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Abstract—The (inverse) discrete Fourier transform (DFT/
IDFT) is often perceived as essential to orthogonal frequency-
division multiplexing (OFDM) systems. In this paper, a deep
complex-valued convolutional network (DCCN) is developed to
recover bits from time-domain OFDM signals without relying
on any explicit DFT/IDFT. The DCCN can exploit the cyclic
prefix (CP) of OFDM waveform for increased SNR by replacing
DFT with a learned linear transform, and has the advantage of
combining CP-exploitation, channel estimation, and intersymbol
interference (IST) mitigation, with a complexity of O(IN?).
Numerical tests show that the DCCN receiver can outperform
the legacy channel estimators based on ideal and approximate
linear minimum mean square error (LMMSE) estimation and a
conventional CP-enhanced technique in Rayleigh fading channels
with various delay spreads and mobility. The proposed approach
benefits from the expressive nature of complex-valued neural
networks, which, however, currently lack support from popular
deep learning platforms. In response, guidelines of exact and
approximate implementations of a complex-valued convolutional
layer are provided for the design and analysis of convolutional
networks for wireless PHY. Furthermore, a suite of novel training
techniques are developed to improve the convergence and gen-
eralizability of the trained model in fading channels. This work
demonstrates the capability of deep neural networks in processing
OFDM waveforms and the results suggest that the FFT processor
in OFDM receivers can be replaced by a hardware Al accelerator.

Index Terms— Channel estimation, OFDM, deep learning,
physical layer, wireless communications.

I. INTRODUCTION

EEP learning for the physical layer (PHY) of wireless
communications has been explored recently for various
tasks [1]-[3], including signal classification [4], [5], parame-
ter estimation [5]-[9], channel estimation [8]-[20], channel
coding [16], [21], [22], detection [11], [16], [23]-[26], design
of modulation constellation [7] and pilot design [27], [28].
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Fig. 1. General AutoEncoder (Top) v.s. Communication AutoEncoder.

Deep neural networks (DNNs) can not only enhance certain
functionalities and components of wireless PHY, but also could
be developed into an end-to-end novel communication archi-
tecture viewed as an autoencoder (AE) [6]-[8], [17], [21], [22].
Instead of seeking a compact embedding of structured data
such as in an image and text (top of Fig. 1), a communication
AE (bottom of Fig. 1) generates redundant representation of
unstructured bits from which the original information can be
recovered after being polluted by a noisy channel. A commu-
nication AE learns the behavior of a channel by the structure
of data through self-supervised learning of a set of random
bits as the training data. Above the PHY, deep learning is also
used in resource allocation and network management, such
as traffic prediction [29], interference alignment [30], power
control [31], spectrum sharing [32], and scheduling [33].
The data-driven approach of deep learning offers the wire-
less PHY several advantages: i) achieving synergistic effects of
combining cascading modules in the chain of signal process-
ing [6], [7], ii) reducing the mismatch between the underlying
model and reality, iii) building low complexity solutions by
leveraging the non-linearity of DNN [11], [16], [25], [26],
and iv) discovering irregular and/or adaptive designs, e.g., for
pilot design [27], [28] and modulation constellation [6], [7].
A major distinction of wireless communication compared to
image or text interpretation is the reliance on representation of
wireless signals in complex field C. However, currently, deep
learning for wireless PHY lacks support of complex-valued
neural networks (CVNNSs) [34], [35], which is an emerging
area in the machine learning discipline, from popular platforms
such TensorFlow [36] and Keras [37]. Instead, existing studies
treat the real and imaginary parts of a complex-valued tensor
separately, C = R2, such as approx-D: two parallel real-
valued tensors [7], [11], [16], or approx-C: two channels
of a real-valued tensor [28]. However, the complex field C
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differs from R? space in multiplicative operations, which,
if unaccounted for, could prevent the DNN from fully utilizing
the relationship between the real and imaginary parts of signal
samples in terms of phase and amplitude, resulting in increased
complexity, reduced performance, and limited interpretability.

For example, orthogonal frequency-division multiplexing
(OFDM) systems require (inverse) discrete Fourier transform
(DFT/IDFT) and/or linear finite impulse-response (FIR) filters
that are defined in the complex field C. Without complex-
valued representation, existing deep learning-based OFDM
receivers [8], [10], [11], [13]-[16], [23] and AE [8] are limited
to relying on DFT/IDFT in processing the OFDM waveform.
Regarding technical solutions, convolutional neural networks
(CNNs) [4], [5], [16], [23], [24], [28] are less often used
than multilayer perceptron (MLP) [6]-[12], [21], [22], [25] in
wireless PHY despite their higher efficiency, as CNN depends
on the assumptions of the underlying process and is harder to
design for the operations in the complex field.

In this paper, we propose a deep complex-valued convo-
lutional network (DCCN) design to recover bits from syn-
chronized time-domain OFDM signals. Instead of relying on
DFT/IDFT, the developed end-to-end OFDM receiver learns a
new way to receive OFDM waveforms with improved signal-
to-noise ratio (SNR), which demonstrates the potential of
deep learning for OFDM waveforms. The DCCN receiver
outperforms the legacy receivers in Rayleigh fading chan-
nels with lower complexity by utilizing recent developments
within the context of CVNNs. Moreover, many structural and
dimensional hyperparameters of the DCCN are selected based
on domain knowledge and OFDM frame structure, offering a
transferable design template for other waveform structures.

The major contributions of this paper include the following:
1) We develop a learned linear transform that can replace
DFT/IDFT with increased SNR in processing OFDM wave-
forms by exploiting its cyclic prefix (CP). The results suggest
that a new hardware accelerator can potentially replace the
FFT processor in OFDM receivers, and we demonstrate the
potential of CVNN in learning communication waveforms.
2) We also design a data-driven interpretable DCCN channel
equalizer that achieves superior performance than the legacy
receivers and good generalizability at a low complexity of
O(N?) by combining CP exploitation [38]-[42], intersymbol
interference (ISI) mitigation, and channel estimation. 3) We
present a suite of training methods to improve the convergence
and generalizability of the DNN-based receiver in fading
channels, including a transfer learning scheme that trains the
basic OFDM demodulation and channel equalization in two
stages. The models are trained and evaluated in different
settings of SNR values for white noise and fading channels,
and using mixed Rayleigh fading models to smoothen the
loss landscape of training. 4) To the best of our knowledge,
DCCN is the first deep neural network-based wireless receiver
that employs explicit complex-valued representation for the
entire In-Phase and Quadrature (IQ) domain. A library of
complex-valued dense and convolutional layers is provided
in open-source software [43], and guidelines for processing
complex-valued tensor with real-valued neural networks are
provided to the community.
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The rest of this paper is organized as follows: The related
work is discussed in Section II. An overview of an OFDM
system and channel estimation approaches are provided in
Section III. In Section IV, the design and training approach of
the DCCN receiver are presented. The numerical results are
presented in Section V. Finally, the conclusions and future
directions are discussed in Section VI.

