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Unusually thick metal-insulator domain walls around the Mott point
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Many Mott systems feature a first-order metal-insulator transition at finite temperatures, with an associated
phase coexistence region displaying inhomogeneities and local phase separation. Here one typically finds
“bubbles” or domains of the respective phases, which are separated by surprisingly thick, or fat, domain walls,
as revealed both by imaging experiments and recent theoretical modeling. To gain insight into this unexpected
behavior, we perform a systematic model study of the structure of such metal-insulator domain walls around the
Mott point, within the dynamical mean-field theory framework. Our study reveals that a mechanism producing
such “fat” domain walls can be traced to strong magnetic frustration, which is expected to be a robust feature of
“spin-liquid” Mott systems.
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I. INTRODUCTION

The Mott (interaction-driven) metal-insulator transition
represents one of the most important phenomena in strongly
correlated electron systems [1]. It was first recognized in a
number of transition-metal oxides [2–6], and has been brought
to notoriety with the discovery of the cuprate high-Tc super-
conductors [7,8], which raised much controversy surrounding
its character and the underlying physical processes. One pop-
ular viewpoint, going back to early ideas of Slater, assumes
that the key mechanism producing the Mott insulating state
follows from magnetic order simply rearranging the band
structure. An alternative perspective, pioneered by the seminal
ideas of Mott and Anderson, argues that strong Coulomb
repulsion may arrest the electronic motion even in the absence
of magnetic order. Several theoretical scenarios [9–12] have
been proposed for the vicinity of the Mott point, but for many
years the controversy remained unresolved.

More recent experiments have demonstrated [13] that a
sharp Mott transition is indeed possible even in the absence
of any magnetic order. Physically, this possibility is realized
in systems where sufficiently strong magnetic frustration [14]
can suppress magnetic order down to low enough tempera-
tures, thus revealing the “pure” Mott point. Precisely such
behavior is found in a class κ-organic “spin-liquid” mate-
rials [15], which have been recently recognized [16] as the
ideal realization of a single-band Hubbard model on a trian-
gular lattice, allowing a remarkably detailed insight into the
Mott transition region. While the intermediate-temperature
metal-insulator crossover revealed [17] some striking as-
pects of quantum criticality [18] around the quantum Widom
line [19,20], the transition was found to assume weakly
first-order character at the lowest temperatures. Spectacular

anomalies in dielectric response were observed [21] within
the associated phase coexistence region, revealing percolative
phase separation.

Remarkably, most qualitative and even semiquantitative
aspects of the behavior [15] observed around the Mott
point were found to validate the predictions of dynamical
mean-field theory (DMFT) [12,22]. This theoretical approach,
which gained considerable popularity in recent years [23],
focuses on the local effects of strong Coulomb repulsion,
while disregarding certain nonlocal processes associated with
intersite magnetic correlations and/or fluctuating magnetic
orders. It reconciled the earlier theories of Hubbard [9,10]
with the viewpoint of Brinkman and Rice [11], leading to a
consistent nonperturbative picture of the Mott point.

While many aspects of crystalline Mott materials prove to
be successfully described and interpreted from the perspective
of DMFT, the situation is more complicated in the presence of
disorder [25–32], which breaks translational invariance. These
effects are most pronounced, but least understood, within the
metal-insulator phase coexistence region. Here even moderate
disorder creates nucleation centers for the respective phases,
leading to nanoscale phase separation. Some aspects of this
behavior proved possible to be described from the perspec-
tive of a phenomenological percolation picture, including the
effects of inhomogeneities caused by thermal fluctuations
around the critical endpoint [33], as well as the colossal di-
electric response at lower temperatures [21].

A closer look at the microscopic structure of the cor-
responding patterns, however, revealed various puzzling
features. Hints of remarkably complex behavior were pro-
vided by very recent large-scale numerical modeling [24]
of disordered Mott systems, as well as experimentally by
nanoscale imaging of some Mott materials [6]. A typical
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FIG. 1. Spatial fluctuations of the local density of states (LDOS)
found in a recent simulation of a moderately disordered two-
dimensional Mott system, within the metal-insulator phase coex-
istence region [24]. Note how the domain walls (green) covers a
substantial area of the image, separating metallic (red) from the Mott-
insulating domains (blue). Similar patterns have also been found in
earlier imaging experiments on certain Mott oxides [6].

