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ABSTRACT: Hail forecasts produced by the CAM-HAILCAST pseudo-Lagrangian hail size fore-

casting model were evaluated during the 2019, 2020, and 2021 NOAA Hazardous Weather Testbed

Spring Forecasting Experiments. As part of this evaluation, HWT SFE participants were polled

about their definition of a “good” hail forecast. Participants were presented with two different

verification methods conducted over three different spatiotemporal scales, and were then asked

to subjectively evaluate the hail forecast as well as the different verificaiton methods themselves.

Results recommended use of multiple verification methods tailored to the type of forecast expected

by the end-user interpreting and applying the forecast.

The hail forecasts evaluated during this period included an implementation of CAM-HAILCAST

in the Limited Area Model of the Unified Forecast System with the Finite Volume 3 (FV3) dy-

namical core. Evaluation of FV3-HAILCAST over both 1-h and 24-h periods found continued

improvement from 2019 to 2021. The improvement was largely a result of wide intervariability

among FV3 ensemble members with different microphysics parameterizations in 2019 lessening

significantly during 2020 and 2021. Overprediction throughout the diurnal cycle also lessened by

2021. A combination of both upscaling neighborhood verification and an object-based technique

that only retained matched convective objects was necessary to understand the improvement.,

agreeing with the HWT SFE participants’ recommendations for multiple verification methods.
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SIGNIFICANCE STATEMENT: “Good” forecasts of hail can be determined in multiple ways35

and must depend on both the performance of the guidance and the perspective of the end-user. This36

work looks at different verification strategies to capture the performance of the CAM-HAILCAST37

hail forecasting model across three years of the Spring Forecasting Experiment (SFE) in different38

parent models. Verification strategies were informed by SFE participant input via a survey. Skill39

variability among models decreased in SFE 2021 relative to prior SFEs. The FV3 model in 2021,40

compared to 2019, provided improved forecasts of both convective distribution and 38-mm (1.541

in) hail size, as well as less overforecasting of convection from 1900–2300 UTC.42

1. Introduction43

Hail is the most consistently damaging hazard of severe thunderstorms, producing losses in the44

U.S. alone exceeding $10 billion per year over the past 13 years (Faust et al. 2021). With improved45

detection and prediction of severe hail along with understanding of hail characteristics and their46

impacts at the surface a good portion of this monetary loss could be avoided. Yet, much like47

the nature of weather forecasts in general (Murphy 1993), determination of what makes a hail48

forecast “good” is a surprisingly difficult concept. Public, private, and even academic interests49

in hail prediction vary, with location, timing, and size of the forecast hail all at various levels of50

importance depending on the forecast’s end user. As such, identification of the most-desired“good”51

forecast characteristics from a cross-section of the severe hazard community is necessary.52

The existence of multiple standards for a “good” forecast likely drives the proliferation of con-53

vective hazard verification methods in the literature. Convective hazards are highly spatially and54

temporally variable, making validation without undue penalization of missed forecasts difficult.55

Several verification configurations have been used that reward a convective hazard forecast if it suc-56

cessfully predicts occurrence of a hazard within some spatial and/or temporal interval surrounding57

the occurrence itself. Upscaling neighborhood approaches are one such option where forecast haz-58

ard occurrence is upscaled to a coarser grid (e.g., Marsh et al. 2012; Hitchens et al. 2013; Schwartz59

and Sobash 2017; Roberts et al. 2020; Gallo et al. 2021): a forecast is considered successful if60

the forecast and observed occurrences both occur within the same coarse grid box. Additional61

configurations of this option include smoothing the forecast to further account for spatial error.62
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Object-matching methods such as the Method for Object-based Diagnostic Evaluation (MODE63

hereafter, Davis et al. 2006a,b) or the technique developed by Skinner et al. (2018) for the64

NOAA Warn-on-Forecast System (WoFS; Wheatley et al. 2015) also allow for spatial errors in a65

convective hazard forecast by matching forecast and observed convective objects (e.g., hail swaths)66

and comparing their shape, size, separation distance, and magnitudes. These methods are designed67

to mimic subjective verification by forecasters. Object-based methods are also useful when both68

the forecasts and their verification need to remain on small spatial and temporal scales, such as69

for probabilistic convective forecasts produced in real-time by WoFS (e.g., Skinner et al. 2018;70

Potvin et al. 2020; Britt et al. 2020; Flora et al. 2021; Miller et al. 2021). Finally, both upscaling71

neighborhood and object-based verification methods, including the many variations therein, all72

still penalize a convective hazard forecast even if the underlying Numerical Weather Prediction73

(NWP) model failed to predict convection. Such an outcome is likely desired for forecasters74

interested in warning the population affected by the hazard. That outcome is not desired, however,75

by developers of the convective hazard forecasting method itself, who want to separate performance76

of the underlying NWP model from the performance of their hazard forecasting method. Such an77

outcome requires yet a different verification technique.78

Given this variety of convective hazard verification methods, an evaluation of the verification79

methods themselves is needed, and must be informed by identified “good” forecast characteristics.80

In this study, the performance of the CAM-HAILCAST (Convection-Allowing Model-HAILCAST;81

Adams-Selin and Ziegler 2016; Adams-Selin et al. 2019) hail forecast model is used to explore82

both the idea of a “good” hail forecast and evaluate the effectiveness of several verification meth-83

ods, including object-matching and upscaling neighborhood approaches. CAM-HAILCAST was84

deployed in the Limited Area Model (LAM; Black et al. 2021) versions of Finite-Volume Cubed-85

Sphere Dynamical Core (FV3; Putman and Lin 2007) model at the Center for Analysis and86

Prediction of Storms (CAPS) and the National Severe Storms Laboratory (NSSL) during the87

2019, 2020, and 2021 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments88

(SFEs; Clark et al. 2012a; Gallo et al. 2017a), and included in the High-Resolution Rapid Refresh -89

Ensemble (HRRR-E; Alexander et al. 2020) during the 2020 HWT SFE. The FV3 dynamical core is90

part of NOAA’s effort to create a Unified Forecast System (UFS; https://ufscommunity.org/)91

across all modeled scales. The LAM FV3 will be the foundation of the new Rapid Refresh Forecast-92
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ing System (RRFS), which is designed to subsume several of NOAA’s current regional modeling93

systems including the HRRR. In addition, discussion of convective hazard forecasts from LAM94

FV3 configurations in the literature is growing (e.g., Snook et al. 2019; Zhang et al. 2019; Harris95

et al. 2019; Zhou et al. 2019; Gallo et al. 2021), but further study is needed.96

It is our hypothesis that verification preferences will change based upon an individual’s under-97

standing of a hail forecast’s purpose, which we expect will show significant variation. Section 298

details the implementation of FV3-HAILCAST, the configuration of the FV3 and HRRRE versions99

at each SFE, and describes the different verification methods, time, and space scales used. Section 3100

discusses the SFE survey results about necessary elements of “good” hail forecasts and verification101

method effectiveness, and provides a case study verification method comparison. Section 4 uses102

these different methods to evaluate CAM-HAILCAST performance over 24-h periods across the103

three years. Section 5 examines the usefulness of temporally and spatially dependent verification,104

with a focus on forecasts over both 1-h and 24-h periods. Discussion and conclusions are presented105

in Section 6.106

2. Methodology107

a. FV3-HAILCAST108

The HAILCAST of Adams-Selin and Ziegler (2016) and Adams-Selin et al. (2019), termed109