II. RELATED WORK

A. Deep Neural Networks for Wireless Communications

An MLP makes no assumptions about the underlying
processes, and is used in channel estimation [9]-[12], [19],
detection [25], [26], and communication AE [6]-[8], [21],
[22]. MLP in these studies typically has 3 to 5 layers,
and follows two configurations in the signal path. The first
configuration is pass-through: at the receiver (transmitter),
MLP takes received data and pilot (input bits) and outputs
estimation of the transmitted symbol or soft bits [7], [8],
[11], [25], [26] (transmit IQ samples [6]-[8], [22]). Addi-
tional components may be included for synchronization in
AE [6]-[8], [22]. The second configuration is the estimator:
MLP only estimates channel [9], [10], [12], [19] or other
parameters [7], [9] by utilizing the received pilot or signal, and
the signal is recovered separately similar to the legacy systems.
In this paper, the developed DCCN employs a 4-layer MLP
with estimator configuration between convolutional layers for
channel estimation.

CNN is used in signal classification [4] and recovery [5],
channel estimation [16]-[18], [20], [28], [44], [45] and
detection [16], [24]. Although CNNs may not outperform
MLP [21], it is more efficient and scalable. For example,
an OFDM receiver in [16] matches the linear minimum
mean square error (LMMSE) estimator with linear complexity
based on a depth-wise separable convolution cascaded in
a residual architecture. CNNs are also configured as pass-
through [16], [24] and estimator [44] in the signal path. Other
types of DNNS, such as generalized regression neural network
(GRNN) [12] and long short-term memory (LSTM) [14], [17]
are also used in channel estimation, and model-based DNN
that unfolds an iterative algorithm [23] is used for detection.

CVNNs are discussed in [34], [35] but they have not been
supported in popular platforms [36], [37]. [35, p. 1] indicates
that CVNNs “have been marginalized due to the absence of
the building blocks”. In wireless PHY, most CNNs are real-
valued [4], [16], [18], [20], [24], [28], [45], except that a
single layer of complex-valued convolution was used in [5] to
achieve amplitude-phase representation, which would require
additional phase (un)wrapping in many applications. Based
on the analysis in Section IV-A, the expressive nature of a
CVNN can be preserved by an MLP as well as a CNN [16],
[28] with proper input format and dimensions, e.g., reception
field and number of filters. However, the lack of discussions
on such settings makes it difficult to scale up the successful
design of CNNs [16], [28] with respect to the system para-
meters including antenna number and DFT size, or transfer
these experiences for future work. In this work, guidelines

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on January 29,2023 at 19:43:28 UTC from IEEE Xplore. Restrictions apply.



ZHAO et al.: DEEP-WAVEFORM: LEARNED OFDM RECEIVER BASED ON DCCNs

for implementing complex-valued convolutional layers are
provided and CVNN is used in the entire IQ domain.

B. OFDM System and Enhanced Channel Estimation

OFDM is the most popular system in modern wireless
networks. In [46], [47], the OFDM physical layer and various
channel estimation approaches are introduced. At the trans-
mitter side, several enhanced waveforms are introduced to
the OFDM family, such as Filter Bank MultiCarrier (FBMC),
UFMC, GFDM for 5G and next generation communication
systems [48]. These modified OFDM waveforms generally
have better characteristics with regards to various interfer-
ences. A constellation enhancement approach [49] and deep
learning (DL)-based coding system [13] are proposed to
reduce the Peak to Average Power Ratio (PAPR) of the OFDM
waveform. An MLP-based channel estimator for FBMC shows
good performance in high mobility channels [50].

Most of the improvements take place at the receiver side.
As a partial copy of the OFDM waveform, cyclic prefix (CP)
is introduced for synchronization and ISI mitigation at the
receiver, as shown in Fig. 2(b). CP has been exploited to
enhance blind [39]-[42] and pilot-aided [38] channel estima-
tion by improving SNR, frequency selectivity, and interference
mitigation [41]. In [38], the decoded data of a previous OFDM
symbol is used to recover the CP of the next symbol. However,
the approach in [38] can only enhance LS channel estimates.
Our model accomplishes this task by processing multiple
OFDM symbols simultaneously with better overall perfor-
mance and slightly improved efficiency without an explicit
algorithm, which serves as a complementary to analytical
approaches, such as maximum likelihood [39], [41] and factor
graph [40], [42] in exploiting CP.

DNN is also used to enhance the OFDM receivers. In [11],
a 5-layer MLP is used for channel estimation and symbol
detection. Our work confirms the conclusions in [11] that
MLP can match MMSE in high SNR and handle adversities
related to CP, clipping noise, and channel mismatch better than
MMSE. Different from [11], our channel estimator is linearly
activated instead of using ReLU, thus can be interpreted as
a low rank approximation of LMMSE. The MLP in [11]
handles OFDM waveform without CP, while our model uses
CP to simultaneously improve the SNR and mitigate ISI.
Moreover, an independent MLP needs to be trained for every
16 bits in [11], while we only use one model to process an
entire coherence slot, leading to better scalability. A number
of studies use CNN for channel estimation in OFDM sys-
tems [18], [20], [44], [45], without being able to outperform
the ideal LMMSE. However, for massive MIMO, a low-
complexity channel estimator that can outperform approximate
LMMSE [18] is still attractive. The OFDM receiver in [16]
achieves linear complexity O(N), but it only matches the
ideal LMMSE on trained channel models and underperforms
on unseen channel models. Compared to these studies, our
DCCN outperforms the ideal LMMSE with a complexity
of only O(N 2) even with unseen channel models. In [19],
a MLP-based channel estimator for non-OFDM system out-
performs approximate LMMSE in doubly selective channels
and exhibits better robustness to mobility, of which these
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findings are confirmed in our work, despite the results are not
directly comparable. In [14], long short-term memory (LSTM)
is used to estimate channels by predicting future data and
is reported to outperform LMMSE in high-speed scenarios.
In comparison, our approach mitigates ISI by simultaneously
processing multiple OFDM symbols. Deep learning has been
shown being able to improve MIMO detection [23]-[25] and
channel coding [17], while only single antenna is considered
in this paper. Moreover, the aforementioned work [8], [10],
[11], [13]-[16], [23] all rely on explicit DFT/IDFT, which is
replaced by a learned linear transform in our approach for
increased SNR. Our work first demonstrates the capability of
DNNs in processing OFDM waveform, and our approaches of
setting hyperparameters of NN layers based on OFDM frame
structure and leveraging domain knowledge offer a transferable
design template for other waveform structures.

III. OFDM COMMUNICATION SYSTEM

We first introduce the relevant concepts and notations in the
lower physical layer of a legacy OFDM system, followed by
channel estimation approaches in legacy receivers.

