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Precision agriculture has become a promising paradigm to transform modern agriculture. The recent revo-
lution in big data and Internet-of-Things (IoT) provides unprecedented benefits including optimizing yield,
minimizing environmental impact, and reducing cost. However, the mass collection of farm data in IoT appli-
cations raises serious concerns about potential privacy leakage that may harm the farmers’ welfare. In this
work, we propose a novel scalable and private geo-distance evaluation system, called SPRIDE, to allow appli-
cation servers to provide geographic-based services by computing the distances among sensors and farms pri-
vately. The servers determine the distances without learning any additional information about their locations.
The key idea of SPRIDE is to perform efficient distance measurement and distance comparison on encrypted
locations over a sphere by leveraging a homomorphic cryptosystem. To serve a large user base, we further
propose SPRIDE+ with novel and practical performance enhancements based on pre-computation of cryp-
tographic elements. Through extensive experiments using real-world datasets, we show SPRIDE+ achieves
private distance evaluation on a large network of farms, attaining 3+ times runtime performance improve-
ment over existing techniques. We further show SPRIDE+ can run on resource-constrained mobile devices,
which offers a practical solution for privacy-preserving precision agriculture IoT applications.
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1 INTRODUCTION

Precision agriculture has been envisioned as a new paradigm to revolutionize modern agriculture
by collecting and processing data from farming machines and Internet-of-Things (IoT) devices
in real-time, with the objective of optimizing seeding, irrigation, fertilization, harvesting, and other
farming practices [17]. Farm fields usually have spatial variations of soils types, moisture levels,
and nutrient availability. Precision agriculture IoT applications utilize spatio-temporal information
to determine field variability, ensure optimal use of inputs, and maximize the outputs and profits
from a farm [14]. By leveraging in situ sensing, IoT infrastructure, geographical information
systems (GIS), and global positioning systems (GPS), farmers can more precisely determine
their resource allocations for best outcomes. Moreover, due to the high correlation in some of the
farm-related data over large distances (e.g., precipitation, soil type), information from multiple
farms can be fused to make more informed decisions [5, 54].

Despite its obvious advantages, data collection in precision agriculture has raised serious privacy
concerns [15]. More specifically, one of the major concerns of geospatial data collection is location
privacy [42]. The farming applications require the field data to contain detailed spatial information,
which is shared with service providers or third-party data analysts to carry out geospatial data an-
alytics. Unfortunately, we have seen a growing number of server data breach incidents in recent
years [21]. The disclosure of location data will be harmful, since the physical traces of the farms’
sensors/machines can not only expose their physical locations, but may also lead to other undesir-
able consequences, such as: exposure of proprietary data analysis algorithm, planting strategies,
or crop yield information. This is especially harmful to the farmers, because this information is
directly related to their livelihoods. Furthermore, state- and country-wide implications exist with
respect to food security [17]. Yet, we are unaware of any work that addresses privacy issues in
agriculture, which is one of the impediments for implementing precision agriculture technologies
by many farmers in their production fields.

Recently, several location privacy protection mechanisms have been developed in other fields
[28]. One popular type of protection mechanisms is based on location obfuscation techniques that
transform the true locations into an area or a perturbed location [42]. However, most existing
spatial transformation techniques are subject to advanced location inference attacks [55]. More
importantly, the perturbation of true locations may affect the utility of geographic services for agri-
culture. With the continuous improvement of GPS technology, we envision that precise locations
will become more in demand [33], which makes the obfuscation of location data an unattractive so-
lution for privacy protection. Thus, a privacy-preserving mechanism to protect location information
without sacrificing the high-precision agricultural operation is in urgent need.

Even though the location precision is important, we note that the actual location information
may not be as important as the difference between these locations, i.e., the distance [43]. More
specifically, farming apps can perform data analysis based on the geo-distances among farms and
sensors. Several studies have used distance between the farms (fields) and counties and interpola-
tion techniques to develop spatial maps for various agricultural and climate variables, including
evapotranspiration and water use efficiency [40], grain yield and yield production functions [23],
and to evaluate the impact of the distance on ET gauge performance in estimating reference evapo-
transpiration [22]. Yet, the accuracy and quality of these services depend on the information gath-
ered from many farmers. Sharing information is a major obstacle for farmers until they are assured
that their shared data do not leak any private information. In this article, rather than protecting
the location traces through obfuscation techniques, we investigate the problem of cloud-based
privacy-preserving continual distance evaluation without requiring the farms to disclose
any exact location data to the cloud server.
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Note that the distance computation can be conducted between stationary or mobile entities
such as: farms, sensors, and/or machines on the farm. There are four main challenges in the de-
sign of a privacy-preserving continual distance evaluation mechanism for precision agriculture:
C1: the distance evaluation process should not leak any additional information about any entities’
location traces to servers or third-party analysts; C2: the adversaries eavesdropping communi-
cations between the entities and server should not obtain the location data of individual entities;
C3: since the entities may move at a high speed (e.g., farm vehicles), or can be resource constrained
but have a large quantity (e.g., sensors), the distance evaluation mechanism should not only be ac-
curate but also efficient, such that the server is capable of tracking the distances among multiple
entities; C4: the computation result (i.e., the distance or Boolean proximity result) could only be ac-
cessed by authorized parties. Recently, researchers have investigated privacy-preserving distance
calculation [35, 50] and proximity protocols [20, 60], with the goal of addressing C1 and C2 for
mobile applications. However, they all focus on privacy-preserving computation of distance be-
tween two users: e.g., Alice and Bob, while the distance evaluation among a number of entities
in a continuous fashion (C3) remains an open problem. Hence, the scalability is still an ongoing
issue in this realm. Furthermore, no existing studies are designed for the situation where more
than two parties are involved. When a cloud server (who is not the private key owner but needs
to access the result) participates in the privacy-persevering computation, extra protections should
be provided to prevent the other parties from accessing the result (C4).

In this article, we present a new solution called SPRIDE, a cloud-enabled Scalable and
PRIvate continual geo-Distance Evaluation for precision agriculture IoT applications. SPRIDE uti-
lizes homomorphic cryptosystem (i.e., the Paillier cryptosystem) to protect the locations of indi-
vidual farms, sensors or other IoT entities. Note that homomorphic cryptosystem has been used
in privacy-preserving distance calculation [50, 60] for a pair of users. SPRIDE aims to provide dis-
tance evaluation for multiple farms at a cloud server in a continuous and scalable manner. SPRIDE
allows mobile entities to interact with servers without disclosing their exact locations, while the
server privately computes the distances between entities in an efficient manner. Then, the server
can provide spatio-temporal services (e.g., irrigation recommendations) based on the calculated
distances, or send the relevant distance information to the authorized farmers either for their own
record or to facilitate their localized computations. The interactions between farms and servers
are designed to be efficient with minimum overhead.

Besides agricultural IoT applications, SPRIDE has the potential to enable other privacy-
preserving applications, such as navigation apps, fitness tracking apps, and so on. Private smart
navigation is one emerging application, where a system can complement or serve as an alterna-
tive to Google Maps for traffic-aware smart navigation while protecting users’ location privacy.
SPRIDE can be used as a key component in private smart navigation, where the mobile users re-
frain from the current practice of uploading their GPS location data to the server. Instead, the
server uses SPRIDE to privately and continuously calculate the distance between mobile users,
e.g., to monitor traffic conditions on the road. Similarly, the location tracking functionalities in
fitness tracking apps [10] can also be implemented using SPRIDE to avoid the location privacy
leakage.

In summary, this article endeavors to address geospatial data privacy issues in precision agri-
culture, and it makes the following contributions:

e We design and implement a cloud-based privacy-preserving geo-distance evaluation sys-
tem, SPRIDE, for practical privacy-preserving distance tracking in precision farming IoT
applications. SPRIDE utilizes cloud-based distance measurement based on a homomorphic
cryptosystem to support large-scale distance evaluations for multiple farms.
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e We propose performance enhancements to improve the distance evaluation performance of
SPRIDE system using precomputation of cryptographic elements and optimization of ho-
momorphic operations of the Paillier cryptosystem. The enhanced SPRIDE+ attains supe-
rior distance tracking performance, which can be scaled to accommodate a large number
of farms. For the first time, we demonstrate that the Paillier cryptosystem can be optimized to
support practical large-scale computation with reasonable performance.

e We conduct comprehensive experiments to evaluate SPRIDE+’s distance computation per-
formance using both synthetic and real-world datasets, and we show the real-world applica-
bility of the SPRIDE system for distance tracking.

The rest of the article is organized as follows: Section 2 introduces our motivation, the system
model, and relevant background information. Section 3 presents the SPRIDE system design. The
system evaluation is demonstrated in Section 4. We provide discussions in Section 5. After review-
ing related work in Section 6, the article concludes with Section 7.

2 MOTIVATION, BACKGROUND, AND SYSTEM MODEL

In this section, we illustrate our motivation, system model for privacy-preserving distance evalu-
ation mechanisms, and describe the background knowledge including Homomorphic Encryption
and UTM projection for the representation of geo-locations.