situation is illustrated in Fig. 1, where we reproduce a result
of our recent theoretical study [24] of this regime. Here we
see clearly defined metallic domains separated from Mott-
insulating regions by surprisingly thick domain walls, which
in some cases cover a large fraction of the system volume
(area). Remarkably, very similar fat domain walls were also
observed in certain experiments [6], suggesting robust new
physics. This finding immediately brings into question the
conventional percolation picture, where the domain walls are
assumed to play only a secondary role. This observation also
brings forth several important physical questions, which are
the primary motivation for this work: (1) What is the physical
reason for having rather thick or fat domain walls, and under
which conditions is this expected to hold? (2) What are the
physical properties of such “domain wall matter,” and how
should they affect the physical observables?

In this study we present a detailed theoretical investigation
of the structure of such domain walls not only in the vicinity
to the critical endpoint [34] (where one generally expects
them to be thick), but also across the entire phase-coexistence
region. Our results establish that, under certain conditions,
such domain walls can remain thick in the entire range of
temperatures, and reveal the underlying mechanism, at least
within the DMFT picture we adopt. We argue that strong
magnetic frustration acts as a key physical ingredient affecting
the properties of such domain walls, also suggesting ways to
further control their properties in “materials by design” [35].

II. MODEL AND METHOD

To microscopically investigate metal-insulator domain
walls in the vicinity of the Mott point, we focus on a single-

FIG. 2. Schematic representation of the one-dimensional model
we use to describe a domain wall. The central N-site sector, denoted
as HS in the Hamiltonian, contains the domain wall. It is attached
to semi-infinite leads on both sides; a uniform, strongly correlated
metal on the left and a uniform Mott insulator on the right. Both
these reservoirs are described by the HR term in the Hamiltonian. The
N-site chain system is connected to the reservoirs through contact
components, denoted as HC in the Hamiltonian.

band half-filled Hubbard model, as given by the Hamiltonian

H = −t
∑
iσ

[c†
iσ c(i+1)σ + H.c.]

+U
∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where c†
iσ (ciσ ) is the creation (annihilation) operator of an

electron with spin projection σ on site i, t is the hopping am-
plitude between nearest neighbors, U is the on-site Coulomb
repulsion, and niσ = c†

iσ ciσ . We work in units such that h̄ =
kB = a = 1, where a is the lattice spacing. Energy will gener-
ally be given in the units of half-bandwidth D, which for our
half-filled situation is also the Fermi energy.

In general terms, a domain wall in d dimensions is a
(d − 1)-dimensional surface separating two thermodynamic
phases. To examine its basic properties, we follow a stan-
dard procedure [36] in assuming it to be flat, i.e., that its
spatial variation across the wall is the only relevant one. To
further simplify the calculation, we take advantage of the the
well-established fact that, within the DMFT formulation we
employ, the detailed form of the electronic band structure does
not qualitatively affect the results [12,37,38]. This allows us
to follow the same strategy as in standard theories for domain
walls, and reduce the problem to solving a one-dimensional
model with appropriate boundary conditions on each end rep-
resenting the respective thermodynamic phases.

To make our notation transparent, it is convenient to sepa-
rate the Hamiltonian in three terms (see Fig. 2):

H = HS + HR + HC . (2)

The first term HS is a Hubbard Hamiltonian for the N central
sites (“system”)

HS = −t
N−1∑
i=1,σ

[c†
iσ c(i+1)σ + H.c.]

+U
N∑
i=1

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (3)
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FIG. 3. DMFT phase diagram for the Mott transition at half-
filling, obtained using IPT as the impurity solver. The phase
coexistence region is bounded by the spinodal lines Uc1(T ) (blue
line) andUc2(T ) (red line) where the respective insulating and metal-
lic solutions become unstable. The green line marks the first-order
transition line Uc(T ), where the free energies of the two phases
coincide.

HR refers to the semi-infinite chains to the left and to the right
of the system (“reservoirs”)

HR = −t

( −1∑
i=−∞,σ

+
∞∑

i=N+1,σ

)
[c†

iσ c(i+1)σ + H.c.]

