �2

k + t2k − 2tk�k cos(2kzc), (5)

where c is the interlayer spacing. Hk(kz ) has Weyl nodes
at points (K i, 0) where tK i = �K i and EK i = μK i and
a gap elsewhere provided |μk| < εk− ∀k, where εk± =√
E2
k + (tk ± �k)2. If μK i = 0, the ith Weyl node is at the

Fermi level. Near (K i, 0), Hk(kz ) − μk reduces to HWeyl,i =
k3D · (viσz + uiσx + wiσy), where σα are Pauli matrices in
the bilayer basis, vi = ∇kEK i , ui = ∇k(�K i − tK i ), and wi =
2tK i cẑ ≡ 2ticẑ are the Weyl velocities, and k3D = (k, kz ). On
the top surface (z = 0), a FA exists along the Ek = μk curve
where h12,k < h23,k or �k < tk. Physically, the FA is the part
of the 2D Fermi surface at z = 0 that survives because it has a
propensity to hybridize with the missing layer at z = −1.

In this model, D0 = 1, so the gk(ω) is a c number that has
a closed-form expression in the limit L → ∞ [42]:

gk(ω) = 1

2t2k (ω + μk − Ek)

{
(ω + μk)

2 − E2
k + t2k − �2

k

+
√[

(ω + μk)2 − ε2k−
][
(ω + μk)2 − ε2k+

)]}
. (6)

The FA and LA occur at Ek = μk, tk > �k and Ek =
−μk, tk < �k, respectively. Peeling off the z = 0 layer cor-
responds to the transformation Ek → −Ek, tk ↔ �k in the
semi-infinite limit, which interchanges the FAs and LAs as
depicted in Fig. 5. Physically, the FA now exists along the part
of the z = 1 Fermi surface that lacks a hybridization partner.
Thanks to the square root, gk(ω) clearly has branch cuts when
ω is real and lies within the bulk bands, i.e., εk− < |ω + μk| <

εk+. In Appendix A, we show that the branch cut reproduces
the expected particle density on the surface due to the bulk
states.

Implications for Luttinger’s theorem. Luttinger’s theorem is
a hallmark of Fermi liquid theory. It states that the Luttinger
volume —defined as the volume enclosed by the locus of
poles of the electron Green’s function—equals the density
of spinful (spinless) electrons in a metal modulo 2 (modulo
1) in units of (2π )D in D spatial dimensions. Importantly,
the theorem dictates that the Luttinger volume remains un-
changed in the presence of interactions [76–82]. It was later

generalized to include Mott insulators with particle-hole sym-
metry [79,81–84]. Here, a divergent self-energy produces a
Luttinger surface that encloses a volume equal to the particle
density modulo 2. In certain strongly interacting systems,
Luttinger’s theorem holds in a “soft” form as the Luttinger
volume equals a fraction of the particle density modulo 2
[84,95–98]. Since there is no well-defined volume enclosed
by the FAs alone in WSMs, Luttinger’s theorem is naively in-
applicable. However, the discovery of LAs in this work raises
the question: Does the area enclosed by the Fermi-Luttinger
loop act as a Luttinger volume and equal the surface particle
density?

Using the minimal model described above, we prove that
the answer is negative and quantify the violation of Lut-
tinger’s theorem. Restricting to μk = 0 for simplicity, the
surface particle density at zero temperature is given by ns =
−2Im

∫
k,ω 
(−ω)gk(ω + iη) = nps + nbcs where

nps =
∫
k

(−Ek)R

(
1 − �2

k

t2k

)
, (7)

nbcs =
∫
k,ω


(−ω)sgn(ω)

√
R
[(

ω2 − ε2k−
)(

ε2k+ − ω2
)]

t2k (ω − Ek)
(8)

denote contributions from the poles and the branch cuts
of gk(ω), respectively,

∫
k,ω ≡ ∫

d2k dω
(2π )3 and R(x) = x
(x). In

other words, nps captures FA contributions to ns and resembles
the expression for the carrier density in a Fermi gas, but
for the weight factor Wk = R(1 − �2

k/t
2
k ) that accounts for

the varying weight of FA states on the surface and restricts
contributions to the region containing FA’s, namely, �k < tk.
In contrast, nbcs captures bulk contributions and approximates
at μ = 0 to (Appendix B)

ns =
∫
k

(−Ek) + O(t,�)ν2D, (9)

where ν2D is the density of states at Ek = 0 for the 2D layers.
The first term,

∫
k 
(−Ek), is precisely the area enclosed by

the Fermi-Luttinger loop in units of (2π )2 and can be viewed
as a Luttinger volume (yellow region in Fig. 1). Physically,
the equivalence at zeroth order in the interlayer tunnelings is
a remnant of Luttinger’s theorem that holds exactly for the
2D metals that form the building blocks of the WSM. The
leading violation of the theorem is defined by the second term;
it is order the typical interlayer tunneling and comes from k-
space regions near the Fermi-Luttinger loop, hence scaling as
its circumference.

In conclusion, we have unearthed various novel features
hidden in the surface single-particle Green’s function of non-
interacting WSMs. We have shown that the surface hosts
LAs, normally found only in strongly interacting systems,
in addition to FAs. When the Weyl nodes are undoped, the
FAs and LAs form closed loops on the surface. Interestingly,
the LA turns into a FA when the surface layer is removed,
which allows a precise determination of the LAs. We use
this principle to determine LAs in Co3Sn2S2. Finally, we
showed that doping the Weyl nodes exposes branch cuts in the
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Green’s function that capture the surface presence of the bulk
bands.