CAM-HAILCAST, is a one-dimensional psuedo-Lagrangian hail trajectory model designed to be110

embedded within any CAM. It is one-dimensional as it operates independently on each convective111

grid column in the CAM; each grid column serves as an input updraft profile for the hail trajectroy112

model. The “pseudo-Lagrangian” nature of CAM-HAILCAST is achieved by employing an updraft113

parameterization to simulate the updraft as experienced by a hailstone being advected across it.114

Previous verification studies have found CAM-HAILCAST deployed within the Weather Research115

and Forecasting model (WRF) to be most successful in the U.S. Great Plains and Midwest (e.g.,116

Fig. 10 of Gagne et al. 2017) and for smaller hail (e.g., 25-mm; Adams-Selin et al. 2019). The117

reduced skill of WRF-HAILCAST in forecasting 50-mm hail or larger is not unexpected given118

the importance of increased updraft volume and hailstone residence time aloft in the production119

of larger hail (Kumjian and Lombardo 2020; Kumjian et al. 2021; Lin and Kumjian 2022), and120

hence, it must be assumed, two- or three-dimensional hail trajectory motions. Yet despite its issues,121
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the CAM-HAILCAST hail forecasting method remains one of the most skillful yet operationally122

efficient model-based hail forecasting methods (Gagne et al. 2017; Adams-Selin and Ziegler 2016;123

Adams-Selin et al. 2019). CAM-HAILCAST was incorporated into the LAM configuration of124

FV3, termed FV3-HAILCAST. Understanding the performance of FV3-HAILCAST is important125

as the transition from HRRR to RRFS occurs.126

The overall design of both WRF-HAILCAST and FV3-HAILCAST are quite similar. In both127

cases, CAM-HAILCAST is coupled in one direction only to its underlying CAM: no microphysical128

information is passed back to the CAM. Additional details of the physics are provided in Adams-129

Selin and Ziegler (2016) and Adams-Selin et al. (2019). All microphysics packages are supported.130

The workflow for the RRFS was updated to support FV3-HAILCAST in early 2022.131

b. Model data132

During the 2019 SFE, CAPS ran an LAM FV3 ensemble consisting of 14 members with both133

mixed physics and perturbations in initial conditions. Seven of the members (core) were initialized134

with the North American Mesoscale Model (NAM) with a variety of boundary layer, microphysics,135

land surface, and surface layer parameterizations. One member was initialized using GFS analyses136

and forecasts. The remaining six members (pert) used the same physics options, but were initialized137

with initial condition perturbations from the 2100 UTC version of the Short Range Ensemble138

Forecast System (SREF) added to the NAM analyses. The full configuration of all members is139

provided in Tables 2 and 3 of the 2019 SFE operations plan (https://hwt.nssl.noaa.gov/140

sfe/2019/docs/HWT_SFE2019_operations_plan.pdf). Results from a representative subset141

of members will be discussed; their configurations are listed in Table 1.142

During the 2020 SFE, FV3-HAILCAST was run by NSSL within the sarfv3-ICs02 CLUE143

member. It used the LAM FV3 configuration with initial and boundary conditions from the144

Unified Model (UM) as part of an experiment testing UM ICs (Roberts et al. 2022). In the 2021145

SFE, FV3-HAILCAST was run within NSSL’s FV3-LAM with initial and boundary conditions146

from the GFS version 16 (GFSv16). Physics options for both years’ configurations are listed in147

Table 1.148

WRF-HAILCAST was also run as part of the experimental HRRR Ensemble (HRRRE; Kalina149

et al. 2021), with the physics configuration for the 2020 SFE summarized in Dowell (2020).150
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The HRRRE uses the WRF-ARW dynamical core and initial/boundary conditions are generated151

by the 36-member HRRR Data Assimilation ensemble analysis System (HRRRDAS). Additional152

configuration details are provided in Table 2. In addition to WRF-HAILCAST, two other hail153

forecasts were produced using HRRRE data and evaluted during the 2020 SFE: the Thompson154

method, generated using the hail size distribution within the microphysical parameterization (see155

discussion of method in Milbrandt and Yau 2006; Gagne et al. 2019), and calibrated machine156

learning methods (ML; Gagne et al. 2017; Burke et al. 2020). Subjective verification discussion157

during the 2020 SFE evaluated all three hail forecasting methods.158

Table 1. SFE FV3 configurations. All used RRTMG radiation (Iacono et al. 2008); Thompson (Thompson

and Eidhammer 2014), NSSL (Mansell et al. 2010), or Morrison (Morrison et al. 1997) microphysics, scale-aware

MYNN (Olson et al. 2019) or GFS EDMF (Han et al. 2016) boundary layer parameterizations, NOAH (Chen

and Dudhia 2001) or RUC (Smirnova et al. 2016) land surface models, and GFS (Long 1986, 1989) or MYNN

(Olson et al. 2021) surface layer parameterizations.

159

160

161

162

163

Year Name ICs/LBCs Microphysics PBL LSM SFC Layer

2019 core cntl NAM Thompson MYNN-SA NOAH GFS

2019 core mp1 NAM NSSL MYNN-SA NOAH GFS

2019 core mp2 NAM Morrison MYNN-SA NOAH GFS

2019 core pbl2 NAM Thompson EDMF NOAH GFS

2019 pert sfcl1 NAM+SREF Thompson MYNN-SA RUC MYNN

2020 sarfv3-ICs02 UM Thompson MYNN-SA NOAH GFS

2021 NSSL FV3-LAM GFSv16 NSSL MYNN-SA NOAH GFS

Table 2. 2020 HRRRE configuration, using Thompson microphysical (Thompson and Eidhammer 2014),

MYNN planetary boundary and surface layer (Nakanishi and Niino 2009; Benjamin et al. 2016), and RUC land

surface (Smirnova et al. 2016) parameterizations.

164

165

166

Year Name ICs/LBCs Microphysics PBL LSM SFC Layer

2020 HRRRE HRRRDAS Thompson MYNN RUC MYNN

The domain and initialization timing of all SFE models follow the design of the Community167

Leveraged Unified Ensemble (CLUE; Clark et al. 2018), which during 2019-2021 consisted of168

a CONUS domain with 3-km horizontal grid-spacing and initialization daily at 0000 UTC. The169

verification results shown here will be limited to the portion of CONUS defined daily at each SFE170
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as the “domain of the day” to ensure the objective and subjective verification results discuss the171

same geographical region.172

c. MRMS MESH173

All verification will be conducted using the Multi-Radar Multi-Sensor Maximum Estimated Size174

of Hail (MRMS MESH hereafter, Witt et al. 1998; Lakshmanan et al. 2006; Smith et al. 2016)175

as a validation source. MRMS MESH data is available on a 1-km horizontal grid covering the176

full CONUS with 2-min temporal frequency. Use of this dataset admittedly has a number of177

drawbacks, including lesser skill delineating between hail with significantly severe (> 50 mm) and178

severe (between 25 and 50 mm) diameters (Ortega 2018) and determining hail occurrence over the179

southeast U.S. (Murillo and Homeyer 2019; Murillo et al. 2021). However, at this time the MRMS180

