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Abstract—Data-driven sparse signal reconstruction envisions a
new dimension of sensor designing protocol via jointly learn the
measurement matrices (MM) and signal reconstruction through
deep neural networks (DNN) to outperform classical sparse
reconstruction approaches. However, in many real-world appli-
cations, these data-driven approaches cannot be applied directly
due to learning the MMs with arbitrary values thus ignoring the
physical constraints of the measurements. To this end, we propose
novel loss functions to incorporate the effects of constraining the
measurements with the values like =1 or binary values to train
the DNN for learning the constrained MMs. We also incorporate
a mutual coherence term in the loss function to find a more
optimized MMs in the constrained settings of the measurements.
Results obtained over the CIFAR-10 image database show that
the proposed deep learning architectures utilizing the constraint
terms in the loss function provide improve reconstruction over
the state-of-the-art compared techniques.

Index Terms—Constrained sensing, compressive sensing, learn-
ing measurement matrix, mutual coherence, reconstruction.

1. INTRODUCTION

To get optimized set of measurements in the sensing
pipeline to reconstruct and use a given class of signals is
very essential for many signal processing and data science
applications. Compressed sensing (CS) [1]—-[3] revolutionizes
data acquisition aka sensing protocol to remove the compu-
tational complexity of classical sensing approaches. CS uses
information from a dictionary ¥ € RV*¥ to deal with the
sparsity of the given signal x = Ws, where ||sljp = K
and K < N. Typically, it acquires a fixed a fixed set of
random linear measurements of the signal as y = ®x, with
y € RM>*1 and M <« N, while entries of the MM & can
be randomly selected from Gaussian or Bernoulli distribution.
A fixed random MM ensures recovery of sparse signals even
with a lower number of measurements on a known basis ¥
[4]-[7], but in many real applications, the sparsity is not fully
known and reconstruction is also computationally expensive.

Recently, DNN inspired approaches [8]-[10] have shown
better performance to reconstruct images from a given mea-
surements with a variety of signal/image reconstruction mod-
ules [11]-[17]. These approaches eliminate the need for a
known sparsity basis to reconstruct a signal via learning a
mapping from low dimensional measurement space to the
original signal/image space with the aid a large existing
dataset. They take the advantage of end-to-end training nature
of DNNs to model the measurement process by a densely
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connected unit to replicate the compressed measurements from
a fixed random Gaussian MM in low dimension to generate
more optimal sets of measurements to jointly learn the MMs
and the signal reconstruction for different applications. A wide
variety of works can be found in [13], [17]-[21] to generate
and learn MMs for joint learning of MMs and reconstruction
in a data-driven scheme. Considering each row of ® as a
filter, the works in [13], [18] use convolutional layers to mimic
the CS measurement acquisition process. The approaches in
[17], [19]-[21] introduce a densely connected layer to produce
the measurements to mimic the data acquisition process. The
sensing mechanism can be linear or non-linear depending
on the activation functions used to excite the neurons of
convolution or densely connected layer. To model the linear
CS measurement process y = ®x, only linear activations are
used in [17]. These DNN based approaches have a common
point of view to learn an optimal MM from data regardless
the variations in the structures. They use randomly initialized
network parameters and update them via training to learn a
MM that has the same form a random Gaussian MM. Once
MM is learned, they use it for different analysis in terms of
testing cases essentially giving a freedom to arbitrarily select
the values of MM.

However, the arbitrary range of values in the learned MM
can be a major source of hindrance if we try to configure those
in a real sensing system where the measurements in the MM
limited to a predefined sets of values due to hardware configu-
rations or the application itself. Therefore, having a constraint
MM in these applications bears the utmost importance. For
instance, single-pixel camera [22] acquires measurements in
a form of projections of image to useful binary structures.
Hence, this well-known CS application deals only with binary
values. In addition, most state-of-the-art methods exploit a
subsampling scheme to acquire samples in time or space.
Existing data-driven MM learning approaches [13], [17]-[21]
don’t provide the tools to directly learn such constrained MMs
to deal with the requirement with such applications.

