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Abstract— We present an adaptive fast-approximation for
sensor configuration which finds near-optimal placements and
sensor field of views (FoV). The fast-approximation, either via
partition-based or density-based cluster analysis, adapts based
on the relation between statistical uncertainty of the path plan
and environmental uncertainty. The sensor configurations are
performed over regions of interest which most directly influence
the path-planning efforts. These regions of interest can include
exploratory paths by sampling the probabilistic environment
model. The path-planning efforts aim to decide upon a path
which minimizes an agent’s exposure to threats in an unknown
static environment. The noisy sensor network observations
are used to construct a threat field estimate using Gaussian
Process Regression each iteration with a stationary kernel and
heteroscedastic gaussian likelihood. The optimization of a task-
driven information gain determines optimal sensor configu-
rations when maximized. The numerical performance of the
direct optimization and the adaptive cluster analysis method
is presented. Finally, we show that the cluster centers can
be utilized as a dimensionality reduction technique for FoV
optimization whereby we only optimize FoV radial coverage.

I. INTRODUCTION

Path-planning for an autonomous agent is typically per-
formed subsequent to the observation and modeling of it’s
surrounding environment. When the agent is “blind” to it’s
surroundings, it relies on extroceptive sensors to map and
realize the environment. The separation between the path
planning and sensor configuration efforts leads to unnec-
essary and excess exploration of the environment prior to
deciding upon a best path. The goal of this paper is to
couple the sensor configuration and path-planning objectives
to minimize unnecessary exploration of the environment. We
devise a centralized framework which deploys extroceptive
mobile sensors to observe regions of direct relevance to the
agent’s path planning efforts. Throughout this paper, we use
the environment, as shown in Fig 1, as an example for
planning an optimal path which matches the true optimal
path as shown in green.

Related Work: Path-planning is well studied in litera-
ture, with notable approaches being probabilistic roadmaps,
cell decomposition, Dijkstra’s algorithm, and A* [1]-[3].
These approaches typically aim to minimize path length,
maximize path utility, or avoid obstacles [4].

Bayesian methods are used to develop probabilistic en-
vironment models. A Gaussian Process (GP) model is one
such approach in which field estimation is performed via
Bayesian updates using a mean function and kernel [5], [6].
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Fig. 1. Example field with goal (Star), start (Circle), and threat minimized
optimal path (Green Line).

Variational approaches to ease the computational burden of
matrix inversion are detailed in [7]-[9]. Optimization of the
kernel structure and hyperparameters is studied in [10], [11].

Sensor placement aims to minimize uncertainty and spatial
coverage of an observable domain [12] with performance
measures such as information entropy and mutual informa-
tion [13]. Optimal sensor placements in GP estimated fields
are studied in [14]. Clustering algorithms have also been used
to find sensor configurations, namely [15] uses K-Means for
detecting degrees of freedom in frequency response functions
for catching placement redundancies and in [16] density-
based clustering was used for optimal placement in office
spaces. Evidential c-means clustering is utilized to find the
minimum number of sensors for water leak monitoring [17].
An interactive planning and sensing scheme which attempts
to minimize the number of iterations to plan a path with an
optimality guarantee is studied in [18].

Statement of Contributions: We detail a coupled sensor
configuration and path-planning algorithm which iteratively
configures extroceptive mobile sensors to observe regions of
direct relevance to the path-planning objective. The method
relies on a statistical environment model based on Gaussian
Process Regression. As optimization of the sensor config-
uration is computationally expensive, we develop an adap-
tive strategy which switches between partition and density-
based cluster analysis. This switching enables sensor network
observations which either attempt to maximize coverage
quantity or maximize coverage quality. The clustering ap-
proaches enable a significant reduction in computational
complexity while still achieving performance from direct
sensor configuration optimization. Additionally, we show that
the discovery of cluster centers can be utilized as a dimen-