MESH dataset was the only radar-based hail size estimate available at sub-hourly resolutions.181

It has been found to successfully distinguish between sub-severe (< 25 mm) and severe (> 25182

mm) diameter hail (Ortega 2018) and is preferable to public severe hail reports with underlying183

population biases (Allen and Tippett 2015). We refer readers to Wendt and Jirak (2021) for a full184

exploration of differences between hail climatologies generated by Storm Data storm reports and185

MRMS MESH. The full spatial coverage of MRMS MESH also allows object-based verification186

by hail swath as opposed to by singular report, a particularly important factor given recent research187

examining the evolution of a storm’s hail production over its lifecycle (Kumjian et al. 2021).188

As in Adams-Selin et al. (2019), the MRMS MESH dataset was truncated at 19 mm (0.75189

in) in deference to the original Witt et al. (1998) algorithm formulation only using hail reports190

of that size or larger. Because of this truncation, hail swath objects in the MRMS MESH field191

with maximum sizes larger than 25 mm were more frequent than objects with a maximum size192

between 19 and 25 mm. In the object-based verification method (detailed later in Section 2e),193

only matched hail swaths were evaluated to avoid penalizing where the model failed to predict194

convection. Performance diagrams, a frequently used method for evaluating convective event195

forecast skill, do not include correct forecasts of null events and therefore should only be used196

for relatively infrequent events.Thus, all object-based statistics in this study were calculated for a197

threshold of 38-mm (1.5-in) hail or larger, to allow for a large enough population of objects with198

peak hail sizes below that threshold. A larger threshold (e.g., 50 mm) was also considered, but199
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50 mm hail events did not occur frequently enough for regular subjective verification during the200

HWT. Further discussion of this decision is provided in Section 3b.201

It should also be noted in both HAILCAST and MRMS MESH hailstones are assumed to be202

spherical. Such an assumption is likely invalid, particularly for larger hailstones (e.g., Shedd et al.203

2021) and hailstone mass would be a better predictor. However, addressing this issue is beyond the204

scope of the current study.205

d. Upscaling neighborhood configurations206

Neighborhood verification of model hail forecasts was based on the upscaling smoothed neighbor-207

hood maximum ensemble probability (NMEP𝑠𝑚𝑜𝑜𝑡ℎ) method described in Schwartz and Sobash208

(2017); this method is also presented as the practically perfect forecast verification method by209

Hitchens et al. (2013). Both model forecast and MRMS MESH hail size datasets were prepared for210

this method by determining maximum size at each native grid point over all times during successive211

12-12 UTC 24-h periods. This aggregation was accomplished using the Model Evaluation Tools212

(MET hereafter, Brown et al. 2021). After aggregation, to upscale the data, model and MRMS213

MESH data are each regridded to a coarser grid (Figs. 1a,b). In the results shown here many of214

the ensemble members are evaluated individually. In these cases the coarse grid is binary with the215

member either predicting hail occurrence of a specific size or not. For ensemble data, the coarse216

grid is an ensemble probability of hail occurrence of that size. After regridding, the data are then217

smoothed over a set neighborhood of points (Fig. 1c).218

Several different versions of upscaling neighborhood verification exist in the literature, often223

with conflicting terminology. Schwartz and Sobash (2017, SS17 hereafter) reviewed many of224

these configurations for ensemble verification of any forecast type. For convective forecasts, the225

terminology and methods of Hitchens et al. (2013, HBK13 hereafter) are often used. Finally, the226

MET software itself via the regrid data plane command uses yet a third set of terminology. To227

provide clarification, explicit MET inputs will be discussed in the format of both SS17 and HBK13.228

SS17 identify two controls on the generation of smoothed NMEP at a grid point 𝑖. The searching229

radius, 𝑥 km, is the distance from 𝑖 within which is searched for the occurrence of an event. After230

application of this radius, the resulting field contains a binary yes/no probability of if an event231

occurred within 𝑥 km of grid point 𝑖 (Fig 1b). (If an ensemble is being evaluated, the average of232
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SS17 r, 𝜎SS17 = 6 grid pointsSS17 x = 2 grid points

a) Native grid

b) Upscaled grid

SS17 unsmoothed NMEP

c) Smoothed, upscaled grid

SS17 smoothed NMEP

𝜎HBK13 = r / x = 3

Fig. 1. Example of upscaling neighborhood configuration. (a) Example data on its native grid. Orange

represents occurence of hail above our chosen threshold, expressed as a binary probability. (b) Data upscaled to

a coarser grid, but still a binary probability. (c) Upscaled grid after smoothing. Orange shades are the smoothed

probability field, and now also the forecast probability of the event.

219

220

221

222

the binary fields from all members can then be calculated.) This field, termed the unsmoothed233

NMEP by SS17, can remain in the native grid resolution or be converted to a coarser resolution234

(c.f. Figs. 1a,b of SS17 for examples of unsmoothed NMEP in coarse and native resolution). The235

smoothing radius, 𝑟 km, is the spatial scale over which smoothing is performed (Fig. 1c). In236

many cases, including here, the smoothing is performed via a Gaussian standard deviation filter,237

𝜎. Hence SS17 states in these cases, 𝑟 is “effectively replaced” by 𝜎𝑆𝑆17, resulting in a 𝜎𝑆𝑆17 with238

units of km (e.g., Sobash et al. 2016). Conversely, HBK13 interpret 𝜎 as the spatial confidence one239

could have in a forecast of that event type. They combine the two radii of SS17 into one unitless240

𝜎𝐻𝐵𝐾13 by calculating 𝑟/𝑥, resulting in values around 0.75 to 3.0 with smaller values representing241

higher spatial confidence (smaller smoothing radius).242

The regrid data plane MET tool takes three input arguments: width, gaussian dx, and gaus-243

sian radius. The gaussian radius and gaussian dx arguments are equivalent to the 𝑟 and 𝑥 values244

of SS17, and the ratio of the values (gaussian radius/gaussian dx) to 𝜎𝐻𝐵𝐾13. The width value is245

number of native grid points that take part in the regridding of a given point (and therefore also the246

resolution in native grid points of the output unsmoothed NMEP field). The 24-h configuration247

follows the processes of Adams-Selin et al. (2019) and Gallo et al. (2021): the data is regridded248

to the 80-km NCEP 211 grid. During this process, the width argument was set to 27 for the 3-km249
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model data and to 40 for the 1-km MRMS MESH. The maximum value within the box was used250

for the regridding. Both datasets were then set to a binary 1 or 0 value based on a threshold of 38251

mm (1.5 in). A verification threshold of 38-mm hail was selected after evaluation at the 2019 SFE252

revealed larger hail sizes did not occur frequently enough for the desired complementary ongoing253

subjective evaluation.254

The model data was further smoothed using a Gaussian filter with a Gaussian distance (gaus-255

sian dx, SS17 𝑥) of 81.271 km and Gaussian radii (gaussian radius, SS17 𝑟) of 81.271, 100, 120,256

