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1 Introduction

As language complexity, signal entropy, and information transfer in communica-
tive signals have become a topic of intense interest to linguistics in the past
decade, and came to be viewed as a critical piece of the puzzle in the under-
standing of human language faculty, it is important to ensure that complexity
metrics developed by language science are sufficiently robust as to be applicable
to all types of human linguistic communication, including sign languages. Sign
languages are communication systems that employ visual modality, while being
equivalent to spoken language in communicative efficacy and flexibility (Bellugi
and Fischer 1972; Quer, Pfau and Herrmann 2021). A sign language signal
simultaneously consists of specific handshapes, motion of the hands, arms, and
non-manual components (positioning of eye brows and mouth shape, as well
as movement of the head and body). Minimal changes in a sign’s movement,
location, or handshape can lead to changes in meaning; yet, sign languages differ
in the inventory of allowable handshapes, preferred places of articulation, and in
specific correlations between physical parameters of motion (range, speed, accel-
eration) and the linguistic features that those are linked to. The core difference
between signing and speech is the communication modality, as sign languages
rely on visual-kinematic signal for information transfer. Since sign languages
simultaneously use multiple articulators (i.e. both hands; non-manual markers
such as eyebrow, eye, cheek, and mouth postures; as well as head and body
position) to convey linguistically and emotionally rich messages, they are best
construed as multi-channel systems.

Developing complexity metrics that can be applied to human languages across
modalities is a difficult endeavor, as the term ‘complexity’ is used with different
meanings across sub-fields of linguistics. As the main goal of operationalizing a
variable is to allow comparative analysis to be rooted in empirical data (corpora
or experiments), it means that metrics for operationalizing complexity need
to be: 1) modality-independent: i.e allowing for evaluation of either spoken or
signed communication; 2) quantifiable in a way that can capture differences
across languages with different structures, and across modalities; 3) objective, or
theory- and measurement-independent: the results would be consistent across
methods of data collection, and independent of theoretical assumptions about
the underlying structure of data units (examples of objective metrics: frequency
of item occurrence in corpora; temporal duration of the linguistic component).

In this review, we summarize approaches to quantification of the communica-
tive signal in sign languages using linguistic (sign-based) and physical (signal-
based) metrics. Both of these types of metrics are successfully used to characterize
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both speech and written language (Torre et al. 2019; Blumenthal-Dramé and
Malaia 2019). We consider how modality- and dimensionality-related differences
of sign language affect the applicability of existing complexity metrics to sign
languages, and discuss development of new ones, with the goal of developing
universally applicable complexity metrics for analysis across the full spectrum of
human communication. First, we review the ways in which linguistic complexity
has been conceptualized in sign language research, building on the structure
of a sign language signal (section 2). Then, we consider a variety of proposed
signal-based complexity metrics for sign language, and apply dimensional analy-
sis to assess what component of the multidimensional signing signal these the
metrics capture (section 3). We conclude that robust complexity metrics for
visual communication take into account the linguistic structure of sign languages,
while relying on high-fidelity spatiotemporal data.

2 Linguistic metrics of complexity in sign
languages

Discussion about linguistic metrics of complexity for sign languages has to start
with the description of the structure, or components of sign language. In this
section, we review the building blocks of sign language, and then discuss linguistic
metrics developed to measure complexity in the phonology and lexicon in sign
languages.

2.1 The building blocks of sign language signals

Across a variety of sign language studies, the parameters of handshape, its location,
and movement are universally employed as building blocks of sign language
phonology, and allow for the creation of minimal pairs based on the change in
one of these parameters (Quer, Pfau and Herrmann 2021). The skeleton of a sign,
typically consisting of location-movement-location (L-M-L) is sequential; the
movement, being at the core of a sign-syllable, constitutes the most information-
dense portion of the sign, similar to the nucleus in spoken language syllables
(Liddell 1984; Malaia and Wilbur 2020).