Symbol | Definition | Description
& £ C R? Environment
w W CECR? Workspace
Ng i=1,2,..., Ng. Number of Grid Points in W
14 V = [Ng] Vertices
E E=A{V;,V;}i# jVi,j € Ny | Edges of adjacent grid points
g G=(V,E) Graph
p; P; = (Pix, Piy) Coordinate of the i*" grid
point
Ap Ap € R Distance of adjacent vertices
c(+) c: & =Ry Strictly  positive  temporally
static threat function
f feRrNe Threat estimate vector
P P e RNeXNg, Estimate covariance matrix
™ 7 = (w[0], w[1], ..., w[A]) Sequential path, no repetition,
between istart, tgoal € V.
U vx[i] = 1if i = =[j] for j € | Path incidence vector
[AI\O else v« [i] =0
T | T(xw) = Ang‘zlc(p,,j) Path cost
Ns Ng €N Number of sensors available
Sk s €W Sensor center for k*" sensor
Ok ok ER g Sensor radius for k*" sensor
Sk S, C & Circular FoV for k" sensor
C C = {s1,01,82,...,0Ns} Sensor Network Configuration
Vs, Vs, == {Sk,NV} Vertices in network FoV
Vi viplil] = 1if i € Vs, else | Cover incidence for k" sensor
Vi [7,] =0
v v:=(wiVraV..Vyyg) Sensor network cover inci-
dence
M, My = |vg| €N Number of measurements
made by k*" sensor
Nkem Nem ~ N (0, ai) The i.i.d measurement error
Zkm Zkm = ¢(@km) + Nkem Sensor measurement of k"
sensor at m" point
z = [z11...21M; - ZNg My, T All sensor measurements
€ e€R,, Termination threshold

TABLE I - Table of Common Notation

sionality reduction for the direct configuration optimization.

This paper is organized as follows. Section II presents the
problem background and formulation. Section III describes
the CSCP algorithm with adaptive clustering. Section IV
presents the numerical studies and results. Section V con-
cludes the paper with a summary of the findings.

II. PROBLEM FORMULATION

We denote by R and N the sets of real and natural
numbers, respectively, and by [N] the set {1,2,..., N} for
any N € N. For any a € RV a[i] is the i*" element of
a and diag(a) denotes the N x N diagonal matrix with
the elements of a on the principal diagonal. For any matrix
A € RMXN Al j] is the element in the i*" row and ;!
column. Iy denotes the identity matrix of size N.

The main elements of the problem are (1) the acting
agent, (2) the environment, and (3) the sensor network. The
acting agent is passive and has only the requirement to
follow the path provided upon termination of the algorithm.
The environment, £, contains a workspace W, which is a
closed square region the acting agent sequentially traverses.
It utilizes a graph structure where vertices V' are uniquely as-
sociated with grid points in V¥ and edges E are the sequential
connections along it’s path. The acting agent’s path within
the environment aims to minimize the cumulative exposure to
threats c. To develop this path plan, we require an estimate
of the threat field f, which is accomplished by iteratively
determining a configuration, C, of the sensor network to
locations of highest relevance to the path-planning.

Coupled Sensor Configuration and Path-Planning

tLetl =0, f, =0,Po=xI,ZT=0

: Solve for 7

: while Vary(7w;) > € do

Perform a Sensor Configuration Strategy

Record measurements z

Increment iteration counter £ := £ 4+ 1

Find GPR-based threat field estimate f, and error covariance Pj

Use Dijkstra’s algorithm to find path 7r; with minimum expected cost 7 ¢ (7 )
: end while

RSN el e

Fig. 2. Pseudocode for an iterative algorithm to solve Problem 1.

A. Problem Formulation

We aim to drive the uncertainty of the estimated path cost
to converge below a termination threshold, . The iterative
sensor configurations and their observations develop the
threat field estimate and in turn enable an estimated optimal
path, w*, to be discovered. The main problem we wish to
solve can then be written as follows:

Problem 1. Over a finite number of iterations ¢ =

0,1,...,L, find sensor conﬂg;urations C and a path *
of minimum expected cost J = E[J(m*)] that satisfies
E(J(m) =T )? <e.