A. Physical Layer

The block diagram of the PHY of an OFDM system is
illustrated in Fig. 2(a). At the transmitter, channel encoding is
firstly applied to input bits b € {£1} for error detection and/or
correction. The encoded bits are then converted to complex-
valued in-phase and quadrature (IQ) data by mapping to a
constellation on the IQ plane. A frequency-domain OFDM
symbol, X, is created by inserting training signals (pilots)
and guard bands into the IQ data, and then X is transformed
to a time-domain OFDM symbol, x, via an N-point IDFT
and a subsequent parallel to serial (P/S) conversion. Next,
CP, a section of x at its end, is prepended to x to cre-
ate a time-domain full OFDM symbol, x.,, as illustrated
in Fig. 2(b). The baseband signal, x.,, is then up-converted to
the radio frequency (RF) and transmitted over-the-air by the
RF frontend. The radio signal propagates over the wireless
channel and is picked and down-converted to baseband 1Q
samples by the receiver frontend. At the receiver, the received
time-domain OFDM symbols, y,, are recovered by a carrier
synchronizer. Then, the CP is removed from y, and the rest
of the IQ samples, y, are transformed to the frequency-domain
OFDM symbol, Y, via DFT. Based on Y, a channel equalizer
outputs the estimated transmit frequency-domain IQ data X,
which is then demodulated to soft bits (log-likelihood) b and
converted to binary output bits b by a channel decoder. Finally,
b is passed to the next layer. Note that the focus of this
paper is lower PHY, and channel coding is out of the scope.
We refer the frequency and time domains in Fig. 2(a) as the
1Q domain in which a signal is represented by complex-valued
samples.

OFDM systems typically have a frame structure where a
coherence slot (or “slot” for short) is composed of multiple
OFDM symbols, as shown in Fig. 2(b). The notations related
to the OFDM coherence slot are as follows: an OFDM symbol
contains N subcarriers, where N is the size of DFT/IDFT.
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Fig. 2.

Among the N subcarriers, a total of G nullified guard sub-
carriers are placed at the center (DC guard band) and the
edge (edge guard band). A subcarrier in an OFDM symbol
is refereed to as a resource element (RE). A coherence slot
contains F' consecutive OFDM symbols, in which P and D
REs are allocated to pilot and data, respectively. The length of
a time-domain full OFDM symbol is S = N + N, where N,
is the length of CP. Under m-ary modulation, an IQ sample
carries m bits, and the size of the constellation is 2.

B. Wireless Channel

A well accepted simplification of the wireless channel
model describes the fading and noise processes as [46]:

Y=XoH+N,, (1)

where x,y,n, € C5F*1 are the time-domain transmitted and
received signals and white noise, respectively, h € CE*1 is
the channel impulse response, X, Y, H,N, € CN*F" are the
frequency domain transformations of x, y, h, and n,, e.g.,
X = DFTx(x), and * and ® are operators of convolution and
element-wise product, respectively. Without loss of generality,
(1) can also refer to an OFDM symbol, i.e., x € CNx1, Xep €
C5*! and X € CVX1L,

The multipath fading can be modeled as a linear finite
impulse-response (FIR) filter [51]:

L—1 K
. Tk
Yyp = ; x¢_hy, and h; = kz;l v/ Q. zpsinc <Tk§ - l) , (2)

where zj is a complex-valued random variable, vectors €2
and 7 represent the power-delay profile (PDP) of the fading
process, and T is the sampling period of the discrete signal.
The filter length L is chosen so that |h;| is small when | <
0 or [ > L. For Rayleigh fading, the real and imaginary parts
of 2, are i.i.d. Gaussian random variables, thus |z |? follows a
Rayleigh distribution. K is the number of paths in a multipath
fading channel. In a flat fading channel K = 1, the channel
coefficients on all the subcarriers of an OFDM symbol are
identical. In a multipath fading channel, K > 1, the channel
coefficient varies by subcarrier so that the channel exhibits
frequency selectivity. The effects of different fading processes
on frequency-domain IQ samples are illustrated in Fig. 3.

y =x*h+n,,

Physical layer of OFDM system: (a) Diagram of legacy OFDM PHY [46], (b) Exemplary OFDM coherence slot and time-domain waveform [41].
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Fig. 3. The effects of different wireless channels on QPSK modulation,

SNR = 6 dB, on IQ plane (x: In-Phase, y: Quadrature).
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Fig. 4. Typical OFDM pilot patterns: comb, block, and scattered.

Note that only noise and fading are considered, while channel
impairments for channel coding are left for future work.

The channel impulse response, h, is time-variant, and its
coherence time, 7., is inversely proportional to the maxi-
mum Doppler frequency Fy, ie., 1. ~ 1/F;. An OFDM
system is usually configured according to its applications,
measured coherence time, 7., coherence bandwidth, B., and
total bandwidth, so that slow fading holds for a coherence
slot.

C. Channel Estimation and Equalization

Consider a communication system with a pilot-aided chan-
nel estimation at the receiver. Different pilot patterns, such as
block, comb, and scattered pilots, as illustrated in Fig. 4 [46],
are designed to sample the channel distortion. Pilot signals
are of either constant signal or low auto-correlation sequence
(e.g., Zadoff-Chu sequence) known at the receiver. The basic
pilot-aided channel equalizer in OFDM system is based on the
least square (LS) estimator [46], [47]:

- Y
,  where HLS:}"( P),

- Y
X = xr
Xp

Hyg

3)
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DCCN OFDM receiver flow graph: a DCCN equalizer converts time domain received signal, ycp, to estimated transmitted signal, xp, which is

subsequently converted to estimated soft bits, b, and hard bits, b, by a DCCN basic receiver. The blue color represents complex-valued domain, and gray for real-
valued domain. The dimensions and data types of a dense layer are shown as e.g., Csx n, and the shape of its output tensor as, e.g., [B, F, N], the dimensions
of a Conv layer is labeled beside the block, e.g., N X N X 1 represents N 1-D filters each of length N. A dashed block represents a data tensor.

where X is the estimated signal, H Ls contains the LS channel
estimates, Xp and Y p are transmitted and received pilots,
respectively, and F(-) is an interpolation operator, e.g., linear,
spline, low-pass-filter, and DFT [46], [47]. The LS estima-
tor is agnostic to channel statistics, while other estimators,
such as LMMSE, maximal likelihood, and parametric channel
modeling-based (PCMB) estimator, are based on LS estima-
tion and/or prior channel knowledge [46], [47].
The ideal LMMSE estimator is expressed as [47], [52]:
X BN\t
Hiyvyvse = Ruua (RHH + EI> Hys, 4)
where Ry = E{H, ;HZ} is the frequency-domain covari-
ance matrix of channel realization H, « is the linear-domain
SNR, and 3 is a constant defined based on a specific mod-
ulation scheme. The ideal LMMSE estimator in (4) requires
prior channel knowledge Ryypr and «, which are unavailable
in practice. Moreover, the matrix inversion in (4) leads to a
computational complexity of O(N?3). Low-rank approximation
(LRA) of LMMSE [53] approximates the ideal LMMSE
matrix Ry (Runa + gI)*1 via prescribed a and singular
value decomposition (SVD) of Rygpy, which can tolerate PDP
mismatch and achieve a lower complexity of O(N?) at the
cost of an irreducible error floor. Improvements on approxi-
mate LMMSE (ALMMSE) include using different PDPs [54],
SNR estimation [52], [55], rank estimation and exploiting the
circulant property of LMMSE matrix [52]. Fast ALMMSE can
further reduce the complexity to O(N) with a pre-computed
LMMSE matrix at the cost of degraded performance in a
certain SNR range [56].