The gross component of articulator movement in a sign-syllable (primary,
or path movement) typically consists of the change of location for the hand in
signing space using elbow and shoulder joints. Movement in a number of signs also
incorporates handshape change (secondary, or local movement), which consists



of finger/wrist motion. Some signs simultaneously employ both primary and
secondary movement. Additionally, between-sign motion (transitional motion) is
necessary to move the hands from the final location of one sign to the starting
location of another. The onset of the sign corresponds to the point when the
sign-initial handshape of the dominant hand is formed, and the major movement
begins; sign offset corresponds to the moment when the hand(s) begin movement
away from sign-final location. The order of signs within a signed sentence depends
on language-specific syntax (Quer, Pfau and Herrmann 2021), and message-
specific information structure (Krebs et al. 2020). Additional information is often
conveyed by non-manual components (facial expressions, position of head and
body, etc.), which can contribute to semantic, syntactic, prosodic, or information-
structural components of the message in sign language.

2.2 Complexity metrics in sign language phonology

Within the field of sign language phonology, complexity currently refers to two
distinct concepts: that of articulatory complexity (Battison 1978; Eccarius and
Brentari 2007), or that of phonological complexity (Brentari 2019). Articulatory
complexity is provisionally defined as the assumed effort involved in production
of a phonological form (primarily handshape), which suggests a potential overlap
with quantitative metrics from the field of kinesiology.

In one of the earliest works on sign phonology dealing with complexity, Bat-
tison (1978) suggested a hierarchy of articulatory complexity for individual signs
based on the amount of (presumed) effort for their articulation and perception.
One-handed signs were assumed to be the simplest. Among two-handed signs,
those with two active hands performing the same movement were the easiest;
the movement could be either synchronized or alternating. The next level of
articulatory complexity encompassed two-handed signs with one active and one
passive hand, both with the same handshape; finally, two-handed signs with an
active and a passive hand differing in handshapes were assumed to be the most
complex in terms of articulation. It is important to note that Battison relied on
the cheremic model of phonology (Stokoe 1980), in which the entire handshape
was considered the minimal contrastive unit, while later models of sign language
phonology singled out individual features of the handshape (cf. Brentari 1998).

Battison’s model allowed for specification of universal articulatory constraints,
which hold across known sign languages. For example, the symmetry condition
specifies that if both hands move, then they have to move symmetrically or
identically (i.e. in the same locations and with the same handshape and form of
movement). The dominance condition specifies that if the two hands have different
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handshapes, then one is passive (with a restricted list of possible handshapes), and
the other (dominant) articulates the movement. While the constraints appear to
be empirically correct, the basis for these is still unknown. Assumed driving forces
for linguistic universals tend to be the ease of production, perception, and/or
redundancy of information encoding; however, lack of quantifiable metrics for
articulatory complexity makes it difficult to empirically test falsifiable hypotheses
in this domain.

2.3 Complexity metrics in sign language lexicon

Historically, metrics designed to describe the density of information in speech
signals have been assessed based on written representations. Attempts to quanti-
tatively characterize relationships between linguistic levels in spoken languages
(e.g. phoneme vs. lexicon, or word vs. text) resulted in formulation of the earli-
est linguistic laws that characterized language as a complex system: Zipf’s law
(Zipf 1932), Brevity law (or Zipf’s rank-correlation law (Zipf 1949, 1935)), and
Menzerath-Altmann law (Altmann 1980; Altmann and Schwibbe 1989). Zipf’s
law, one of the more widely known linguistic observations, describes the frequency
of word occurrence in relation to the word’s frequency rank as: f(r) ~r~“. In
other words, the frequency of the word’s occurrence in the corpora falls off
logarithmically with the decrease in the word’s rank order. An extension of
Zipt’s law, the so-called brevity law (or Zipf’s law of abbreviation) summarizes
the observation that the more frequently used words tend to be shorter (Zipf
1935).The driving force behind Zipf’s laws is best understood in terms of economy
in the production of language: for high-frequency lexical items to be shorter than
low-frequency items minimizes the time for information transfer during language
production (Bybee et al. 2007; Bybee 2003). In sign language research, Zipf’s
law has been confirmed on Swedish Sign Language (SSL) corpus. Borstell et
al. (2016) noted that Swedish Sign Language conforms to Zipf’s law in demon-
strating log-distribution of sign frequencies (i.e. sign frequency in the corpus
falling off logarithmically with sign rank), with the most frequent lexical items
being function-type signs (e.g. pointing). Brevity law is upheld as well: the most
frequent items in SSL corpus are shorter in duration (Borstell, Horberg and
Ostling 2016).