+U

(
0∑

i=−∞
+

∞∑
i=N+1

)(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (4)

and HC represent the coupling (“contacts”) of the central sys-
tem to the reservoirs

HC = −t
∑

σ

[c†
0σ c1σ + c†

Nσ c(N+1)σ + H.c.]. (5)

In the following we solve this model using dynami-
cal mean-field theory (DMFT) [12,22,39,40]. The essential
simplification of this approach is the assumption that the
single-particle self-energy is a local but frequency-dependent
quantity [39]. This self-energy is then calculated from the
solution of an ensemble of auxiliary single-impurity prob-
lems supplemented with appropriate self-consistency condi-
tions [40]. Within DMFT, the Mott transition at half-filling
exhibits a coexistence region where both the metal and the
insulator represent locally stable thermodynamic phases. This
coexistence region is delimited in the T vs U phase diagram
by two spinodal lines Uc1(T ) (where the insulator becomes
unstable) and Uc2(T ) (for the instability of the metal), as
shown in Fig. 3. We further concentrate on behavior along the
first-order transition lineUc(T ) (green line in Fig. 3) where the
free energies of the respective phases become equal [18,41].
To describe domain wall formation [36], we impose boundary
conditions such that the sites to the left of the system are in
the metallic phase, whereas sites to the right of it correspond
to the Mott insulator. The intermediate region will then have

to smoothly interpolate between metal and insulator, thus
producing a domain wall between the two phases.

Naturally we will no longer be able to assume a uniform,
i.e., site-independent self-energy throughout the system. We
will thus generalize the assumptions of DMFT to accom-
modate a nonuniform albeit still site-diagonal self-energy
function

�(ω) → �i(ω). (6)

This approach was first proposed in the context of a disordered
system in Refs. [42,43] (for a review, see Ref. [44]). In the
following we explain the details of how the self-energy is
computed for the present model. Like in the homogeneous
DMFT, we focus on site i, whose dynamics, we assume, is
that of a single correlated impurity site embedded in a bath of
conduction electrons, whose action in imaginary time is

Seff(i) =
∑

σ

∫ β

0
dτc†

iσ (τ )(∂τ −U/2)ciσ (τ )

+
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′c†

iσ (τ )	i(τ − τ ′)ciσ (τ ′)

+U
∫ β

0
dτni↑(τ )ni↓(τ ). (7)

The hybridization function 	i(τ − τ ′) describes processes
whereby an electron hops out of site i at time τ ′, wanders
through the rest of the lattice, and hops back onto i at a later
time τ . We will specify how it is computed shortly. The local
Green’s function of the impurity described by the action of
Eq. (7) is

Gi(τ ) = −〈T [ciσ (τ )c†
iσ (0)]〉eff, (8)

where the subscript eff emphasizes that it should be calculated
under the dynamics of Eq. (7). The self-energy �i(iωn) is then
obtained from the Fourier transform to Matsubara frequencies

Gi(iωn) = 1

iωn +U/2 − 	i(iωn) − �i(iωn)
. (9)

The lattice single-particle Green’s function is given within this
scheme by the resolvent (we use a hat to denote a matrix in the
lattice site basis)

Ĝ(iωn) = [iωn − Ĥ0 − �̂(iωn)]−1, (10)

where Ĥ0 is the noninteracting Hamiltonian [Eq. (1) withU =
0 ] and the matrix elements of the self-energy operator �̂(iωn)
in the site basis is

〈i|�̂(iωn)| j〉 = �i(iωn)δi j . (11)

The self-consistency loop is closed by requiring that the site-
diagonal elements of the lattice Green’s function coincide
with the local Green’s functions of Eq. (8)

〈i|Ĝ(iωn)|i〉 = 1

iωn +U/2 − 	i(iωn) − �i(iωn)
. (12)

This last equation provides an expression for a self-consistent
hybridization function for each site 	i(iωn). In a completely
homogeneous situation, the above scheme reduces to the stan-
dard DMFT.
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The procedure described above requires the computation
of the local Green’s function of Eq. (8) or, equivalently, the
self-energy defined in Eq. (9) for the problem defined by the
single-impurity action of Eq. (7). To this end, we utilized iter-
ated perturbation theory (IPT) [40,45] as the required impurity
solver. This procedure, while being computationally much
more efficient than standard QMC methods, has previously
been shown to properly capture both the insulating and the
metallic solutions to the problem, as well as most other qual-
itative features of the full DMFT solution [46], which will
suffice for our purposes.