IV. DCCN-BASED OFDM RECEIVER

The DCCN-based OFDM receiver is denoted by a func-
tion b = Ds(ycp; ®), which is defined on a collection of
hyperparameters, S, for the configurations of an OFDM frame
and DCCN flow-graph (Fig. 5), where b is the log-likelihood
of the transmitted bits, y., is the synchronized time-domain
received OFDM symbols of a coherence slot including CP,
and O is the collection of trainable parameters of DCCN. The
DCCN-based OFDM receiver comprises a channel equalizer
followed by a basic receiver. The hidden layers of DCCN are
named after the signal processing modules in a legacy OFDM

receiver, while they might function differently. The forward
network generalizes the signal processing in a legacy receiver
and ensures that the search space of ® contains at least
an ALMMSE receiver by adding computational redundancy,
which can be minimized during training by introducing a reg-
ularization loss. Structural redundancy is included in the flow-
graph for research, and a simplified flow-graph is proposed in
Section V-E for deployment.

A. Guidelines for Complex-Valued Layers

Omitting the bias and activation, a complex-valued neuron
can be expressed as [34]:
—b
a

Re (xOUT) a
[Im (xOUT)] o [b

where /N, 2OUT ¢ C and weights a,b € R are the real and

imaginary parts of a complex weight, respectively. (5) can be

approximated by a dense layer of Ry, o with approx-D input

and trained weights w ~ (‘; ;b). Generalizing (5) to higher

dimensions, we have the following principles:

Remark 1: A dense layer of Cz, « z, can always be approx-
imated by a dense layer of Raoz, 2z, with full expressive
power.

Remark 2: A complex-valued convolutional (C-Conv) layer
of size f,, X fs x f. (stands for f, filters of shape, fs, and
depth of f.) can be approximated by a real-valued Conv layer
of size 2f,, x (fs,2) x f. for approx-D input or 2f,, X fs X 2f,
for approx-C input without following (5), and can be exactly
implemented by a real-valued Conv layer of size 2f,, X fs X f.
with approx-D input by following (5).

By following (5), the exact implementation of CVNN layers
reduces unnecessary degree of freedom and only needs half
of the trainable real-valued weights that is required by the
approximations. More specifically, three exemplary implemen-
tations of a 1D C-Conv layer of size 1 x 1 x 1 are given
in Fig. 6(a) to illustrate Remark 2. All three implementations
meet the expressive requirement with the same computational
complexity (four multiplications and two additions per com-
plex sample). Each of the first two approximations requires
four weights while the third exact implementation only needs
two weights. The exact implementation has better spatial

(5)

Re (a:IN)] |

Im (a:IN)
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Fig. 6. (a) Three implementations of 1D complex-valued Conv (C-Conv)

layer (1 x 1 x 1) that preserve its expressive power, (b) Implementation
of a 1D C-Conv layer (8 x 8 x 1) based on a 2D real-valued Conv layer
(16 x (1,8) x 1).

complexity and training efficiency with a reduced search space
for the optimizer. For practitioners, an approximated C-Conv
layer will be less expressive than the exact one if it fails
to meet the required input format or the minimal size, e.g.,
the shape and number of filters. For complex-valued activation
principles, we refer readers to [34], [35].

In Fig. 6(b), the implementation of our DFT-Like C-Conv
layer is illustrated by an example of 1D C-Conv layer of size
8 X 8 x 1 implemented by a 2D real-valued Conv layer of
size 16 x (1,8) x 1. In this work, real and imaginary parts
of a complex tensor are in the last dimension.

B. Basic DCCN Receiver

The basic DCCN receiver is an OFDM receiver without a
channel equalizer, as illustrated on the right half of Fig. 5. The
forward network of the basic receiver begins with an optional
slicing for dropping the CP, followed by a C-Conv layer of
size N x S x1 (or N x N x 1 if CP is dropped), which
is designed to transform time-domain OFDM symbols, X,
to frequency domain X and exploit CP for SNR gains. Next,
a complex dense layer Cpyp is designed to extract all the
data REs X p from a coherence slot. The rest of the forward
network is essentially a classifier that converts IQ samples to
soft bits, where an input IQ sample is treated as a vector of
two real numbers, C = R2. The extracted 1Q vector and its
non-linear (Leaky ReLLU) activation, A0, are concatenated to
a tensor of shape [B, D, 4] and fed to a small dense layer
of Ryxom followed by another Leaky ReLU activation, Al,
of which the output tensor is reshaped to [B, D, m,2| and
then activated by a softmax function along its last dimension
to produce a soft bit—a vector of likelihoods of +1. B is the
number of slots in a batch of input signal. Since the channel
coding is out of our scope, the output bits are obtained by
hard decisions on soft bits. In Section V-E, variations of the
forward network are tested.

C. DCCN Channel Equalizer

The DCCN equalizer, with the input of y., and the output
of X.p, is prepended to the basic DCCN receiver, as illustrated
on the left half of Fig. 5. The forward network of the DCCN
equalizer contains four submodules: The first submodule com-
prises a dense layer of Cgxn (or Cny if CP is dropped),
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Fig. 7. Block diagram of the DCCN training System.

followed by a C-Conv layer of N x N X 1, and it converts
Yep to the frequency domain Y. The second submodule
estimates the channel frequency response H with four dense
layers followed by a 2D complex filter. The third submodule
performs equalization with an element-wise complex division
X=Y / H. Finally, X is converted to X by an IDFT-Like 1D
C-Conv layer of N x N x 1, and X, is recovered by adding
back CP with a dense layer of Cyxgs.