2.1 Motivation

Even though agriculture, farming practices, and yield productivity are extremely private enterprise,
recent advances in satellite, remote sensing (including use of drones), [oT systems, and GIS tech-
nologies are enabling the understanding, qualification, and evaluation of various farming practices
as well as associated practices (irrigation water applications, crop type, nitrogen applications, crop
water use (evapotranspiration), pesticides use, etc.). These new technologies may lead to the leak-
age of individual farm’s productivity and income without the knowledge of farmer himself/herself.
This has been a serious concern for farming communities. Farmers have numerous critical reasons
as to why they do not wish to share these practices openly in public platforms. Some of these con-
cerns revolve around privacy concerns of their individual and private income as a result of farming.
For example, in a region or area where moratoriums for water use are in place by state government
for regulation, farmers cannot pump more than a certain amount of water allocated for their oper-
ations. Farmers would like to keep this information away from public domain, especially in cases
where regulations are involved. However, using precision agriculture technologies, it is possible
to estimate this private data/information. Farmers also do not wish to share their grain yield at the
harvest, because knowing how much grain yield a given farm obtains at the harvest, his/her gross
income can be easily calculated.

These privacy concerns have actually increased in recent years with the advent of precision
geolocation technologies when the precise location of the farmer or the farm is known. Knowing
the exact location of a farm, others can estimate these private data and information with a good
degree of accuracy that farmers do not wish to share. Besides the location of the farm itself, the
exact locations of agricultural IoT devices can also disclose information. For example, by monitor-
ing the location of a tractor or harvester, others could estimate the farmer’s regular activities, and
further infer safety- or financial-related private information. Thus, controllable data sharing that
protects the privacy of the farmer (name, address, phone number, etc.) as well as his/her location
are needed. Many farmers would be open to share data with researchers in platforms that do not
reveal their identity and other private data and information [22].
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Farming Application Server

Fig. 1. Precision agriculture loT system model.

In agricultural fields, there are numerous instrumentation (soil moisture, precipitation, air tem-
perature, relative humidity, solar radiation, soil temperature, etc.) and heterogeneous IoT systems
including large machinery (planter, harvester, cultivator, sprayer, etc.) and small mobile devices
(phones, drones, etc.) that communicate with the base station (farmer) when in operation. It is
very important that these instruments and machinery have effective and real-time communi-
cation for various decision-making throughout the growing season. For example, when irrigat-
ing, center pivot irrigation system, soil moisture sensors, and weather station need to have real-
time communication to determine the proper irrigation timing and amount. When cultivating
soil, cultivators need to communicate with tractors’ control system to follow a certain path in
the field using GIS for proper soil tillage practice. During harvesting, it is critical that the grain
wagon and the combine (harvester) have real-time and uninterrupted communication for com-
plete harvest and for creating continuous yield map of the grain yield. This motivates us to de-
sign a highly performant privacy-preserving distance evaluation system for agricultural
applications.

2.2 System and Attack Model

We consider a generic precision agricultural system consisting of app cloud server and mo-
bile/stationary users (including farms, farmers, sensors, and machines), as shown in Figure 1. Each
user generates the geographical agricultural data to be shared with the app cloud. App cloud server
performs agricultural data collection and analysis and provides geographic services to the farmers,
while the farmers receive services without disclosing their true locations (i.e., the location coor-
dinates) to the app cloud server. We consider the cloud server as semi-honest (honest but curious),
a common model adopted by others [11, 56, 57], i.e., the cloud server is curious about individual
users’ whereabouts but follows the protocols honestly. The farmers are also considered as semi-
honest, who follow the protocol but may attempt to infer other farms/devices’ locations when they
are not nearby. Also, there is no need to protect users’ location privacy against nearby users (i.e.,
when the distance value is small). We assume the origin of the users’ geospatial data is successfully
hidden by anonymized protocols such as Tor networks [45] so IP geolocation mechanism could
not determine the geolocation of hosts based on IP addresses of the packets.

The adversaries can eavesdrop on the communication between the farms and servers and try
to obtain location information of users. Note that we do not consider malicious users faking their
locations, which can be mitigated by tamper-resistant devices or unforgeable location tags [35].
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Moreover, we do not consider colluding with users who share information with each other, or the
denial of service attack [37], the defense of which is orthogonal to this work.

2.3 Homomorphic Encryption

SPRIDE utilizes Homomorphic Encryption (HE) to protect the location data. HE allows
arbitrary computations (e.g., additions, multiplications, quadratic functions) on ciphertexts while
preserving decryptability. The most powerful HE, namely, Fully Homomorphic Encryption
(FHE), supports an unlimited number of additions and multiplications, which has been utilized
to support privacy-preserving data analytics [18]. However, FHE system is too computationally
costly to be used in real-world applications [34]. Partially Homomorphic Encryption (PHE)
supports limited operations on ciphertexts, which is more efficient and also more applicable to
our scenario. One implemention of PHE, namely, the Paillier’s system [36], is a simpler and widely
used PHE that we will use in our mechanisms. Paillier system only involves one multiplication
for each homomorphic addition and one exponentiation for each homomorphic multiplication. In
the system, a user can encrypt the plaintext m € Z,, with a public key pk = (g, n) as:

¢ = Epk(m) = g"r" mod n®, (1)

where n is the product of two large primes p and ¢, and r € Z; is selected randomly and
privately by the user, and Z,, denotes the multiplicative group of invertible elements in Z,,. The
homomorphic property of Paillier system can be described as follows [36]:

Dyi(Ep(my) - Epr(m2)) = my + my,
Dy (Epk(ml)mz) =my - ms.

@)

The random number r provides additional security without affecting the decryption result.
Because of the randomness of r in every encryption, E,i(m1) - Epr(m2) and E,i(m; + my) are not
necessarily numerically equal, but their decryption results are identical. Generally, the following
equation can be used to describe the homomorphic property:

Epr(m1) - Epg(my) = Epr(my + my),
Epi(my)™ = Epg(my - my).

®)

For simplicity, we will use Equation (3) instead of Equation (2), when we introduce the algorithms
of SPRIDE.

2.4 UTM Projection

UTM (Universal Transverse Mercator) is a projected coordinate system, which is a type of plane
rectangular coordinate system. UTM serves as an alternative coordinate system to the popular ge-
ographic coordinate (i.e., Latitude and Longitude) system as used by GPS navigation systems. The
GPS coordinate system uses curved grids to accommodate the curved surface of the earth. The
geographic latitude, longitude coordinates are measured in degrees, minutes, and seconds of arc.
These geographic coordinates can be converted into plane coordinates by means of map projec-
tions, which essentially transforms the earth’s curved surface into a flat two-dimensional surface,
creating a projected UTM coordinate system. UTM coordinate system provides a referencing frame
to define the positions of objects. Since the UTM system greatly simplifies the distance calculation
between two objects on earth, SPRIDE is specially designed to work with UTM-formatted data.
With UTM, the Earth is divided into 60 UTM zones, each being a six-degree band of longitude. To
minimize the scale distortion within each UTM zone, each of the 60 UTM zones gets projected onto
a plane separately. The meridian at the center of each UTM zone is called the central meridian
(CM). Each zone is divided into horizontal grids eight degrees of latitude wide, which are labeled
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with grid letters ranging from C to X from south to north. The position of a point in the rectangular
coordinate system is defined by the distance from x and y axis, which uses a measurement unit
such as meters.

A point can be represented as (z, x, y), where z specifies the zone including the zone number and
grid letter, x denotes the easting coordinate, and y denotes the northing coordinate. The value of x
falls in the range of [166, 000, 834, 000], and the value of y falls into [0, 9, 999, 999] [19]. For instance,
the USA contiguous states span across 10 UTM zones, and y ranges in [2, 700, 000, 5, 500, 000]. To
avoid negative values, on the east-west position, the CM is assigned a value of 500,000 meters,
and points lying to the east of CM have x > 500,000, while points lying to the west of CM
have x < 500, 000. In the northern hemisphere, y specifies the distance of a point to the equator,
while in the southern hemisphere, y is equal to 10, 000, 000 minus its distance from the equator.
One can then use the Pythagorean Theorem to calculate the distance between any two points in
the UTM form [19].

3 SPRIDE DESIGN

This section illustrates the design of SPRIDE, which is a continual distance evaluation system
for precision agriculture. We first design a privacy-preserving distance measurement scheme for
SPRIDE, which allows the cloud to compute the distance between any farms or sensors accurately.
Then, we enhance the performance of SPRIDE to scale to a large user base. SPRIDE also offers a
privacy-preserving distance comparison scheme to compare the distance to a threshold to achieve
better privacy. In a nutshell, SPRIDE is supported by a cloud infrastructure with a cloud server
serving a large network of farms, which allows cross-farm data analytics.

3.1 Location Data Preprocessing

SPRIDE operates over UTM format location data. Therefore, after receiving the (latitude, longi-
tude) location data from GPS module, the local data server will first convert the location data into
UTM format using the formulas of Karney [25]. Every user converts the location data as an offline
computation before interacting with the app cloud server. The UTM data has the format of (z, x, y).
In the case that two locations (e.g., L1 : (z,x1,y1) and Ly : (z, x2, y)) reside in the same zone,' the
distance can be computed easily (i.e., di; = \/(xl —x2)? + (y1 — y2)?). In the following sections, we
also deal with the case when two objects reside in different zones.

3.2 Cloud-based Privacy-preserving Distance Measurement

SPRIDE allows the server to compute the distance between any pair of users requesting the service,
while the users only submit encrypted locations to the cloud. In case there are a large number of
farms, pairwise distance computations will incur considerable computational costs. Since distance
evaluation for users that are too far away is generally not helpful, the server divides a large ser-
vice area into several service sections. The users will disclose the service section information to
the server, and pairwise distance evaluation will be conducted inside each section. Note that the
section size should be large enough to constrain privacy leakage and also small enough to limit the
computational costs. The service sections for different applications can overlap, as one user may
request multiple services. For example, a farm can participate in both the local information sharing
network and statewide information sharing network. The service area segmentation for farming
applications is orthogonal to this work. In our evaluation, we configure a statewide service section
for ease of illustration.