Another modality-independent linguistic law - Menzerath-Altmann law -
operates at the interfaces of sub-systems of language. Menzerath-Altmann law
relates the size of a language construct to the size of its constituents: the longer
the construct (such as a word), the shorter the units of which it is constructed
(e.g. phonemes) tend to be (Torre et al. 2019). Menzerath-Altmann law has



been tested in physical units for Czech Sign Language (Andres, Langer and
Matlach 2020). Duration of individual signs (in seconds), clauses (in signs), and
sentences (in clauses) in Czech Sign Language were shown to be reciprocally
related (Andres, Langer and Matlach 2020).

Consistently glossed corpora can be used for analysis of lexical and morpho-
logical complexity in sign languages. Such corpora exist for a number of sign
languages, including American Sign Language (Morford and MacFarlane 2003);
New Zeland Sign Language (McKee and Kennedy 2006); Australian Sign Lan-
guage (Johnston 2012); British Sign Language (Fenlon et al. 2014), and Swedish
Sign Language (Bérstell, Horberg and Ostling 2016). As objective metrics at
the level of the lexicon, such as word duration and frequency, are modality-
independent, complexity analysis at this level is consistent between speech and
sign languages.

3 Signal-based complexity in sign language

Having reviewed linguistic measures of complexity, we now turn to the question
of physical signal complexity in communication. It is important to note that
physical and linguistic complexity, while connected, are not equivalent (in either
sign languages or speech). Analysis of a physical signal necessarily proceeds at
all levels of linguistic structure simultaneously; for example, a spectrogram of
a speech utterance contains information at the phonetic, lexical, syntactic, and
prosodic levels simultaneously. The same is true of sign languages; the physical
sign language signal contains information from all levels of linguistic structure.
However, due to the fact that sign language articulation unfolds both in time
and in space, the question of fidelity, or accuracy of representing the raw sign
language signal, becomes important for analysis of the applicability of complexity
metrics to sign language data.

3.1 Entropy in sign language signal

The field of complex systems uses entropy analysis to describe the state of a
system that involves a variety of spatial and temporal components, or to quantify
the difference between states. Mathematically, entropy describes the potential
information transfer by the signal (Shannon 1948). Thus, entropy measures of a
signal describe that signal’s predictability over time. The continuous signal of
human motion can be viewed as a complex system, since it is based on interaction
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of neural and motor systems at a range of temporal and spatial scales (Buzsdki
and Mizuseki 2014).

The techniques for estimating the entropy of a signal use mathematical
representations of the signal as time series; thus, multi-scale recordings of a
physical signal (such as motion capture data) lend themselves well to this
analysis. For example, time-series motion capture data (i.e. displacement in time)
for multiple articulators in ASL have indicated that information throughput
is highest on the dominant hand, and independently significant for both the
non-dominant hand and the head, lending further support to the multi-channel
model of sign language communication (Malaia and Wilbur 2019). In contrast
to linear recordings, multidimensional recordings of biological systems (such as
video recordings of human motion) present a computational challenge for the
analyses of complexity. Such analyses are limited by the fidelity of the recorded
signal, that is, the accuracy and dimensionality with which the original signal
can be recorded, as well as potential dimensionality reduction and fidelity loss
during further analysis. Each step in the measurement and processing of the
original signal acts as a filtering function, potentially reducing the fidelity of
resulting data. Therefore, results of language signal complexity analysis depend
on the fidelity of both the measurement tools and the analysis methods.

Spoken language is a 1-dimensional time series signal, which is a function
of temporal frequency [f:], and the results of any recording and analysis are a
reduced-fidelity signal [S1(f¢)], which results from the original signal [So(f:)],
after it has been filtered through transfer functions associated with the electron-
ics/sampling [Te(f+)], and the processing method [T, (f)]. All T(f) < 1, since
T(ft) = 1 would be a perfect unfiltered signal at f;. Therefore, we then have
that So(fs) - To(fo) - Ty(fe) = S1(f2).