In the channel estimation submodule, the first dense layer
of Cpyxp is designed to locate pllots and estimate chan-
nel coefficients on pilots HP 1s- Then, H is obtained by an
interpolation of H 1.g to the entire coherence slot and channel
estimation in the next three dense layers and a 2D filter of
size (F, N), which resembles the LRA-LMMSE [53]:

Hyopa = UD,U"H,g, (6)

where D, is a diagonal matrix with entries 6, = /\ki—%/a for
k € [1,p], and 6 = 0 for k € [p+ 1,N], U is a unitary
matrix containing the singular vectors of Ryyy. Instead of
setting A, p, «, and U explicitly [52], [54], [55], the LMMSE
matrices in (6) are trainable parameters of multiple dense
layers to be learned from data. Note that the dimension of
these dense layers are of a coherence slot for ISI mitigation.
In Section V-C, our DCCN receiver also exhibits an error
floor like ALMMSE with a prescribed SNR [52], [53], [55].
Other numbers of the dense layers of Cpy « pn are tested in
Section V-E.

Considering the number of OFDM symbols per coherence
slot F' as a constant in a protocol, the asymptotic computa-
tional complexity of the DCCN receiver is O(N?) (or O(NS)
for DCCN with CP), since DCCN is composed of cascading
layers without any loops. The 1D complex convolutional layer
and the fully connected layer have a maximum complexity of
O(N?) (or O(NS) for with CP). If F is considered as a
variable, the complexity becomes O(N2F?).

D. 2-Stage Training

The training setup of the DCCN receiver is illustrated
in Fig. 7. An online random generator creates a random binary
stream b, which is translated by an OFDM transmitter into
time domain OFDM symbols as the transmit signal, x.,. The
received signal y,, is created by a channel model that adds
fading and noise to X. y., and b are the training data and
labels, respectively. The outputs of DCCN model are the soft
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Fig. 8. Training the basic receiver and the equalizer in two stages.

bits, b, and the output bits, b e {£1}, which are generated
by hard decision on b. The loss function £(b, b, b, ®) is the
weighted sum of the cross entropy (CE) loss and regularization
loss Ly¢4(0):

L(b,b,b,0) = Leg(b,b) +eL,0y(O), (7

where ¢ < 1 is a small constant. The cross entropy loss,
Lcop(b,b), is the average cross entropy of the training labels
b, and the soft bits b. During training, ® of DCCN receiver is
randomly initialized and updated by an Adam optimizer that
is running back-propagation based on the loss function in (7).

It is difficult and may be impractical to train the DCCN
receiver directly in multipath fading channels due to the severe
distortion shown in Fig. 3(c). Therefore, a transfer learning
scheme, as illustrated in Fig. 8, is developed to train the basic
receiver and the equalizer in two stages. In stage 1, the basic
receiver is trained in an AWGN channel only. In stage 2,
the flow-graph of the DCCN equalizer is first prepended to the
pre-trained basic receiver in a TensorFlow session dedicated
for graph-editing. Then, the equalized DCCN receiver is
loaded and trained in another session, in which the trainable
parameters of the basic receiver is frozen and the channel
fading is included to generate the training data. The loss
function is the same throughout stages 1 and 2. The graph-
editing technique enables back-propagation when the second
half of the forward network is frozen. Note that the two-stage
training approach can increase the data efficiency by reusing
the same pre-trained basic receiver in stage 2 for different
fading settings. Similarly, the trained model from stage 2 can
be fine-tuned for different realistic channels.

To improve training efficiency, several techniques are
employed. The training data is fed to the model in mini
batches, which leverages the high throughput of the parallel
processing in the graphics processing units (GPUs) and min-
imizes the latency in memory copying. In the programming
of NumPy-based OFDM transmitter and fading modules, data
processing is vectorized and large loops are avoided. The
learning rate is decayed exponentially for fine-tuning as the
training proceeds. The random training labels and correspond-
ing training data are generated online rather than feeding a
pre-generated training dataset repeatedly. Therefore, we use
an iteration instead of an epoch (a full training pass over
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the entire dataset) to describe the outermost loop in training.
An early stop mechanism is employed on top of a maximum
number of training iterations to end the training if the key
performance metric (i.e., BER) has not improved after a fixed
number of iterations.

E. Channel Settings in Training

A clear guidance does not exist for setting the training SNR
for a DL-based PHY. We use different SNR configurations
in the two stages. In stage 1, the SNR does not influence
the optimal basic receiver but the effectiveness of training.
The noise in the channel creates bit errors that drive the
gradient descent and acts as a regularizer to prevent over-
fitting. A higher SNR requires a larger size of the mini-batch to
generate the same amount of bit errors, which could lower the
data efficiency and prolong the convergence of training. On the
other hand, low SNRs may hide small demodulation bias in
relatively large BERs, i.e., consistently more 1s than —1s in the
output bits. To this end, we recommend a training SNR value
of Ey/N, = 5 dB [21] for the training stage 1, specifically,
the SNR 7; = 5m dB is selected for m-ary modulation.

In the training stage 2, the optimal DCCN equalizer depends
on the channel statistics such as SNR and PDP. For better
generalizability of the trained model, a mixture of SNRs
and fading models is employed. The SNR of each OFDM
coherence slot is randomly selected from the working SNR
regime based on a probability function that prefers high SNR
values without excluding middle and low SNR values. For
example, n; € {0,3,...,30} with P(p; > 17) = 90%.
The rationale is that the DCCN equalizer resembles a fast
ALMMSE algorithm [52], which has preferable performance
when designed for high SNR (i.e., 20 dB) other than low
SNR (i.e., 5 dB). Meanwhile, since LMMSE is robust to
PDP mismatch, the optimal points of the DCCN equalizer
for different PDPs would be located closely. A mixture of
Rayleigh fading models improves not only the generalizability
but also the convergence time. The fading models with shorter
delay spread can smooth the overall loss landscape to help the
optimizer overcome the local minima associated with those
with richer multipath. In Sections V-D and V-E, models trained
with different channel settings in both stages are compared.

V. EVALUATION RESULTS
A. Methodology

The DCCN receiver is compared to legacy receivers with
different channel estimators [43] in numerical evaluations.
We first present the results of the DCCN basic receiver for
m-ary Quadrature Amplitude Modulation (QAM) modulation
(m < 4) in AWGN channels, then the equalized DCCN
receiver in Rayleigh fading channels with different settings of
PDP, ISI leakage, and mobility. We use the notations DCCN
and DCCN-CP to refer to DCCN receivers without and with
CP exploitation, respectively.