If the system size N is large enough to accommodate the
full extension of the domain wall, the self-energy will be prac-
tically uniform in the region of the reservoirs. In carrying out
our computations for different values ofU and T , we carefully
verified that this condition is satisfied. For the parameter range
explored in this work, N = 50 proved sufficient, except for
the largest domain wall size we analyzed, for which a value of
N = 70 was required.

Although the system studied is infinite, the computation of
the local Green’s function and self-energy in the domain wall
region is all that is required, as we now explain. It is easy to
see that the noninteracting Hamiltonian Ĥ0 of the full infinite
system has an obvious block structure given by

Ĥ0 =
[
ĤS ĤC

ĤC ĤR

]
. (13)

Likewise, the self-energy can also be separated into system
[�̂S (iωn)] and reservoir [�̂R(iωn)] blocks

�̂(iωn) =
[
�̂S (iωn) 0

0 �̂R(iωn)

]
. (14)

The lattice Green’s function (10) satisfies the equation

[iωn − Ĥ0 − �̂(iωn)]Ĝ(iωn) = 1̂, (15)

where 1̂ is the unit matrix. In block form, Eq. (15) reads

[
iωn − ĤS − �̂S (iωn) ĤC

ĤC iωn − ĤR − �̂R(iωn)

][
ĜS ĜC

ĜC ĜR

]
=

[̂
1 0

0 1̂

]
, (16)

which can be written out as

[iωn − ĤS − �̂S (iωn)]ĜS + ĤCĜC = 1̂, (17)

ĤCĜS + [iωn − ĤR − �̂R(iωn)]ĜC = 0. (18)

Equation (18) can be solved to give

ĜC = −[iωn − ĤR − �̂R(iωn)]−1ĤCĜS, (19)

and the result can be plugged into Eq. (17) to yield

ĜS = 1

iωn − ĤS − �̂S (iωn) − ĤC
[

1
iωn−ĤR−�̂R (iωn )

]
ĤC

(20)

≡ 1

iωn − ĤS − �̂S (iωn) − �̂(iωn)
, (21)

where

�̂(iωn) = ĤC

[
1

iωn − ĤR − �̂R(iωn)

]
ĤC (22)

contains all the information from the reservoirs needed for the
calculation of the system’s Green’s function. Since the self-
energy in the reservoirs is site independent, we can write, for
the one-dimensional lattice we are using,

�̂(iωn) = �̂L(iωn) + �̂R(iωn), (23)

where �̂L(R)(iωn) is the contribution from the reservoir to
the left (right) of the system. The latter quantities are given
in terms of the (purely imaginary) self-energies on the left
(metal) and right (insulator) �L,R(iωn) as

�̂L(R)(iωn) = i

2
{�L(R)(iωn) − sgn(ωn)

√
[�L(R)(iωn)]2 + 4t2},

(24)

where �L(R)(iωn) = ωn − Im�L(R)(iωn).

In all our calculations we analytically continue the Matsub-
ara Green’s functions and self-energies to the real axis using
the Padé approximation [47].

III. RESULTS

Next, we present the detailed results we obtained, explor-
ing the behavior of a domain wall within the coexistence
region, in the entire range of temperatures 0 < T < Tc, along
the first-order transition line.

As we mentioned in Sec. II, an accurate calculation needs
to make sure that the system size N is large enough so that our
position-dependent solution converges to the proper asymp-
totic limit (“reservoirs”), where the spatial variation can be
ignored. To illustrate this, in Fig. 4 we display the domain
wall profile, as described by the spatial variation of the lo-
cal density of states (DOS) ρ(0, x) = −(1/π )ImG(ω = 0, x),
evaluated at T/D = 0.035 and U/D = 2.697, and plotted as
a function of the coordinate x perpendicular to the domain
wall. This quantity is small in the insulator (approaching zero
as T → 0), but remains finite in the metal, thus displaying
strong spatial variation across the domain wall. As we can see
in Fig. 4, the spatial profile of the domain wall displays very
little change with the size of the central region (N sites), where
we allow for spatial variation. This means that our system
size N is large enough to eliminate any finite-size effects
from our calculation. Performing similar calculations for the
different temperatures, we verified that N = 70 is sufficient
for an accurate description at all the relevant temperatures
(0 < T < Tc) within the coexistence region.