140, and 160 km. These values correspond to 𝜎𝐻𝐵𝐾13 of 1, 1.25, 1.5, 1.75, and 2 (using an 𝑥257

of 80 km instead of 81.271.) Because the regridding to a coarser dataset occurrs in MET before258

the smoothing, values of 𝜎𝐻𝐵𝐾13 < 1 could not be used as 𝑟 could not be less than width. For259

the sake of clarity, future references to the Gaussian standard deviation filter in this text will use260

the definition of 𝜎𝑆𝑆17, or 𝑟 . For verification of the HRRRE ensemble, the unsmoothed binary261

thresholded NMEP field on the NCEP211 grid for each ensemble member was averaged, to create262

a probability the ensemble would have predicted hail of at least the threshold size within that grid263

box, before the additional Gaussian smoothing was performed.264

The observational dataset was not smoothed in agreement with the studies of Adams-Selin265

et al. (2019) and Gallo et al. (2021). After all regridding and smoothing processes were complete,266

verification occurred using MET’s grid stat to compute the reliability and other probabilistic-based267

statistics.268

e. Object-based configurations269

For the object-based verification, model data was left on its native 3-km domain. The MRMS270

data was regridded from its native 1-km grid-spacing by using a maximum value within a 1.5-km271

radius of each CLUE domain grid point, as in Adams-Selin et al. (2019). This method ensured the272

maximum hail size within each hail swath was preserved.273

Three different spatiotemporal configurations for object-based matching were used. The 24-274

h configuration, consisting of hail swaths aggregated over a 24-h period (12-12 UTC) before275

verification, was designed to match hail swaths produced by supercell/multicell families or a276

single Mesoscale Convective Systems (MCS). This type of forecast was designed to be similar to277

what would be issued by the Storm Prediction Center as a Day 1 Convective Outlook. The 6-h278
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configuration is designed to matched similarly sized swaths as the convective outlook configuration,279

but aggregated over a smaller time period (6 h); this verification attempts to mimic verification280

of a watch. Finally, the 1-h configuration is designed to validate forecasts that would be useful281

to forecasters issuing a warning, and is configured to match 1-h aggregated hail swaths produced282

by individual storm cells. In practice, the 6-h configuration produced results very similar to the283

24-h configuration, so further discussion will be limited to the 24- and 1-h configurations. The284

similarity of the 6- and 24-h configuration verification results aligns with previous research that285

found most severe weather at a point occurs within a 4-h period (Krocak and Brooks 2020). Each286

of these configurations was developed using the Method for Object-based Diagnostic Evaluation287

(MODE; Davis et al. 2006a,b). Examples of forecast and observed hail swath objects using the288

24- and 1-h configurations for a case in southern Texas on 28 May 2020 is provided in Fig. 2.289

Fig. 2. Identified objects from the (a,b) 24-h configuration for a 24-h period ending 12 UTC 29 May 2020 and

(c,d) 1-h configuration for a 1-h period ending 22 UTC 28 May 2020. Left column is from FV3-HAILCAST

forecasts; right column from MRMS MESH. Non-matched objects are shown in grey (-1 on color bar); matched

objects are shown via matching colors in each row. A total of 24 matched objects were identified in (a,b) and 5

in (c,d). Note that the numbers identifying the objects are not consecutive; matched pairs that do not meet the

required interest threshold are removed from final matched object output by MODE.

290

291

292

293

294

295
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The MET tools have been augmented to include a suite of use cases to demonstrate MET tools296

usage, in a framework called METplus (Brown et al. 2021). A METplus hail verification use case297

was developed that applies the 1-, 6-, or 24-hour configurations, and can be customized via user-298

selected time period(s). If an ensemble is being validated, each member can be verified individually299

or the ensemble maximum as a whole. The verification results from MODE are used to calculate300

contingency table statistics from the matched objects, displayed visually via performance diagram301

as in the next section.302

In MODE, objects are identified in the forecast and observation fields using a convolution radius303

of 4 grid points and a convolved field threshold of 12.5 mm (Adams-Selin et al. 2019). Objects304

smaller than 4 grid points are omitted from analysis. The forecast and observation objects are305

matched using MODE’s fuzzy logic function, with emphasis on distance between objects and their306

respective areas and orientations. Additional configuration information is provided in Table 3. The307

difference between 1- and 24-h configurations was primarily achieved through increased object308

merging in the 24-h configuration but suppressing it entirely in the 1-h configuration. Performance309

diagrams are computed from matched pairs; unmatched pairs are omitted to avoid penalizing where310

the model failed to predict convection.311

Table 3. MODE configurations.

Configuration option 24-h 1-h

Convolution radius 4 gridpoints 4 gridpoints

Convolution threshold 12.5 mm 12.5 mm

Area threshold 4 gridpoint 4 gridpoints

Max distance between centroids 400 km 400 km

Merging threshold 0.5 0

Total interest threshold 0.7 0.5

3. Identification of a “good” hail forecast312

a. Subjective evaluation of verification methods313

Participants of the 2020 HWT SFE were surveyed to understand internal attitudes about con-314

vective hazard forecasting skill. Forty-one unique participants provided answers. The HWT SFE315

is designed to be a collaboration among forecasters, researchers, and model/algorithm developers,316
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with its primary goal a two-way exchange of information and products between research and oper-317

ations (e.g., Kain et al. 2003; Clark et al. 2012b; Gallo et al. 2017b). The information exchange is318

intentionally both subjective, via discussion, and objective, via statistical evaluation, to encourage319

dialog about the usefulness of products. At the 2020 SFE, 17 of the 41 participants that answered320

our survey were identified as forecasters, 18 researchers, and 11 developers, thereby representing321

a cross-section of representative interests from the severe convective hazard field. The following322

questions were asked:323

1. (1.1) What do you mean when you say a 1.5-in hail forecast is “good”? (1.2) Do you think324

any of these figures successfully capture your opinion of the skill of the two different 1.5-in325

hail forecasting methods over the course of the week? Why or why not?326

2. (2.1) Do you think validating hail forecasts over different time/spatial scales is helpful? (2.2)327

How effective at capturing hail forecast performance over the different time/spatial scales do328

you feel the three pairs of figures are?329

The figures referenced in these questions are shown in Fig. 3, and consist of a variety of methods330

validating 38-mm hail forecasts over the course of one week during the SFE. Verification of 38-mm331

hail over a week period was selected after the 2019 SFE revealed 50-mm hail frequency was not332

high enough for evaluation on a daily basis; lowering the threshold and extending the verification333

period provided enough forecasts to evaluate. Six total figures were provided for evaluation of the334

hail forecasts each week.335

Participants expressed a range of opinions about the contents of a “good” hail forecast. The345

total number of responses received to Question 1.1 was 44. (Three participants answered the346

questions twice, but on different days.) “Correct location” was noted most frequently, in 30 of 44347

responses. Half as many responses (16) included size, and only 6 responses also noted timing. Of348

the participants concerned with hail size, several noted they would consider a hail size forecast of349

within 0.5 in (12.5 mm) of the observed reports as “good”.350

All responses to Question 1.1 included mention of correct hail size and/or location as important351

ingredients in a “good” hail forecast (participants could provide multiple ingredients in a single352

response). These answers were further analyzed for overlap among responses. “Correct location”353

could be divided into two groups of emphasis: accurate forecast of individual storm location,354
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Fig. 3. Reproduction of sample evaluation figure shown the 2020 HWT SFE participants on the Friday of

each week. The top row shows performance diagrams, calculated as in Section 2e, for the verification of 38-mm