The evaluated OFDM system emulates a simplified LTE
downlink frame structure [57] as detailed in Table I, in which
the DFT size is 64, the total number of guard subcarriers (SCs)
at the edge and direct current (DC) is 16, the sampling rate
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TABLE I
CONFIGURATIONS OF THE EVALUATED OFDM SYSTEM

FFT Size N =64

Sample rate (Msps) 0.96

Guard SCs per symbol | 14 (Outer) + 2 (DC)

Pilot REs per slot P =16

Data REs per slot D = 320

Subcarrier bandwidth 15 KHz

Symbols per slot F=7

CP length long: 0.25N, short: 0.07N

PAPR limit 9 dB

Pilot LTE downlink frame pilot pattern [57] with
constant value y/1/2(1 + )

Modulation QAM with orders of 2,4, 8,16, Gray code

Rayleigh fading model | Flat, EPA, EVA, ETU [58]

Channel coherence Te > 1ms, B, > 200K Hz [58]

Max Doppler spread F4 = 0 Hz by default, or if specified EVA
70 Hz, ETU 70 Hz, 300 Hz [58]

TABLE II
TRAINING CONFIGURATIONS FOR m-ARY MODULATION

Setting Basic Receiver DCCN Equalizer
Maximum iterations 1200m 4000m
Early stop window 200 iterations 200 iterations
Initial learning rate 0.001 0.001

Learning rate decay Exponential, rate 2%, step 500 (mini-batches)
SNR (dB) 5m [ Customized random variable
Iteration 200 mini-batches

Mini-batch size 72 % 320 X m bits

Testing bits per SNR 20000 x 320 x m bits

Testing SNR -10 to 30 dB

Optimizer SGD with Adam

is 0.96 MHz, and the bandwidth of a subcarrier is 15 KHz.
A coherence slot contains 7 OFDM symbols, in which the
numbers of REs assigned to pilot and data are P = 16 and
D = 320, respectively. A scattered pilot pattern, which is
consistent with LTE protocol as illustrated in the rightmost
of Fig. 4, is used, and the pilot signal has a constant value
of \/1/_2(1 +1). QAM with orders of 2, 4, 8, 16 and Gray
code are used for constellation mapping, where the maximum
amplitude of the constellation is 1. The peak to average power
ratio (PAPR) of the OFDM waveform after the transmitter is
limited to 9 dB.

The training configurations for the basic receiver and equal-
izer with m-ary modulation are listed in Table II. A stochastic
gradient descent-based Adam optimizer with a mini-batch size
of 72 coherence slots are used. In each iteration, a new random
bit stream (training labels) is generated and converted to the
training data by a legacy OFDM transmitter and a channel
model. Since training labels are random, the loss function for
early stop mechanism is based on the training data rather than
a separate test data set. Training terminates either by reaching
the maximum number of iterations, or triggering an early stop
which mostly happens in practice. The learning rate is set to
0.001 initially and decayed by 2% every 500 mini-batches
(steps) or 2.5 outer iterations. The SNR is set according to
the description in Section IV-D. Each outer training iteration
contains 200 mini-batches, and the testing data is of 20,000
coherence slots for each SNR point from —10 to 30 dB.
The Rayleigh fading for training stage 2 is set as alternating
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Fig. 10. BER of legacy and DCCN OFDM receivers vs SNR, in AWGN
channel, with long CP.

models of flat fading, EPA, EVA, and ETU in consecutive
slots.

Training a DCCN model lasts for 250-1300 iterations,
as shown in Figs. 9. The training process starts with a quick
fitting followed by a long fine-tuning phase: the cross entropy
first decreases drastically in the first 10-50 iterations, then
decreases slowly but steadily until hitting a floor. The source
code is available at [43].

B. Additive White Gaussian Noise Channel

The BERs of our basic receivers and the legacy OFDM
receiver [43] with modulations of BPSK, QPSK, 8QAM and
16QAM in AWGN channels with SNR from —10 to 20 dB
are presented in Fig. 10, where long CP is considered for
DCCN-CP. Without the help of CP, we do not expect DCCN to
outperform the legacy demodulation since the latter is optimal
in an AWGN channel. For BPSK, 8QAM and 16QAM, DCCN
performs closely to the legacy receiver with a negligible gap
(<0.16 dB) when BER is below 10~°. However, for QPSK,
DCCN begins to underperform the legacy receiver at the
BER level of 1072 and the gap is increased to 0.7 dB at
BER of 10~5. On the other hand, the DCCN-CP consistently
outperforms DCCN by a gap that decreases from 0.7 dB for
BPSK to 0.5 dB for 16QAM. For QPSK, DCCN-CP starts
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to underperform legacy receiver at BER of 107°. Note that
when BER is very small, e.g., <1072, the relative error due
to limited data size in simulation increases. The CP carries
information on all subcarriers and experiences independent
random noise, thus can theoretically improve the power of data
signal by N.,D/(FN?), which corresponds to an increase
of 0.75 dB on SNR in AWGN channel for a CP length of
0.25N. DCCN-CP brings an improvement of SNR to DCCN
very close to 0.75 dB for BPSK. It shows that using C-Conv
layer to transform time-domain OFDM symbol to frequency-
domain has the advantage of exploiting redundancy carried by
CP, which cannot be accomplished by explicit DFT.

C. Rayleigh Fading Channels

Next, the equalized DCCN receivers are evaluated in
Rayleigh fading channels. The benchmarks are legacy OFDM
receivers with different channel estimators: LS estimator
(LS-Spline), LS estimator enhanced with CP based on ana-
Iytical approach in [38] (LS-CP), the ideal LMMSE, and
an ALMMSE. The channel covariance matrix is updated
per OFDM symbol for the ideal LMMSE as Rpgp
HHH*Hz based on true channel realization H, ;, and per
slot for ALMMSE as Rpm = +H;gHY,. The H;g in
the ideal LMMSE and ALMMSE is from LS-Spline. The
tested ALMMSE represents the upper bound of ALMMSE
of complexity O(N?) [52] with full rank approximation and
perfect SNR estimates. The ISI is set to be only between
consecutive OFDM symbols in the same coherence slot. For
simplicity, BPSK modulation and perfect synchronization are
considered at the receiver. An independent channel realization
is generated per coherence slot and is invariant within the
slot by default (Fy; = 0 Hz) [11]. If F; > 0 Hz, the time-
varying channel is generated by the Jake’s model and the
fading technique of sum of 48 sinusoids [59]. The flat fading
and 3GPP multipath fading models [58] are evaluated. With
the DFT size of 64, the channel filter lengths, L, for flat fading,
extended pedestrian A model (EPA), extended vehicular A
model (EVA), and extended typical urban model (ETU) are
1, 9, 11 and 13, respectively.