A. Anomalous dynamics of the domain walls

For each temperature we considered, we selected the pre-
cise value of U (T ) that falls on the first-order transition line
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FIG. 4. Spatial variation of the local DOS ρ(0, x) at the Fermi
energy, across the domain separating a strongly correlated metal
(left) and a Mott insulator (right), corresponding to T/D = 0.0351
and U/D = 2.69773. Results are shown for different system sizes N
used in our simulation, demonstrating negligible finite-size effects of
our results.

(see green line of Fig. 3). Results obtained for several tem-
peratures are shown in Fig. 5(a), showing the domain-wall
profiles of the local DOS. We should mention that, within
our simulation, the precise position of the domain wall we
find for given T is somewhat sensitive to the exact value for
U (T ) selected. We had to, accordingly, adjust the value of U
to a precision of several decimal places, in order to obtain
adequate center alignment, which is helpful for comparing
the detailed form of the domain wall profile at different tem-
peratures. For better comparison, in Fig. 6(a) we display the
same data translated along both the x and the y axes, so that
the domain wall center coincides with the coordinate origin.
Note that the local DOS in the uniform regions has a non-
monotonic behavior with T , a behavior we expand upon in the
Appendix.

The corresponding behavior of the inelastic scattering rate
1/τ (0, x) = −2Im �(ω = 0, x) across the domain wall and
different temperatures is shown in Fig. 5(b). It is generally
expected to be small in a coherent metal (in a Fermi liquid
1/τ ∼ T 2 for given U ) and very large in a Mott insulator, as
we observe in the respective phases. This behavior reflects a
fundamentally different nature of transport in the two compet-
ing phases, but even more interesting behavior is seen within
the domain wall itself. Here the scattering rate 1/τ smoothly
interpolates between the two limits and thus retains very weak
T dependence, reflecting significant electron-electron scatter-
ing down to the lowest temperatures! This surprising result
is displayed even more precisely by plotting 1/τ evaluated
at the domain wall center as a function of temperature, in
comparison to the behavior of the two phases, as shown
in Fig. 6(b). Similar behavior is also seen in the frequency
dependence of the corresponding Green’s function and the
self-energy, shown as a function of the Matsubara frequency
in Fig. 7, for several sites across the domain wall at T =
0.035D and U = 2.698D. Here we observe a characteristic
evolution from metallic to insulating behavior, as one moves
across the domain wall, which is most pronounced at the
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FIG. 5. Variation of the domain wall profile with temperature:
The local DOS (a) and the scattering rate (b) shown for different
T and U , following the first-order transition line. Note a slightly
nonmonotonic dependence on temperature.

lowest frequencies. For the sites at the center of the domain
wall, however, we observe characteristically weak frequency
dependence. This behavior is clearly distinct from either a
metal or an insulator, but is constrained by having to inter-
polate from one to the other.

The domain wall center is, therefore, recognized as an
incoherent conductor down to the lowest temperatures. Phys-
ically, such non-Fermi liquid behavior makes it clear that
the domain wall represents a different state of matter from
either a coherent (Fermi liquid) metal, or a Mott insulator.
This surprising result could be regarded as a curiosity with
little physical consequence in situations where the relative
volume (area) fraction “covered” by domain walls is neg-
ligibly small compared to the bulk of the system. In the
presence of sufficient disorder, however, both recent simu-
lations [24] and experiments [6] demonstrate a surprisingly
abundant proliferation of such domain walls, suggesting a
fundamentally new physical picture. We may expect this to be
especially significant whenever the domain walls themselves
are sufficiently fat (thick), so that a sizable fraction of the
system’s volume (area) is affected by such “resilient” inelastic
electron-electron scattering, which persists to low tempera-
tures, in contrast to the behavior expected for conventional
metals.
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FIG. 6. (a) Variation of the domain wall profile with temperature.
Same data are shown in Fig. 5, but here they have been shifted both
horizontally and vertically so that the domain wall center is located at
the plot center. This way of plotting reveals more clearly the variation
of the domain wall thickness as a function of temperature. (b) The
scattering rate at the domain wall center (x = 0) displays very weak
temperature dependence (central curve), in dramatic contrast to the
behavior of either the insulator (top curve), or the metal (bottom
curve) evaluated for the same T and U , along the first-order line.