IFor ease of presentation, zone is used to denote UTM zone hereafter.
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ALGORITHM 1: High-level Structure of Distance Measurement

1 Setup: Each mobile device obtains their locations in UTM format (z;, x;, y;), i € [1, N|;

2 The app cloud server receives z; = {zone_number;, is_north;}, i € [1, N], and the distance between
user Uj : (24, xi,y;) and Uj : (zj, xj, y;) will be computed;

3 if z; = zj then

4 ‘ Apply Algorithm 2 to compute the distance;

5 else

6 if zone_number; = zone_number;, is_north; # is_north; then
7 ‘ Apply Algorithm 2 to compute the distance;

8 else

9 if |zone_number; — zone_number;j| = 1 then

10 Apply Algorithm 3 to project the location;

1 Apply Algorithm 2 to compute x; - xj + y; - yj (or x; - Xj — yi - Y;);
12 Compute the distance based on Equation (4) or (5);

13 else

14 ‘ return;

15 end

16 end

17 end

To start the process, each user will send the service section information to the cloud, based on
which the cloud identifies each user’s zone, including the zone number and grid letter. SPRIDE
uses zone information to identify three different types of positional relationships (PRs) when
we use different metrics to calculate the geo-distance between users: (1) Type I PR: two locations
are within the same hemisphere in the same zone; (2) Type II PR: two locations are within different
hemispheres in the same zone; (3) Type III PR: two locations are in the neighboring zones.

Note that when the distance between two objects enlarges, error in distance calculation also
accumulates [19], as confirmed in Section 4.2. However, farming applications mostly consider to
associate data with farms that are not too distant from each other (but also not nearby). Thus,
SPRIDE practically avoids distant users, thereby ensuring the accuracy of distance measurement,
as shown in Section 4.2. The complete high level algorithm is shown in Algorithm 1, where
zone_number; denotes the zone number of user U;, and is_north; is an indicator denoting whether
Ui is in the north hemisphere. Algorithm 1 covers three cases corresponding to three different
types of PRs. The distance between two nodes with either Type I PR (see lines 4-5) or Type II PR
(see lines 7-8) can be computed using Algorithm 2, while Type III PR nodes can be measured
using a mapping algorithm (i.e., Algorithm 3) before applying Algorithm 2 (see lines 10-12).

Case I: Same Zone Same Hemisphere: Now, we present the algorithm for Type I PR, corre-
sponding to the most common case when two locations reside in the same hemisphere in the
same zone. We use Paillier cryptosystem to achieve the privacy-preserving distance measurement
between any two users. One major concern with an asymmetric cryptosystem, such as Paillier, is
its expensive computational cost. As our distance measurement mechanism may need to serve a
large number of farms, we strive to improve the mechanism’s computational efficiency.

Specifically, to compute the distance of U; and U; with Type I PR, or d;;, the cloud computes the
following squared distance value using Pythagorean Theorem:

di; = (xi = x)* + (yi —yp)* = x7 + x5 + 4 +yj = 20 = 25 4)

ACM Transactions on Sensor Networks, Vol. 17, No. 4, Article 38. Publication date: July 2021.



Scalable Privacy-preserving Geo-distance Evaluation for Precision Agriculture loT Systems 38:9

Algorithm 2 implements a secure distance measurement mechanism. In the algorithm, U; com-
putes three encryptions and one decryption, the cloud computes one encryption, and U; computes
one encryption, one decryption, and two exponentiations. Specifically, in the Preparation phase,
U; encrypts every location component. In the First Round, the cloud generates a random number
0 (used to mask the distance) and interacts with each user U; to get Enc,, (8 + distl.zj) leveraging
the homomorphic property. In the Second Round, the cloud interacts with the other user U; to de-
crypt the masked distance, remove the mask, and derive the distance. In this algorithm, all location
components exchanged between users and the cloud are encrypted, and the cloud server cannot
decrypt any of these location components. In the end, the cloud server learns the distance without
learning any location components of each user.

Note that the outer layer encryption in line 4 of Algorithm 2, which is used to prevent U;’s
eavesdropping, can be replaced by symmetric crypto systems. However, considering the simplicity
of key management, we still use the Paillier encryption. Moreover, the length of the ciphertext
Enc,, (6) may exceed n, so the server only encrypts the lowest 128 bits using pk;. Specifically, the
server splits Enc,,(6) into two components: ¢;o,, and cpigpn, Where cjo,, contains the lowest 128
bits and cpign contains the remaining bits. The server delivers cpjgn and Ency; (clow) to Uj, and
then U; decrypts Encpg; (cjow) and combines these two components.

ALGORITHM 2: Privacy-preserving Distance Measurement

1 Setup: N users have their own locations in UTM format (z;, x;,y;), i € [1, N]. If the user is in southern
hemisphere, update y; = 10, 000, 000 — y;;

2 Each user Uj is assigned a pair of private key and public key of Paillier’s cryptosystem (ski, pki). Encp
denotes the Paillier encryption;

3 Preparation: U; encrypts xi2 + yf, xi, and y; using pk;. Then U; uploads Encpki(xi2 + y?), Encpg, (xi),
and Encyy; (y:) to cloud server;

4 First Round: If cloud server initiates the process of computing the distance of user U; and U, it
generates a large random integer § and encrypts it using both pk; and pkj, i.e., Encp; (Encp;, (6)).

Cloud server sends pk;, Enc,, (x? + y7), Encpp, (xi), Encpp, (yi), and Enci, (Ency, (8)) to Uj;
5 Uj decrypts Encpk; (Encpg; (9)) to get Encpy, (6),and encrypts sz. + yjz. using pk;, and then computes
Encp, (x? + y?) -Encpg, (8) - Encpp, (xJz. + yjz.) -Encpp; (o)™ - Enc,g, (yi)=2%r =
Encpk, 0+ (x5 — xj)2 +(yi £ yj)z) = Encp, (6 + distl.zj). Uj uploads Encpki(cS + distl.zj) to cloud server;
6 Second Round: cloud server sends Enc,, (5 + distl.zj) to U; for decryption; U; decrypts § + distizj, and

sends it back to cloud server;
7 The cloud computes dist;;.

Case II: Same Zone Different Hemispheres: In case two mobile devices are located in the same
zone, but in different hemispheres, i.e., one location resides in southern hemisphere and the other
in northern hemisphere, the squared distance value is very similar to that of the previous case,
except that the vertical distance now becomes (y; + y;) (the northing coordinate y; of user U; in
the south has already been converted into 10, 000, 000 — y;), therefore, the squared distance can be
depicted as follows:

dl-zj =(x;i — %)% + (yi +y;)* = x7 + x]? +yi+ y12~ — 2x;Xj + 2y;Y);. (5)

Similarly, as the cloud obtains (x; — x;)* + (y; + y;)* from the Second Round, the distance d;; can be
computed accordingly.
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Case III: Neighboring Zones: There is one rare case when two farms are located in the neigh-
boring zones. We need to conduct distance measurement across zones, which becomes more chal-
lenging. To the best of our knowledge, we are the first to consider privacy-preserving distance mea-
surement for nodes across two UTM zones.

Our basic idea is to project one location in one zone into the other zone before computing the
distance. When the server discovers that two users requesting the service are in the neighboring
zones, the server will notify one user to perform a zone projection. The neighboring zone projec-
tion algorithm is described in Algorithm 3. In line 3, we use haversine formula [53] to calculate
the spherical distance between the zone meridian and the node. The haversine formula is written
as:

d=2-R

arcsin \/sin2 (@) + cos(¢y)cos(¢pz)sin? (%) , (6)

where (41, ¢1) is the longitude and latitude of node 1, (12, ¢») is the longitude and latitude of node
2, and R is the earth radius (R = 6,371 km).

After the zone projection, two users are located inside the same zone. Essentially, we reduce the
Case III problem into Case I and Case II problems, which can be solved accordingly. It is possible
that Us in zone S is involved in the distance calculation with another node located in zone S — 1,
S, or S + 1. Thus, Us can prepare and upload three versions of its locations, including the original
one and two projected ones, onto the server. When these two nodes are from different UTM zones,
Algorithm 3 projects node U; into U;’s zone.

ALGORITHM 3: Neighboring Zone Projection

1 User Us in location (zs, x5, Ys) in zone S projects into zone M, where S and M are the zone numbers,
and |S — M| = 1. The longitude and latitude of U are (A, ¢s), where As, ¢ are in radians;

2 Compute the longitude of the central meridian of zone M as: A; = (=183 + M * 6) degrees;

3 The spherical distance d from Uy to the central meridian of zone M with coordinates (4., ¢s) can be

computed using haversine formula in Equation (6);
4 if S > M then
5 ‘ The projected location of Uy is: (zy,, 500, 000 + d, ys);
¢ else
7 ‘ The projected location of Us is: (zp, 500, 000 — d, ys);
s end

The cloud-based distance measurement can effectively compute the distance between any pair
of users on a map. As a result, the cloud is capable of computing multiple distance measurements
from one end (e.g., U;) to multiple users. In this case, the cloud will send the encrypted location
components (i.e., encrypted x* + y%, x;, and y;) from Uj to all the other users. All the other users re-
ceiving multiple components can perform the homomorphic operations using their own locations.
Note that the cloud does not have the private keys of the ciphertexts, thus is unable to decrypt the
encrypted location components. We provide a detailed security analysis in the following section.