(1.5-in) hailfall forecasts produced within the HRRRE over each full week. Solid curves are constant Critical

Success Index (CSI). Dashed lines are lines of constant bias, with a bias of 1 occurring along the diagonal,

underforecast bias below, and overforecast bias above. The bottom row contains reliability diagrams, calculated

as in Section 2d. The shaded gray area indicates skillful forecasts; the dashed diagonal line is a forecast of perfect

reliability. The horizontal dashed line is a climatological forecast. Inset plots showing the frequency of forecasts

in each probability bin. The columns show a range of spatial and temporal scales: the 24-h (left), 6-h (middle),

and 1-h (right) configurations described in Section 2e above.
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or accurate forecast placement of Gaussian-smoothed neighborhood probabilities of 38-mm hail.355

Responses focusing on individual storm location often also provided what they considered to356

be a reasonable spatial error threshold: for example, “within 2 or 3 counties” or “within 25-50357

miles”, although it was noted that negative public response to even small spatial forecast errors358

within densely populated areas could be significant. Distinguishing hail-producing ability among359
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multiple CAM-forecasted convective cells was also desired. Responses concerned with accuracy of360

storm location, as opposed to probabilities, were mostly also concerned with accuracy of forecasted361

hail size (8 of 12 responses).362

Conversely, responses focusing on the Gaussian-smoothed neighborhood probabilities wanted363

to see a high probability of detection (POD) with a small area of false alarm to focus attention364

on regions with the highest probability of hail. This group of responses was largely concerned365

with model-predicted regions of high forecasted probability of hail, on the order of 100-200 km, in366

which hail did not occur. Only 3 of 18 “correct location of probability” responses also mentioned367

accuracy of size in their response.368

A total of 13 responses to Question 1.2 were collected, all of which found the figures helpful.369

Several (5) participants found the performance diagrams conveyed skill more clearly, mention-370

ing ease at determining over- and under-forecasting; a few requested displays of additional size371

thresholds. The responses noted a “lack of signal” from the reliability diagrams. Interestingly,372

the responses favoring the performance diagrams were not limited to those who considered either373

accurate storm location or probabilities more important; participants with different ideas of what374

constituted a “good” hail forecast still found the performance diagrams helpful.375

Results from Question 2.1 were overwhelmingly in favor of verification statistics calculated over376

a range of spatial and temporal resolutions with no responses opposed. Participants liked having377

verification conducted over 24-h time periods to understand the full storm system as an event,378

as well as periods smaller than 24 h to understand the model’s effectiveness at forecasting the379

evolution of the storm system. Such responses suggest more may have been interested in correct380

timing as part of a “good” hail forecast than explicitly stated in their answer to Question 1.1. Many381

responses (8) suggested 4 h as a preferred resolution as opposed to the 6 and 1 h shown here; a382

few commented that expecting accuracy on a 1-h timescale is too unrealistic for 24-36 h forecasts.383

All responses to Question 2.2 (23 in total) found the varying spatiotemperoal scale verification384

figures helpful for understanding model performance. Again, a few respondents (4) expressed385

preference for the performance diagrams citing faster interpretation; none expressed preference for386

the reliability diagrams.387
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b. An example case study verification method comparison388

To further explore the idea of a “good” hail forecast and the effectiveness of different verification389

methods, three example FV3-HAILCAST hail size forecasts covering 12 UTC 23 - 12 UTC 24390

May 2019 are provided in Fig. 4 along with radar-estimated hail size data and Storm Data storm391

reports. Verification results from the upscaling neighborhood configuration (Section 2d) and the392

object-matching method (Section 2e) are also included; for a description of these diagrams as used393

for hail forecasting reference Adams-Selin et al. (2019). Forecast and observed hail was aggregated394

over the full 24-h period as described above. Immediately evident is the wide variability of skill395

among FV3 members, which will be discussed further in Section 4. In fact, member pert sfcl1,396

not shown, produced no hail of 38 mm or larger. This date was selected for case study examination397

as it is roughly representative of each member’s performance over the full 2019 SFE.398

The event produced several extended hail swaths in western Texas and the Texas and Oklahoma399

panhandles with peak observed hail sizes in the swaths estimated above 50 mm (Fig. 4d). Shorter400

swaths were also evident in western Kansas, with smaller peak sizes around 40 mm. The three401

hail forecasts shown each have a range of advantages and drawbacks. Member core cntl, while402

incorrectly predicting that more severe hail will occur in eastern Kansas instead of western Texas403

and the Oklahoma panhandle, does correctly capture that the more intense hail will occur in swaths404

from single cells. The core mp1 forecast better places the location of the severe hail, but forecasts405

too wide of coverage with several cells with at least 40 mm hail simulated in eastern Oklahoma.406

Finally, core pbl2 produces only a few small hail swaths with sizes larger than 38 mm but also has407

the least amount of false alarm.408

The reliability diagram in Fig. 4e indicates an overforecast of 38-mm hail for all forecast prob-409

abilities of core mp1 larger than 5%, and almost no skill overall. The mismatched placement410

of the forecast and observed hail swaths in the central Texas panhandle, beyond the distance of411

the smoothing radius, contributed to the poor skill as did the extensive false alarm in Oklahoma.412

The widespread coverage of the severe hail in the core mp1 member resulted in high forecast413

probabilities using the Gaussian smoothing method, despite the two concepts not necessarily being414

related. The reliability curve of core cntl is surprisingly similar to that of core mp1, despite the415

latter displaying improved placement and number of the 38-mm hail swaths. Core pbl2 does not416

produce a non-zero reliability curve given the few locations where > 38-mm hail was evident.417
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mm

Fig. 4. Verification case study using FV3-HAILCAST hail size forecasts (mm) over the period from 12 UTC

23 - 24 May 2019 from the core cntl (a), core mp1 (b), and core pbl2. (c) CAPS FV3 members from the

2019 SFE. MRMS MESH estimated hail size is in (d) along with Storm Data storm reports shown as partially

transparent large dots. The reliability diagram (e), calculated as in Section 2d, and the performance diagram (f),

calculated as in Section 2e, are for 38-mm (1.5-in) hail for this 24-h period only.
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Such results encapsulate the strengths and weakness of upscaling methods. Core cntl is correctly423

penalized for the large area of false alarm, but perhaps not correctly rewarded for the spatially offset424

hail swaths in the Texas panhandle similar in appearance to the MESH estimations. Core cntl and425