In a continuous (1D) auditory signal, information density is contained entirely
within the temporal component, and therefore requires high temporal sampling
and analysis frequencies, as raw acoustic recordings may contain 20k or more
samples per second. The signal amplitude (i.e. volume) at a single point in time
contains no information.

Similar considerations of information density are relevant for recording and
processing signed languages. Signed languages, as a 3-dimensional spatial signal
also varying in time, So(fz, fy, f=, ft), are filtered in both spatial frequencies,
fz, fy, f2, and temporal frequencies, f; (thus, So-Te = S1, where S1(fz, fy, [z, ft)
is the recorded signal, and St - T}, = Sa, where Sa(fz, fy, f2, ft) is the signal after
data processing).

Sign languages use comparatively low temporal frequencies as compared to
spoken languages. However, When compared to speech, signing also transfers
information in additional spatial dimensions (3D, as opposed to 2D). For infor-



mation transfer and complexity analysis, the information content of the spatial
dimension of the sign language must be included.

2D video recordings are, in essence, a spatial frequency filter for sign language
production, such that T,(f.) = 0, and T¢(fz, fy) are limited by the camera
distance and resolution (camera, ideally, being placed in a position such that the
camera bandpass transfers all relevant articulators within the signing space), and
Te(ft) is limited by the frame rate of the recording. Thus, S yideo is a function
of two spatial dimensions and time (fz, fy, ft)-

The characterization of language complexity based on the physical signal
begins with parametrization of typical and potential physical parameters of
the communicative signal. The physical space in which sign production occurs
(termed signing space) is relatively small, falling within an 80 cm vertical and
60 cm horizontal space directly in front of the signer (Bosworth, Wright and
Dobkins 2019). In terms of physical characterization, this means that specific
spatial parameters of the signer’s image (such as spatial frequencies and entropy
of the signal) might carry the most information for distinguishing sign language
features.

In the earliest attempt at developing quantifiable metrics for a sign language
signal, Bosworth et al. (2006) evaluated 100-unit sets of static images of signers
signing in ASL, natural scene images, and face images, comparing mean amplitude
and entropy of the amplitude across the image set as a function of spatial
frequency (the unit employed to express spatial frequency is the number of
cycles that fall within one degree of visual angle, the cycle being a resolveable
high-contrast feature) and orientation. The differences in image statistics for
ASL signs included more amplitude for vertical, than for horizontal, contours
(indicating vertically-oriented arm articulators as primary sources of information),
and entropy analyses for spatial frequency, which showed a peak in entropy at
approximately 0.75 cycles/cm (assuming a viewing distance of 5 feet, this would
convert to 1.9 cycles/degree). The result can be interpreted to mean that spatial
frequencies around this peak contain the greatest amount of information (and
would, for example, result in minimal cognitive load) for distinguishing an ASL
sign from such an image. This result found confirmation in a previously-published
work (Riedl and Sperling 1988), which presented native signers with spatial-
frequency-filtered sign images (filtered at peaks of 0.05, 0.20, 0.35, and 0.75
cycles/cm to determine which spatial frequencies were used for sign recognition),
and determined that the signs filtered at 0.75 cyc/cm spatial frequency elicited
maximal behavioral accuracy for sign discrimination. The valuable contribution
of this work consisted in a quantified description of the changes in the static
parameters of a visual signal; however, as sign language signal is highly reliant



Complexity in sign languages =— 9

on motion, higher-dimensional analyses for continuous signal recording, such as
video, were necessary.

The proposed complexity metrics for analysis of multi-dimensional sign
language signal vary in the fidelity of spatiotemporal signal quantification. For
example, Brookshire et al. proposed an Instantaneous Visual Change (IVC)
metric (Brookshire et al. 2017), which attempts to quantify sign language video
data by measuring the relative pixel value change from frame to frame. The
proposed analysis equation in (Brookshire et al. 2017), is as follows (with the
addition of notation here for the two spatial dimensions (z, y), which are conflated
in the original source): IVC(t) = >_,  [Si(z,y.t) — Si(z,y,t — 1)]2, where =
and y are spatial dimensions in the 2D video, and ¢ is time.