In this paper, a novel loss function is introduced to learn
a constrained MM jointly with the signal reconstruction task,
where the entries in MM only takes the form of finite set
of values such as =1 or binary. Our simulation results show
that using the learned constrained MM, we can achieve good
image reconstruction i.e. higher peak signal to noise ratio
(PSNR) values compared to random MMs. We also show the
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Fig. 1: General DNN structure parameterized by ® and © for
joint MM learning and signal reconstruction

importance of the initialization of the MM layer prior training
the DNN to find that an orthogonal random initialization
provides significantly enhanced performance. Classical CS
approaches [23] tells us the mutual coherence of the sensing
system plays an integral part to determine the required number
of compressive measurements and we need a lower mutual
coherence to reconstruct the image with good quality. To
this end, we propose to include an additional loss term to
represent the mutual coherency of the sensing system. Our
results show that models learned through the proposed loss
functions provide enhanced results compared to the state-of-
the-art approaches.

The rest of the paper is organized as follows: The proposed
method is detailed in Section II. The dataset, experimental
settings, and training and testing results of the proposed
method with the compared techniques have been presented
in Section III. Finally, conclusions are drawn in Section IV.

II. PROPOSED METHOD

The general DNN-based framework to jointly learn the
MM and signal reconstruction is illustrated in Fig. 1. To this
end, several existing state-of-the-art approaches [17], [18],
[21], [24]-[26] use different DNN modules for both the MM
and reconstruction networks. The working principle of these
modules are different, but the general structure is same for
sensing system to derive optimal sets of measurement for
image reconstruction task. First, we model the measurement
acquisition process in the MM network which is parameterized
by ® to derive the encoded compressive measurements of the
original signal X; as y; = fo(X;). We employ convolutional
or densely connected layers to initialize and parmeterize the
MM network. In the second stage, we use the obtained
measurements y; to produce an estimate of the original signal
as X; = fo(yi), which is fed as the input to reconstruction
module of framework. To optimize the parameters of this
DNN-based general framework, existing approaches use the
Euclidean loss between the original and reconstructed signals
over a training dataset of 7' total number of training samples
as

T
Ln(®,0) = 2 3 | folfa(X) - Xills. (1)
=1

Prior training, all the model parameters are randomly ini-
tialized from a Gaussian distribution. The minimization of
the loss function in (1) over a training dataset produce the
learned estimate of unconstrained MM parameters ¢ and the

reconstruction network parameters ®. While in validation and
testing case, we can detach the networks components and use
the learned estimate of MM to sense the signals and use them
in the reconstruction network. In this approach, the learned
estimate of MM @ can take any arbitrary value to describe
the MM as unconstrained.

A. Learning a constrained measurement matrix

We propose to jointly optimize the parameters of MM and
reconstruction networks in the DNN via the following loss
function:

Lo(®,0) = Le(®,0)+a ) (1+®x,)°(1—840) ()
k,n

Using this loss function would give us specific values of +1
in the learned estimate of MM thus we are constraining the
MM from a arbitrary values to a specific set of values. We see
that the additional loss term in (2) can force the elements of
the MM @, ,, to be either +1 or —1 to minimize the loss term
without incurring additional loss. a term in the loss function
plays the role of a regularization parameter to control the
amount of added constraint. In addition to constraining the
MM in +1 format, we can also constraint the MM in the
uni-polar format i.e. making the entry either 0 or 1 by the
following manner:

Lo(®,0) =Lp(®,0)+a) &7 ,(1-&:,)° ()
k,n
In this work, we show our simulation results in terms of bipolar
(£1) MM form utilizing (2).

B. The mutual coherence constraint

The mutual coherence of a system with a given basis ¥
and MM ®, A = ®W plays an important role to provide
sufficient condition [27] to recover a K-sparse signal as
uw(A) < 1/(2K — 1), where the mutual coherence p(A) is
defined as aTa|
ap qj
M) =R s

The k-th column of A is defined as aj. It tells us we can
recover a better image reconstruction of the given signal for
the same measurement number with a larger K by minimizing
the mutual coherence p(A). Classical CS approaches [4]-[6]
focus to minimize the average mutual coherence under the
assumption that the averaged metric will reflect an average
signal recovery performance. Current state-of-the-art DNN
based approaches have not employed the mutual coherence
aspect in their optimization scheme to reflect a much better
image reconstruction. In this paper, we also propose the
inclusion of an additional term that incorporates the mutual
coherence term in the loss function. This would impose the
mutual coherence criterion in the joint learning of the MM
and the reconstruction.