III. COUPLED SENSOR CONFIGURATION AND
PATH-PLANNING

Herein, we detail a coupled sensor configuration and path-
planning (CSCP) algorithm which aims to solve problem 1
in minimal iterations. The algorithm iteratively finds optimal
sensor locations (location and FoV), updates the threat field
estimate and error covariance matrix, and finds a candidate
optimal path 7; which is evaluated against a termination
threshold, €. This path is computed using Dijkstra’s algo-
rithm [19] using the current iteration’s estimated mean threat
f, at each grid point, with an offset of an arbitrarily small
constant applied to each vertices’ euclidean distance to the
goal. This offset aims to reject long paths to goal when an
equally good path that is shorter exists. However, we do
not include this in the expected cost of the path due to its
equivalency in both the true and estimated field costs. The
expected cost of a path can be calculated as:

Jo(m) =E[T(7)] = Ap flvx. (D

The termination threshold is compared against the current
iteration path cost variance, which is written as:

Vary(m) := E[(J () — Te(m))?] = (Ap)*vLPvy. (2)

The primary step which most directly affects iterations
until convergence, as we describe in more detail in III-D, is
the sensor configuration method. The procedure we present
aims to minimize the required iterations to find a near-
optimal path that satisfies convergence criteria. An outline
of the algorithm is shown in Fig. 2.

A. Algorithm Initialization

The algorithm is initialized with an optimistic field esti-
mate, f, = 0, a low confidence threat covariance matrix



with a vertex independence assumption, Py = xI(y,) where
x > 1 is an arbitrary constant, and an empty identified
vertex set Z = () at iteration £ = 0. Given this initialization
of parameters, the initial candidate path 7( is of minimum
length. After initialization, the algorithm proceeds to itera-
tively perform sensor configuration, update the probabilistic
field estimate, and finds a new candidate path until the path
cost variance converges below the termination threshold ¢.

B. Nonparametric Statistical Environment Modeling

Before detailing the iterative portion of the CSCP algo-
rithm, we first introduce the environment modeling stage
as it is the backbone to the entire procedure. To determine
the threat field estimate f and related covariance matrix
P, we utilize Gaussian Process Regression (GPR) which is
a nonparametric method for statistical modeling. GPR is a
supervised learning technique which makes use of a kernel
K = k(x,2’) to define model shape and structure. Due to
space constraints, we omit the full formulation and kernel
definition, but refer the reader to [20] and highlight the key
points. In this work, we utilize the squared-exponential (SE)
kernel, also known as the gaussian or radial basis function
kernel, which has the property K — 0 as ||z — &/|| — oo
as it is a stationary kernel. This property combined with an
assumption of mean O enforces optimistic field estimates in
regions away from the training data, preventing the search
from being trapped in suboptimal regions. This kernel re-
quires that we find a length scale hyperparameter A and
signal height variation hyperparameter 0]2[ by maximizing
the marginal log-likelihood equation. The GPR is trained
using the observations z at their respective locations. We
combine observations at identical locations with a weighted
update procedure as performed in [21], according to the
current set of identified vertices, Z. Finally, we determine the
field estimate as f, = K] K, 'z, and it’s covariance matrix
Pyr=K,, — KIK;lK*, where K, is the cross covariance
of the training and test data, K,, is the covariance matrix
of the test data, and K, = K + R, where R is a diagonal
of each k' sensor’s noise, is the training data covariance
matrix with additive heteroscedastic noise from the sensor
observations applied to the diagonal.

C. Path Plan Region of Interest

Prior to sensor configuration each iteration, we must define
the path planning region of interest incidence vector 7 :=
[Ng]. The statistical model of III-B provides a method for
generating statistically feasible samples of the threat field.
Since a GPR follows the formulation of a multivariate normal
distribution, we may generate each i*" sample as:

7= £, + Ag, 3)

The matrix A can be computed from the threat covariance
matrix using cholesky decomposition as AAT = P,. The
vector g, is therefore the i*" sample vector’s independent
normal variates. By introducing generated threat field es-
timates using the statistical model, we may find alternate

potential path plans by recomputing Dijkstra’s algorithm.