This way of calculating the metric acts as a spatial frequency filter. If
instead of a function in linear space and time, S} (z,y,t), we instead examine
it as a function of spatial and temporal frequencies, S1(fz, fy, ft), then the two
spatial dimensions are reduced to a single scalar value versus time: S1(fz, fy, ft)-
Trve(f, fy, ft) = IVC(f:). Notably, the properties of such a filter can change
frame by frame, depending on the colors and contrast within the scene, rather
than the complexity of spatial and temporal components of sign language signal,
where TTy ¢ acts as a low-pass spatial frequency filter. For instance, this method
will be sensitive to large area changes in the image. The motion of a signer’s arm
will affect a large number of pixels, and will therefore result in a large IVC value,
whereas complex finger motion will affect a small number of pixels and result
in a low IVC value. Thus, in IVC/(f;), all spatial information is both low-pass
filtered, and then also reduced to a single scalar value versus time. The resulting
metric might contain a small portion of the information inherent in the sign
language signal; however, given the spatial nature of sign language, the majority
of the information contained in sign language video recording is lost. Further,
given low video frame rates, the processed signal would have a bandwidth of 30
samples per second: thus, use of IVC for sign language analysis is analogous to
using a 30Hz volume envelope of a spoken language signal for analysis of speech.

A higher-fidelity method of 2D analysis for sign language signal utilizes
optical flow (OF) tracking (Borneman, Malaia and Wilbur 2018). This method
tracks the velocity magnitude of each object (typically based on edge contrast
values) in pixels per frame, S| (vz,vy) where vz and vy are the velocity of pixels
in the x and y directions respectively. This approach preserves the dimensionality
and data rate of the input video, where in frequency space: S1(foz, fuy, ft) -
TOF(.fvamfvy: ft) = OF(fv:m fvyvft)a where fyz, fvy are the frequency profiles
of the velocities in two dimensions, z and y, respectively. Although optical flow
analysis converts each frame to a velocity profile, it does not filter the spatial
content of dimensions, as the resulting signal contains velocity per pixel versus
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time. Optical flow information may be further dimensionally reduced without
reduction in data density by parameterizing the two spatial dimension velocities
into a single dimension. For instance, 640x480 video will contain 307,200 samples
per frame, and may be parameterized such that OF(f,, fi), where f, contains
307,200 samples per frame. Language complexity analysis from this point may
be done on the full signal bandwidth, although in some cases further reduction
through velocity binning may simplify the analysis. Use of optical flow, with
spatiotemporal downsampling through binning (e.g. looking at spatial dimension
velocity profiles from 0 to 0.4 pixels per frame over 200 velocity bins, cf. Borneman,
Malaia and Wilbur 2018), yields a bandwidth of 6,000 samples per second, as
compared to 30 samples per second of IVC (Brookshire et al. 2017). From the
standpoint of a physical signal, the optical flow metric, which identifies pixel value
change from frame to frame, track both the primary motion and the secondary
(handshape change) motion in signs, which then contribute to calculation of
signal entropy; the change in color, on the other hand, is irrelevant for this metric.
However, as only a 2D projection of the 3D handshape is available in a video, the
tracking of handshape change does not have full fidelity to the original signal.

A recording modality which allows for 3D recording of sign language with a
lower loss of fidelity is frequency-modulated continuous wave (FMCW) radar.
In the case of radar recordings, radar signal processing algorithms may be
applied to extract range-Doppler (RD) maps (2D images of range versus Doppler
frequency) or micro-Doppler signature (Doppler frequency versus time). In this
case, Te(fz, fy) are conflated into Doppler velocity vector, and T, (f) is limited
by the chirp rate (transmit frequency swept per pulse). Therefore, S1 goppler is a
function of motion velocity, slant range, and time - (fy, f2, ft)-

The optical flow of the range-Doppler maps, as a function of time, can be
computed to derive representations of radial velocity and acceleration, as shown
in Figure 1. Direct computation of optical flow, however, does not take into
account the area size of the moving part. Since the power of the received radar
return is related to area, a more equivalent representation are Intensity Weighted
Velocity Diagrams (IWVD) in which the velocity corresponding to each pixel in
the RD map is weighted according to its intensity and binned. In this way, we
can ensure the information of both the velocity and the area of moving objects
in the same speed range, which correspond to OF magnitude and the intensity
in video OF diagrams, respectively, are preserved (cf. Gurbuz, Gurbuz, Malaia,
Griffin, Crawford, Rahman, Kurtoglu, et al. 2020; Gurbuz, Gurbuz, Malaia,
Griffin, Crawford, Kurtoglu, et al. 2020).