Core pbl2 show almost no skill per the reliability diagrams. Such results, while truthful, do not426

provide any additional helpful information such as the peak hail sizes in the incorrectly placed hail427

swaths in core cntl better capturing the hail-producing potential of the Southern Plains environment428

as opposed to that of core pbl2.429

The performance diagram (Fig. 4f) and the object-matching method of Section 2e both indicate430

an underforecasting bias of core cntl and core pbl2. Specifically, many of the matched hail swath431

objects from these members have forecast peak hail sizes below 38 mm but larger observed peak432

sizes. Core cntl shows slightly higher skill (as determined by Critical Success Index; CSI) than433

core pbl2, as was also shown by Fig. 4e. Core mp1 shows the highest skill using this verification434

method. The hail swaths objects in the Texas panhandle were matched, eliminating any skill435

penalty due to spatial offsets. However, because only matched observed and forecast hail swath436

objects were evaluated, the erroneously produced convection and severe hail by that member in437

eastern Oklahoma did not reduce the determined skill.438

Evaluation of this case study further underscores the recommendation from HWT SFE particpants439

that multiple methods are necessary to truly understand the skill of a convective hazard forecast.440

4. CAM-HAILCAST performance over 24-h periods441

a. Upscaling neighborhood verification442

The upscaling neighborhood verification reveals the difficulty of forecasting 38-mm (1.5-in) hail443

using any of the methods evaluated herein (Fig. 5). Such a result is unsurprising, given previous444

poor verification results in the literature of 50-mm hail predictions (e.g., Gagne et al. 2017, 2019;445

Adams-Selin et al. 2019). Comparison among the different forecasting methods across the years is446

still instructive, particularly when comparing performance of WRF-based and FV3-based methods447

and different Gaussian smoothing (𝜎) values.448

In 2019 (Fig. 5a), the smaller magnitudes of forecast probabilities, across all members, is evident.449

(Note the zoomed-in horizontal axis in Fig. 5a). None of the four displayed members produced450

a probability of the occurrence of > 38 mm hail larger than 0.45. The result reveals one of the451
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drawbacks of using neighborhood verification methods. Spatially larger forecast areas of > 38-mm452

hail, or even simply forecasts that occurred across boundaries of the coarser grid, are translated453

into a higher magnitude probability of occurrence.454

Core mp1 strongly overpredicts the occurrence of this size hail (Fig. 5a). Per this verification455

method, the resulting forecast was largely even worse than a climatological forecast. Increasing456

the length of the smoothing radius (𝜎) shows only slight improvement in verification of higher457

probabilities, largely by shifting them to lower probabilities. For the other three members, in-458

creasing the smoothing radius simply reduced the number of forecast higher probabilities to be459

verified, resulting in lesser skill and underforecast occurrence of that hail size. Even using a smaller460

𝜎 value, however, core cntl still shows underforecasting relative to the other members. The four461

members, in sum, show a wide variety of performance of FV3-HAILCAST across different physics462

configurations during the 2019 SFE, although all lack in certainty.463

The FV3-HAILCAST configurations running during the 2020 and 2021 SFE both show an464

increase in certainty and occurrence of forecast probabilities larger than 0.5 relative to 2019.465

Changes in the 𝜎 smoothing value do not greatly shift the subsequently calculated reliability curve466

at lower probability values (e.g., < 0.5) but results in large changes at higher probability values,467

suggesting only a few high probability forecast events. This conclusion is confirmed by the inset468

frequency plots in Figs. 5b,c. Per Fig. 5b the HRRRE-HAILCAST forecasts during the 2020 SFE469

are more skillful than the HRRRE-Thompson or FV3-HAILCAST methods. (HRRRE verification470

statistics were calculated in real time for subjective evaluation at the 2020 SFE therefore additional471

𝜎 thresholds could not be tested.) Whether the improvement of HRRRE-HAILCAST over FV3-472

HAILCAST is due to the forecasts being sourced from an ensemble instead of a single member is473

not clear.474

b. Object-based verification479

The upscaling neighborhood verification discussed in the previous section provided information480

about a member’s tendency toward over or underforecasting of 38-mm hail occurrence, but did481

not separate that tendency from an over or underforecasting of convection in general. While482

the core mp1 member significantly overforecast 38-mm hail per Fig. 5a, the 24-h configuration483

in Fig. 6a shows that member did the best job of identifying 38-mm hail among storms where484
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Fig. 5. Reliability diagrams for 38 mm (1.5 in) hail forecasts from the (a) 2019, (b) 2020, and (c) 2021 SFEs

via the “convective outlook” configuration. Solid colored lines use a 𝜎 smoothing value of 80 km, fainter dashed

and dotted lines 120 and 160 km, respectively. Note the zoomed in x axis of (a). The gridded HRRRE-ML

probabilities were unavailable during the 2020 SFE.
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hail did actually occur. That is, core mp1 simply overforecasts convection in general; where its485

convective forecasts were successful it was most skillful among the members at predicting 38-486

mm hail occurrence. That analysis is similarly displayed in Fig. 4b: the hail swaths of member487

core mp1 look most like those that actually occurred, there are simply too many of them. Core cntl,488

core pbl2, and pert sfcl1, while showing higher skill values in Fig. 5a, underforecast hail size when489

convection is correctly forecast per Fig. 6a.490

For the 2020 SFE, FV3-HAILCAST showed the least biased skill when distinguishing hail491

swaths that produced 38-mm hail. HRRRE-HAILCAST and HRRRE-ML displayed higher values492

of CSI, but were increasingly biased toward overforecasting, a trend that also appeared in Fig. 5b.493

The HRRRE-Thompson method, conversely, underforecast 38-mm hail both where convection was494

correctly simulated (Fig. 6b) as well as overall (Fig. 5b).495

The 2021 SFE FV3-HAILCAST showed skill equivalent to the 2020 SFE FV3-HAILCAST; a496

somewhat surprising result given that the underlying model physics configuration changed between497

the years (Table 1). The overforecasting of 38-mm hail evident in Fig. 5c appears to be due to498

an overforecast of convection in general, as the member showed a slight underforecasting bias of499

38-mm hail where convection was simulated correctly (Fig. 6c).500
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Fig. 6. Performance diagrams for 38 mm (1.5 in) hail forecasts from the (a) 2019, (b) 2020, and (c) 2021 SFEs

via the 24-h (stars) or 1-h (circles) configuration.

501

502

c. Verification by size distribution503

To further analyze the wide variability of FV3-HAILCAST performance among the 2019 SFE504

CAPS ensemble, the forecast hail distribution among 12.5-mm (0.5 in) size bins is shown in505

Fig. 7a. Given that MRMS MESH does not show skill at distinguishing among storms producing506

surface hail at 12.5-mm intervals (e.g., Ortega 2018; Murillo and Homeyer 2019) we are not507

using the distribution of MRMS MESH in Fig. 7a for verification, but instead as a rough baseline508

for CAPS member intercomparison. Notably, core mp1 produces more hail of all sizes than509

any of the other members or the MESH estimates. Such a result agrees with the analysis of510

the previous two subsections that core mp1 overproduced convection in general. Conversely,511

pert sfcl1 underproduced larger hail sizes compared to the other members and MESH, but was512

more comparable at small hail sizes. Such results suggest it produced a more appropriate amount513

of convection than core mp1, as was similarly suggested by its more skillful appearance in Fig. 5a.514

However, FV3-HAILCAST produced less skillful hail forecasts within that convection, as indicated515

by the minimal large hail sizes for pert sfcl1 in Fig. 7a and strong underforecasting bias in Fig. 6a.516

Several recent studies in the literature have examined how convection-allowing models with517