In Rayleigh fading channels of small delay spread, such
as flat fading and EPA model [58], the BER performances
of the equalized DCCN receivers and benchmarks with long
CP are presented in Figs. 11(a) and 11(b), respectively. Since
the length of channel filter L is smaller than length of CP 16,
the IST can be completely removed by dropping CP. Compared
to the ideal LMMSE, the DCCN receiver that drops CP is
similar or slightly better in low to mid-range SNR regime
(<15 dB), and underperforms in high SNR regime with a tiny
performance gap in flat fading and a larger gap of 1 to 3 dB in
EPA channel. The DCCN-CP receiver outperforms the ideal
LMMSE by around 1 dB and almost overlap with the ideal
receiver with perfect channel estimates in the low to mid-range
SNR regime, but its performance also deteriorates in high SNR
regime. It shows that DCCN-CP receiver is able to exploit
the redundancy information carried in CP for performance
gain. Despite that DCCN-CP receiver coincidentally overlaps
with perfect channel estimates here, its performance gain in
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Fig. 11. BER of equalized DCCN receivers and benchmarks with long CP

Ncp = 16 in low-mobility Rayleigh fading channels: (a) flat fading L = 1,
and (b) multipath fading with low RMS delay spread (EPA [58]), L = 9.

fact depends on the amount of redundancy in CP, which is
discussed later in Fig. 13. Compared to flat fading, the delay
spread in EPA channel enlarges the performance gap between
the ideal LMMSE and ALMMSE from 0.8 to 1.4 dB, and
the gap between ALMMSE and LS-Spline from 0.7 to 1 dB,
while LS-CP stays closely to ALMMSE. Although LS-CP
underperforms ALMMSE by about 0.2 dB, LS-CP requires no
prior information while ALMMSE is based on perfect SNR.
Notice that SNR of 30 dB may not be common in practice,
and the uncertainty of tested BER at the level of 107% is
also higher. The fact that DCCN performs similar to the ideal
LMMSE with prior knowledge of channel covariance matrix
when ISI is completely removed, shows that DCCN can learn
the channel statistics from data.

In a multipath channel of large delay spread, such as EVA
and ETU models [58], the BER performance by SNR of
the equalized DCCN receivers and benchmarks with short

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on January 29,2023 at 19:43:28 UTC from IEEE Xplore. Restrictions apply.



2416

o
w102 F
o 10

: LS-Spline
BPSK: LS-CP
—— BPSK: ideal-LMMSE
—&— BPSK: ALMMSE
BPSK: DCCN
—%— BPSK: DCCN-CP
—>¢ - BPSK: ideal-LMMSE (Fd=70Hz)
—[+ - BPSK: ALMMSE (Fd=70Hz)
% - BPSK: DCCN-CP (Fd=70Hz)

103 F

-10 -5 0 5 10 15 20 25 30
SNR (dB)

(a)

E oL : Known
a 10 | —— BPSK: LS-Spline

BPSK: LS-CP

—>— BPSK: ideal-LMMSE

—5— BPSK: ALMMSE
BPSK: DCCN

107 | —%— BPSK: DCCN-CP

— ¢ - BPSK: ideal-LMMSE (Fd=300Hz)

- BPSK: ALMMSE (Fd=300Hz)

- BPSK: DCCN-CP (Fd=300H2)

- BPSK: DCCN-CP (Fd=70Hz)

-10 -5 0 5 10 15 20 25 30
SNR (dB)

(b)
Fig. 12. BER of equalized DCCN receivers and benchmarks with short CP

Nep = 4 in multipath Rayleigh fading channels with large RMS delay spread
and leakage of ISI: (a) EVA [58] L = 11, and (b) ETU [58] L = 13.

CPs are presented in Figs. 12(a) and 12(b), respectively.
Notably, in the case of the length of the channel exceeds
the length of CP, the ISI cannot be removed by dropping
CP, resulting performance degradation in high SNR regime
even with perfect channel knowledge. With the presence of
ISI, the ideal-LMMSE underperforms LS and all the other
channel estimators in mid-to-high SNR regime, similar results
was found in [60]. Meanwhile, by alleviating the notch in
frequency in frequency-selective fading [38], the performance
gain of CP-enhanced LS estimator over the baseline LS
estimator increases by the delay spread of the channels. In a
frequency-selective channel with large delay spread, DCCN
receiver outperforms the ALMMSE, LS, and CP-enhanced
LS, with a large margin in high SNR regime, e.g., leading
ALMMSE by 5 dB at BER of 0.01. The DCCN equalizer
can take advantage of processing a whole coherence slot
instead of a single OFDM symbol, thus further reduce the ISI.
Similar mechanism is employed in conventional CP-enhanced
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Fig. 13. BER of DCCN receivers with different CP lengths vs SNR in flat
fading channel. The DCCN equalizer is trained only in flat fading channel.
The gains of DCCN-CP receiver with long CP (25%N) and short CP (7%N)
are 0.88 dB and 0.33 dB, respectively. The DCCN receiver that drops CP is
on average 0.5 dB worse than the receiver with known channel information.
Legacy receiver with CP-enhanced LS equalizer [38] gains 0.7 dB and 0.3 dB
over baseline LS equalizer in long and short CPs, respectively.

equalizer [38], in which decoded data of the previous OFDM
symbol is used to mitigate the ISI in the next one. DCCN
can learn to mitigate ISI and frequency nulling together in
frequency-selective fading channels, yielding superior per-
formance from synergy. In comparison, CP-enhancement
approach in [38] can only enhance baseline LS estimation
but fails to improve ideal-LMMSE and ALMMSE in our
experiment.

The BERSs of the tested receivers in doubly selective chan-
nels, simulated by including Doppler spread in the EVA
and ETU channels, are shown with the dashed lines in
Figs. 12(a) and 12(b). In the mobile channels, the Doppler
effect increases the temporal channel variation and causes
frequency dispersion that leads to inter-carrier interference at
the OFDM receiver. With a maximum Doppler frequency of
70 Hz in both EVA and ETU channels, the BERs of ideal-
LMMSE, ALMMSE, and DCCN-CP rise by 0.003, 0.0008,
0.001, respectively, in middle-to-high SNRs. The DCCN-CP
still leads by a gap similar to the static cases. However, with
a maximum Doppler spread of 300Hz in the ETU channel,
the BERs of ideal-LMMSE, ALMMSE and DCCN-CP rise
by 0.007, 0.01, and 0.018, respectively, where DCCN-CP
suffers the most. These results show that DCCN-CP is robust
to channel mobility, but with a relatively low pilot density of
4.7%, its advantage over legacy receivers can be compromised
in high mobility scenarios.

The effectiveness of CP enhancement of both equalized
DCCN receivers and CP-enhanced LS receivers [38] are evalu-
ated in OFDM systems with long and short CPs, as illustrated
in Fig. 13. For a fair comparison, flat fading channel is selected
since no ISI will be leaked into the main OFDM symbol
with short CP. The equalized DCCN receivers are trained in
flag fading channels only. Both the baseline DCCN and LS
receivers that drop CP has identical performance regardless
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Fig. 14. Comparison of DCCN equalizers trained with mixed Rayleigh fading
models vs trained with single channel model and tested on the same channel
model, the four Rayleigh fading models are: flat fading, EPA, EVA, ETU [58].

of the CP length. In the settings of long and short CP, the
DCCN-CP receiver gains 0.88 dB and 0.33 dB, respectively,
and the CP-enhanced legacy LS receiver [38] gains 0.7 dB
and 0.3 dB, respectively. The DCCN-CP receiver utilizes CP
slightly more effective than the conventional approach [38].