Acknowledgments. We thank H. Pal for invaluable discus-
sions. We acknowledge financial support from the National
Science Foundation under Grant No. DMR-2047193.

APPENDIX A: nbc
s INTEGRAL NEARWEYL NODES, WITH

DOPING

In this Appendix, we evaluate nbcs at nonzero but small μk

by linearizing around each Weyl node and compare it with the
expected contribution of the bulk states to the surface particle
density. We have

nbcs =
∫
k,ω


(μk − ω)sgn(ω)

√
R
[(

ω2 − ε2k−
)(

ε2k+ − ω2
)]

t2k (ω − Ek)
,

(A1)

where εk± =
√
E2
k + (tk ± �k)2 . The integrand is nonzero

only when εk− < |ω| < εk+, which defines a region around
each Weyl node within an energy |ω| from the node. As
long as the contributing regions around different nodes do not
overlap in k space, the k integral can be split into integrals
around each node:

nbcs =
∫

ω

∑
i

∫
k≈K i


(μk − ω)sgn(ω)

×
√
R
[(

ω2 − ε2k−
)(

ε2k+ − ω2
)]

t2k (ω − Ek)
, (A2)

where K i are the locations of the Weyl nodes. Near each
node, let us linearize as Ek ≈ k · vi, tk ≈ ti − 1

2k · ui, �k ≈
ti + 1

2k · ui and assume 2ti 
≡ |μi|, where μi is the Fermi
level relative to the ith Weyl node. For simplicity, we ignore
tilting of the linear dispersion by neglecting linear terms in the
Taylor expansion of μk around K i. Subtracting off an infinite
contribution from μi = 0, we get

�nbcs =
∑
i

∫ |μi|

0

dω

2π

∫
√

(k·vi )2+(k·ui )2<ω

d2k

(2π )2

× 2
√

ω2 − (k · vi )2 − (k · ui )2
ti[ω sgn(μi ) − k · vi]

. (A3)

The integral simplifies upon absorbing the velocities into the
momenta as qv = k · vi = q cosφ, qu = k · ui = q sin φ:

�nbcs =
∑
i

∫ |μi|

0

dω

2π

2

tiuivi

×
∫
q<|ω|

q dq dφ

(2π )2

√
ω2 − q2

ω sgn(μi ) − q cosφ
(A4)

=
∑
i

2 sgn(μi )

tiuivi

∫ |μi|

0

dω

2π

∫ ω

0

q dq

2π
(A5)

= 2

3
π

∑
i

( μi

2π

)3 1

tiuivi
. (A6)

In comparison, the change in the 3D bulk carrier density
around a Weyl node with velocities ui, vi, and wi due to a
local chemical potential μi follows easily from the volume of
an ellipsoid:

�NWeyl
i = 4

3
π

( μi

2π

)3 1

uiviwi
. (A7)

Recalling that wi = 2tic, we find �nbcs = c
∑

i �NWeyl
i , i.e.,

�nbcs reflects the change in the bulk carrier density uniformly
distributed across the layers. Thus, the branch cut in gk(ω) is
a manifestation of the continuum of bulk quasiparticle poles
at fixed k and varying kz.

APPENDIX B: nbc
s INTEGRALS AT GENERAL k, NO

DOPING

In this appendix, we separately evaluate contributions from
k points where Ek < 0 (nbcs,−), Ek ≈ 0 (nbcs,0), and Ek > 0 (nbcs,+)
to obtain nbcs = nbcs,− + nbcs,0 + nbcs,+ at μk = 0, as needed for
quantifying the violation of Luttinger’s theorem based on the
area enclosed by the Fermi-Luttinger loop.

1. nbc
s,−

If |tk,�k| < −Ek, then ω ≈ Ek over the range of the ω

integral and 1/(ω − Ek) = 2ω/(ω2 − E2
k ) + O( t

2,�2,t�
E2 ). The

leading order term is a straightforward elliptic integral in
terms of x = ω2 − E2

k :

nbcs,−(0) =
∫
k


(−Ek)
2πt2k

×
∫ t2k+

t2k−

dx

√
(x − |tk − �k|2)(|tk + �k|2 − x)

x

=
∫
k


(−Ek)
4t2k

(|tk + �k| − |tk − �k|)2

=
∫
k
(1 −Wk). (B1)

2. nbc
s,0

If |tk,�k| 
 |Ek|, corresponding to the region near the
Fermi and Luttinger arcs, we can restrict to a narrow region
of width O(t,�) around the Ek = 0 contour. This gives

nbcs,0(0) ≈
∫
k

O(t,�)δ(Ek)
2πt2k

×
∫ −εk−

−εk+
dω

√
(ω2 − |tk − �k|2)(|tk + �k|2 − ω2)

ω

=
∫
k

O(t,�)δ(Ek)
8t2k

(|tk + �k| − |tk − �k|)2

= 1

2

∫
k
O(t,�)δ(Ek)(1 −Wk). (B2)

Due to the δ function, this term receives contributions from
regions near the Fermi-Luttinger loop only. It is O(t,�)ν2D
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and constitutes the leading violation of Luttinger’s theorem
based on the Fermi-Luttinger loop.

3. nbc
s,+

If 0 < |tk,�k| � Ek, we can approximate 1/(ω − Ek) ≈
1/2ω. This gives an elliptic integral in terms of x = ω2 which

evaluates to

nbcs,+(0) ≈
∫
k,E
|t,�|

∫ ε2k+

ε2k−

dx

√(
x − ε2k−

)(
ε2k+ − x

)
8πt2k x

≈ −
∫
k,E
|t,�|

�2
k

4E2
k

. (B3)
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