For successful image reconstruction regrading the mutual
coherence, we need to have a prior knowledge of an sparsity
basis ¥. If we know the information about the basis that is
available to the problem at our hand, we can include p(A)

“
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in the loss function, otherwise we can only use (2) to learn
the DNNs for constraining the MM with the reconstruction
networks. Hence, we can modify the total loss function as
follows:

Lr(®,0) = Lo(®,0) + Bu(®) (5)

where 3 works as another regularization parameter controlling
mutual coherence cost. The analysis of utilized proposed loss
functions to learn constrained MMs have been detailed in
Section III.

ITI. SIMULATION RESULTS

In this section, we provide simulation results to investigate
the benefits of using the proposed loss functions in the
different DNN settings to obtain and compare the performance
of the constraint MMs under different scenarios.

A. Dataset, Evaluation metrics, and Learning Parameters

For the simulations, the publicly available image dataset,
CIFAR-10 [28] is used. This dataset has 60,000 images from
10 classes with size of 32 x 32 x 3 for each image. For training,
validation, and testing purposes, we opt to use the grayscale
versions of the images. Our testing set contains a total of
10,000 images with 1000 randomly selected images per class.
The training and validation sets contain the remaining 50000
images. In our simulation set up, we select 80% of the 50000
images randomly for training, while the rest of them are
used for validation. The image reconstruction performance is
evaluated with the peak to signal noise (PSNR) ratio metric
[29] to measure the image reconstruction quality based on the
euclidean losses in between the ground truth and predicted im-
ages. In this work, we employ two state-of-the-art approaches
ConvMMNet [30], and CSNET [31] that utilize DNN models
for joint MM learning with sparse signal reconstruction. The
MM is modelled with a linearly activated densely connected
layer in ConvMMNet. The CSNET introduces the use of
convolutional layer to model measurement acquisition process.
The computation of the backpropagation of the DNNs has
been performed by using mini-batch gradient descent routine.
The updating of the parameters has been done via ADAM
optimization for a batch size of 32 and epoch size of 500 with
a varying learning rate from 0.1 to 0.001. All simulations are
carried out using the open source deep learning framework,
Tensorflow [32] in a deep learning machine with 3 NVIDIA
Titan RTX GPUs.

B. Regularization parameters and initialization

Since, the loss function in (2) has a regularization parameter
« to control the amount of added constrained in the resultant
MM; therefore, we opt to simulate different ConvMMNet
models over the training dataset for a set of o values from 0
to 0.8 where o = 0 denotes an unconstrained MM is learned.
Increasing values of o put more weights on constraining the
MMs to either 4+1 or —1 rather than estimating a reconstructed
image closer to the ground truth one. We use two performance
metrics: average PSNR and rounding error (RE) of the MM
to evaluate the performance of each tested value of a over the
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Fig. 2: Comparison of rounding error and average PSNR with

respect to v at M = 128.

validation dataset. Since the learned MM & after training does
not contain values of exact +1; hence, we round the values
to the closet =1 value before calculating the round error as
RE = ||® — ®||p, where ® is the +1 rounded version of
®. The simulation result for different values of « for a fixed
measurement number of M = 128 in terms of RE and average
PSNR values obtained over validation dataset is illustrated in
Fig. 2. Fig. 2 shows that the highest PSNR achieved with the
highest RE at o = 0, which is expected due to the unconstraint
nature of MM happening at that point. As we increase the
value of o, RE decreases and becomes almost zero at o > 0.6
specifying the entries of learned MMs are only +1. At smaller
and larger values of «, we see that PSNR values are low and
becomes maximum at ov = 0.4. We also find that same value of
o = 0.4 at almost all measurement ratios to find the maximum
average PSNR values. Hence, we opt to use o = 0.4 as the
regularization parameter to be used over the test set.