D. Generalizability

The evaluation of DCCN and benchmarks in different
channels in Section V-C already shows that a trained equalized
DCCN receiver generalizes well to different fading channels.
To further illustrate the impact of different training settings
on the generalizability of DCCN, we present the BER of a
DCCN-CP receiver trained in mixed Rayleigh fading chan-
nels in all four different fading channels and an unseen
fading channel with L = 12, in comparison with four other
DCCN-CP receivers trained in single Rayleigh fading channel
and then tested in the same fading model keeping everything
else the same, as illustrated in Fig. 14. When SNR > 5 dB,
the receiver trained on mixed fading channels outperforms
those trained in single multipath fading channel, except flat
fading in which the DCCN-CP receiver trained in mixed
fading models underperforms the one trained only in flat
fading by 0.5 dB on average. Mixed fading models could help
DCCN overcome local minima during training, as opposed
to those trained in single fading model with large delay
spread, as shown in Fig. 14, at the cost of precision in flat
fading. The advantage of DCCN-CP receiver trained on mixed
fading can also be generalized to unseen PDP (green curves
in Fig. 14).

E. Ablation Studies and Alternative Training Methods

We test 6 alternative structures of the DCCN basic receiver,
(a—f), with some of the 6 components being changed. Their
detailed structures and test results for 4 modulations in AWGN
channel as listed in Table III (-: included, X: removed, v :
test pass, F: test fail). The two consecutive Conv layers are
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TABLE III
ALTERNATIVE FLOW-GRAPHS OF DCCN BASIC RECEIVER WITH TEST
RESULTS
Layers | original | a | b | c | d]e] f
DFT-Like C-Conv - dense | — - - - -
Conv 2™ x 1 x 2 X - - X X — —
Conv 2™ x 1 x 2™ X - - X X - -
AQ: Leaky ReLU - - - X - - -
Concat(IQ, AO) - - - | 1IQ | AO | — | AO
Al: Leaky ReLU - - - - - X -
AWGN: BPSK v v v v v v v
AWGN: QPSK v v v v v v v
AWGN: 8QAM v v v F F v v
AWGN: 16QAM v v v F F v v

10°

107 * R
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DCCN-CP: EVAK A
DCCN-CP-L1: EVi \
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Fig. 15. BER performance of DCCN-CP receivers (short CP) with different
hyperparameters or training SNRs in EPA and EVA channels.

located right before Leaky ReLU A0. Except c and d, the other
4 alternatives perform identically to the original one. Flow-
graph a shows that the DFT-Like C-Conv layer can be replaced
by a dense layer Cgy . Large error floor appears in flow-
graph c and d, which shows that only 1Q vector (c) or its Leaky
ReLU-activation (d) cannot replace their combination, which,
however, can be replaced by linear convolution that expands
IQ data from R? to R?” followed by a non-linear activation in
f. Alternative e shows that the last Leaky ReL.U activation is
unessential despite it improves training. Non-linear activation
A0 helps to reduce the amount of trainable parameters as in
the original flow-graph.

Next, we modify the number of dense layers of
Crpnxrn in DCCN-CP equalizers from 0 (DCCN-CP-L1)
to 3 (DCCN-CP-L4), and remove the 2D C-Conv layer.
DCCN-CP-L1 and DCCN-CP-L2 underperforms those with 2
and 3 layers (L3, L4, and the original) in EVA channels, as the
blue lines in Fig. 15, while have similar performance in EPA
channels. It shows that two dense layers of Cpyxpy as in
the original one is best for performance and complexity. It is
also verified that by replacing C-Conv layers with an over-
simplified implementation of processing real and imaginary
parts with two separated Conv layers, DCCN could not be
successfully trained, i.e., with a BER of 0.47.
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Fig. 16.  Simplified DCCN-CP receiver for deployment, using legacy data
REs extraction and demodulation, trained in single stage (stage 2).

We also test different training methods for both stages.
In stage 1, DCCN-CP trained with an SNR of 20 dB under-
performs the baseline by 2 dB in AWGN channels as shown
by the purple dashed lines in Fig. 16. In stage 2, the same
initial model trained in mixed fading channels with SNRs of
5 and 20 dB, respectively, exhibit larger error floors (0.0003)
than the baseline trained in mixed SNRs, as shown by the
orange lines in Fig. 16. Finally, training the DCCN-CP in a
single stage, by mixing the channels and SNRs of the two
stages, can significantly degrade the performance, i.e., BER
increases by 0.01, as illustrated by the line of DCCN-CP
(I-stage) in Fig. 16 in EVA channel. These results justify our
2-stage training approach and settings.

For deployment, the DCCN-CP receiver structure in Fig. 5
can be further simplified by replacing DCCN basic receiver
with legacy data extraction and demodulation, as illustrated
in Fig. 16. Compared to [11], the simplified DCCN-CP
receiver requires no explicit DFT, can exploit CP for
performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, an end-to-end OFDM receiver, Deep Complex-
valued Convolutional Networks (DCCN), is developed to
recover uncoded bits from synchronized time-domain OFDM
signal. By following the rule of multiplication in complex field
instead of treating the real and imaginary parts of 1Q samples
as separated streams, DCCN is able to replace DFT/IDFT in
OFDM system and exploit the redundancy of cyclic prefix
in OFDM waveform for increased SNR. With the expressive
power and synergistic advantage of complex-valued neural net-
works, DCCN is able to combine the tasks of CP-exploitation,
low-rank approximation of LMMSE, and inter-symbol inter-
ference mitigation, thus outperform the legacy receivers with
LMMSE and conventional CP-enhanced channel estimation
in doubly-selective Rayleigh fading channels, with a lower
computational complexity of O(N?). This work also offers
transferable experience for similar work. Practical guidelines is
provided for approximated implementation of complex-valued
convolutional networks, especially on setting the dimensions
of a convolutional layer with respect to the parameters of
OFDM system. A suite of novel training methods are devel-
oped for deep learning-based wireless transceiver, including
a transfer learning scheme, an end-to-end loss function that
can prevent vanishing gradient problem in training, and use
of mixed SNR and fading models to smooth the loss land-
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scape. It demonstrates the capability of deep neural network
in processing sophisticated communication waveform, and
suggests that the FFT processor in OFDM receiver can be
replaced by a hardware Al accelerator.

Possible future directions with regard to complex-valued
neural networks include: 1) explore non-linear signal process-
ing for better performance and/or complexity, 2) improve
the scalability by using convolutional layers for channel
estimation, 3) extend to spatial domain such as massive
MIMO, and 4) explore waveform design and channel coding
through complex-valued neural networks-based communica-
tion autoencoder.
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