3.3 Security Analysis of Privacy-preserving Distance Measurement

In this section, we perform security analysis of the aforementioned privacy-preserving distance
measurement scheme. In Algorithm 2, only the cloud server learns the distance, while other
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parties would not. The only unencrypted shared information (USI) is the section information,
which is used to identify PR and user pair (U;, U;) for distance measurement. The disclosed section
information is a tradeoff for computational efficiency and privacy. Intuitively, if the section size is
large, then the exact location of a user remains well protected. As discussed previously, the section
size is an important factor influencing the privacy of SPRIDE. The investigation of a proper section
size to balance efficiency and privacy is on our agenda.

With every location component encrypted, Algorithm 2 does not disclose any location informa-
tion to anyone (including the eavesdroppers and any participating parties), except that only the
cloud server learns the distance. It is worth noting that U; learns § +d istl.z.. Yet, §, as a large random
number, can completely mask the distance value. Also, the value of § is encrypted by the public
keys of both U; and U;. The outer layer encryption (Enc,y,) prevents U; from eavesdropping, and
the inner layer encryption (Enc,y,) enables the homomorphic operations without leaking 6 to Uj.
As such, neither U; nor U; could obtain the plaintext §. Moreover, in line 5 of Algorithm 2, U; re-
ceives the encrypted location of U;, which cannot be decrypted without U;’s private key. However,
although U; owns his/her own private key, he/she only receives the § + d istl.zj. Therefore, SPRIDE
protects any user location from other users and external adversaries, even when the adversaries
have abundant background knowledge.

In summary, we demonstrate that the cloud server and external adversaries are unable to extract
sensitive location data. However, due to the nature of SPRIDE system, the distance information
is presented to the cloud server. Now, we evaluate the privacy concerns brought by the distance
disclosure. By knowing the distance between any pair of users, it will be difficult to guess the exact
location of individual users. For example, if U; and U; are separated by a distance of y, without
knowing the location of U; or Uj, then it is almost impossible to guess the exact location of the
other counterpart.

Location Triangulation: One potential security weakness in distance measurement is that multi-
ple colluding parties can do location triangulation to pinpoint a specific user’s location. However,
in SPRIDE system, only the cloud server knows the distance between any two users. Without the
knowledge of distances, no user or attackers would be able to launch location triangulation to
pinpoint a specific user.

In case the location of one end of distance measurement is known, the cloud might be able
to pinpoint the location of the other end. For example, if one end of distance measurement is a
riverbank, then by learning the distance between a user and the riverbank, a determined cloud
can pinpoint the location of this user by examining the circular area with the specific distance to
the riverbank on a map. Even if the locations of both ends are unknown, the cloud may be able to
match the measured distances to a real map to identify users’ locations. As a result, we propose a
more secure distance comparison mechanism (suitable for certain applications such as precipitation
prediction as described below) to further strengthen location privacy especially when the distance
measurement is performed against a point of interest (Pol) with a guessable location.

3.4 Cloud-based Privacy-preserving Distance Comparison

To alleviate the aforementioned potential security issue, we propose a new cloud-based privacy-
preserving distance comparison mechanism as an integral part of SPRIDE. The privacy-preserving
distance comparison compares the distance between a pair of users to a distance comparison thresh-
old. The algorithm returns whether the distance is less than, equal to, or greater than a threshold
value 7, which is determined by the app server. To avoid significant privacy leakage, 7 should not
be set as a small value. The distance comparison mechanism also builds upon Paillier homomor-
phic encryption, and we incorporate a random number § to introduce randomness for protecting
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the distance value against both the cloud and the users. While the privacy-preserving distance
comparison is not suitable for services that require exact distance values, it can support numerous
farming applications, such as building a privacy-preserving model for predicting the precipitation
within a circle centered around a farm.

The complete algorithm is shown in Algorithm 4, including Preparation step, two rounds of
communications between cloud and users. The Preparation step and First Round are the same as
that of Algorithm 2. In the Second Round, the cloud transmits an encrypted randomized distance
and threshold to U;. After that, U; computes the randomized distance value: distizj + ¢ and performs
the comparison. In this algorithm, U; is oblivious to the distance value, as the computed distance
is randomized by cloud server with §. The cloud server also gains no knowledge of the distance,
since the result the server receives is only a binary output. Compared to the distance measurement
algorithm, this algorithm only allows the cloud to learn the binary comparison results, which
effectively counteracts the location triangulation attack. However, “malicious” cloud server may
conduct multiple distance comparisons to confine the target user into a small range of possible
locations. To counteract such threats, the user can set up a policy to only allow server to perform
distance comparison once per one particular location and reject extra requests. We skip the detailed
security analysis for this algorithm, which is similar to the security analysis in Section 3.3.

To facilitate different types of location-based services, the cloud server can select the distance
comparison threshold strategically to suit special needs of services. For distance comparison of a
user and a fixed Pol, the threshold determines the range of the user w.r.t. the fixed Pol. In this case,
the threshold should be large enough to limit the privacy leakage from the comparison results. As
a result, the system sets a lower bound for the threshold, e.g., as 10 miles, which means a user can
be identified as residing within the 10-mile area without leaking his/her exact location.

It is worth noting that precise distance measurement and distance comparison support different
types of precision agriculture applications. Therefore, SPRIDE implements both systems for different
purposes.

ALGORITHM 4: Privacy-preserving Distance comparison

1 Setup: N users have their own locations in UTM format (z;, x;,y;), i € [1, N]. If the user is in southern
hemisphere, update y; = 10,000,000 — y;;

2 Each user Uj is assigned a pair of private key and public key of Paillier’s cryptosystem (ski, pki). Encpy
denotes the Paillier encryption. The distance comparison threshold value is 7;

3 Preparation: U; encrypts xl.2 + yl?, xi, and y; using pk;, and uploads Encpki(xi2 + y?), Ency, (xi) and
Encpp, (yi) to cloud server;

4 First Round: If cloud server initiates the process of comparing the distance of U; and U; with the
threshold value, cloud server generates a large random integer ¢ and encrypts it using both pk; and
pkj.ie., Encpkj(Encpki (8)) . Cloud server sends pk;, Encpki(xl? + y?), Enc,, (xi), Encpg, (yi), and
Encpkj(Encpki (6)) to Uj;

s Uj decrypts Encpy (Encp, (6)) to get Encyy, (6), and encrypts xj? + yjz. using pk;, and then computes
Encpr, (x7 + y7) - Encpp, (8) - Encpy, (sz. + yjz.) “Encp, (xi) ™ - Encpr, (yi) 2 =
Encpk, ((xi — Xj)2 + (yi — yj)2 +6) = Encpy, (distl.zj +6). Uj uploads Ency, (distizj + 0) to cloud server;

6 Second Round: Cloud server sends Enc,, (6 + distl.zj) and randomized threshold value (7% + §) to U;;

7 U; then decrypts distizj + 8, compares it with 72 + 8. Then, we have:

(cll'sl‘,~j)2 +8<(or 2)’+5 & distjj < (or >) 7, and U; submits the binary result (0 denotes <7, and
1 denotes > 7) to the cloud.
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Table 1. The Total Runtime
Performance of Algorithm 2 W.RT.
Different Key Sizes (1,024 and 2,048

Key Sizes Are Our Main Focus)

Key size (bits) | Runtime (ms)
256 1.561
512 7.547
1,024 48.613
2,048 346.079

Table 2. The Decomposition of Operation Time (ms) for
SPRIDE (Algorithm 2) with Different Key Sizes

Key Size (bits) 256 | 512 | 1,024 | 2,048
Encryption 0.903 | 4.498 | 29.169 | 208.148
Decryption 0523 | 2.738 | 18.520 | 134.934
Homomorphic | 1201 20 | 0004 | 2.878
exponentiation

Homomorphic | o 00 1 504 | 0.014 | 0.111
multiplication

Other 0.003 | 0.003 | 0.006 | 0.008
computations

3.5 Runtime Performance of Privacy-preserving Distance Evaluation

We implement all the algorithms in Java and run experiments to evaluate the runtime performance
of SPRIDE. All experiments are performed on a desktop computer with AMD R7-2700 processor
and 32 GB DDR4 RAM. We run each measurement 1,000 times, and count the average of total
runtime.

At present, 2,048-bit modulus is considered secure for a Paillier cryptosystem, while 1,024-bit
Paillier cryptosystem can be used to protect short-lived messages, i.e., the messages that expire
within several days or weeks [4]. Table 1 shows the runtime performance of both distance mea-
surement/comparison algorithms. We can see that when the key size increases to 2,048 bits, the
performance degrades dramatically. To put it into context, the computation time for computing the
distance of 1,000 pairs of users reaches 346 seconds or 6 minutes with 2,048-bit key size. We further
decompose Algorithm 2 to measure the runtime performance of each operation with different key
sizes, the result of which is shown in Table 2. It shows that encryption and decryption operations
take the majority of time. Although most of the cryptographic operations are performed locally,
the cloud server still has one encryption (Step 4 in Algorithm 2) for each request, which costs a
considerable processing delay when dealing with concurrent, large-quantity requests. To provide
a more scalable solution, we strive to optimize the runtime performance via precomputation.