One entropy-based metric that has demonstrable consistency for evaluating
information transfer in sign language signal (from either radar or video) is fractal
complexity. To compute it, the power-spectral density for each velocity is first
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Fig. 1: Radar-based computation of optical flow and fractal complexity metrics for sign
language.

calculated using a Fourier transform of the velocity spectrum vs. time resulting
in a matrix M(f;), a function of temporal frequency [f:]. This matrix can then
be characterized by the general fractal complexity function M (f;) = %, where
a and S are the spectral density amplitude and the fractal complexity fitting
parameters, respectively, and f; is temporal frequency. Fractal complexity, [,
of the information transfer is found using a linear fit to the log-log function,
In(M)=p-In(f) + .

Fractal complexity-based evaluation of video data comparing American
Sign Language with everyday activities (Borneman, Malaia and Wilbur 2018)
demonstrated that sign language signal evidenced more complex underlying struc-
ture as compared to everyday motion. Another study, which used microdoppler
radar measurements from participants enacting daily activities, and producing
ASL signs, indicated that the average value of the complexity parameter for
ASL was 201.8, with the equivalent metric for everyday activities averaging at
186.8 (Gurbuz, Gurbuz, Malaia, Griffin, Crawford, Rahman, Aksu, et al. 2020).
Converging results between fractal complexity analysis of optical flow for ASL
and everyday motion/gesture in two different recording modalities, video and
radar, suggest that this metric is sensitive to spatiotemporal parameters of the
information-bearing signal with high dimensionality, while being robust to some
dimensionality reduction.
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3.2 Motion analysis in sign languages: intersection between
physical and language-based metrics of information
transfer

Motion is an important component of sign language signal due to its centrality to
the structure of signs. At the same time, it is a quantifiable physical measure of
the sign language signal. Thus, a number of quantitative metrics of motion in sign
languages have been developed, which connect linguistic and physical parameters
of signing in a variety of sign languages. Optical flow analysis, discussed above,
measures the entropy and the information content of the overall communication
system (i.e. sign language). However, evaluation of motion profiles for individual
linguistic units (signs, sign morphemes, sentences, etc.) allows one to make
connections between the physical signal and the specific linguistic units under
investigation. The research on this relationship is what we consider in this section.

1.5

Velocity of the dominant hand wrist, m/s

—X —Y —Z

anterior-posterior  medio-lateral  vertical

Fig. 2: Velocity of the dominant hand during signing of a short narrative, along orthogonal
axes: anterior-posterior (X), medio-lateral (YY), and vertical (Z).

Physical parameters of motion in sign languages are determined by rapid
changes of position and handshape (primary and secondary motion) within the
signing space. The time-varying movement primarily occurs in the range of 1/2
to 1 meters per second, although velocities of up to 4 m/s have been recorded as
part of natural sign language discourse (Bosworth, Wright and Dobkins 2019;
Malaia, Borneman and Wilbur 2008). One representation of dominant hand
velocity in three dimensions from a motion capture recording is given in Figure 2.
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Here, the velocity of the dominant hand throughout a short connected narrative
as recorded by a motion capture system with a 200 Hz frequency rate (i.e. 200
frames per second) is projected into the three orthogonal planes — X, Y, and
7. Note story-initial and story-final intervals of high-speed motion along the
vertical axis (Z), which are transitional motions spanning the largest distances,
from neutral (non-signing) position (hands-down, i.e. away from signing space),
towards signing space in front of the signer; and back to hands-down position
at the end of the narrative. Figure 2 shows that the articulatory signal in sign
language is highly dynamic. What are the connections, then, between the physical
parameters of motion, and the linguistic features of sign language?