This introduces a spatially exploratory element and the
benefits are explored numerically in the results section. We
may combine these alternate paths with the candidate optimal
path and compute 7 as the region of interest incidence vector.
Fig. 3 shows the initial and 10*" iterations for the CSCP
method, the CSCP method with alternative paths, CSCP
which considers the entire environment, and the adaptive
cluster analysis (CLAN) method we discuss in III-D.

D. Sensor Network Configuration

Each iteration, after determining the path plan region
of interest, we perform sensor configuration. This stage
is responsible for configuring sensor locations and FoVs
which best observe 7. To quantify this, we utilize a task-
driven information gain (TDIG) metric which represents the
information gain via variance reduction of 7:

h(CgJ’) = TT(Pg — Pg+1)7’ (4)

1) Direct Optimization of the TDIG metric: Optimization
of the TDIG metric is constrained to s € &, ,Qmm < o <
o™, for each k € [N;]. The difficulty in optimization is the
dependency on the posterior threat covariance matrix of a
future iteration P41, which cannot be directly determined
during optimization by the sensor configuration C/ at itera-
tion . We now describe two approaches to approximate the
posterior to enable optimization of the TDIG metric.

Fixed Correlations: The first approach to computing
the approximate posterior threat covariance matrix pg+1 is
to fix the correlations between vertices. The proportional
relationship between correlation and variance is used as
15¢+1 = Q9,Q, where @ is the weighted update of variance
given sensor cover incidence and current variance and (2,
is the current iteration threat correlation matrix. The current
iteration correlation matrix can be found almost directly from
the trained GPR output. We compute the correlation matrix
Qy by directly dividing the covariance matrix by the signal
variance coefficient JJ%. We compute @ = diag(q), where g
is a reduction factor for each point in the workspace, as:

q = (Pifi,i] " + 0 vp o) (5)

We note that a fixed correlation strategy is non-admissible
due to the potential to overestimate the reduction given corre-
lations. If the average posterior correlation between observed
vertices decreases, we have overestimated the TDIG metric.

Independence Assumption: Alternatively, we may ig-
nore the correlation and assume independence. In contrast,
this is an admissible approach as we do not overestimate the
posterior covariance matrix. We utilize this approach herein
as it is directly comparable to the cluster analysis approach.
We can therefore take P[Jrl = (. This approximation can
then be used to find a sensor network configuration C'; that
maximizes the TDIG along 7 and subject to the constraints.

2) Cluster Analysis for Sensor Configuration: The TDIG
objective function is non-convex nor submodular, leading to a
quick locally optimal solution or a computationally expensive
near global optimal solution. The training surface is non-
differentiable due to the presence of corners induced by



Fig. 3.
Exploration only, and Exploration only with CLAN (Left to Right).

the discrete workspace. Herein, we describe a method based
on adapting to different clustering techniques to solve these
computational difficulties.

Cluster analysis is an unsupervised learning procedure
which is used in many disciplines for data grouping and class
discovery without the need for data labels. We utilize clus-
tering to provide multiple groupings of workspace vertices
that the sensor network can be assigned to observe. This
cluster analysis for sensor configuration (CLAN) strategy
is outlined in Fig. 4. CLAN utilizes an adaptive switch-
ing between partition-based and density-based clustering,
which qualitatively correspond to exploratory and exploita-
tive sensor configuration strategies, respectively. We make
the determination based on the mean variance of the region
of interest P[i,i](™) and that of the entire environment
Py[i,d]. If Py[i,i]™) > Py[i,i] then we perform exploratory
clustering, else exploitative clustering. When the vertices
along the path are not as variable as the environment, the
inequality condition indicates we are near an optimal solution
and therefore should observe only high variance groupings
and reject the low variance vertices.