3.6 SPRIDE+: Performance Enhancement of SPRIDE based on Precomputation of
Paillier Components

In this section, we propose a new system, SPRIDE+, to significantly improve the runtime perfor-
mance. The basic idea is to precompute components in Paillier cryptosystem to save computational
time [36]. Let us first scrutinize the decryption process of Paillier cryptosystem:

m = L(c* mod n?)- y mod n,
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Table 3. The Decomposition of Operation Time (ms) for
SPRIDE+ with Different Key Sizes

Key Size (bits) 256 | 512 | 1,024 | 2,048
Encryption 0.189 | 0.547 | 1.819 | 6.729
Decryption 0.245 | 1.377 | 9.041 | 66.728
Homomorphic 1110} 410 | 0.869 | 2.834
exponentiation

Homomorphic ) 0, | 6 004 | 0.013 | 0.103
multiplication

Other 0.002 | 0.003 | 0.005 | 0.007
computations

where 1 = L(g" mod n?)™" mod n, A = LCM(p — 1,q — 1), and L is an operation defined by
L(x) = XT_I, LCM is least common multiple. As component y is irrelevant to the ciphertext, we can
precompute p during the key generation. After precomputing 1, the decryption time with 1,024-bit
key in Algorithm 2 decreases from 18.52 ms (in Table 2) to 9.04 ms, as shown in Table 3.

Similarly, in Paillier’s encryption, ¢ = g™ -r" mod n?, r" can also be precomputed. Before every
encryption, the users can prepare a random number r in advance and compute r”. When our input
m is a seven-digit number, g™ requires much less computation than r", given that n has 1,024 or
2,048 bits. Thus, the precomputation of r” significantly reduces the encryption time. Table 3 shows
that the encryption process now takes 1.82 ms instead of 29.17 ms for 1,024-bit key size.

However, precomputing r” has a major caveat for end-users. Recall in Algorithm 2, U; per-
forms three encryptions (i.e., Encpg, (xl.2 + yf), Encp, (xi), Encpg, (y:)), the cloud server performs
one encryption (i.e., Encpy;(Encpy,(5))), and U; performs one encryption Encyy, (sz + yJZ) using
pki = (gi,n;). While U; owns the key-pair (sk;, pk;), and the cloud gets pk; in preparation step,
precomputing " is not a problem for them; however, to allow U; to precompute ", every U;
has to know every pk; in the system in advance, i.e., each end-user has to store and update all the
public keys from other users. This requires a complicated (public) key management system to be
in place and takes extensive computing and storage resources from end-users.

To bypass this hurdle, we propose to let U; remove r" entirely instead of precomputing them.
In Paillier cryptosystem, the following homomorphic property holds [36]: Dec(Enc(m;) - ¢™) =
my +my. Therefore, to compute m; +m3, we can multiply g™ without fully encrypting my, thereby
eliminating the need of r". As a result, during the encryptions at U;, we can remove r" completely
to save computational time without affecting the correctness of distance computation. Therefore,
in SPRIDE+, the Step 5 of Algorithm 2 can be rewritten as follows (other steps remain):

5: Uj decrypts Encpg, (Encyg, (9)) to get Encpy, (), and computes ng+yjz. mod n?,
and then compute Enc,r,(x? + y?) - Encp,(6) - (gx12’+yj mod n®) - Encp, (x;) ™% -
Encpk, (i) ™2 = Encpk, (8 + (x; — x;)* + (yi — y;)*) = Encp, (8 + distizj). U; sends the
result the cloud server.

Security Analysis of SPRIDE+: Here, we prove SPRIDE+ is secure by showing that SPRIDE+
and SPRIDE are equally secure.

THEOREM 1. SPRIDE+ is as secure as SPRIDE and/or the Paillier cryptosystem.
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Table 4. The Total Runtime
Performance of SPRIDE+

Key Size (bits) | Runtime (ms)
256 0.555
512 2.243
1,024 11.746
2,048 76.401

Proor. SPRIDE is secured by Paillier cryptosystem, the security of which is provided by the
hardness of factorizing a large integer n?. To prove SPRIDE+ is as secure as SPRIDE, we show that
attacking SPRIDE+ is as difficult as attacking Pailliar cryptosystem.

In Paillier cryptosystem, the homomorphic multiplication result of two encrypted messages is
Enc(mi)-Enc(my) = (g™ -r}' mod n®)-(¢™ -ry mod n®) = g™*™ . (rir;)" mod n?, where ri, r,
are randomly chosen to encrypt my, my, respectively. The homomorphic multiplication result is
equivalent to the result when encrypting m; + my directly, using random number r = ryry, which
we call ciphertext I. Meanwhile, if (9™ mod n?) is multiplied with Enc(m,), the result is (g™ - r}’
mod n?) - (g™ mod n®) = g™*™ . r" mod n?, which is equivalent to the case that encrypts
my + my directly using r;, and we call the result as ciphertext II. The ciphertext I and ciphertext II
are equally secure, since the security for both of them can be mapped to the security of Paillier
encryption. Therefore, we prove that multiplying g™ mod n? with an existing encrypted
component does not degrade the security of the homomorphic encryption.

Assume an attacker eavesdrops the ciphertext, Enc,, (x? + y?) - Encpx, (6) - (gxfz’+y12' mod n?) -
Encpk, (xi) ™2 - Encpyk, (y;) ™%, which is sent by U; in Step 5. Note that there are encrypted com-
ponents (e.g., Enc,g, (x? + y?)) in the multiplication. As a result, attacking the entire ciphertext
directly is as hard as attacking a Paillier encryption.

To conclude, the attacker cannot decrypt the ciphertext without breaking the Pailliar encryption.
Therefore, SPRIDE+ is secure. m]

As a result, SPRIDE+ with precomputation is both correct and secure, and we can use it to
significantly speed up the runtime of distance computation. From Table 4, we can see that the
runtime performance improves significantly from 346 ms to 76 ms (i.e., 4.5X improvement) per
distance measurement for 2,048-bit key size. With such a performance improvement, SPRIDE+ is
able to perform distance computation with 2,048-bit key with a reasonable speed.

3.7 Continual Distance Tracking

When the users are moving, distance measurement among users needs to be carried out contin-
uously to allow the cloud server to keep track of users’ moving trajectory. In cases when the
users are moving at a steady speed relative to each other, we have the opportunity to further re-
duce the distance computation costs by leveraging distance prediction. In this section, we propose
a distance prediction algorithm that aims at reducing the distance measurement frequencies by
capturing moving statistics. In a nutshell, SPRIDE enters the prediction mode based on historic dis-
tance measurements, during which a series of distance measurements are predicted without any
computations/communications, thereby conserving computational resources and communication
overhead. The complete distance prediction algorithm is presented in Algorithm 5.

The number of distance measurement samples to determine whether to enter prediction mode
is denoted as prediction range r. For instance, r continual samples are taken with a sampling rate
of 1 sample per 5 seconds, i.e., dy, dy, ..., d,. Note that, since the location is inaccessible to the
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ALGORITHM 5: Distance Prediction Algorithm

1 Set prediction range r, prediction STD threshold A, and error bound err;

2 repeat
3 Take a continuous set of distance measurements with cardinality equal to the prediction range r,

including dy, da, . .., dy;
4 Compute moving speed speed; = |dj+1 —d;|, i € [1,r — 1];
5 if std(speed;) < A then

6 repeat

7 Set r to 2r except the initial repeat round;

8 Enter prediction mode;

9 Predict a set of distance measurements with cardinality equal to the prediction range r,
including d; , ,,d} ,, . ..,d;,, where dj’. = d]f_l + mean({speed;}),j € [r + 1,2r],i € [1,r — 1],
d] =dy;

10 Perform a distance measurement ds, for distance verification;

11 until |dy, —dj | > err;

12 Exit prediction mode;

13 until;

cloud server, the moving direction/duration of the user cannot be inferred. However, the moving
speed can still be estimated using the difference of two measurements. As a result, the entry to the
prediction mode can be determined by the standard deviation of moving speed values measured
inside prediction range. Specifically, when evaluating the distance between users (or the distance
between a user and a fixed Pol), the moving (relative) speed can be calculated using the difference
between consecutive distance measurements, i.e., speed; = |d;+1 —d;|, i € [1,r —1]. If the standard
deviation std({speed;}) is less than a threshold, called prediction STD threshold A, then SPRIDE
enters the prediction mode and predicts a prediction range of distance measurements using an
estimated speed of mean({speed;}), generatingd’,, d/,, ..., d; . Immediately after the distance
prediction, we start a distance verification by comparing the final predicted distance d;, to the
real distance measurement d,,. If the error is less than an error bound err, then we continue the
distance prediction; otherwise, we exit the prediction and restart the process.

Using the distance prediction algorithm, not only does one save computation/communication
time spent on distance evaluation, but one can also allow the farming apps to sample locations less
frequently on resource-constrained sensors while preserving the app functionality. Note that three
parameters are involved in the prediction including: prediction range r, prediction STD threshold
A, and error bound err, and we evaluate the performance improvement w.r.t. these parameters in
Section 4.6.