FV3 or WRF-ARW dynamical cores can show similar skill in forecasting convective features at518

multiple scales (Harris et al. 2019; Zhang et al. 2019; Snook et al. 2019; Gallo et al. 2021).519

Zhang et al. (2019) in particular examined the skill of 10 different 2018 SFE CAPS FV3 ensemble520
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members at producing hourly accumulated precipitation. They found members with the Thompson521

microphysics scheme produced significantly more precipitation than the NSSL scheme, particularly522

at higher amounts; differences caused by boundary layer scheme changes were not as large (see523

Fig. S3, Zhang et al. 2019). While no hail or convective updraft information was included in that524

study, a similar difference in convective updraft and therefore hail forecasts could reasonably be525

expected to follow.526

Fig. 7. Distribution of 24-h maximum hail size (a) and column-maximum updraft speed below 400 hPa (b)

at every domain gridpoint during the 2019 SFE. MRMS MESH data is regridded to the SFE domain following

the method outlined in Sec. 2d. MRMS MESH data shown for comparison only; MESH does not show skill

at distinguishing among storms producing surface hail at 12.5-mm intervals (e.g., Ortega 2018; Murillo and

Homeyer 2019).
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Distribution of column-maximum updraft velocities across the subset of CAPS FV3 members532

during the 2019 SFE are shown in Fig. 7b. An additional member, core mp2, is shown; this member533

has the same configuration as core mp1 except uses the Morrison microphysics parameterization534

(Morrison et al. 1997). Much like Zhang et al. (2019), a change in the microphysics parameter-535

ization (c.f., core cntl, core mp1, core mp2) has a bigger impact than a change in the boundary536

layer parameterization (c.f., core cntl and core pbl2). A change in the surface layer scheme also537

has a smaller impact (c.f., core cntl and pert sfcl1). Unlike the 2018 SFE results or Zhang et al.538

(2019), in the 2019 SFE both the NSSL and Morrison members showed a larger distribution of539

higher updraft speeds compared to the Thompson members. CAPS FV3 members with identical540

microphysics configurations but different initial conditions still showed similar results (not shown).541

A potential possibility for the change in relative performance among the members with Thomp-542

son, Morrison, and NSSL microphysics is the switch from the custom CAPS implementation of543

the Common Community Physics Package Zhang et al. (CCPP; 2018) schemes used in 2018, to544

the NOAA Environmental Modeling Systems (NEMS) GFS CCPP implementation in 2019. The545

NSSL microphysics parameterization was also upgraded between 2018 and 2019 with increased546

snow and ice crystal fallspeeds along with larger maximum collection efficiency of graupel and547

hail collection of raindrops; these increases would enhance total precipitation and, potentially,548

system updraft speed (T. Mansell, personal communication). Whatever the cause, it is clear that549

the wide distribution of updraft speeds among CAPS FV3 members translates directly to the wide550

distribution of FV3-HAILCAST hail sizes. Members with larger updraft speeds corresponded to551

the members with higher amounts of larger hailstones, a reasonable result.552

More skillful performance was seen by FV3-HAILCAST during the 2020 and 2021 SFEs com-553

pared to the 2019 forecasts, as also noted previously. The sarfv3-ICs02 run, part of the 2020 SFE,554

used the Thompson microphysics parameterization as in core cntl in the CAPS FV3. The NSSL555

FV3-LAM, part of the 2021 SFE, used the NSSL microphysics parameterization as in core mp1.556

Because the FV3 dynamical core configuration used during these years was in flux, a specific557

reason for these changes is not readily identifiable. For example, the number of vertical levels used558

in the model shifted from 64 in 2019 up to 81 in 2020, before returning to 64 in 2021. The amount559

of explicit diffusion used also varied, increasing from 2019 to 2020, which would have a stabilizing560

effect on the model. However, it is evident that both the dynamical core configuration and the561
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performance of FV3-HAILCAST slowly stabilized between 2019 and 2021, as is evidenced by the562

change in microphysics parameterization between 2020 and 2021 with no accompanying extreme563

change in skill like that seen among the 2019 CAPS members.564

5. Time- and space-dependent verification565

As discussed in Section 3a, participants in the 2020 SFE found hail forecast verification at a566

variety of time and spatial scales helpful. Comparison of the star (24-h) and circle (1-h) symbols in567

Fig. 6 reveals changes in forecast skill when shifting from the 24-h to the 1-h configurations across568

all three SFE years. In 2019, the results of core cntl, pert sfcl1, and core pbl2 do show some large569

shifts in False Alarm Rate (FAR) with small simultaneous changes in Probability of Detection570

(POD) or overall CSI. Given the small number of of 38-mm hail swath objects (< 5) produced571

by these three members in both the 24- and 1-h configurations, we do not consider these changes572

in skill significant. However, core mp1 produces many 38-mm hail swath objects at both 24- and573

1-h configurations (Figs. 8a,b). Given the difficulty in successfully forecasting convective-scale574

features at 1-h intervals 12-36 hours in advance, it is unsurprising that the overall skill decreases575

from the 24- to 1-h configuration for core mp1. The magnitude of the reduction in CSI is not576

large, however, suggesting that FV3-HAILCAST in this member can roughly simulate the timing577

of 38-mm hail development if the underlying convection is also correctly forecast.578

Each 2019 SFE CAPS FV3 member showed a different peak in the diurnal cycle of all hail-583

producing convection. Core mp1 showed the largest number of hail swath objects of all sizes at584

2100 UTC, followed by core pbl2 and pert sfcl1 at 2200 UTC, and finally core cntl at 2300 UTC.585

MRMS MESH hail swath objects did not peak until 0000 UTC. Despite its unrealistically early586

peak in overall hail swath objects, the number of large (38-mm) hail swaths within core mp1 did587

not peak until 2200 UTC, only an hour before the MESH-estimated peak. This fairly successful588

capture of the temporal evolution of hail size within the objects was reflected by the still high CSI589

score in the Fig. 6a.590

In the 2020 SFE, HRRRE-ML had a relatively large decrease in skill as calculated by CSI, but591

a similarly large reduction in bias (Fig. 6b). HRRRE-Thompson and FV3-HAILCAST showed a592

relatively large increase in skill, while HRRRE-HAILCAST’s skill remained unchanged. Unfor-593

tunately the total 1-h object counts from the HRRRE methods were not archived, so to examine594
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Fig. 8. Number of identified hail swath objects of all sizes (colors), and number containing hail at least 38 mm

or larger (grey overlay). Model member or MRMS MESH identified in legends. Results from 2019 (a, b), 2020

(c, d), and 2021 (e, f) SFEs. Left column is 1-h configuration (a, c, e), right column is 24-h configuration (b, d,

f). Note hourly HRRRE objects were not archived.
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potential reasons behind these changes in skill Fig. 9, difference in peak sizes between matched595

forecast and observed hail swaths, is presented. As stated before, MRMS MESH is unable to596

skillfully differentiate between hail sizes at 5 mm intervals. Figure 9 is used to compare general597

bias in size distribution for matched objects.598

FV3-HAILCAST produced more hail swath objects than the HRRRE methods or MRMS MESH606

in the 24-h configuration, but a roughly comparable number of ≥38 mm hail swaths (Fig. 8d). Such607

a result suggests an underforcasting of hail size, agreeing with the negative bias of FV3-HAILCAST608

in Fig. 6b. The size difference distribution of the 24-h matched objects (Fig. 9a) further confirms609

this result, showing a 5-10 mm underforecast between matched hail swaths to occur most frequently.610

The distribution of size differences is more evenly spread between a -10 to 10 mm difference for611
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Fig. 9. Frequency of differences between the maximum hail size value from all matched forecast and observed

(MRMS MESH-estimated) hail swath objects. Matched hail swath objects are identified from the 2020 SFE

using the 24-h (a) and 1-h (b) configurations; results from 1-h configuration are summed over all forecast hours.