Exploratory Clustering: Exploratory clustering is con-
cerned with spatial coverage rather than grouping spatially
dense high variance regions. Such clustering can be ac-
complished using partition based algorithms such as K-
Means [22]. We utilize weighted K-Means++, which uses
the variances of each vertex as weights and an initialization
strategy as described in [23]. We utilize P;[i,4](™) as the
weighting, set the number of clusters N. = Ny, and utilize
the vertices corresponding to 7 as the data points.

Exploitative Clustering: In contrast, exploitative clus-
tering finds clusters of high density, or tight groupings of
high variance vertices. We utilize Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
[24], which finds dense groupings and rejects outliers. HDB-
SCAN determines the relative density of data points using a
notion of core density. However, we override this by comput-
ing a transformed distance matrix 7 := wwT© D, where we
compute the element-wise product of w := (Py[i,i](™) 2
and the region of interest distance matrix D. Therefore, high
variance vertices have a spatially attractive force and low
variance vertices have a spatially repellent force.

9
S

Initial (Top Row) and 10t" Tteration (Bottom Row) field estimates and estimated optimal paths for CSCP, CLAN, CSCP-Alts, CLAN-Alts,

Adaptive Cluster Analysis for Sensor Configuration

1: if Pyi, i)™ > Py[i, 1] then
2: Obtain s;, from Weighted K-Means++ with N, = Ng, data points corre-
sponding to T, and data weights Py |7, i]('r)
. else
Find region of interest transform weights w = (P[4, i](™)
Find the transformed distance matrix T~ = wwT ® D

3
4
5
6: Obtain ¢, 7p from HDBSCAN(T)
7.
8

1
2

. = min{ Ny, |s|} clusters ‘rgl), . TI(;T from sort(s)

: Obtain sy, as per equation (6)
9: end if
10: for k € N, do
11: Find each sensor position per equation (6)
12: Find each cluster radius ox = max{o™", min{0™**, dmax, } }
13: if (v A7) = 0 then
14: Translate sy, to nearest neighbor
15: end if
16: end for

Fig. 4. Pseudocode for sensor configuration with cluster analysis.

We then perform HDBSCAN with a minimum cluster size
of 2 and extract clusters pertaining to leafs on the condensed
cluster tree. HDBSCAN then returns the stability of each
cluster ¢ along with the class probability for each vertex ).

If we obtain at least one stable cluster from HDBSCAN,
we proceed to obtain the associated points corresponding to
each cluster 71, ..., 7, where the number of clusters is de-
fined as N, = min{N,, |s|} and we take the largest clusters
from the sorted . We provide 7 and N, = min{N, |7|}
as the input parameters, and assign @) = 1. If all points are
classified as noise, we treat it as a single cluster.

After obtaining the clusters by exploitative clustering, we
can find the sensor position as the weighted average of points
in each cluster. For &k € N, we find s;, as:

Sk = ZL‘:H‘ ¢kjp7'kj / le"—:ﬁ' ’l’bkf ©

HDBSCAN does not need to configure all Ny sensors if
N, < N, thereby reducing the number of sensor configura-
tions required each iteration.

For both exploratory and exploitative clustering, the radius
is or, = max{o™" min{ 0™, dinax, } },» Where dmay, is the
maximum distance found between any point in the cluster
and s;. We shift the k*" sensor position to the closest data
point if (vy AT)=0.



An additional benefit of clustering is the ability to use
it as a dimensionality reduction technique for the direct
optimization of the TDIG metric. By fixing the cluster
centers, we may optionally polish, the solution by optimizing
only the radius parameter for each sensor. Fig. 5 shows
the initial and 10" iterations for ‘polished’ variations of
CLAN for each region of interest (path, alternates, entire
environment).

Fig. 5. Initial (Top Row) and 10*" Iteration (Bottom Row) field estimates
and estimated optimal paths for polished variants of CLAN, CLAN-Alts,
and Exploration only with CLAN (Left to Right).