To further improve the distance prediction performance, we incorporate a new parameter,
namely, prediction level, which determines the cardinality of the prediction set, i.e., with a higher
level, more distance predictions will be generated. The new algorithm is termed as level-deepening
distance prediction algorithm, as shown in Algorithm 6. For a user (or pair), if we continuously
enter the prediction mode, meaning the moving speed and moving direction are stable, then the
prediction level will be extended. The prediction level increase parameter is denoted as Al, which
denotes the number of new predictions in case the prediction level deepens. Therefore, if two
nodes’ positions are relatively stable to each other, the prediction level will keep increasing, pro-
ducing more distance predictions. By setting Al = 0, the algorithm returns to the original distance
prediction algorithm. The level-deepening algorithm further increases the number of distance pre-
dictions via analyzing the moving statistics, thereby reducing the computation costs even further.
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ALGORITHM 6: Level-deepening Distance Prediction Algorithm

1 Set prediction range r, prediction STD threshold A, error bound err, and prediction level increase Al

2 repeat

3 Take a continuous set of distance measurements with cardinality equal to the prediction range r,
including di, da, . . ., dy;

4 Compute moving speed speed; = |dj+1 — d;|, i € [1,r — 1];

5 Reset [ to 0;

6 if std(speed;) < A then

7 repeat

8 Set r to 2r + [ except the initial repeat round;

9 Enter prediction mode;

10 I =1 + Al except the initial repeat round;

1 Predict a set of distance measurements with cardinality equal to the prediction range r + [,
including d;+1, d;+2, e dér”;

12 Perform a distance measurement d,,,; for distance verification;

13 until |y, —d) /| > err;

14 Exit prediction mode;

15 Reset [ to 0;

16 until;

4 EVALUATION

In this section, we evaluate the distance evaluation performance of the SPRIDE+ system. Specifi-
cally, we first focus on the accuracy of distance measurement based on UTM location coordinates,
and then we evaluate the scalability of SPRIDE+ system. Note that the users denote farms, farm-
ers, sensors, machines, or other 10T entities, depending on specific IoT applications. Then, we
evaluate the application generality of the SPRIDE+ system over different regions by comparing
the accuracy over different latitude bands. Moreover, we evaluate the performance improvement
brought by the distance prediction algorithm. Finally, overhead evaluation is presented to show the
applicability of SPRIDE+ system in real-world applications. We expect the SPRIDE+ system to run
on agricultural IoT devices, which has similar computation power as commodity PC and mobile
phones. Therefore, our experiments are performed on regular PCs or mobile devices. Specifically,
all the algorithms are implemented in Java and run with Java Virtual Machine (JVM) on a desk-
top computer with AMD R7 and 32 GB memory, or Android Nexus 5 phones (only for experiments
in Section 4.7).

4.1 Datasets

Due to the lack of real-world datasets of farming applications, we produce synthetic location data
at the state of Nebraska, which is a typical agricultural producing state [46] located in the Great
Plains. As shown in Figure 2, Nebraska is a state that covers three UTM Zones, and it allows
us to synthesize data with both Type I and Type III PRs within the state. The major area of the
state is located in the UTM Zone 14, while there is also a rectangular area in Zone 13 and a tiny
area in Zone 15. In our experiments, we mainly focus on Zone 13 and 14. We randomly select
locations with latitude and longitude inside the state, based on which we created three lists with
each list containing 500 locations: List; contains 500 locations in Zone 14; List, contains another
500 locations in the same area; List; contains locations in Zone 13. Figure 2 shows all the locations
on the map.
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Fig. 3. Distance measurement errors for Type | and Type Il PR.

We also use a real-world dataset, called Geolife dataset [59], from mobile applications to evaluate
SPRIDE+, and we believe the adopted geolocation dataset should be representative for farming
apps as well. Geolife data was collected from 182 users over a period of three years, which is
sufficient for the evaluation of our continual distance tracking algorithm. It recorded a wide range
of users’ outdoor movements, represented by a series of tuples containing latitude, longitude, and
timestamp. The trajectories were updated every 1—5 seconds.

4.2 Evaluation of Distance Measurement Accuracy

In this section, we evaluate the distance measurement accuracy of SPRIDE+. The ground-truth
distance is computed using the Vicinity’s formulae [49]. We define the distance calculation error as
the difference between the measured distance and ground-truth distance, and relative error as ratio
of the difference and the ground-truth distance. We compute and represent the distance calculation
error and relative error as box plots, and we keep the sign of the distance calculation error value
to show its variance.

When computing the distance for user pairs in the same UTM zone (Type I or Type II PR),
we randomly pick one location from List; and the other location from List,;. For computing the
distance in neighboring zones (Type III PR), we pick one from List; and the other from List;. We
pick 10,000 pairs for Type I, II, and Type III, respectively, and run the distance measurement to
record the distance errors of SPRIDE+.

For the locations in the same UTM zone (Type L II PR), as Figure 3(a) shows, the distance cal-
culation error increases with a larger distance. The relative error, however, is more stable. For the
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Fig. 4. Distance measurement errors for Type Il PR.

Table 5. Confusion Matrices for Distance Comparison of Type I, [l PR

7210 km SPRIDE Result 2100 km SPRIDE Result
=T > T <7 >T
i st| 3 0 . <7 |318 0
Real Distance U 1,997 Real Distance S, . 1681

Table 6. Confusion Matrices for Distance Comparison of Type Ill PR

7210 km SPRIDE Result 2100 km SPRIDE Result
=T > T <rT >T
i sz 0 0 . <t | 40 0
Real Distance R 2.000 Real Distance N 1,960

location pairs in the same zone, Figure 3(b) shows that the relative error is between 0 and 0.40%.
To put it into context, for two points separated by 100 km, the average distance calculation error
is only around 20 meters, demonstrating the accuracy of SPRIDE+.

As for locations in neighboring UTM zones (Type III PR), we also notice distance error increases
with a larger distance. But we observe a larger variation in the distance error compared with Type
L II PR, as shown in Figure 4(a). Figure 4(b) shows that the relative error is also considerably larger
than that of Type I, I PR. This is brought by the inaccuracy of neighboring zone projection. For
example, for two locations with 100 km distance, the maximum distance error is <3 km.

4.3 Evaluation of Distance Comparison Accuracy

In this section, we evaluate the distance comparison accuracy of SPRIDE+. The real-world agricul-
tural applications require different encompassing areas of farms. We use different distance com-
parison threshold 7 to evaluate how SPRIDE+ classifies the locations. We set threshold r = 10
and 100 km, respectively. For each threshold, we randomly select 2,000 pairs of locations and use
Algorithm 4 to determine whether dist;; < 7 or not. Meanwhile, we compute the ground-truth
distance using the GPS data to validate the actual classification, the results of which are displayed
in Table 5 and 6. The results indicate very rare false classifications for all Type I, I, and IIT PRs,
and demonstrate the accuracy of SPRIDE+’s distance comparison.

4.4 Application Generality for Different Regions

The UTM projection maps points of the earth surface onto a 2-dimensional plane, which inevitably
introduces errors. Here, we run experiments to show that SPRIDE+ works on different latitudes,
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Fig. 5. Relative error over different bands.

especially the moderate-latitude, food-supplying regions, which are particularly important for agri-
culture, such as the Great Plains in the United States.

As demonstrated earlier, the UTM projection segments each zone into 8-degree latitude bands,
while each band is represented by an alphabetical letter. Particularly, Bands R(24°N-32°N), S(32°N-
40°N), T(40°N-48°N), and U(48°N-56°N) cover most of the Great Plains regions [52]. As a result, we
evaluate the accuracy of SPRIDE+ system over these bands. For each band, we repeatedly select
10,000 pairs of random points from the same UTM zone (Type I or Type I PR) and from neighboring
UTM zones (Type III PR), respectively. Figure 5 compares the average relative errors over different
bands. The results show that the locations in higher latitudes present higher errors after the UTM
projection. However, the relative errors are still acceptable for agricultural applications (i.e., less
than 0.03% for Type I and II PR, and less than 1.8% for Type III PR) even on high-latitude bands. For
two farms separated by 50 km distance, the upper bound of projection error will be approximately
15 meters (Type L, II) and 900 meters (Type III), respectively. The result illustrates the generality of
SPRIDE+ system across different regions.

4.5 Scalability Performance with Multiple Users

Distance Measurement: We implement the SPRIDE+ system with precomputation and evaluate
the performance of distance evaluation with multiple users using the Geolife dataset. Recall that
the user who initiates the measurement (U;) is responsible for three encryptions and one decryp-
tion, while the app cloud will perform one encryption (Enc,; (Ency,(8))), and the other user (U;)

will perform a decryption, a partial encryption (gxfz' +yfz') and homomorphic operations. In our exper-
iment, we assume the user and app cloud have the same hardware configurations (i.e., a desktop
computer with AMD R7 and 32 GB memory).

We randomly select k pairs of users to compute the total time consumption for different k values,
the results of which are displayed in Figure 6. With 2,048-bit key size, the distance measurement
with 1,000 pairs of users takes less than 80 seconds. For farms with fixed locations, SPRIDE+ is
efficient enough to support the distance computation or comparison services for a large number
of farms. For instance, SPRIDE+ can compute the distance of 1,000,000 pairs of users within one
single day. For each pair of users such as (moving) farming machines, SPRIDE+ takes 80 ms to
compute their distance. This indicates that SPRIDE+ can support real-time distance computation.
As for the network communication, both Algorithms 2 and 4 require two round-trips between
app cloud and users, the overhead of which is displayed in Section 4.7.

Distance Comparison: We then implement and evaluate distance comparison of SPRIDE+ in
Algorithm 4. We set the distance comparison threshold 7 as 10 km. The total computation time is
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presented in Figure 6, which resembles the result of distance measurement. Therefore, we conclude
that SPRIDE+ is a scalable distance evaluation system that can accommodate a large number of
farms.