Frequency of each bin is normalized by the total number of hail swath objects from the 2020 SFE from that

model or algorithm (Figs. 8c,d). Note MRMS MESH data are shown for comparison only; MESH does not show

skill at distinguishing among storms producing surface hail at 5-mm intervals (e.g., Ortega 2018; Murillo and

Homeyer 2019).
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the 1-h configuration. From Fig. 8c it is evident that while FV3-HAILCAST overproduces smaller612

magnitude hail swath objects from 20-23 UTC, this overproduction lessens after 00 UTC. It is613

possible that the more stringent matching criteria for the 1-h configuration screened out these614

overproduced smaller magnitude hail swath objects, improving the 1-h configuration skill scores.615
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The HRRRE-Thompson method similarly saw the peak of the difference distribution shift from 5616

mm down for 24-h to 0 mm for the 1-h configuration (Fig. 9a,b). The HRRRE-ML distribution617

of differences shifted most dramatically, from a 10-mm peak difference in the 24-h configuration618

to -5 mm in the 1-h configuration. The HRRRE-HAILCAST size differences, conversely, were619

minimal between the two configurations. These differences suggest that the HRRRE-ML method620

was more skillful at identifying the temporal evolution of hail size within forecast objects, while621

the HRRRE-HAILCAST method was more skillful at identifying systems that would contain larger622

(i.e., 38 mm) hail.623

The 2021 SFE FV3-HAILCAST also presented slightly improved skill at the 1-h configuration624

compared to the 24-h configuration, just like the 2020 FV3-HAILCAST results. The magnitude625

of increase in CSI is slightly less in 2021 compared to 2020, however. Figure 8e,f reveals that626

while FV3-HAILCAST still had an overproduction of hail swath objects during the 21-23 UTC627

hours, the overproduction was lessened compared to the 2020 results (Fig. 8c). Evaluation of the628

difference distributions for the 24-h and 1-h configurations (not shown) showed a most frequent629

difference of -5 mm for both, with a more narrow 24-h configuration.630

6. Discussion and conclusions631

In this study the performance of CAM-HAILCAST, within the HRRR-E and three implementa-632

tions of the LAM FV3 over multiple spatiotemporal scales during the 2019, 2020, and 2021 NOAA633

SFEs, was used to explore the concept of a “good” hail forecast and the effectiveness of multiple634

verification methods. During the 2020 SFE these verification methods were subjectively evaluated635

in conjunction with a survey about the ingredients of a “good” hail forecast.636

Survey participants differed in their idea of a “good” hail forecast and even in their definition of637

what a hail forecast consists. Approximately half considered a hail forecast to be similar to a single638

CAM model convective forecast, including identification of individual hail swaths. This section639

of respondents considered both the location and hail size of the forecast important, but did still640

consider a forecast with some spatial error to be “good”. The other half of respondents considered641

a hail forecast to consist of broader probabilistic swaths of occurrence of a specific hail size. These642

respondents were most concerned with incorrect location of the forecast probabilities, particularly643

large regions of false alarm. Such results suggest that before verifying a forecast of hail or any644
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convective hazard, investigators need to first determine the type of forecast desired by their users.645

Are they interested in localized, specific CAM output, or broader probabilistic information? The646

answer should contribute to the appropriate choice of verification technique.647

As part of the survey, two verification techniques were examined to determine the effectiveness648

of each at assessing how “good” a variety of hail forecasts were. Upscaling neighborhood and649

object-matching methods were selected due to their frequent use in the literature for convective650

hazard verification (e.g., Hitchens et al. 2013; Schwartz and Sobash 2017; Gagne et al. 2017;651

Skinner et al. 2018; Flora et al. 2021; Miller et al. 2021; Gallo et al. 2021). In this analysis,652

the object-matching method was modified to only verify hail forecasts among matched forecast653

and observed objects, separating hail forecast skill from underlying general convective forecast654

skill. Both upscaling neighborhood and modified object-matching techniques can be performed655

with the MET or METplus software package (Brown et al. 2021) as described herein. Survey656

participants expressed preference for the object-matching method if their idea of a hail forecast657

focused on identification of individual hail swaths. Conversely, participants expressed preference658

for upscaling neighborhood methods if their idea of a hail forecast was a broader region of659

probabilities. All survey participants recognized the usefulness of verifying forecasts over multiple660

spatial and temporal scales.661

Additional analysis was conducted examining the strengths and weaknesses of these two veri-662

fication methods in evaluating CAM-HAILCAST forecasts from the three SFEs. Evaluation of663

FV3-HAILCAST hail forecasts found significant variability in skill among members of the CAPS664

FV3 multi-physics ensemble in the 2019 SFE. During the 2020 and 2021 SFE, however, the skill665

variability among physics options lessened and FV3-HAILCAST forecasts improved. Both up-666

scaling neighborhood and object-matching methods were necessary to understand these results.667

For example, the upscaling neighborhood method found the 2019 SFE CAPS FV3 member with668

the NSSL microphysics scheme overproduced convection. However, where the convective forecast669

was correct, the object-matching method determined this member’s FV3-HAILCAST hail size670

forecast was most skillful. Conversely, the CAPS FV3 member with the Thompson microphysics671

scheme produced a more realistic amount of convection, but hail size forecasts where convection672

was correctly forecast were poor. Subsequent years’ forecasts with both of these microphysics pa-673

rameterizations improved in overall convective distribution although hail forecasting performance674
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remained steady. Given the underlying configuration of FV3 dynamic core was in flux during those675

three years but the FV3-HAILCAST algorithm remained fixed, such a result is not unexpected.676

Verification over different spatiotemporal ranges was also useful in understanding skillfulness of the677

FV3 core in simulating the diurnal convective cycle, as well as FV3-HAILCAST skill at simulating678

the hail temporal development within that convection. During the 2020 SFE, FV3-HAILCAST679

and HRRRE WRF-HAILCAST skill in identifying which convective cells would produce sizeable680

hail, over 24- and 1-h periods, were roughly comparable (Fig. 6).681

In sum, it is recommended that future evaluation of convective hazard forecasts consider the682

forecast type expected by the end user and make use of multiple types of verification methods.683

A combination of upscaling neighborhood methods including different smoothing radii, object-684

matching methods that retain only matching forecast and observed objects to isolate convective685

hazard forecast performance from NWP performance, and verification over varying spatial and686

temporal scales are all recommended to gain a comprehensive picture of the performance of a687

forecast method and its perception by those using the resulting product.688
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