We also observe the initialization aspect of the MM network
parameters prior training. We analyzed the output PSNR per-
formance of DNN models with different initialization settings.
Usually, classical DNNs parameters are randomly drawn from
a Gaussian distribution whereas in this approach, we opt to
initialize the MM network with an orthogonalized Gaussian
random distribution. For parameter orthogonalization, initially,
a random Gaussian MM is generated where its rows are
orthogonalized to be used as the initial parameters for the
sensing part in the reconstruction network. We show the com-
parison of average PSNR values for random and unconstrained
learned MMs with and without orthogonalization in fig. 3.
We find that the initialization with orthorgonalization provides
approximately 2 — 3 dB more average PSNR values for all
tested number of measurements. Hence, we use orthogonalized
initialization in the MM part for simulations, if otherwise
stated.

C. Constrained Measurement Matrix Learning

We mainly focus to the performance comparison of various
MMs in terms of PSNR metric. Firstly, using the initialization
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scheme and regularized parameters as described in the previ-
ous subsection, we train the DNN models-ConvMMNet and
CSNet for joint learning of MM with image reconstruction
by adopting (2). Then we compare the performance of the
tested DNN's with learned constrained and unconstrained MMs
utilizing the loss function in (1), the uniformly random +1
MMs used with the reconstruction networks of the same tech-
niques as well as the baseline CS solution, and ¢; minimization
based reconstruction. We show the comparison of compared
cases in terms of average PSNR values as a function of
measurements in fig.4. We see that the DNN based recon-
struction networks outperform ¢; minimization when they all
use random or learned MMs in a significant margin. Since
performance of ConvMMNet and CSNet is very similar in
terms of image reconstruction; therefore, we opt to use the
result of ConvMMNet in Fig. 4 and remaining simulations
results . We see for all measurement cases, an increment
of around 0.5-2dB in PSNR for learned constrained MMs
compared to the random MM for all number of measurements
using both DNN based techniques. It can also be seen that
the learned constrained MM provides approximately 1 dB in
average improved performance when it is independently used
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Fig. 5: Average PSNR values for different values of « and 3
at M =128

with the ¢; minimization. In case of learning an unconstrained
MM i.e. without applying the constraint on the MM, the DNN§s
produce a slightly better image reconstruction than learning
a constrained MM. Same performance difference is noticed
if we employ unconstrained and £1 random MMs in the
reconstruction networks. We round the values in the learned
MM layer to the nearest £1 to get the learned constrained
MMs and utilize these rounded MM in the testing stage. We
also find that the utilized regularization parameter, a = 0.4
in this case, the effect of rounding to the resultant PSNR is
observed to be insignificant, less than 0.5 dB for all tested
scenarios.

D. Learning a MM with mutual coherence constraint

In this work, we use (5) to allow DNN structures to include
a mutual coherence term to guide learning a constrained MM
along with a reconstruction network. We use the ConvMMNet
structure for training with a various values of a and (
regularization parameters, both in the range of 0 — 0.8, where
[ weights the mutual coherence term in (5). Fig. 5 shows
the obtained PSNR values for the tested («, 3) combinations
and it can be seen that the maximum PSNR is obtained for
a combination of constraint settings at « = 0.4 and § = 0.5,
where moving from this optimal setting in both directions de-
creases the PSNR output. We also show the average PSNR and
rounding error metrics in Fig. 6 as a function of regularization
parameter o with loss term of mutual coherence (5 has values
of 0 and 0.5. We see rounding error behaves similarly for
both cases where the mutual coherence term increases the
average PSNR value around 1 dB for the constrained MM
case (¢ = 0.4). We also see mutual coherence term also
helps learning an unconstrained MM learning (o = 0) with
an increment of PSNR values of around 0.8 dB. We also use
discrete cosine transform (DCT) as sparsity basis to calculate
the mutual coherence in (4) with an increment of PSNR results
no more than 0.2dB. While the mutual coherence of a learned
constrained MM at o = 0.4 and 5 = 0.5 is 0.41, the random
41 MM has a coherence of 0.73.
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term in the loss function with respect to o at M = 128

IV. CONCLUSION

In this work, new loss functions are utilized to learn
constrained MMs jointly with the reconstruction networks,
where the elements of the MM belong to a finite set of values
such as £1 or binary. Simulation results in case of £1 values
show that learned constrained MMs leads to improved signal
reconstruction compared to randomly generated constrained
MMs, when they are utilized in either DNN based or classical
sparse reconstruction approaches. In addition, inclusion of a
mutual coherence term in the loss function is shown to learn
enhanced MMs improving the reconstruction performance.
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