Parallel Queuing SPRIDE+: So far, we run SPRIDE+’s distance computation sequentially, i.e.,
when a node (the cloud server or a user) is executing a task (e.g., encryption or homomorphic
operation), it occupies the computational resource exclusively. Apparently, the result serves as a
runtime upper bound, while in fact all the nodes can run certain tasks in parallel to get a more
accurate estimation of SPRIDE+’s runtime performance. For example, Enc(x? + y#) and Enc(8) can
be processed parallelly, while Enc(x? + y?) - Enc(8) should wait until the prerequisites complete.

We implement a parallel queuing simulation to simulate the parallel version of SPRIDE+ distance
computation. Here, every node has its FIFO queue to store the tasks to process, with which the tasks
are scheduled by “first come, first serve” without concurrency. All prerequisite tasks are executed in
parallel, which are supplied to queue once completed. We do not consider communication delays
in this experiment.

We use the queuing system to simulate two SPRIDE+ applications: App A, in which a user re-
quests distances between itself and all the other nodes; App B, in which multiple users request
distance computations, and each of them wants to calculate the distance with another node. For
App A, SPRIDE+ can initiate distance computations: either (1) using the key from the user who
requests the service, or (2) using the key from the other user. In case (1), the node that requests
the service will play the role of U; in every computation, and its queue will be piled with all the
final decryption tasks for computing dist? + §, making itself a bottleneck. In case (2), the node will
play the role of Uj, except one specific decryption (to get Enc,,(d)) in each computation, all the
remaining decryptions can be processed in parallel, reducing the total runtime dramatically. For
App B, the task allocation is more evenly distributed. On average, each node only serves as U; and
U; once, respectively.

We use the queuing system to simulate two cases of App A and App B, the results of which
are displayed in Figure 7. For App A, both cases (1) and (2) take about 38 seconds to compute
1,000 user pairs, which demonstrates a dramatic runtime improvement compared with the upper-
bound. For App B, Figure 7 illustrates a promising result, in which 1,000 distance computation
can be completed in about 4 seconds. The simulation results indicate that App A is able to serve
more users compared with the original SPRIDE+ system, while App B can achieve a more ef-
ficient real-time computation (i.e., 4 ms for each distance computation) for multiple moving
users.
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Table 7. Time Cost Comparison for 1,000 User Pairs

Methods Parties | Result Type | Receiver | Time (s)

PLQP (1,024 bit) [29] 2 Real/Boolean | Querier 741

PP-UTM (1,024 bit) [50] 2 Real Querier 33

PP-UTM (2,048 bit) [50] 2 Real Querier 231
SPRIDE+ (1,024 bit) 3 Real/Boolean | Server 12
SPRIDE+ (2,048 bit) 3 Real/Boolean | Server 76
SPRIDE+ (2,048 bit, App A Simulation) 3 Real/Boolean | Server 38
SPRIDE+ (2,048 bit, App B Simulation) 3 Real/Boolean | Server 4

Comparing with Other Methods: For comparison, we implement two existing privacy-
preserving distance measurement methods: PLQP [29] and PP-UTM [50], both of which measure
distance between a single pair of users using homomorphic encryption, and PP-UTM further com-
putes distance over UTM projection. As shown in Table 7, PLQP has different query levels and
returns real (distance) or Boolean (less than a threshold or not) values, while PP-UTM can only
return the distances. Furthermore, PLQP and PP-UTM only supports two parties in their protocols,
and the querier (private key owner) can access the result. However, SPRIDE+ allows the server to
take control of the computation, and it can prevent the privacy key owner (U;), as well as other par-
ties (e.g., U; and adversaries), from accessing the distance results. Table 7 also shows that SPRIDE+
achieves 62 times improvement over PLQP, and 3 times improvement over PP-UTM in time con-
sumption with the same modulus size, which highlights the scalability of SPRIDE+ system, making
it particularly suitable for agricultural applications processing geolocation data continuously from a
large number of farms.

4.6 Performance Improvement of Distance Prediction Algorithm

Next, we evaluate the performance improvement by distance prediction algorithm in terms of
saved time percentage, which is defined as the ratio of saved computation time to total compu-
tation time. Since the performance may vary for different users, we chose 200 trajectories from
200 users of GeoLife dataset, each of which has around 1,000-3,000 timestamps, to evaluate the
average performance improvement of distance prediction algorithm. The default settings of the
parameters, including Error Bound, Prediction Range, Prediction STD Threshold, Prediction Level In-
crease, are shown in Table 8. For the following experiments, we vary the value of one parameter
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parameters on computation time savings for fixed Pol distance evaluation; (d) Impact of error bound on
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Table 8. Default Parameter Settings

Error Bound 5
Prediction Range 5
Prediction STD Threshold | 10
Prediction Level Increase | 0

while retaining default values for other parameters if not mentioned. The average performance is
reported in Figure 8.

Impacts of Error Bound: In Figure 8(a), the saved time percentage increases with larger error
bound for distance evaluation between a user and a fixed Pol. The result shows that if we allow a
large distance prediction error, then we will spend less time on distance computation. For instance,
when the error bound is set as 10 meters, 10% of total computation time could be saved. Meanwhile,
the average prediction error rises with increasing error bound. As a result, the app server can pick
an error bound to strike the balance between the computation time savings and prediction errors.
For distance evaluation between users, the performance improvement trend is similar as shown
in Figure 8(d), but the saved time percentage is significantly less than that of the fixed Pol case.
The reduced time savings are caused by the elevated difficulty in predicting distance between two
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users. In fact, only when two users are moving with a steady speed on the same direction can
we enter prediction mode to predict their future distance, which accounts for less time savings.
Nevertheless, the time saving percentage can still reach beyond 5% of total computation time when
the error bound is set to 15 meters.

Impacts of Prediction Range: The relationship between saved time percentage and prediction
range is shown in Figure 8(b), which shows that time savings decline with an increasing prediction
range. This is due to the increasing difficulty in entering prediction mode. If we take more points for
prediction mode evaluation, then we will have a higher chance to encounter the moving statistic
change, which translates into a lower chance of entering prediction mode or reduced time savings.
In addition, the average prediction error, which fluctuates slightly around 2.1 meters, is unaffected
by different prediction ranges. Here, we only show the result of fixed Pol case, as the result of
multiple user case is similar.

Impacts of Prediction STD Threshold: Higher prediction STD threshold brings more time sav-
ings, as shown in Figure 8(c). The reason is obvious, as it becomes easier to enter the prediction
mode with a higher prediction STD threshold. Similar to prediction range, the prediction STD
threshold does not affect the average prediction error.

Impacts of Prediction Level Increase: Figure 9 shows that saved computational time increases
with a larger value of prediction level increase, because we make more predictions and thus conduct
less computations using level-deepening distance prediction algorithm. However, there is also a
slight increase in average prediction errors using the level-deepening algorithm. Overall, the level-
deepening distance prediction further reduces the computation costs of SPRIDE+ system.

4.7 Overhead Evaluation on Mobile Device

Since mobile devices have limited computational power, we run the SPRIDE+ system on mobile
devices to evaluate the computation costs in real devices (Android Nexus 5). Each mobile device
participating in the distance evaluation will perform Paillier encryption, decryption, and homo-
morphic operation. With SPRIDE+ and 1,024-bit key size, each distance evaluation takes U; around
10 ms for Paillier encryption and decryption, while it takes U; around 3 ms for homomorphic op-
eration, which is acceptable. The communication overhead is listed in Table 9, the total of which
is less than 15 KB. Therefore, the SPRIDE+ system introduces low overhead and can be applied in
real-world privacy-preserving agricultural applications on mobile and IoT devices.
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Table 9. Communication Overhead of SPRIDE+ (in Bytes)

U; — Cloud | Cloud — U; | U; — Cloud | Cloud — U;
1,792 5,376 5,376 1,792

5 DISCUSSION

In this section, we discuss the factors that impact the accuracy of SPRIDE system by going over
all the processing steps of SPRIDE. We also illustrate the feasibility of transferring SPRIDE system
from UTM projection to other systems.

5.1 The Impact of Location Discretization

The preparation step requires each user to convert their locations into the UTM format, which
contains the easting and northing coordinates. To satisfy the requirement of Homomorphic En-
cryption, the value of easting and northing should be discretized into integers. This discretization
step will cause minor errors. Since each point will be approximated into the closest integer lattice
on the grid, the maximum drift for a single node is approximately V0.52 + 0.5 ~ 0.71 meter. In
the worst case (when two points are drifted along the line that connects them but in opposite di-
rections), the maximum error is expected to be 2x0.71 = 1.42 meters. When the distance between
two locations is a few kilometers, this minor approximation loss is negligible.

5.2 The Impact of Homomorphic Encryption

As mentioned in Section 2, we utilize the Paillier system to implement the Homomorphic En-
cryption, which works on multiplicative groups Z,, whose elements are all integers. While the
intermediate results are encrypted, the addition and multiplication operations are preserved by
the homomorphic property. As a result, after completing all the operations, the decrypted result
should be exactly the same as the one after directly applying the Pythagorean Theorem to the plain-
text locations.