B. What controls the thickness of the domain walls?

To precisely quantify the domain wall thickness as a func-
tion of temperature, we fit its shape to the standard tanh(x/ξ )
form, generally found for domain walls separating two co-
existing phases [36]. To be more precise, such symmetric
domain walls of thickness given by an appropriate correlation
length ξ is what one expects near any finite-temperature criti-
cal endpoint at T = Tc, as we also find. At lower temperatures,
however, our two phases are not related by any static symme-
try, hence the domain wall should not necessarily retain its
symmetric form, since the correlation length of the respective
phases may not be exactly the same. Indeed, even a quick
look at Fig. 6(a) reveals that at lower temperatures, the domain
walls are much “thicker” on the metallic than on the insulating
side.

To quantify this behavior, we perform partial fits to the
tanh(x/ξa) form on each side of the domain wall center,
which we define as the corresponding inflection point in its
profile. Here ξa, with a = met or ins defines the two different
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FIG. 7. Domain wall central region: Matsubara frequency depen-
dence of the imaginary part of (a) the local Green’s function and
(b) the self-energy for some sites in the central portion of the domain
wall at T/D = 0.035 and U/D = 2.69773.

correlation lengths, corresponding to the respective metallic
or insulating phase. The resulting T dependence of ξmet and
ξins is shown in Fig. 8(a), together with the total domain
wall thickness ξ = (ξmet + ξins )/2. General arguments [36]
predict this quantity to diverge at T → Tc, as we find. Indeed,
the critical point at T = Tc is known to belong to the Ising
universality class [5,33,48–51]. According to an appropriate
Landau theory [49] for this critical point, the domain wall
width should be proportional to the corresponding correla-
tion length, diverging at the critical point as ξ ∼ ξcorr ∼ |T −
Tc|1/2.

Remarkably, however, we find ξ to display a divergence
also at T → 0, thus retaining a sizable thickness even at
intermediate temperatures. This behavior is seen even more
precisely by plotting ξ−2 as a function of T in Fig. 8(b),
displaying the expected square-root divergence [36] not only
at at T = Tc but also at T = 0. From the practical point of
view, this curious result is important, because it suggest that
domain walls should retain substantial thickness throughout
the coexistence region, therefore introducing a potentially
significant new feature of transport properties near the Mott
point.

What could be the mechanism leading to this strange
behavior? An important clue is provided by comparing the
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FIG. 8. (a) Domain wall thickness as a function of temperature,
displaying pronounced asymmetry at low temperature, where the
thickness on the metallic side ξmet (red squares) becomes much larger
than its insulating counterpart ξins (blue triangles). (b) The overall
thickness ξ = (ξmet + ξins )/2 (green circles in both panels) displays
a square-root singularity at both T = Tc (black dot) and the T = 0
critical point (red dot).

behavior of the corresponding correlation length describing
the domain wall profile, as shown in Fig. 8(a). Here we ob-
serve that, while both ξmet and ξins diverge (and coincide) at
T → Tc, they behave very differently at T → 0. Here ξmet

diverges, but ξins saturates to a small value comparable to one
lattice spacing. Physically, this result is easy to understand,
keeping in mind the nature of the critical point at U = Uc2,
which we approach as T → 0 along the first-order line. This
critical point signals the instability of themetallic phase, where
the characteristic energy scale of the quasiparticles vanishes
and the free energy minimum corresponding to the metallic
phase becomes unstable, leading to the divergence of ξmet. In
contrast, the insulating solution here remains stable, as its own
instability arises only at a much smaller U = Uc1 � Uc2, and
the corresponding ξins thus remains short, as we find.

The resulting behavior of the overall domain wall thickness
ξ = (ξmet + ξins)/2 is even more clearly seen by plotting ξ−2

as a function of temperature, which is seen to linearly vanish
both at T = Tc and T = 0, as shown in Fig. 8(b). While
domain walls are generally expected [36] to become thick
at finite-temperature critical endpoints (T = Tc), the presence
of such behavior also at low temperatures deserves further

comment and a proper physical interpretation. Within our
DMFT formulation, it reflects the emergence of an additional
critical point at T = 0 and U = Uc2, corresponding to the
divergence of the quasiparticle effective mass m∗ ∼ (Uc2 −
U )−1, signaling a singular enhancement of the Sommerfeld
specific-heat coefficient γ = C/T ∼ m∗. This result, which
is well established within DMFT, reflects the approach to
the Mott insulator characterized by large spin entropy at low
temperatures. Physically, such neglect of significant intersite
spin correlations, as implied by the DMFT approximation,
is expected to be justified in the limit of strong magnetic
frustration, possibly in materials with triangular or Kagomé
lattices.