The overall amplitude of motion, as well as duration of individual signs,
which are the simplest visually available parameters, have been associated with
markers of stress in a number of sign languages (Wilbur 1999). Tkachman et
al. (2019) proposed a metric termed visible amplitude, calculated from optical
flow in signing videos as the root-mean-square of a motion velocity time-series
(Tkachman et al. 2019). This attempt to quantify phonological prominence for
sign languages (i.e. equivalent to loudness in speech) did not take into account
the visual filtering parameters of the source video recording, such as the distance
to the signer in the video (but see Borneman, Malaia and Wilbur 2018 for a
scaling method that accounts for both the distance to the participant, and the
difference in individual articulator size).

Studies of articulator dynamics for sign languages, where objective motion
capture data was collected — such as ASL (Bosworth, Wright and Dobkins
2019; Malaia 2017), Croatian Sign Langage (Milkovi¢ 2011; Malaia, Wilbur and
Milkovié¢ 2013), and Austrian Sign Language (Krebs et al. 2021) demonstrate
a variety of strategies whereby sign language recruits kinematic features into
linguistic systems. Among the investigated features, articulator velocity has been
associated with adjective scale (Wilbur, Malaia and Shay 2012), sentential stress
in ASL (Malaia and Wilbur 2012), and perfective/imperfective grammatical
distinction in Croatian Sign Language (Hrvatski znakovni jezik, or HZJ; cf.
Malaia, Wilbur and Milkovié¢ 2013).

Investigations based on motion capture data in HZJ have identified a gram-
matical strategy of recruiting speed of motion into a linguistic system: HZJ
signers systematically use high deceleration of the dominant hand to produce
differential kinematic profiles for perfective, as opposed to imperfective verb signs
during regular sign production (Malaia, Borneman and Wilbur 2008; Malaia,
Wilbur and Milkovié 2013). As aspect is conflated with telicity in HZJ, and
spoken Slavic languages which it interacts with, the same physical feature that
is observed corresponds to the semantic field of telicity in ASL, is used to denote
grammatical aspect in HZJ.
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In Austrian Sign Language (Osterreichische Gebédrdensprache, or OGS),
physical parameters also differentiate between verb types. However, the list of
those parameters differ. While in HZJ, telic and atelic signs can be differentiated
based on the peak velocity of hand motion within the sign, ASL and OGS appear
to rely on acceleration/deceleration parameters for differentiation of semantic
features . This difference can be traced back to the differences in morphosyntactic
structures of these languages. In HZJ, the grammaticalized — and frequent - event
structure-marking parameter (peak velocity) had to be robust to prosodic effects,
such as phrase-final lengthening (Malaia, Wilbur and Milkovié 2013). For OGS
and ASL, on the other hand, velocity is not the only physical parameter that
distinguishes verbs with differing event structure: there are handshape and
place of articulation differences, as well as motion trajectory. In ASL, instead,
regularized variations in peak velocity are indicative of stress patterns (Wilbur
1999), meaning that while velocity is significant for the physical manifestation
of linguistic features in ASL, it also relates to the level of prosody, rather than
grammar. Since recent cognitive science research (Strickland et al. 2015) suggests
that association of particular kinematic markers with specific semantic fields
or grammatical features may have its roots in more general cognitive heuristics
(such as event segmentation), the question of the inventory of dynamic features,
and their linguistic roles across different sign languages, is a rapidly developing
domain of inquiry for sign language research.

4 Conclusion

In this work, we have considered the applicability of multiple complexity metrics
to sign languages, as dictated by the spatiotemporal parameters of a sign lan-
guage communicative signal. After considering existing studies using linguistic
(sign-based) and physical (signal-based) metrics, we show that sign language
complexity is comparable to that reported for spoken languages, which have
been characterized as complex systems that demonstrate power law behaviors.
However, development and application of complexity metrics for sign language
data requires careful consideration of the applicability of such metrics to both
the linguistic structure of sign language, and to spatiotemporal nature of sign
language communication, to preserve signal fidelity.

Further development of sensitive, yet robust metrics of complexity for sign
language analysis (both as a physical communicative signal, and in terms of
linguistic subsystems) is a critical step toward more computationally-intensive
analyses of sign language for sign recognition and translation, as well as for applied
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fields of second language teaching and assessments of language proficiency. While
lack of easily-processed symbolic representation (written form) has originally
hampered research on sign language complexity, the development of cheap high-
fidelity methods of recording, and corpora development for metric testing, are
leading to rapid progress in the area.
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