However, two exceptions exist: (1) the input is invalid, and (2) the result (6 + d istl.zj) falls outside
the range of the multiplicative group Z,. The discretization step prevents exception (1) from hap-
pening, while exception (2) can also be avoided when the key size is large enough. When using keys
in the length of 1,024 bits or above, the range of Z,, (which will be approximately 2°%* or higher)
can certainly cover all the legitimate results. To conclude, with a proper design, Homomorphic
Encryption will not affect the accuracy of the distance evaluation.

5.3 The Impact of Coordinate Systems

Measuring the distance under a certain coordinate system inevitably introduces errors, since
all of them, such as UTM projection, Earth-Centered Earth-Fixed (ECEF) coordinates (which
maps the earth surface to three-dimensional Euclidean space) or Latitude-Longitude system, are
abstracted from the real world. For example, UTM flattens a piece of earth surface into a two-
dimensional plane during the projection, which introduces some errors. The error is more signifi-
cant at a higher latitude or when two points are in different UTM zones, as illustrated in Section 4.

When using Latitude-Longitude system (haversine formula) or ECEF system to compute the
Great Circle Distance, computation errors also exist due to the simplification of the earth shape
from the actual one (oblate spheroid [51]) to the idealized one (spheroid). Furthermore, the evalua-
tion from Reference [50] shows high errors of haversine formula when the two locations are close
to each other.
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ALGORITHM 7: ECEF-based SPRIDE
1 Setup: N users have their own locations in ECEF format (x;, y;, z;), i € [1, N], where (x;,y;, z;)
represents the coordinate of user U; in 3-dimensional Euclidean space; Each user U; is assigned a pair
of private key and public key of Paillier’s cryptosystem (sk, pk;i). Enc,y denotes the Paillier

encryption;

2 Preparation: U; encrypts x? + y? + zlz, xi, Yi, and z; using pk;. Then U; uploads Enc, (xl.2 + y? + z?),
Encpp, (xi), Encpy, (yi), and Encyg, (2;) to cloud server;

3 First Round: If cloud server initiates the process of computing the distance of user U; and Uj, it
generates a large random integer 6 and encrypts it using both pk; and pkj, i.e., Encpkj(Encpki (9)).
Cloud server sends pk;, Encpg; (x? + yl? + z? +90), Encpg; (xi), Encpki(yi), Encpg; (zi) and
Encpi, (Encpg, (6)) to Uj;

a4 Uj decrypts Encpkf(Encpki (9)) to get Encpg, (6), and encrypts x]z + sz. + z}z. using pk;, and then computes
Encpk, (x7 +12 +22)-Encpy, (6)-Encpy, (sz. + sz + zjz.) “Encp, (xi) T2 -Encr, (yi) 72V -Encp, (2i) 2% =
Encpk, (8 + (xi — xj)2 +(yi — yj)2 + (z; — zj)z) = Encp, (6 + distizj). Uj uploads Enc,, (6 + distl.zj) to
cloud server;

5 Second Round: cloud server sends Enc,, (5 + distizj) to U; for decryption; U; decrypts § + distl.zj, and
sends it back to cloud server;

6 The cloud computes dist;;.

5.4 Transferring SPRIDE to Other Coordinate Systems

Transferring SPRIDE into other coordinate systems will be beneficial if the location data from
the agricultural systems cannot be easily converted into the UTM format. Here, we present Algo-
rithm 7, which implements SPRIDE on ECEF coordinate system, to transfer SPRIDE to support
other coordinate systems. The major difference is the three-dimensional representation of a loca-
tion and the removal of UTM zone and hemisphere information. However, the involvement of the
third dimension requires more encryption operations, which may affect the runtime performance
and scalability of the distance evaluation algorithms. This idea can be applied to transfer SPRIDE
into Latitude-Longitude system, such as GPS systems, and then use haversine formula to compute
the distance. The performance enhancement and comparison of different SPRIDE implementations
will be our future work.

6 RELATED WORK

In this section, we discuss prior research efforts in location privacy and privacy-preserving data
analysis in light of this research.

6.1 Location Privacy

A rich set of existing work has been developed to address the problem of location privacy in
location-based services. In this section, we discuss additional relevant work that has not been cov-
ered. Location obfuscation is a prevalent non-cryptographic technique to protect location privacy.
It can be done entirely on the user’s side by perturbing the location coordinates [2, 42]. Several
location obfuscation techniques add noise to the users’ location coordinates [2], hide the real
location among a set of dummy locations [26], or use cloaking algorithm to conceal real location
[9]. Recently, privacy-preserving proximity test has been studied. InnerCircle [20] is a proximity
protocol based on homomorphic cryptosystem. Freni et al. [16] propose to provide a coarse gran-
ularity of location data to protect location privacy, while Mascetti et al. [32] extend this work to a
centralized scenario. Different from the previous work mostly focusing on proximity testing,
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SPRIDE is a practical system that tracks geo-distances continuously on earth for precision
agriculture.

Other privacy-preserving approaches generate fake locations to hide users’ true locations by
constructing fake trips with more probable paths traveled by drivers [27]. Chen et al. [8] pre-
sented a privacy-preserving map generation using crowd-sourced location data, which lets users
upload unorganized sparse location points to avoid privacy leakage. Recently, Sedenka et al. [50]
homomorphically computed the distance using UTM projection, ECEF (Earth-Centered Earth-
Fixed) coordinates, and haversine formula, which is the most relevant work to ours. However,
they only consider a one-time distance computation for two users, while we focus on cloud-based,
continuous distance tracking for multiple users in a scalable manner. With performance enhance-
ment, our system consumes less resources. Differential privacy has also been used to protect lo-
cation release from inference attack. Using Markov model, Xiao et al. [55] proposed d-location
set-based differential privacy to account for temporal correlations to hide true locations among a
set of indistinguishable locations. However, the perturbed location leads to a degraded utility of
location-based service. Recently, Li et al. [29] proposed privacy-preserving location query services
using homomorphic encryption and CP-ABE to provide fine-grained access control. They mainly
focused on access control for location query service, whereas we strive to develop scalable distance
evaluation for location-based services in precision agriculture. Finally, we contrast our work with
anonymization. Anonymization removes identifiers of individuals in the data and publishes only
the resulting sanitized dataset. While anonymization preserves utility, it fails to provide adequate
privacy protection. Researchers have shown that anonymized traces can be easily de-anonymized
[31].

In summary, the existing work cannot provide a scalable privacy-preserving distance evaluation
when the app server and a large number of participants are involved. In particular, the distance
evaluation based on perturbed data will not be accurate enough for some applications demanding
precise locations.

6.2 Privacy-preserving Data Analytics

The big data analytics requires massive data collection that presents various privacy concerns. The
data owners, such as farmers, are reluctant to share their data due to the privacy and confidentiality
concerns. As aresult, privacy-preserving data analysis has become a popular research area. Secure
multi-party computation (SMC) has been used to protect the intermediate steps of the compu-
tation when multiple parties perform collaborative data analysis on their proprietary inputs. For
example, SMC has been used for privately developing machine learning models based on decision
trees [30], Naive Bayes classifiers [48], linear regression functions [12], k-means clustering [24],
and association rules [47]. SMC-based techniques generally impose substantial performance over-
heads, which are hard to deploy in a large-scale network.

Differential privacy [13] is a popular approach for privacy-preserving data analysis. It has been
used to provide privacy-preserving linear and logistic regression [6, 58], principle component anal-
ysis [7], support vector machines [38], and continuous data processing [39]. Abadi et al. [1] further
demonstrate a differentially privacy stochastic gradient descent (SGD) algorithm to train the
deep neural network. Differential privacy has been used in real Apple devices, since iOS 10 [3],
however, its implementation detail is obscure and may still lead to potential privacy leakage [44].
Moreover, developing models with differential privacy guarantee is difficult, because the sensitiv-
ity of models that determine the data perturbation is unknown for most data analysis and machine
learning approaches. Recently, Shokri et al. [41] propose a privacy-preserving deep learning model
that shares model parameters between a local device and a parameter server without sharing users’
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sensitive input data. However, the share of model parameter may still lead to potential information
leakage.

Unlike the previous approaches, SPRIDE focuses on providing a continual and scalable distance
evaluation system, which protects privacy of geographical data in agricultural fields. We rely on
an efficient homomorphic encryption scheme and enhance its performance to make it suitable for
real deployment in a large-scale network.

7 CONCLUSION

In this article, we designed a scalable and private continual geo-distance evaluation system,
SPRIDE, to tackle the location privacy issue for the first time in precision agriculture IoT appli-
cations. SPRIDE leverages homomorphic cryptosystem to perform distance evaluation on user-
encrypted location data in UTM format. During the distance evaluation, the geolocations are
protected against other farms, IoT app cloud, and external adversaries. We further enhanced
the performance of the distance evaluation using the precomputation technique, and proposed
SPRIDE+, which achieves at least 3x runtime performance improvement over existing techniques.
We showed through experiments with both synthetic and real-world datasets that SPRIDE+ can
provide accurate distance measurements and can process a large number of farms’ encrypted loca-
tions to offer geographic computations based on distance evaluations. SPRIDE serves as the first
step in addressing the farmers’ growing concerns in voluntarily or involuntarily contributing their
farming data to agricultural IoT applications, which will finally help popularize the information
sharing-based precision agriculture. We believe in the power of big data analytics and the develop-
ment of IoT systems in revolutionizing the agricultural productions to serve the welfare of farmers
and general public. In the future, we will continue to implement and enhance SPRIDE on other co-
ordinate systems and also integrate SPRIDE into real-world agricultural IoT applications such as
irrigation, planting planning, and yield management.
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