IV. CONCLUSIONS

In this paper we performed a detailed study of the struc-
ture and the dynamics of domains walls expected within the
phase coexistence region around the Mott point. Our results,
obtained within the DMFT approximation, suggest that such
domain walls should display unusual dynamics, which is un-
like that of a metal or that of an insulator, locally retaining
strong inelastic (electron-electron) scattering down to very
low temperatures. This curious behavior could be significant
in systems where weak disorder and low dimensionality con-
spire to produce a substantial concentration of domain walls
within the metal-insulator phase coexistence region. This be-
havior should be especially significant in systems where the
domain walls remain sufficiently thick or fat over an apprecia-
ble temperature range, such that the domain wall matter covers
a substantial volume (area) of a given sample. Our predictions
could be even more directly tested by STM (scanning tunnel-
ing spectroscopy) experiments, which are able to locally probe
transport properties at the center of a given domain walls, in
even simpler geometries.

Our analysis also revealed that the mechanism favoring
such thick domain walls is directly related to the degree of
magnetic frustration characterizing the incipient Mott insu-
lating state. In spatially inhomogeneous systems (e.g., due to
lattice defects of other forms of structural disorder), one can
imagine local regions with varying degrees of local magnetic
frustration. The physical picture we put forward indicates
direct consequences for the structure of the corresponding do-
main walls, with their local thickness being a direct measure
of the local magnetic frustration. The work we presented in
this paper is only the first step in the investigation of situations
where the interplay of phase coexistence, strong correlations,
and magnetic frustration should lead to exotic forms of dy-
namics of electrons, but more detailed investigations along
these lines remain challenges for the future.
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APPENDIX: MOVING ALONG THE FIRST-ORDER LINE

A close look at the results given in Fig. 5 reveals some
details of the temperature dependence found, which deserve
further clarification. It is clear that the DOS on the metallic
side of the domain wall displays a noticeably nonmonotonic
T dependence, which is generally not expected for a metallic
phase at fixed U . However, it should be noted that we have
here the simultaneous variation of both T and U when we
follow the first-order transition line (FOTL) while reducing
the temperature. This complicates the analysis, producing the
nonmonotonic behavior, as we see even more clearly in Fig. 9.
Note, in particular, that the metallic DOS does not approach
the noninteracting value (horizontal dotted line), even at low
temperatures, in contrast to what one one finds by reducing T
at fixed U (the so-called “pinning condition,” not shown).

To understand this behavior, we note that, at low tem-
peratures, the metallic phase displays Fermi liquid behavior.
In this case, all quantities become scaling functions of the
reduced temperature (T/T ∗

FL), where T ∗
FL ∼ Z ∼ (Uc2 −U ) is

the Fermi liquid coherence scale and Z is the quasiparticle
weight [41]. Since, within DMFT, the FOTL also vanishes
linearly with (Uc2 −U ), the reduced temperature (T/T ∗

FL)
should remain finite even as T → 0 along the FOTL line. This
is the reason why the pinning condition is violated all along
the FOTL. Indeed, within DMFT, the DOS is expected to ap-
proach its noninteracting value only at T � T ∗

FL, a condition
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FIG. 9. Evolution of the density of states (DOS) along the first-
order transition line, shown for both the uniform metallic (top red
curve) and the uniform insulating (bottom blue curve) solutions. For
comparison we also show the noninteracting DOS value (horizontal
dotted line), which is expected for the DOS in the metallic phase
strictly at T = 0.

that is not satisfied anywhere along the FOTL. The remaining
T dependence we observe represents only subleading cor-
rections, which are generally complicated and nonuniversal,
consistent with the nonmonotonic behavior we find.
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Dobrosavljević, J. H. Miller, Jr., and E. Miranda, Phys.
Rev. B 101, 235112 (2020).

[25] E. Miranda and V. Dobrosavljević, Rep. Prog. Phys. 68, 2337
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