E. Algorithm Termination

After the statistical model of the environment has been
created as detailed in III-B, Dijkstra’s algorithm is used to
compute the new candidate path plan 7rj. The algorithm
terminates if this path satisfies the termination threshold as
Vary(7}) < €. We note that small values of ¢ indicate a high
desired path cost confidence and vice versa.

IV. RESULTS AND DISCUSSION

In this section, we assess the performance of the aforemen-
tioned method on both the example field we presented and
a numerical study with randomly generated environments.

A. Performance Analysis on Example Field

Each method was run for 25 iterations and the path
variance was recorded as shown in Fig. 6. A few key
observations can be made from this single example. The
CSCP, CLAN, and CLAN with polishing all perform the best
over the 25 iterations. CSCP took an average of 181 seconds,
but CLAN method only took 67 seconds and with polishing
121 seconds. This shows that the CLAN approach can have
comparable convergence to low path variance in significantly
less time. The task-driven methods converge to nearly 0.01
whereas exploration is nearly 10 times larger. This shows
the superiority of task-driven sensor configuration. Finally,
the CLAN approach with and without polishing struggles to
converge quickly when performing exploration.

B. Performance Analysis on Randomly Generated Fields

We performed a numerical study in which we ran 100 trials
on environment areas varying from 9km?, 25km?, 49km?,
workspace resolutions of 121, 441, 961, 1681, and 2601
grid points, and number of sensors varying from 1, 3, 5,
7, and 9 sensors. The sensors were constrained between

—— CscpP
— — CLAN

—— CSCP-Alts

— — CLAN-Alts

----- CLAN-Alts-P
Explore
Exp-CLAN
Exp-CLAN-P

Path Variance

Iteration

Fig. 6. Iterations vs. Path Variance for the studied methods
Iterations Observations Field % Time [sec]
CSCP 8.56 47.84 65.22 164.97
CLAN 11.17 53.81 60.50 71.45
CLAN-P 15.80 46.18 56.50 140.41
CSCP-Alts 9.45 51.11 70.86 201.36
CLAN-Alts 16.99 73.56 62.56 85.01
CLAN-Alts-P 12.40 53.93 67.31 168.17
Exp 14.16 73.44 98.45 501.72
Exp-CLAN 36.67 195.39 98.73 461.81
Exp-CLAN-P 32.86 173.41 99.01 799.13

TABLE II - Average Results of the Numerical Study

heights of 0.1km and 1km, with FoV radius was equal
to half the height. We used a sensor noise modeled as
of = 3log(1+ exp™@) — 0.1505, which is monotonically
increasing for g > 0. Table II shows the average results of
the numerical study excluding Ny = 1, and Fig. 7 shows N,
versus the average iterations and time for each method.

1) Task-Driven vs. Exploration Results: The results in-
dicate optimizing sensor configuration which explores the
entire environment proves to be more expensive for all met-
rics. This shows that coupling sensor configuration and path-
planning is both physically and computationally beneficial by
orders of magnitude in certain cases.

2) Direct Optimization vs. Adaptive CLAN: Assessing the
performance between direct optimization with CSCP and
using the adaptive CLAN approach, we notice that the CLAN
strategy saves a significant amount of computation time. By
polishing the result, we see that CLAN-P has the fewest
number of required sensor observations and required field
coverage of any method. The drawback that can be visualized
in Fig. 7 and Table II is that the CLAN approach does not
perform as well when doing exploration rather than task-
driven sensor configuration.

V. CONCLUSIONS

In this paper we described a coupled sensor configuration
and path-planning algorithm which updates its environment
estimate using Gaussian Process Regression after iteratively
obtaining measurements from a sensor network. We present
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Fig. 7.

a fast approximation via an adaptive cluster analysis scheme
which leverages exploratory and exploitative clustering de-
pending on the environment variance and path cost variance.
We show that the task-driven approaches outperform envi-
ronment exploration and that the adaptive cluster analysis
can achieve performance close to direct optimization but in
significantly less time. Finally, we show that the adaptive
cluster analysis can be used as a dimensionality reduction
scheme by finding sensor FoV centers and then optimizing
just the sensor radial coverage.
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